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Introductory Remarks

This is the online appendix to Carsten Q. Schneider’s and Claudius Wage-
mann’s (2012) book Set-Theoretic Methods for the Social Sciences, Cambridge
University Press (henceforth SMSS). It provides practical guidelines on how
to employ the major currently available software packages in order to perform
analyses that are crucial in set-theoretically based empirical social science re-
search. Whenever appropriate, we will discuss in parallel the following four
packages: fsQCA 2.5 (Ragin, Drass, and Davey, 2006); Tosmana 1.3.2 (Cron-
qvist, 2006); Stata, ado file fuzzy (Longest and Vaisey, 2008); and R, packages
QCA 1.0.3 (Thiem and Dusa, 2012a, 2012b) and QCA3 0.0.5 (Huang, 2009).
The former two programs are specifically designed for set-theoretic analyses,
whereas the latter two are off-the-shelf general statistical packages that are
adapted for set-theoretic analyses.

We proceed in a chapter-by-chapter fashion, always presenting the software
tricks of the trade in performing those analyses that are discussed in the
respective chapter of the book. Throughout this online appendix, we will
use data from published set-theoretic analysis but the aim is, of course, not
to contribute to the substantive debates addressed in these publications, nor
to replicate the analyses. Rather, we want to show how software-based set-
theoretic analyses look like in an applied setting.

The data files that are needed for replicating our analyses are also made avail-
able at www.cambridge.org/schneider-wagemann. We save all data in a
comma-delimited csv format, which can be read by all the software packages
that we discuss. For the non-syntax based packages, we denote with square
brackets ([. . . ]) the commands that need to be performed by pointing and
clicking at them. When useful, we also provide screenshots. All the com-
mands and the outputs, in particular for Stata and R, are show in a box.

For R we use two conventions. The R code is preceded by > in the box, while
the output is not preceded by anything. When a line of code is loo long an
we break the line the code is preceded by +. When three dots are in the box
below a command, this means that we omit the output. The commented text
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Introductory Remarks

is preceded by #, which means that the software would not read the text that
comes afterwords.

Below is an example:
1 # This is an example
2 > vec <- c(2, 3, 5)
3 > vec
4
5 [1] 2 3 5
6
7 > vec
8 .
9 .
10 .
11
12 > vec <- rbind(c(3, 4, 6),
13 + c(5, 7, 8))

Furthermore, in this appendix we present a new R package that is compan-
ion to the book, called SetMethods by Mario Quaranta, which contains new
functions and the data necessary to replicate the analyses shown here.

Each of the following chapters is structured as follows. We first list the analytic
steps that are dealt with in the respective chapter and mention the data files
that are used. Then we perform the analyses with all those software packages
that are applicable to the task at hand. In each chapter, we start with fsQCA,
then Tosmana, Stata, and R. Often times, a specific software cannot be used
for the given task, such as, for instance, Tosmana for any of the analyses that
involve fuzzy sets. Sometimes, a specific package could be used for a given
task, but only after some cumbersome and essentially impractical tweaks. In
both instances, we skip the discussion of those packages. Our R instructions
are written under the assumption that users have a basic knowledge of R.
Last but not least, the development of software is an ongoing – and currently
even accelerating – process, and so will be the development of these Software
How-To instructions. We will update, extend, and improve these instructions
on a regular basis.
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Part I

Set-Theoretic Methods: The
Basics





Chapter 1

Sets, Set Membership, and Calibration:
How to . . .Calibrate Sets

Overview:

• Calibration of sets

– Crisp sets, fuzzy sets, multi-value sets

• Calibration of fuzzy sets

– Direct and indirect method of calibration

– Other functional forms for calibration

• Empirical examples

– Emmenegger (2011): used in book

– Freitag and Schlicht (2009): used in book

– Vis (2009): used in book

1.1 fsQCA 2.5

If data already exists in a suitable format for fsQCA 2.5, then it can be opened,
clicking [file] [open] [data]. If, instead, a new data file has to be created, go to
[file] [new] and then follow the self-explanatory steps. In order to get a grasp
on the distribution of the data, click on [analyze] [statistics] and then either
on [descriptives] or [frequencies]. A graphical overview is obtained by clicking
[graphs] [fuzzy] [histogram], inserting the name of the condition or outcome
for “x axis” and clicking on [plot].

fsQCA 2.5 supports the direct method of calibrating fuzzy sets. Let us take the
example by Freitag and Schlicht (2009). The set to be calibrated is called “Län-
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1. Sets, Set Membership, and Calibration

der with underdeveloped all–day school system”, abbreviated lo_alld. The
variable containing the empirical information is “percentage of all-day schools”
(full_day_school). To perform the direct method of calibration, click [vari-
ables] [compute]. In “target variable” insert the name of the set you want to
create, in our example “lo_alld”. As a general advice, choose set labels in a way
that it is clear what high set membership means. In the present example, the
prefix “lo” makes clear that high membership scores denote those cases with
few all-day schools. In the field [expression] type in [calibrate (x,n1,n2,n3)] or
select it from the list of [Functions]. X stands for the name of the variable
that contains the raw data, i.e. full_day_school, n1 for the 1-anchor, n2 for
the 0.5-anchor, and n3 for the 0-anchor. Select the variable full_day_school
and choose the following three anchors: 20 for 1-anchors; 8.3 for 0.5 anchor;
3 for 0-anchor. Click [ok]. A new column called “lo_alld” is added as the
last column in the data sheet, containing the membership scores in the newly
created fuzzy set. See figure 9.1.

Figure 1.1: Calibration using fsQCA 2.5.
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1.2. Tosmana 1.3.2

The indirect method of calibration cannot be performed with fsQCA 2.5 (see
R and Stata for this).

1.2 Tosmana 1.3.2

In Tosmana, raw data can be turned into crisp sets or multi-value sets us-
ing graphical representations of the data. To load the data by Freitag and
Schlicht (2009), stored in a csv file format, go to [File] [Import] [Excel or fsqca
(csv file)]. Select the file Freitag_Schlicht_2009.csv. Right below the variable
names of the columns, we see both a tree icon and an exclamation mark. By
clicking on the tree icon and choosing [edit variable] [setter], we see the distri-
bution of the values and their median, as well as a proposal for a threshold,
derived from an underlying cluster analysis. As should have become clear from
our description of good set calibration in chapter 1.2 of SMSS, this proposed
threshold for assigning cases to the membership values 0 and 1 should not
simply be used by default. Nevertheless, the graphical representation pro-
vides a quick and sometimes useful overview of the raw data at hand. If we
click on the exclamation mark and then [edit variable], we can also fill in our
own theory-based threshold in the field “Thresholds.” In order to see where
this threshold is placed in the distribution of the data, we click [setter].

1.3 Stata

In Stata, both the direct and the indirect method of calibration and a di-
chotomization for crisp sets can be performed with the command setgen.
The command line:

1 setgen CS = crisp(X), cutpt(n)

produces a crisp set of name CS based on the raw data variable X, with the
threshold being at value n. The command line

1 setgen FS = drect(X), anchors(n1 n2 n3)

produces a fuzzy set of name FS using the direct method of calibration based
on variable X and the three qualitative anchors n1, which stands for the 0-
anchor, n2 (the 0.5 anchor), and n3 (the 1-anchor). Notice that the order in
which the anchors are specified in Stata is from low to high, whereas in fsQCA
2.5 it is from high to low. Finally, the command line

1 setgen FS = ndrect(X), grpdvar(FSPRELIM)

7



1. Sets, Set Membership, and Calibration

creates a fuzzy set named FS based on the raw data variable X and the prelimi-
nary classification of cases into fuzzy set membership contained in FSPRELIM.
The command line for reproducing the same fuzzy set “lo_alld” as described
above for the fsQCA software, looks as follows:

1 setgen lo_alld = drect(full_day_school), anchors(3, 8.3, 20)

1.4 R

The first thing to do if calibration has to be done using R is to load three
packages: QCA; QCA3 and SetMethods. They contain the functions to calibrate
the values and the data we will use. The code to load the packages is the
following:

1 > library(QCA); library(QCA3); library(SetMethods)

It is useful to set your working directory:
1 > setwd("~/")

We use the data from Freitag and Schlicht (2010) that is called “FRSC” and
from the crisp set data from Vis (2009) that is called “VisCS”:

1 > data(FRSC)
2 > data(VisCS)

1.4.1 Data visualization

Some functions are useful to explore the data. head() shows the first lines of
the dataset. summary() gives some descriptive statistics. names() gives the
names of the columns (which are the conditions) and rownames() the names
of the rows (which are the cases). So:

1 > head(FRSC)
2 .
3 .
4 .
5 > summary(FRSC)
6 .
7 .
8 .
9 > names(FRSC)
10 .
11 .
12 .
13 > rownames(FRSC)
14 .
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1.4. R

15 .
16 .

