Chapter 14

```
In[1]:= Needs["Graphics`MultipleListPlot`"]
    Needs["Graphics`Legend`"]
    Needs["Graphics`PlotField`"]
```

à Question 1

Population of England and Wales, 1701-1791

à Question 2

We have the following information for each country after the epidemic:

Country A:
$$b = 3\%$$
, $d = 2\%$ with $(b-d) = 1\%$ $\lambda = 0.01$
Country B: $b = 5\%$, $d = 3\%$ with $(b-d) = 2\%$ $\lambda = 0.02$

$$In[9] := Solve[2 p0 E^{0.01 t} == p0 E^{0.02 t}, t]$$

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

$$Out[9] = \{ \{t \rightarrow 69.3147\}, \{t \rightarrow -\infty\} \}$$

à Question 3

We have

$$p(t) = p0 E^{[(b-d)-m]t}$$

$$In[10] := FullSimplify[Solve[p0 E^{((b-d)-m) t1} == \frac{1}{2} p0 E^{((b-d)-m) t0}, t1]]$$

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found.

$$\textit{Out[10]} = \left\{ \left\{ t1 \rightarrow \frac{\text{Log}\left[\frac{1}{2} e^{(b-d-m) t0}\right]}{b-d-m} \right\} \right\}$$

$$In[11] := Apart \left[\frac{Log[2] - Log[E^{(b-d-m) t0}]}{-b + d + m} \right]$$

$$Out[11] = -\frac{Log[2]}{b - d - m} + \frac{Log[e^{(b-d-m) t0}]}{b - d - m}$$

But

$$Ln(E^{(b-d-m)t0}) = (b-d-m)t0$$

Hence,

$$t1 = \frac{-\text{Log}[2]}{b-d-m} + t0$$

$$t1 - t0 = \frac{-\text{Log}[2]}{b-d-m}$$

To check, using the information in the previous question, let b = 5%, d = 3% and m = 3%, then b - d - m = -1%

à Question 4

Given

$$p(t) = p0 E^{kt}$$

(i) Population trebbling in size

$$In[13] := \textbf{Solve}[\textbf{p0} \, \textbf{E}^{0.03\, \text{t1}} \, == 3 \, \textbf{p0} \, \textbf{E}^{0.03\, \text{t0}}, \, \textbf{t1}]$$
 Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found.
$$Out[13] = \{ \{ \text{t1} \rightarrow 33.3333 \, \text{Log}[3. \, \text{e}^{0.03\, \text{t0}}] \} \}$$

$$In[14] := \textbf{Simplify}[\textbf{Solve}[\textbf{t1} == 33.3333 \, (0.03\, \textbf{t0} + \textbf{Log}[3]), \, \textbf{t1}] \}$$

$$Out[14] = \{ \{ \text{t1} \rightarrow 36.6204 + 0.9999999 \, \text{t0} \} \}$$
 i.e., $\textbf{t1-t0} = 36.6204$

(ii) General result

$$In[15] := \mbox{\bf Clear[p0, λ, $k]}$$

$$In[16] := \mbox{\bf Solve[p0 E}^{kt1} == \lambda \mbox{\bf p0 E}^{kt0}, \mbox{\bf t1]}$$

$$\mbox{Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found.}$$

$$Out[16] = \left\{ \left\{ \mbox{\bf t1} \rightarrow \frac{\mbox{\bf Log[e}^{kt0} \mbox{λ]}}{k} \right\} \right\}$$

Which can be expressed

$$t1 - t0 = \frac{\log(\lambda)}{k}$$

à Question 5

To derive the Taylor expansion about the point a/b, we use the **Series** command

In[17]:= Series[p (a-bp), {p, a/b, 1}]

Out[17]= -a
$$(p - \frac{a}{b}) + O[p - \frac{a}{b}]^2$$

Neglecting the error term, then

$$\dot{p} = -a(p - \frac{a}{b})$$

$$\begin{split} & \textit{In[18]:= DSolve[\{p'[t] == -a \ (p[t] - (a/b)), p[0] == p0\}, p[t], t]} \\ & \textit{Out[18]= } \left\{ \left\{ p[t] \rightarrow \frac{e^{-a\,t} \ (a e^{a\,t} + b \ (-\frac{a}{b} + p0))}{b} \right\} \right\} \end{aligned}$$

Which can be expressed

$$p(t) = \frac{a}{b} + (p0 - \frac{a}{b}) E^{-at}$$

Mathematica cannot take the limit of E^{-at} since it does not know whether a is positive or negative. Assuming a is positive, and given

$$In[19] := Limit[E^{-t}, t \rightarrow \infty]$$

$$Out[19] = 0$$

then $p(t) \rightarrow a/b$, which implies that equilibrium is never achieved in a finite time period.