We can visualize the data using some graphics, such as histograms, with the
following code:

1 > hist(FRSC$integrated_comp_schools , breaks = 6)

which gives the following figure:

Figure 1.2: Histogram of integrated_comp_schools
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1. Sets, Set Membership, and Calibration

However, the use of histograms with a low N is questionable. Therefore, we
can use a custom plot. Here is the code:

1 > par(mar = c(14, 3, 1, 1)) # this sets the graphical parameters
2 > plot (1: length(rownames(FRSC)), FRSC$integrated_comp_schools ,
3 + xaxt = "n", xlab = "", pch = 19)
4 > grid(ny = 4, nx = NA)
5 > axis(1, at = 1: length(rownames(FRSC)), labels = rownames(FRSC),
6 + las = 2, cex.axis = .7)

which gives the following figure:

Figure 1.3: Plot of integrated_comp_schools
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1.4. R

We can also use a barchart:
1 > par(mar = c(14, 3, 1, 1), las = 2)
2 > barplot(FRSC$integrated_comp_schools ,
3 + names.arg = rownames(FRSC), ylim = c(0, 40))

The code produces the following figure:

Figure 1.4: Barchart of integrated_comp_schools
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1. Sets, Set Membership, and Calibration

Using the lattice package we can produce a bar chart. The code:
1 > library(lattice)
2 > DTP <- matrix(FRSC$integrated_comp_schools ,
3 + dimnames = list(rownames(FRSC),
4 + Integrated Comp Schools"))
5 > barchart(DTP , xlab = "")

gives the following figure:

Figure 1.5: Lattice barchart of integrated_comp_schools
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1.4. R

We can also use a dotchart. The code:
1 > dotchart(FRSC$integrated_comp_schools , labels = rownames(FRSC))

gives the following figure:

Figure 1.6: Dotchart of integrated_comp_schools
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1. Sets, Set Membership, and Calibration

Or a dotplot. The code:
1 > dotplot(rownames(FRSC) ~ FRSC$integrated_comp_schools ,
2 + xlab = "")

gives the following figure:

Figure 1.7: Dotplot of integrated_comp_schools
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1.4. R

We can use scatterplots to check the association between two variables. The
code:

1 > par(mar = c(4, 4, 1, 1))
2 > plot(FRSC$integrated_comp_schools , FRSC$outcome ,
3 + xlim = c(-3, 41), ylim = c(2, 8), pch = 19,
4 + ylab = "Outcome", xlab = "Condition")
5 > text(FRSC$integrated_comp_schools , FRSC$outcome + .15,
6 + labels=rownames(FRSC), cex = .7)

gives the following figure:

Figure 1.8: Scatterplot of integrated_comp_schools and outcome
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Instead of text() we can use identify() to manually label the cases. The
code

1 > par(mar = c(4, 4, 1, 1))
2 > plot(FRSC$integrated_comp_schools , FRSC$outcome ,
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1. Sets, Set Membership, and Calibration

3 + xlim = c(-3, 41), ylim = c(2, 8), pch = 19)
4 > identify(FRSC$integrated_comp_schools , FRSC$outcome ,
5 + labels = rownames(FRSC), cex = .7)

gives the following figure:

Figure 1.9: Scatterplot of integrated_comp_schools and outcome using
identify(). The labels appear clicking on the cases
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We can also define a condition for labeling cases. The code:
1 > par(mar = c(4, 4, 1, 1))
2 > plot(FRSC$integrated_comp_schools , FRSC$outcome ,
3 + xlim = c(-3, 41), ylim = c(2, 8), pch = 19)
4 > dots <- (FRSC$integrated_comp_schools < 10 & FRSC$outcome > 5)
5 > text(FRSC$integrated_comp_schools[dots], FRSC$outcome[dots],
6 + labels = rownames(FRSC)[dots], pos = 4, cex = .7)

gives the following figure:
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Figure 1.10: Scatterplot of integrated_comp_schools and outcome with con-
ditioning
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If we have crisp values we can use a barchart. The code:
1 > barplot(table(VisCS$P), xlab = "P", ylab = "Frequency")

gives the following figure:
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Figure 1.11: Barchart of P
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1.4.2 Calibration

1.4.2.1 Direct method

We use the calibrate() function from the QCA package with the option type
set to fuzzy, to calibrate fuzzy sets. thresholds should indicate a vector
with the thresholds. The code is the following:

1 > fulldayschools_fz <- calibrate(FRSC$full_day_schools ,
2 + type = "fuzzy", thresholds = c(3, 8.3, 20))

We can also use the directCalibration() function from QCA3 package.
fullin, crossover and fullout set the thresholds for full membership, the
cross-over point and full non-membership. infz and outfz indicate fuzzy set
score for full membership and full non-membership. The code is the following:

1 > fulldayschools_fz_2 <- directCalibration(FRSC$full_day_schools ,
2 fullin = 20, crossover = 8.3, fullout = 3)
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The fuzzy scores are slightly different. See figure 1.12 to check the differ-
ences between calibrate() and directCalibration(). This depends on
the choice of the function used for calibration. In fact, if we specify in cali-
brate() the option logistic = TRUE the fuzzy scores become identical. The
code below specifies that the logistic function has to be used to calibrate the
values:

1 > fulldayschools_fz_l <- calibrate(FRSC$full_day_schools ,
2 + type = "fuzzy", thresholds = c(3, 8.3, 20),
3 + logistic = TRUE)

Now, the scores are identical as shown in figure 1.13.

Figure 1.12: Scatterplot of fuzzy set calibration using calibrate() and di-
rectCalibration()
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1.4.2.2 “Theoretical” calibration, crisp sets

We use the calibrate() function from the QCA package with the option type
set to crisp, to calibrate crisp sets. The last vector sets the cross-over point.
See the code below:

1 > fulldayschools_cs <- calibrate(FRSC$full_day_schools ,
2 + type = "crisp", thresholds = c(8.3))

As R is a statistical software, we can use it as such and calibrate the raw
values in crisp set with a simple function: ifelse(). This performs a test on
the vector of data. The function below means: if the value in vector full_-
day_schools is higher than 550 return 1, otherwise return 0. See the code
below:

1 > fulldayschools_cs_2 <- ifelse(FRSC$full_day_schools > 8.3, 1, 0)

We get the same result. Check this building a table:
1 > table(fulldayschools_cs,fulldayschools_cs_2)

1.4.2.3 Indirect method

We assign membership values to cases, according to our substantive knowledge
and then scores are tweaked using predictions, after a binomial or a beta
regression, so to have predictions bounded between 0 and 1. Let us generate
a variable x and find the quintiles:

1 > set.seed (123)
2 > x <- runif(20, 110, 40110)
3 > quant <- quantile(x, c(.2, .4, .5, .6, .8))

The we sort of recode the variable x to get the theoretically calibrated scores:
1 > x_cal <- NA # Empty vector
2 > x_cal[x <= quant [1]] <- 0
3 > x_cal[x > quant [1] & x <= quant [2]] <- .2
4 > x_cal[x > quant [2] & x <= quant [3]] <- .4
5 > x_cal[x > quant [3] & x <= quant [4]] <- .6
6 > x_cal[x > quant [4] & x <= quant [5]] <- .8
7 > x_cal[x > quant [5]] <- 1

Then use function indirectCalibration() in SetMethods using the binomial
regression (binom set as TRUE) or the the beta regression (binom set as FALSE):

1 > y_hat_bin <- indirectCalibration(x, x_cal , binom = TRUE)
2 > y_hat_bet <- indirectCalibration(x, x_cal , binom = FALSE)
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Figure 1.13: Scatterplot of fuzzy set calibration using calibrate() with the
logistic option set as TRUE and directCalibration()
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There are slight differences between the predictions. Check the differences
using the following code:

1 > plot(x, y_hat_bin , ylim = c(0, 1), pch = 21,
2 + col = "black", bg = "yellow")
3 > points(x, y_hat_bet , pch = 21, col = "black", bg = "lightblue")
4 > legend("bottomright", title = "Regression",
5 + legend = c("Binomial", "Beta"),
6 + pch = c(21, 21), col = c("black", "black"),
7 + pt.bg = c("yellow", "lightblue"))

Which gives the following plot:
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1. Sets, Set Membership, and Calibration

Figure 1.14: Scatterplot of indirect calibration using binomial and beta re-
gression
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Chapter 2

Notions and Operations in Set Theory:
How to . . . Perform Operations on Sets

Overview:

• Calculating cases’ membership scores in combined sets

– Logical AND, logical OR, logical NOT

• Boolean calculator

• Empirical examples

– Vis (2009): used in book

– Ragin, Shulman, Weinberg, & Gran (2003): used in book

2.1 fsQCA 2.5

In fsQCA 2.5, routines exist for calculating each case’s membership value
in the intersection, union, or negation of more than one set. Click [File]
[Open] [Data] and select file “Vis_2009_fs.csv”, then [Open]. In order to
generate each case’s membership in the set of governments that were both
in a difficult political (P) and socio-economic (S) situation click [Variables]
[Compute], [Target Variable] “pands” - which is the name of the set to be
added to the data sheet. In the field [Expression] type (or select from the
list provided under [Functions]) “fuzzyand(P,S)” and click [Ok]. At the end
of the data sheet, you find a new column labeled “pands”. In order to create
the union of sets (P + S), follow the same procedure but type “fuzzyor(P,S)”
in the field [Expression]. The logical negation for a single set P is calculated
by “fuzzynot(P)” in [Expression]. All three operations work both on crisp and
fuzzy sets. See the figure 9.1 below.
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2. Notions and Operations in Set Theory

Figure 2.1: Set theoretic operations using fsQCA 2.5.

The fsQCA 2.5 software only allows for one operation at a time. If the mem-
bership of cases is calculated for sets that include more than one logical op-
eration (e.g. (P∗S) + R), then several steps are needed. This can be quite
time-consuming and quickly reaches rather high levels of complexity. It is
therefore often advisable to calculate the membership of cases in complex sets
using off-the-shelf statistical packages, such as Stata, R, or Excel, using the
appropriate syntax for determining the minimum and maximum values across
a range of set membership scores.

2.2 Tosmana 1.3.2

There are two issues at stake: the calculation of a case’s set membership scores
in (complex) expressions based on its membership scores in the single consti-
tutive sets; and the calculation of logical operations on complex expressions.
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2.3. Stata

The Boolean calculator integrated in Tosmana offers a very useful tool for
calculating intersections between and complements of complex logical expres-
sions. Click [File] [Import] [Excel or fsQCA (csv file)], select “Ragin_etal_-
2003.csv”, then [Analysis] [Boolean Calculator]. Suppose, we are interested
in the Boolean expression that describes those Indian villages that are si-
multaneously located on channels MN but not on the V (M∼V) or are they
irrigated (I). In Boolean terms: M∼V + I. Suppose further, we are interested
in all those villages that are not like these villages just described. Formally
∼(M∗∼V + I). In order to calculate the Boolean expression of this second ex-
pression, in window [1. Select Variable] select “M”, in [2. Select Value] choose
“1”, then click [AND]. Now, in window [1. Select Variable] select “V”, in [2. Se-
lect Value] choose “0”, then click [OR]. Finally, in window [1. Select Variable]
select “I”, in [2. Select Value] choose “1”, then click [Add expression to list:
add]. The expression M∼V + I now appears in the window at the bottom of
the interface, using Tosmana’s notation “m{1}v{0}+i{0}”. In order to negate
this expression, point the cursor on it and click [Compute Complement]. This
yields ∼I∼M + ∼IV. By factoring out ∼I, this can be rewritten as ∼I (M +
∼V). If you now highlight the two expressions in the window and click [Com-
pute Intersection], the empty set results, as stated by the rule of the excluded
middle.

2.3 Stata

In Stata, the command line for calculating each case’s membership score in
the complex set of, say P∗S + ∼R reads as follows:

1 gen pandsorr = max(min(P, S), R)
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2. Notions and Operations in Set Theory

2.4 R

To show how to perform operation in set theory in R we generate some fake
data. We set the state of RNG (random number generator) to be sure that
when we draw numbers from a distribution we get always the same draws. This
is standard procedure when using simulation or fake data, so it is possible to
replicate it:

1 > set.seed (123)

In R we can also perform set theory operation, both for crisp and fuzzy sets.
Here, we show that function pmin() takes the parallel minimum of the vectors
included in between the brackets. This operation is needed when using the
logical AND operator:

1 > x <- runif(10, 0, 1) # We just draw from a uniform distribution
2 > x
3
4 [1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

0.5281055 0.8924190
5 [9] 0.5514350 0.4566147
6
7 > y <- runif(10, 0, 1)
8 > y
9
10 [1] 0.95683335 0.45333416 0.67757064 0.57263340 0.10292468 0.89982497

0.24608773
11 [8] 0.04205953 0.32792072 0.95450365
12
13 > pmin(x, y)
14
15 [1] 0.28757752 0.45333416 0.40897692 0.57263340 0.10292468 0.04555650

0.24608773
16 [8] 0.04205953 0.32792072 0.45661474

The function pmax() takes the parallel maximum of the vectors included in
between the brackets. This is needed when using the logical OR operator:

1 > pmax(x, y)
2
3 [1] 0.9568333 0.7883051 0.6775706 0.8830174 0.9404673 0.8998250

0.5281055 0.8924190
4 [9] 0.5514350 0.9545036

Both functions work for crisp and fuzzy sets:
1 > x_c <- rbinom (20, 1, .4) # We draw from a binomial distribution
2 > x_c
3
4 [1] 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0
5
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6 > y_c <- rbinom (20, 1, .6)
7 > y_c
8
9 [1] 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1
10
11 > pmin(x_c, y_c)
12
13 [1] 1 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0
14
15 > pmax(x_c, y_c)
16
17 [1] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 1

And for more than two vectors:
1 > z <- runif(10, 0, 1)
2 > z
3
4 [1] 0.66511519 0.09484066 0.38396964 0.27438364 0.81464004 0.44851634

0.81006435
5 [8] 0.81238951 0.79434232 0.43983169
6
7 > pmin(x, y, z)
8
9 [1] 0.28757752 0.09484066 0.38396964 0.27438364 0.10292468 0.04555650

0.24608773
10 [8] 0.04205953 0.32792072 0.43983169
11
12 > pmax(x, y, z)
13
14 [1] 0.9568333 0.7883051 0.6775706 0.8830174 0.9404673 0.8998250

0.8100644 0.8924190
15 [9] 0.7943423 0.9545036

For crisp sets we can also use logical operators: | for the OR operator and &
for the AND operator:

1 > (x_c | y_c)
2
3 [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

TRUE TRUE TRUE
4 [15] TRUE TRUE TRUE FALSE FALSE TRUE
5
6 > (x_c & y_c)
7
8 [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE

TRUE FALSE TRUE
9 [15] FALSE FALSE TRUE FALSE FALSE FALSE

They can also be used in combination as well (just as using a calculator):
1 > pmax(pmin(x, y), pmin(z, y))
2
3 [1] 0.66511519 0.45333416 0.40897692 0.57263340 0.10292468 0.44851634

0.24608773
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4 [8] 0.04205953 0.32792072 0.45661474

The negation is calculated differently for crisp and fuzzy sets. For crisp sets
we can use !, which means that we want as result something not equal to the
object:

1 > n_x_c <- !x_c
2 > n_x_c
3
4 [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE

FALSE FALSE FALSE
5 [15] TRUE TRUE FALSE TRUE TRUE TRUE

Up here we obtained the a vector of values that are not those in x_c. We can
also use the ifelse() function, as shown earlier:

1 > n_x_c <- ifelse(x_c == 0, 1, 0)
2 > n_x_c
3
4 [1] 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 1
5
6 > pmax(n_x_c, x)
7
8 [1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673 0.0455565

1.0000000 1.0000000
9 [9] 1.0000000 1.0000000 0.2875775 0.7883051 0.4089769 0.8830174

1.0000000 1.0000000
10 [17] 0.5281055 1.0000000 1.0000000 1.0000000

For fuzzy sets, it is simply a subtraction:
1 > n_x <- 1 - x
2 > n_x
3
4 [1] 0.71242248 0.21169486 0.59102308 0.11698260 0.05953272 0.95444350

0.47189451
5 [8] 0.10758096 0.44856499 0.54338526
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Chapter 3

Set Relations:
How to . . .Use Graphs for Identifying Sufficiency and

Necessity Relations

Overview:

• Cross-tabs for crisp sets

• XY plots for fuzzy sets

• Empirical examples

– Rihoux & De Meur (2009): see book

– Ragin (2009): see book

3.1 fsQCA 2.5

Any software packages capable of producing two-by-two tables of binary data
can be used for visualizing set relations involving crisp sets. In fsQCA 2.5, click
[Analyze] [Statistics] [Crosstabs] and specify the outcome set under “outcome”
and the conditions to be examined under “causal conditions”. Separate two-
by-two tables are created for each single condition. When interpreting the
table, be aware that the 0,0 cell is in the upper left corner rather than the
lower left, as it is in all examples throughout SMSS. Click [File] [Open [Data]
“lipset_cs.csv”. Under [Analyze] [Statistics] [Cross-tabs] specify as “outcome
survived” and as condition “developed”. One cell is empty: which type of
set relation have you discovered? When using fuzzy sets, in fsQCA 2.5, click
[Graphs] [Fuzzy] [XY Plot]. Specify the outcome under “Y axis” and the
condition under “X axis”. If you want to plot a combination of conditions, this
combination must already exist in the data set. You can use the functions
under [Variables] [Compute] in fsQCA 2.5 or any other appropriate software
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for creating this new condition. If our dataset contains string variables with
the case ID, then you can specify this under “Case ID variable.” Click [Plot]
to produce the XY plot. When clicking on one of the single dots in the plot,
the case’s membership in X and Y, its row in the dataset (“case #”), and the
case’s name is revealed below the plot. To practice, open file “lipset_fs.csv”.
Under [Graphs] [Fuzzy] [XY plot], specify as outcome “survived”, as condition
“developed”, and as as Case ID Variable “country”. Look at figure 9.1. Do you
see a perfect set relation? If not, which cases are not in line with a perfect set
relation?

Figure 3.1: XY plot using fsQCA 2.5.

	  

3.2 Tosmana 1.3.2

Set relations cannot be visualized in Tosmana.

3.3 Stata

In Stata, use the command fzplot. It requires that both the outcome and the
conditions have single letter names. Logical AND configuration can be plotted
even if only the single conditions exist in the data. Simply write, e.g., fzplot
y aBc if you want to create an XY plot with ∼AB∼C as the condition to be
plotted against outcome Y.

Applied to the data set “lipset_fs.csv”, the syntax for producing an XY plot
for outcome “survived” and condition “developed” looks as follows:
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1 insheet using “~/Lipset_fs.csv”
2 gen y = survived
3 gen x = developed
4 fzplot y x, mlabel(country)

3.4 R

Producing cross-tables in R is very simple (but at the same time time con-
suming). Let’s load the Lipset crisp set in the crisp set version (this is exercise
9):

1 > data(LipsetCS)
2 > head(LipsetCS)
3 .
4 .
5 .

We use the function table():
1 > tb <- table(LipsetCS$SURVIVED , LipsetCS$DEVELOPED)
2 > tb
3
4 0 1
5 0 8 2
6 1 0 8

If we want the sum scores we have to:
1 > r_s <- margin.table(tb, margin = 1) # for the rows
2 > r_s
3
4 0 1
5 10 8
6
7 > c_s <- margin.table(tb, margin = 2) # for the columns
8 > c_s
9
10 0 1
11 8 10
12
13 > t_s <- margin.table(tb, margin = NULL) # for the total
14 > t_s
15
16 [1] 18

Then we build our table:
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1 > csTable <- cbind(tb, c_s)
2 > csTable <- rbind(csTable , c(r_s, t_s))
3
4 # give some labels
5 > rownames(csTable) <- c(0, 1, "Tot.")
6 > colnames(csTable) <- c(0, 1, "Tot.")
7
8 # and we have our nice table
9 > csTable
10
11 0 1 Tot.
12 0 8 2 8
13 1 0 8 10
14 Tot. 10 8 18

We can export it in LaTeX using xtable() and in excel/word:
1 > xtable(csTable)
2 > write.table(csTable , file = "table", sep = "\t",
3 + row.names = TRUE)
4 > library(stable)
5 > xtable(csTable)

Table 3.1: Frequency table for crisp-sets.

0 1 Tot.
0 8 2 8
1 0 8 10
Tot. 10 8 18

Making plots in R is also very easy and flexible (this is exercise 10). Load the
Lipset dataset in fuzzy version:

1 > data(LipsetFS)
2 > head(LipsetFS)
3 .
4 .
5 .

To produce a xyplot we use the plot() function with some options and cus-
tomization to make it nicer (see figure 9.2):

1 > par(mar = c(3, 3, 1, 1), mgp = c(2, 1, 0))
2 > plot(LipsetFS$DEVELOPED , LipsetFS$Survived ,
3 + xlab = "DEVELOPED", ylab = "SURVIVED",
4 + xlim = c(-.1, 1.1), ylim = c(-.1, 1.1), pch = 19)
5 > abline(0, 1)
6 > text(LipsetFS$DEVELOPED , LipsetFS$Survived + .03,
7 + labels = rownames(LipsetFS), cex =.7,
8 + srt = 45, adj = 0)
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3.4. R

Figure 3.2: XY plot using R
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Remember that you can use identify(). We can also label cases using con-
ditional statements (see figure 5.3):

1 > par(mar = c(3, 3, 1, 1), mgp = c(2, 1, 0))
2 > plot(LipsetFS$DEVELOPED , LipsetFS$Survived ,
3 + xlab = "DEVELOPED", ylab = "SURVIVED",
4 + xlim = c(-.1, 1.1), ylim = c(-.1, 1.1), pch = 19)
5 > abline(0, 1)
6 > dots <- (LipsetFS$DEVELOPED > .85 & LipsetFS$Survived < .2)
7 > text(LipsetFS$DEVELOPED[dots], LipsetFS$Survived[dots],
8 + labels = rownames(LipsetFS)[dots], pos = 4, cex = 1)

We can make plots for all the conditions, one by one. For those who want
to plunge into a little bit of code: there is a possibility of using a “loop" to
produce all the plots in one shot (see figure 3.4):

1 > par(mfrow = c(2, 3), mar = c(3, 3, 1, 1), mgp = c(2, 1, 0))
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3. Set Relations

2 > for (i in 2:6){
3 + plot(LipsetFS[, i], LipsetFS$Survived , pch = 19,
4 + xlim=c(-.1, 1.1), ylim=c(-.1, 1.1),
5 + xlab = colnames(LipsetFS)[i], ylab = "SURVIVED")
6 + abline(0, 1)
7 + text(LipsetFS[, i], LipsetFS$Survived + .03,
8 + labels = rownames(LipsetFS), cex = .7,)
9 + }

Figure 3.3: XY plot with conditional statements using R
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Similar (but better looking) plot can be made using lattice, but it needs
some preparation (see figure 3.5):

1 > library(reshape) # this is needed for melt()
2 > Dat <- melt(LipsetFS[, 2:6])
3 # Using as id variables
4 > Dat$SURVIVED <- rep(LipsetFS[, 1], 5)
5 > xyplot(SURVIVED ~ value | variable , Dat ,
6 + ylim = c(-.1, 1.1), xlab = "", as.table = T,
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3.4. R

7 + layout = c(2, 3),
8 + panel = function(x, y, ...){
9 + panel.xyplot(x, y, ...)
10 + panel.abline(0, 1)
11 + })

Figure 3.4: Multiple XY plot using R
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Without making all this effort, we have a function for making xyplots: fs-
plot() (see figure 3.6), but it is not very flexible, later we present a function
for plotting xyplots:

1 fsplot(Survived ~ DEVELOPED , data = LipsetFS)

It can be included in the previous loop to generate all the plot in once, making
a slight modification to fsplot() (see figure 3.7):

1 > par(mfrow = c(2, 3), mar = c(3, 4, 3, 1), mgp = c(2, 1, 0))
2 > for (i in 2:6){
3 + fsplot(Survived ~ LipsetFS[,i], data = LipsetFS , main = “”,
4 + xlab = names(LipsetFS)[i])
5 + }

But it does not look very nice. We can use the xy.plot() function in Set-
Methods (see figure 3.8):

1 > xy.plot(LipsetFS$DEVELOPED , LipsetFS$Survived ,
2 + labs = rownames(LipsetFS))
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Figure 3.5: Multiple XY plot using R and lattice
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The function has several options. Type ?xy.plot to look what they are: It
can be used in a loop as well (see figure 3.9):