à Question 6

(i)

The fixed points are found from

In[20]:= Solve[p (a + c p) == 0, p]
Out[20] =
$$\{ \{p \to 0\}, \{p \to -\frac{a}{c} \} \}$$

The turning point is

In[21]:= Solve[D[p (a + c p), p] == 0, p]
Out[21] =
$$\{\{p \rightarrow -\frac{a}{2c}\}\}$$

which is negative since a > 0 and c > 0. Furthermore,

which is positive, hence the turning point is a minimum.

(ii)

These observations can be verified by assuming for example a = 0.2 and c = 0.004.

$$In[29] := \text{Smannple}[\textbf{E}[\textbf{xp}(\textbf{Ma-po}, \textbf{pp}-/\textbf{m})\{\textbf{ap-p-q-2}, \textbf{pc}]-> 0.004\}$$

$$\text{Sut}[29] \equiv \left\{ \left(\left(\textbf{p} \right)^2 + \frac{\textbf{m} + 0 \cdot \textbf{m}}{2} \right)^4 \right)^5 \right)^5$$

$$In[25] := \text{Plot}[\textbf{example}, \{\textbf{p}, -100, 100\}, \textbf{Axes}[\textbf{qp-p-1}, \textbf{pp-p-1}], \textbf{pr-p-p-1} \right\}$$

$$In[30] := \textbf{D}[\textbf{D}[\textbf{r}(\textbf{M-p}) (\textbf{p-m}), \textbf{p}], \textbf{p}] / . \textbf{p-p-p-1}$$

$$Out[30] = -2 \text{ r}$$

which is negative, hence the turning point is a maximum.

$$In[31] := D[r (M-p) (p-m), p] /. p -> m$$
 $Out[31] = (-m + M) r$

Hence, for positive population p0, the population grows indefinitely.

(iii)

$$In[26] := DSolve[p'[t] == p[t] (a + cp[t]), p[t], t]$$

$$Out[26] = \left\{ \left\{ p[t] \rightarrow -\frac{a e^{a t}}{C e^{a t} - e^{C[1]}} \right\} \right\}$$

If we let $k = E^{C[1]}$, a constant, then this can be expressed $p(t) = \frac{-a}{c - k E^{-at}}$

But
$$p(t) = \infty$$
 if $c - k E^{-at} = 0$.

$$In[27] := Solve[kE^{-at} == c, t]$$

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found.

$$\textit{Out[27]} = \left\{ \left\{ t \to -\frac{\text{Log}\left[\frac{c}{k}\right]}{a} \right\} \right\}$$

Hence, an infinite population is reached in a finite time period

à Question 7

(i)

The two fixed points are

In[28]:= Solve[r (M-p) (p-m) == 0, p]
Out[28]=
$$\{\{p \to m\}, \{p \to M\}\}$$

The turning point is

In[29]:= Solve[D[r (M-p) (p-m), p] == 0, p]

Out[29] =
$$\{ \{p \rightarrow \frac{m+M}{2} \} \}$$

In[30]:= D[D[r (M-p) (p-m), p], p] /. p-> $\frac{m+M}{2}$

Out[30] = -2 r

which is negative, hence the turning point is a maximum.

$$In[31] := D[r (M-p) (p-m), p] /. p -> m$$
 $Out[31] = (-m + M) r$

which is positive since M > m, so the fixed point m is locally unstable.

which is negative since M > m, so the fixed point M is locally stable.

The parameter m is associated with such factors as:

- (a) reproduction system
- (b) density of species (i.e., the area over which it operates).