1 > par(mfrow = c(2, 3))
2 > for (i in 2:6){
3 + xy.plot(LipsetFS[,i], LipsetFS$Survived ,
4 + main = paste("XY Plot for", names(LipsetFS)[i], sep=" "),
5 + cex.axis = .7,
6 + xlab = "Condition", cex.fit = .5, labs = rownames(LipsetFS))
7 + }

In SetMethods there another function producing the same plot using the lat-
tice environment called xy.plot.lat() (see figure 3.10):

1 > xy.plot.lat(LipsetFS$DEVELOPED , LipsetFS$Survived , case.lab = TRUE ,
2 + labs = rownames(LipsetFS))
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Figure 3.6: Multiple XY plot using R and fsplot()
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The following code shows how to do Exercise 11:
1 > data(VisFS)
2 > VisFS$n_r <- 1 - VisFS$r
3 > VisFS$p_s_nr <- VisFS(Vis$p, Vis$s, Vis$n_r)
4 > xy.plot(VisFS$p_s_nr, VisFS$u, labs = rownames(VisFS))
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Figure 3.8: XY plot using R and xy.plot
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Figure 3.10: XY plot using R and xy.plot.lat()
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Chapter 4

Truth Tables:
How to . . .Create and Logically Minimize Truth Tables

with the Appropriate Software

Overview:

• Transforming data sets with set membership scores into truth tables

• Logically minimizing truth tables

• Empirical examples

– Fake data Selbst.disappear or “Selbst_1_data_matrix.csv”

– Lipset (1956)

4.1 fsQCA 2.5

With crisp set data, click [Analyze] [Crisp Sets] [Truth Table Algorithm] and
with fuzzy set data [Analyze] [Fuzzy Sets] [Truth Table Algorithm]. A new
window opens in which we are asked to specify the outcome and the con-
ditions. With [Set], we choose the occurrence of the set highlighted in the
left panel as the outcome to be analyzed. With [Set Negated], we create the
truth table with the non-occurrence of the set as the outcome to be explained.
After clicking [Run], the truth table appears in a new window. It consists
of 2k rows, k being the number of conditions. The first k columns represent
the conditions specified in the previous step. Column “number” indicates the
number of cases that have a membership greater than 0.5 in the given truth
table row. By adding up the numbers appearing in column number, we thus
obtain the number of cases under analysis (unless one or more cases have a
fuzzy-set membership score of exactly 0.5 in one or more of the conditions; see
chapter 4.2 of SMSS). The column for the outcome value is empty. It should
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4. Truth Tables

be filled based on the information of whether a given row can be considered
a sufficient condition for the outcome of interest. Rows that contain enough
cases (see column “number”) and that are subsets of the outcome can be con-
sidered sufficient for that outcome. This information is provided in column
“raw consistency.” The precise meaning of this and the columns ‘pre consist’
and ‘product’ is explained in chapters 5 and 9. With fully specified truth
tables, each row has enough cases and the values in column “raw consist” are
either 1 or 0. Rows with raw consistency of 1 are sufficient and thus included
in the logical minimization. We can either directly insert the values 1 or 0 in
the outcome column or we click [Edit] [Delete and code . . . ] [Delete rows with
number less than “1”], [and set outcome to 1 for rows with consis>0.99].

We now have a truth table that can be subjected to logical minimization.
In order to do this, we click [Specify Analysis]. A new window opens. The
rows in this matrix list all the values that can be encountered in the outcome
column of a truth table. In our simple examples so far, only the values of
1 and 0 occur. The columns indicate the options how to treat rows with
outcome 1 or 0. Setting rows to “True” means that they enter the logical
minimization procedure, “False” that they are not included. After clicking
[Run], a new window opens with the solution formula for sufficiency. Here is
an important practical note: when using the [Truth Table Algorithm] option
in fsQCA 2.5, we always have to specify “Positive Cases (1)” as “True” and
“Negative Cases (0)” as “False.” If we want to analyze the sufficient condition
for the non-occurrence of the outcome, then, as explained, we need to specify
the negation of the outcome set at the beginning of the process of creating a
truth table.

In order to practice, open file “Selbst_1_data_matrix.csv”. Click [Analyze]
[Crisp Sets] [Truth Table Algorithm] and specify as [Outcome] “Y” and as
[Causal Conditions] all other three remaining sets in the data. Tick the box
[show solution cases in output] with “label” specified as [variable name column].
Click [Run] [Edit] [Delete and Code], set the frequency threshold (upper box)
to 1 and the consistency threshold (lower box) to 0.99, and click [Ok]. See
figure 9.1.

Each truth table row now has either 1 or 0 in the outcome column. Click
[Specify Analysis] and set [Positive Cases (1]] to [True] and [Negative Cases
(0)] to [False]. Press [Run]. See figure 9.2.

This procedure yields the following solution formula:

∼A + ∼B∗C → Y

44



4.1. fsQCA 2.5

Figure 4.1: Truth table fsQCA 2.5.

	   	  

Figure 4.2: Specify analysis in fsQCA 2.5.

	  

The software also reports consistency and coverage values (see chapter 5 of
SMSS) and lists those cases that have membership in each of the sufficient
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terms.

4.2 Tosmana 1.3.2

When using Tosmana, click [Analysis] [Start (MV)QCA]. A new window
opens. From the panel on the left, we choose the outcome and conditions. If a
“case descriptor” is also chosen, case labels will be displayed in their respective
truth table row and the sufficiency solution term. Clicking [Truth Table], a
new window opens that displays the truth table, with the first columns con-
taining the conditions and the penultimate column indicating whether all the
cases that are members of the respective row also members of the outcome (1)
or not (0). The last columns shows the cases in each row.

The logical minimization of this truth table is performed by returning to the
previous window. On the right-hand side we find a panel that looks similar
to the one encountered in fsQCA 2.5. The rows list all values that could be
encountered in the outcome column of a truth table. So far, we have only
dealt with values of 1 and 0 but in the subsequent chapters, when we handle
more complex (and realistic) data, contradictions and remainders will be the
rule rather than the exception.1 For the sufficiency analysis of the occurrence
of the outcome, we set the marker at Outcome 1 = explain and Outcome 0 =
exclude.

4.3 Stata

In Stata, the command fuzzy settest( ) displays, for all logically possible
combinations of conditions (a.k.a. truth table rows), the number of cases that
are members and whether it is a subset of the outcome or the non-occurrence
of the outcome. Unlike fsQCA 2.5, Stata does not produce a truth table
in which the outcome value can be directly coded using the decision rules
described above and further elaborated in chapter 7 of SMSS. For the logical
minimization procedure, we use the command reduce.

4.4 R

To show how to create and minimize a truth table in R we use the dataset
called Selbst.disappear available in SetMethods:
1Neither of the authors of this book have ever encountered a set-theoretic study where the
outcome value was missing, the fifth option in the panel.
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1 > data(Selbst.disappear)
2 > head(Selbst.disappear)
3
4 A B C Y
5 A1 0 0 0 1
6 A2 0 0 0 1
7 A3 0 0 0 1
8 A4 0 0 0 1
9 A5 0 0 0 1
10 A6 0 0 0 1

We can build a truth table for crisp sets using both packages QCA3 and QCA.
In QCA3 there is the function cs_truthTable() which produces a truth table
for crisp set values:

1 > TTcs <- cs_truthTable(mydata = Selbst.disappear ,
2 + outcome = "Y",
3 + conditions = c("A", "B", "C"))
4
5 # If we just need the truth table type:
6 > TTcs$truthTable
7
8 A B C NCase freq1 freq0 OUT
9 14 0 0 0 20 20 0 1
10 15 1 0 0 36 0 36 0
11 17 0 1 0 4 4 0 1
12 18 1 1 0 33 0 33 0
13 23 0 0 1 3 3 0 1
14 24 1 0 1 4 4 0 1
15 26 0 1 1 1 1 0 1
16 27 1 1 1 29 0 29 0

To minimize the truth table we use reduce():
1 > reduce(TTcs)
2
3 Call:
4 reduce(x = TTcs)
5
6 truthTable with 8 configuration(s)
7
8 A B C NCase freq1 freq0 OUT
9 14 0 0 0 20 20 0 1
10 15 1 0 0 36 0 36 0
11 17 0 1 0 4 4 0 1
12 18 1 1 0 33 0 33 0
13 23 0 0 1 3 3 0 1
14 24 1 0 1 4 4 0 1
15 26 0 1 1 1 1 0 1
16 27 1 1 1 29 0 29 0
17 Cases

18 14 A1, A2 , A3 , A4, A5, A6 , A7, A8, A9 , A10 , A11 , A12 , A13 , A14 ,
19 A15 , A16 , A17 , A18 , A19 , A20
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20 15 A29 , A30 , A31 , A32 , A33 , A34 , A35 , A36 , A37 , A38 , A39 ,
21 A40 , A41 , A42 , A43 , A44 , A45 , A46 , A47 , A48 , A49 , A50 , A51 , A52 ,

A53 , A54 , A55 , A56 , A57 , A58 , A59 , A60 , A61 , A62 , A63 , A64
22 17 A24 , A25 , A26 , A27
23 18 A69 , A70 , A71 , A72 , A73 , A74 , A75 , A76 , A77 , A78 , A79 , A80 ,
24 A81 , A82 , A83 , A84 , A85 , A86 , A87 , A88 , A89 , A90 , A91 , A92 , A93 ,

A94 , A95 , A96 , A97 , A98 , A99 , A100 , A101
25 23 A21 , A22 , A23
26 24 A65 , A66 , A67 , A68
27 26 A28
28 27 A102 , A103 , A104 , A105 , A106 , A107 , A108 , A109 , A110 , A111 ,
29 A112 , A113 , A114 , A115 , A116 , A117 , A118 , A119 , A120 , A121 ,
30 A122 , A123 , A124 , A125 , A126 , A127 , A128 , A129 , A130
31
32 ----------------
33 Explaining 5 configuration(s)
34
35 ----------------
36 Prime implicant No. 1 with 2 implicant(s)
37
38 a + b*C
39
40 Common configuration: None

Instead, if we use QCA another function is available that is truthTable():
1 > TTcs <- truthTable(Selbst , outcome = "Y", complete = TRUE ,
2 + show.cases = FALSE , sort.by = c("incl", "n"))
3 > TTcs
4
5 OUT: outcome value
6 n: number of cases in configuration
7 incl: sufficiency inclusion score
8 PRI: proportional reduction in inconsistency
9
10 A B C OUT n incl PRI
11 1 0 0 0 1 20 1.000 1.000
12 3 0 1 0 1 4 1.000 1.000
13 6 1 0 1 1 4 1.000 1.000
14 2 0 0 1 1 3 1.000 1.000
15 4 0 1 1 1 1 1.000 1.000
16 5 1 0 0 0 36 0.000 0.000
17 7 1 1 0 0 33 0.000 0.000
18 8 1 1 1 0 29 0.000 0.000

To get only the truth table:
1 > TTcs$tt
2
3 A B C OUT n incl PRI
4 1 0 0 0 1 20 1 1
5 3 0 1 0 1 4 1 1
6 6 1 0 1 1 4 1 1
7 2 0 0 1 1 3 1 1
8 4 0 1 1 1 1 1 1
9 5 1 0 0 0 36 0 0
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10 7 1 1 0 0 33 0 0
11 8 1 1 1 0 29 0 0

To minimize the truth table we use eqmcc():
1 > eqmcc(TTcs)
2
3 S1: a + bC

We can build a truth table for fuzzy sets with these two packages. We show
how to produces a truth table for fuzzy set values using the Lipset fuzzy data
LipsetFS:

1 > data(LipsetFS)
2 > head(LipsetFS)
3 .
4 .
5 .

If we use QCA3 we use the function fs_truthTable():
1 > TTfs <- fs_truthTable(LipsetFS ,
2 + outcome = "Survived",
3 + conditions = c("DEVELOPED", "URBAN",
4 + "LITERATE", "INDUSTRIAL", "STABLE"),
5 + consistency_cutoff = 0.8)
6
7 # To get the truth table only
8 > TTfs$truthTable
9
10 # To sort the table by consistency values , make an object
11 > TTfsSort <- TTfs$truthTable
12
13 # and use order ()
14 > TTfsSort <- TTfsSort[order(TTfsSort$Consistency , decreasing = TRUE)

,]
15 > TTfsSort
16
17 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT freq1 freq0 NCase

Consistency
18 243 1 1 1 1 1 1 4 0 4

0.9042056
19 213 1 0 1 0 1 1 2 0 2

0.8042705
20 240 1 0 1 1 1 0 0 2 2

0.7087719
21 212 0 0 1 0 1 0 0 1 1

0.5285714
22 131 0 0 1 0 0 0 0 2 2

0.5209003
23 162 1 1 1 1 0 0 0 1 1

0.4452555
24 159 1 0 1 1 0 0 0 1 1

0.3782051
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25 203 0 0 0 0 1 0 0 2 2
0.2780269

26 122 0 0 0 0 0 0 0 3 3
0.2159763

27 priConsistency sqrtProduct
Cases

28 243 0.88579387 0.80093979 Belgium ,Czechoslovakia ,Netherlands ,
UnitedKingdom

29 213 0.71938776 0.57858232
Finland ,Ireland

30 240 0.63436123 0.44961744
France ,Sweden

31 212 0.22807018 0.12055138
Estonia

32 131 0.11309524 0.05891135
Humgary ,Poland

33 162 0.05000000 0.02226277
Germany

34 159 0.03960396 0.01497842
Austria

35 203 0.00000000 0.00000000
Italy ,Romania

36 122 0.00000000 0.00000000 Greece ,
Portugal ,Spain

37
38 # For reduction we use , as before , reduce () and check the options
39 > reduce(TTfs) # using the truth table as object
40
41 Call:
42 reduce(x = TTfs)
43
44 truthTable with 9 configuration(s)
45
46 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT freq1 freq0 NCase

Consistency
47 243 1 1 1 1 1 1 4 0 4

0.9042056
48 240 1 0 1 1 1 0 0 2 2

0.7087719
49 213 1 0 1 0 1 1 2 0 2

0.8042705
50 212 0 0 1 0 1 0 0 1 1

0.5285714
51 203 0 0 0 0 1 0 0 2 2

0.2780269
52 162 1 1 1 1 0 0 0 1 1

0.4452555
53 159 1 0 1 1 0 0 0 1 1

0.3782051
54 131 0 0 1 0 0 0 0 2 2

0.5209003
55 122 0 0 0 0 0 0 0 3 3

0.2159763
56 priConsistency sqrtProduct

Cases
57 243 0.88579387 0.80093979 Belgium ,Czechoslovakia ,Netherlands ,

UnitedKingdom
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58 240 0.63436123 0.44961744
France ,Sweden

59 213 0.71938776 0.57858232
Finland ,Ireland

60 212 0.22807018 0.12055138
Estonia

61 203 0.00000000 0.00000000
Italy ,Romania

62 162 0.05000000 0.02226277
Germany

63 159 0.03960396 0.01497842
Austria

64 131 0.11309524 0.05891135
Humgary ,Poland

65 122 0.00000000 0.00000000 Greece ,
Portugal ,Spain

66
67 ----------------
68 Explaining 2 configuration(s)
69
70 ----------------
71 Prime implicant No. 1 with 2 implicant(s)
72
73 DEVELOPED*urban*LITERATE*industrial*STABLE +
74 DEVELOPED*URBAN*LITERATE*INDUSTRIAL*STABLE
75
76 Common configuration: DEVELOPED*LITERATE*STABLE
77
78 # We can also use the dataset directly:
79 > reduce(LipsetFS ,
80 + outcome = "Survived",
81 + conditions = c("DEVELOPED", "URBAN", "LITERATE",
82 + "INDUSTRIAL", "STABLE"),
83 + explain = "positive", remaind = "exclude", prepro = "fs",
84 + consistency = 0.8)
85
86 Call:
87 reduce(x = LipsetFS , outcome = "Survived", conditions = c("DEVELOPED"

, "URBAN", "LITERATE", "INDUSTRIAL", "STABLE"), explain = "
positive", remainders = "exclude", preprocess = "fs",
consistency = 0.8)

88
89 truthTable with 9 configuration(s)
90
91 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT freq1 freq0 NCase

Consistency
92 243 1 1 1 1 1 1 4 0 4

0.9042056
93 240 1 0 1 1 1 0 0 2 2

0.7087719
94 213 1 0 1 0 1 1 2 0 2

0.8042705
95 212 0 0 1 0 1 0 0 1 1

0.5285714
96 203 0 0 0 0 1 0 0 2 2

0.2780269
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97 162 1 1 1 1 0 0 0 1 1
0.4452555

98 159 1 0 1 1 0 0 0 1 1
0.3782051

99 131 0 0 1 0 0 0 0 2 2
0.5209003

100 122 0 0 0 0 0 0 0 3 3
0.2159763

101 priConsistency sqrtProduct
Cases

102 243 0.88579387 0.80093979 Belgium ,Czechoslovakia ,Netherlands ,
UnitedKingdom