The parameter M is associated with such factors as:

- (a) food availability
- (b) predation
- (c) catch

(ii)

In the case of (b) species can begin to die out well before p = 0, i.e., at p = m. It is important, therefore, to establish the value of m, e.g., the blue whale.

à Question 8

(i)

which can be written

$$E^{-a(E^{-rt}-1)} E^{E^{-rt} \text{Log[p0]}} = E^{-a(E^{-rt}-1)} \text{p0}^{E^{-rt}}$$

since

$$In[36] := \mathbf{E}^{Log[\mathbf{p}\mathbf{0}^{\mathbf{E}^{-rt}}]}$$

$$Out[36] = \mathbf{p}\mathbf{0}^{e^{-rt}}$$

(ii) and (iii)

The fixed points are,

```
In[37]:= Solve[rp (a - Log[p]) == 0, p]
Solve::verif: Potential solution {p \times 0} (possibly discarded by verifier) should be checked by hand. May require use of limits.
Out[37]= {{p \times e^a}}
In[38]:= Limit[rp (a - Log[p]), p -> 0]
Out[38]= 0
```

Hence, there are two fixed points one at p = 0 and the other at E^a .

```
In[39]:= D[rp (a - Log[p]), p]
Out[39]= -r + r (a - Log[p])
```

The slope of p at the point p = 0 cannot be determined since this involves Log[0]. On the other hand,

```
In[40]:= Simplify[D[rp(a-Log[p]), p] /. p -> E<sup>a</sup>]
Out[40]= r(-1 + a - Log[e<sup>a</sup>])
```

which is equal to -r, since $\text{Log}[E^a] = a \text{Log}[E] = a$. Since r is positive, then the slope of p at the point E^a is negative, and so the point $p = E^a$ is locally stable.

Also \dot{p} is at a maximum at the value

```
In[41] := Solve[D[rp (a - Log[p]), p] == 0, p]
Out[41] = \{ \{p \rightarrow e^{-1+a} \} \}
(iv)
In[42] := Limit[E^{-a (E^{-rt}-1)} p0^{E^{-rt}}, t \rightarrow \infty]
Out[42] = Limit[e^{-a (-1+e^{-rt})} p0^{e^{-rt}}, t \rightarrow \infty]
```

So *Mathematica* cannot solve for the limit directly. But we note that the limit of E^{-rt} as $t \to \infty$ is zero. Hence, the limit is E^a as $t \to \infty$.

à Question 9

Since
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\dot{y}}{\dot{x}} = \frac{-9x}{3y} = \frac{3x}{y}$$
 e can integrate by parts for we

$$y \, dy = 3 x \, dx$$

Out [44] =
$$\frac{y^2}{2}$$

$$In[45] := \int 3 \times dx$$

Out[45] =
$$\frac{3 x^2}{2}$$

In [46] := Solve
$$\left[\frac{y^2}{2} == \frac{3 x^2}{2} + \frac{c}{2}, y\right]$$

$$\textit{Out[46]} = \left\{ \left\{ y \to -\sqrt{2} \ \sqrt{\frac{c}{2} + \frac{3 \ x^2}{2}} \ \right\}, \ \left\{ y \to \sqrt{2} \ \sqrt{\frac{c}{2} + \frac{3 \ x^2}{2}} \ \right\} \right\}$$

where c/2 is the constant of integration.

Alternatively, we can solve directly

In[47]:= DSolve[y'[x] == 3 x / y[x], y[x], x]

Out[47]=
$$\{\{y[x] \rightarrow -\sqrt{3 x^2 + C[1]}\}, \{y[x] \rightarrow \sqrt{3 x^2 + C[1]}\}\}$$

Which can be expressed,

$$y(x) = -\sqrt{3x^2 + c}$$
 and $y(x) = \sqrt{3x^2 + c}$, where $c = 3C[1]$.