103 240 0.63436123 0.44961744
France ,Sweden

104 213 0.71938776 0.57858232
Finland ,Ireland

105 212 0.22807018 0.12055138
Estonia

106 203 0.00000000 0.00000000
Italy ,Romania

107 162 0.05000000 0.02226277
Germany

108 159 0.03960396 0.01497842
Austria

109 131 0.11309524 0.05891135
Humgary ,Poland

110 122 0.00000000 0.00000000 Greece ,
Portugal ,Spain

111
112 ----------------
113 Explaining 2 configuration(s)
114
115 ----------------
116 Prime implicant No. 1 with 2 implicant(s)
117
118 DEVELOPED*urban*LITERATE*industrial*STABLE +
119 DEVELOPED*URBAN*LITERATE*INDUSTRIAL*STABLE
120
121 Common configuration: DEVELOPED*LITERATE*STABLE
122
123 # To sort the table see the previous lines

If we use QCA we do the same as before, using truthTable():
1 > TTfs <- truthTable(LipsetFS ,
2 + outcome = "Survived",
3 + incl.cut1 = 0.8,
4 + sort.by = "incl") # and we sort by "incl"
5 > TTfs
6
7 OUT: outcome value
8 n: number of cases in configuration
9 incl: sufficiency inclusion score
10 PRI: proportional reduction in inconsistency
11
12 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT n incl PRI
13 32 1 1 1 1 1 1 4 0.904 0.886
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14 22 1 0 1 0 1 1 2 0.804 0.719
15 24 1 0 1 1 1 0 2 0.709 0.634
16 6 0 0 1 0 1 0 1 0.529 0.228
17 5 0 0 1 0 0 0 2 0.521 0.113
18 31 1 1 1 1 0 0 1 0.445 0.050
19 23 1 0 1 1 0 0 1 0.378 0.040
20 2 0 0 0 0 1 0 2 0.278 0.000
21 1 0 0 0 0 0 0 3 0.216 0.000
22
23
24 # With the following line we just get the truth table:
25 > TTfs$tt
26
27 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT n incl

PRI
28 32 1 1 1 1 1 1 4 0.904205607476635

0.885793871866295
29 22 1 0 1 0 1 1 2 0.804270462633452

0.719387755102041
30 24 1 0 1 1 1 0 2 0.708771929824561

0.634361233480176
31 6 0 0 1 0 1 0 1 0.528571428571429

0.228070175438597
32 5 0 0 1 0 0 0 2 0.520900321543408

0.113095238095238
33 31 1 1 1 1 0 0 1 0.445255474452555

0.0499999999999999
34 23 1 0 1 1 0 0 1 0.378205128205128

0.0396039603960395
35 2 0 0 0 0 1 0 2 0.278026905829596

0
36 1 0 0 0 0 0 0 3 0.215976331360947

0
37
38 # And with the following we minimize the truth table:
39 > eqmcc(TTfs) # here we use as object the truth table
40
41 S1: DEVELOPED*urban*LITERATE*industrial*STABLE + DEVELOPED*URBAN*

LITERATE*INDUSTRIAL*STABLE
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Chapter 5

Parameters of Fit:
How To. . .Analyze Subset Relations With the

Appropriate Software

Overview:

• Identification of contradictory truth table rows

• Identification of true logical contradictory cases

• Graphical display of set relations

• Empirical examples:

– Vis (2009): used in book

– “Selbst_1_data_matrix_with_contradictions.csv”

5.1 fsQCA 2.5

In order to identify necessary conditions, click [Analyze] [Necessary Condi-
tions]. A new window opens and we specify the outcome (either the occur-
rence or non-occurrence of a set) in the appropriate box. In the window “Add
condition” we select one condition at a time and send it into the field “Con-
ditions” by pushing the arrow button. If we want to test the necessity of
“functional equivalents,” we first select two or more conditions and then send
them into the field “Conditions.” By clicking [Run], the output window opens
and reports the consistency and coverage/relevance scores for each condition
and functional equivalent specified. A second strategy for analyzing necessity
in fsQCA 2.5 is to produce an XY plot by clicking [Graphs] [Fuzzy] [XY Plot]
(see How To for chapter 3). The number on the lower right corner of the plot
indicates consistency necessity and the number in the upper left corner cover-
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age necessity. If a test of sufficiency is performed, then the upper left number
indicates consistency of sufficiency and the lower right coverage of sufficiency.

In order to identify contradictory truth table rows, we follow the steps for
representing a data matrix in a truth table as described above in chapter
4. In order to practice, open file “Selbst_1_data_matrix_with_contradic-
tions.csv” [Analyze] [Crisp Sets] [Truth Table Algorithm]. Choose “y” as the
outcome set, and “a”, “b”, “c” as the conditions, then click [Run]. A truth
table appears with information on each row’s consistency with the statement
of being sufficient for outcome Y. Together with the information on how many
cases are members in each row, we can calculate how many true logical con-
tradictory cases there are in each row.1 For example, row A∗B∗∼C contains
33 cases and its consistency is 0.939. This means that 33 − (33 ∗ 0.939) =
2 cases are inconsistent with the statement of sufficiency. That is, they are
members of row A∗B∗∼C but not of Y. In order to identify which two cases
these are, we need to turn to different software packages (see below).

Rather than testing the sufficiency of all logically possible AND conjunctions
– i.e. all truth table rows – fsQCA 2.5 offers an option to test the sufficiency
of specific logical AND conjunctions and all their possible components. For
illustration, open the data file “Vis_2009_fs.csv”, click [Analyze] [Subset/Su-
perset Analysis] and specify “u” as the outcome set, “p”, “s”, as the conditions,
and click [Run]. A new window opens which reports the consistency and cov-
erage of for expressions “P∗S”, “P” and of “S”. This function is useful when
researchers have hunches about the sufficiency of a specific conjunction and
want to know not only whether that hunch finds empirical support, but also
if the conjunction could be shortened by dropping one or more constitutive
elements without consistency becoming too low. See figure 9.1.

5.2 Tosmana 1.3.2

In Tosmana, no separate function for the analysis of necessity exists and no
consistency and coverage scores are calculated. As described above in the
How-To section for chapter 5, Tosmana reports which cases fall into each
truth table row; however, it does not report each case’s membership in the
outcome set. Without this information, we cannot identify the true logical
contradictory cases.

1Remember from chapter 5 of SMSS that with crisp sets all inconsistent cases are also true
logical contradictory cases.

58



5.3. Stata

Figure 5.1: Sub/Super-set solution in fsQCA 2.5.

	  
5.3 Stata

In Stata, the command suffnec, altdisplay is an easy way to calculate the
consistency of a condition as either a necessary or a sufficient condition. The
numbers in the lower right triangle of the table are the consistency of necessity
scores and those in the upper left triangle the consistency sufficiency scores.
Of course, in case a condition is identified as consistent enough as a necessary
(or a sufficient) condition, the other value can be interpreted as its coverage
score as a necessary (or sufficient) condition. The command necessity is
less useful as it tests the necessity of logical AND configurations, which, for
reasons explained in chapters 3ff. of SMSS, can only be necessary if each of
the single conditions involved are necessary on their own.

5.4 R

To show how to calculate the parameters of fit concerning sufficiency and
necessity in R we use the dataset called LipsetFS available in SetMethods:

1 > data(LipsetFS)
2 > head(LipsetFS)
3 .
4 .
5 .

QCA3 has two functions to do get the parameters of fit with are coverage()
and consistency(). The code below shows how to use them:

1 > coverage(LipsetFS$DEVELOPED ,
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2 + LipsetFS$Survived , alternative = "greater")
3
4 [1] 0.775
5
6 > coverage(LipsetFS$DEVELOPED ,
7 + LipsetFS$Survived , alternative = "less")
8
9 [1] 0.831

The first entry in the functions is the condition, while the second entry is
the outcome. The alternative option defines what parameter of fit is cal-
culated: greater gives the coverage for necessary condition, while less gives
the coverage for sufficient condition.