à Question 10

The $\dot{T} = 0$ and $\dot{B} = 0$ phase lines are

In[48]:= Solve
$$\left[a\left(1-\frac{T}{k1}\right)T-bTB==0,B\right]$$
Out[48]= $\left\{\left\{B \rightarrow \frac{a\left(k1-T\right)}{bk^{1}}\right\}\right\}$

$$In[49] := \mathbf{Apart} \left[\frac{\mathbf{a} \ (\mathbf{k1} - \mathbf{T})}{\mathbf{b} \ \mathbf{k1}} \right]$$

$$Out[49] = \frac{\mathbf{a}}{\mathbf{b}} - \frac{\mathbf{a} \ \mathbf{T}}{\mathbf{b} \ \mathbf{k1}}$$

$$In[50] := \mathbf{Solve} \left[\mathbf{c} \left(\mathbf{1} - \frac{\mathbf{B}}{\mathbf{k2}} \right) \mathbf{B} - \mathbf{d} \ \mathbf{T} \mathbf{B} == \mathbf{0} \right), \mathbf{B} \right]$$

$$Out[50] = \left\{ \{ \mathbf{B} \to \mathbf{0} \}, \left\{ \mathbf{B} \to \frac{\mathbf{k2} \ (\mathbf{c} - \mathbf{d} \ \mathbf{T})}{\mathbf{c}} \right\} \right\}$$

$$In[51] := \mathbf{Apart} \left[\frac{\mathbf{k2} \ (\mathbf{c} - \mathbf{d} \ \mathbf{T})}{\mathbf{c}} \right]$$

$$Out[51] = \mathbf{k2} - \frac{\mathbf{d} \ \mathbf{k2} \ \mathbf{T}}{\mathbf{c}}$$

The two phase lines are then,

$$B = \frac{a}{h} - \left(\frac{a}{h \, \text{ki}}\right) T \qquad \text{for } \dot{T} = 0$$

$$B = k2 - (\frac{d k2}{c}) T \qquad \text{for } \dot{B} = 0$$

which intersect at the point

$$In[52] := Simplify \Big[Solve \Big[\Big\{ B == \frac{a}{b} - \frac{aT}{bk1}, B == k2 - \frac{dk2T}{c} \Big\}, \{B, T\} \Big] \Big]$$

$$Out[52] = \Big\{ \Big\{ B \rightarrow \frac{a (c - dk1) k2}{ac - b dk1 k2}, T \rightarrow \frac{c k1 (a - bk2)}{ac - b dk1 k2} \Big\} \Big\}$$

which is as far as we can take the general result with Mathematica.

à Question 11

(i)

Given

Order
$$\frac{N(t)}{K} = \frac{N0/K}{(N0/K) + (1 - (N0/K)E^{-rt})}$$
then $N(2) / K$ is

In[53]:=
$$\frac{0.25}{0.25 + (1 - 0.25) E^{-(0.71) 2}}$$

Out[53] = 0.579662

and hence N(2) is

$$In[54] := (0.579662) (80.510^6)$$

 $Out[54] = 4.66628 \times 10^7$

or $46.6628 \times 10^6 \text{ Kg}$

(ii)

In solving for t, we write N(t) as Nt.

In [55]:= Solve
$$\left[\frac{Nt}{K} == \frac{N0/K}{(N0/K) + (1 - (N0/K)) E^{-rt}}, t\right]$$

Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found.

$$\textit{Out[55]} = \ \left\{ \left\{ \texttt{t} \rightarrow \frac{\text{Log}\left[\frac{(K-N0) \ N\texttt{t}}{N0 \ (K-N\texttt{t})}\right]}{\texttt{r}} \right\} \right\}$$

which can be expressed
$$t = -\left(\frac{1}{r}\right) \text{Log}\left[\frac{(\text{N0/K})(1-\text{Nt/K})}{\text{Nt/K}(1-\text{N0/K})}\right]$$

(a) t at which N(t) = 0.5 K or N(t)/K = 0.5.

In [56]:=
$$-\left(\frac{1}{0.71}\right) \text{Log}\left[\frac{0.25 (1-0.5)}{0.5 (1-0.25)}\right]$$

$$Out[56] = 1.54734$$

(b) t at which N(t) = 0.75 K or N(t)/K = 0.75.

In[57]:=
$$-\left(\frac{1}{0.71}\right) \text{Log}\left[\frac{0.25 (1-0.75)}{0.75 (1-0.25)}\right]$$

$$Out[57] = 3.09468$$