QCA has also a function to calculate consistency and coverage that is called
pof().2 The following code shows how to use the function:

1 # Necessary condition
2 > pof(LipsetFS[, 2:6], LipsetFS ,
3 + outcome = "Survived", relation = "necessity")
4
5 incl PRI cov.r
6 ----------------------------------
7 1 DEVELOPED 0.831 0.789 0.775
8 2 URBAN 0.539 0.474 0.771
9 3 LITERATE 0.991 0.990 0.643
10 4 INDUSTRIAL 0.669 0.617 0.684
11 5 STABLE 0.920 0.904 0.707
12 ----------------------------------
13
14 # Sufficient condition
15 > pof(LipsetFS[, 2:6], LipsetFS ,
16 + outcome = "Survived", relation = "sufficiency")
17
18 incl PRI cov.r cov.u
19 -----------------------------------------
20 1 DEVELOPED 0.775 0.743 0.831 0.000
21 2 URBAN 0.771 0.720 0.539 0.000
22 3 LITERATE 0.643 0.587 0.991 0.053
23 4 INDUSTRIAL 0.684 0.648 0.669 0.004
24 5 STABLE 0.707 0.664 0.920 0.005
25 -----------------------------------------

The first entry is the matrix including the conditions, the second entry is the
dataset, the third entry is the outcome and the last entry defines the relation
(sufficiency or necessity).

The parameters of fit can be calculated using the QCAfit() included in Set-
Methods. The following code shows how to use the function:
2pof() works if you input matrices, not single conditions. [check]
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1 # Sufficiency
2 > QCAfit(LipsetFS$DEVELOPED , LipsetFS$Survived ,
3 + cond.lab = "Developed")
4
5 Cons. Suf. Cov. Suf. PRI PRODUCT
6 Developed 0.775 0.831 0.743 0.576
7
8 # Necessity
9 > QCAfit(LipsetFS$DEVELOPED , LipsetFS$Survived ,
10 + cond.lab = "Developed", necessity = TRUE)
11
12 Cons. Nec. Cov. Nec. RoN
13 Developed 0.831 0.775 0.811

The first entry is the condition, the second entry is the outcome, in the third
entry we include the conditions’ labels (if they need to be changed). To get
the parameters of fit for necessity the necessity option must be set as TRUE.
The default is FALSE.

QCAfit() also tests multiple conditions:
1 # Sufficiency
2 > QCAfit(LipsetFS[, 2:6], LipsetFS$Survived ,
3 + names(LipsetFS[, 2:6]))
4
5 Cons. Suf. Cov. Suf. PRI PRODUCT
6 DEVELOPED 0.775 0.831 0.743 0.576
7 URBAN 0.771 0.539 0.720 0.556
8 LITERATE 0.643 0.991 0.587 0.377
9 INDUSTRIAL 0.684 0.669 0.648 0.444
10 STABLE 0.707 0.920 0.664 0.470
11
12 # Necessity
13 > QCAfit(LipsetFS[, 2:6], LipsetFS$Survived ,
14 + names(LipsetFS[, 2:6]),
15 + necessity = TRUE)
16
17 Cons. Nec. Cov. Nec. RoN
18 DEVELOPED 0.831 0.775 0.811
19 URBAN 0.539 0.771 0.899
20 LITERATE 0.991 0.643 0.509
21 INDUSTRIAL 0.669 0.684 0.786
22 STABLE 0.920 0.707 0.680

The entry names(LipsetFS[, 2:6]) collects the conditions’ labels from the
data frame and uses it the output table.

If the parameters have to be computed for the negative outcome, the negative
option have to be set as TRUE:
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1 # Sufficiency
2 > QCAfit(LipsetFS[, 2:6], LipsetFS$Survived ,
3 + names(LipsetFS[, 2:6]), negation = FALSE)
4 .
5 .
6 .

If the parameters have to be computed for a negative condition just subtract
1 from the conditions:

1 # Sufficiency
2 > QCAfit (1 - LipsetFS[, 2:6], LipsetFS$Survived ,
3 + names(LipsetFS[, 2:6]))
4 .
5 .
6 .

As already shown we can visualize set-relations use xy.plot() from SetMeth-
ods. See figure 9.2.

1 > xy.plot(LipsetFS$DEVELOPED , LipsetFS$Survived ,
2 + labs = rownames(LipsetFS), srt = 45)

Configuration of conditions consistency and coverage are easily obtained get-
ting, first, the scores of the configuration and, second, using the functions
described above. We now use the VisFS dataset included in SetMethods. We
load the data and get the minimum of two conditions. See the code below:

1 > data(VisFS)
2
3 # We get the minimum
4 > VisFS$p_s <- pmin(VisFS$p, VisFS$s)
5 > VisFS$p_s
6
7 [1] 0.33 0.17 0.33 0.17 0.33 0.67 0.17 0.17 0.17 0.67 0.33 0.83 0.33

0.33 0.33 0.60 0.17
8 [18] 0.60 0.33 0.17 0.33 0.33 0.33 0.17 0.33

The we use the “new” condition, which is a configuration of conditions, in the
functions described above:

1 # Sufficiency
2 > QCAfit(VisFS$p_s, VisFS$ru , cond.lab = "ru")
3
4 Cons. Suf. Cov. Suf. PRI PRODUCT
5 ru 0.759 0.538 0.264 0.201
6
7 # Necessity
8 > QCAfit(VisFS$p_s, VisFS$ru , cond.lab = "ru", necessity = TRUE)
9
10 Cons. Nec. Cov. Nec. RoN
11 ru 0.538 0.759 0.886
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Figure 5.2: XY plot of Lipset data using “developed” as condition.
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And we can use the configuration of condition to get an XY plot (see fig-
ure 5.3):

1 > xy.plot.lat(VisFS$p_s, VisFS$ru , labs = rownames(VisFS), srt = 45)
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Figure 5.3: XY plot of Vis data using a configuration of conditions
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Chapter 6

Limited Diversity and Logical Remainders:
How To . . . Identify Assumptions Made on Remainders

with the Appropriate Software

Overview:

• Identification of logical remainders rows

• Standard Analysis: conservative, most parsimonious, and interme-
diate solution term

• Identification of assumptions on remainders made for producing the
most parsimonious and the intermediate solution terms

• Empirical examples:

– Vis (2009): used in book

6.1 fsQCA 2.5

In fsQCA 2.5, the identification of logical remainders is easy. We simply con-
vert our data set into a truth table using the Truth Table Algorithm command
as described above (chapters 4 and 5). By default, the software displays all
truth table rows, including those with not enough empirical evidence, a.k.a
logical remainder rows. In order to get a summary of all remainder rows
in the form of a Boolean expression, we can use the following trick. In the
empty column for the outcome, assign the value 1 to all logical remainders
and 0 to all other rows. Click [Run] and in the new window set “Positive cases
true” and “Negative cases false” (see chapter 4), then click [Run]. The output
window opens and displays the Boolean expression of the logical remainders
(disregard the parameters of fit, since they do not have any meaning in this
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specific procedure).

In order to practice, open file “Vis_2009_fs.csv”. After producing the truth
table following the steps outlined above, we see that there are three remainder
rows: ∼PS∼R + P∼S∼R + P∼SR. In order to have the software summarize
limited diversity in the form of a Boolean expression, code these three rows
with 1 and all others with 0, click [Specify Analysis] [positive cases (1)] [True]
and [RUN]. In the output window, we see that limited diversity in Vis’ data
is described by P∼S + ∼PS∼R.

In fsQCA 2.5, it is also easy to obtain the most parsimonious and the interme-
diate solution term. Again, we use the function of the (crisp or fuzzy) Truth
Table Algorithm, specify the outcome and the conditions and click [Run]. In
the window with the truth table, we, define rows as logical remainders accord-
ing to the amount of empirical evidence they contain (as expressed in column
“number”) and classify all non-remainder rows as either sufficient for the out-
come or not sufficient for the outcome according to their consistency value
reported in column “raw consist”.1 After that, click [Standard Analyses]. This
routine produces the three solution terms that should always be produced and
reported: the conservative solution, the most parsimonious solution, and the
intermediate solution. For the latter, we need to define the directional expec-
tations. This is done in the new window that appears after having clicked
[Standard Analyses]. For each single condition, we need to decide whether it
contributes to the outcome when it is present, absent, or both. After having
specified directional expectations for each condition, click [OK]. The three so-
lution formulas appear in the output window. The fsQCA 2.5 software does
not report which counterfactuals went into the most parsimonious and inter-
mediate solution. In order to have this information, we have to use other
software packages (see below).

6.2 Tosmana 1.3.2

Tosmana does produce truth tables (based on crisp but not fuzzy sets), but
only without the logical remainder rows. Also, Tosmana produces the most
parsimonious solution term but has no routine for specifying directional expec-
tations and thus for producing the intermediate solution term. In order to pro-
duce the most parsimonious solution term, click [Analysis] [Start (MV)QCA]
1As explained above (chapter 5), we can use the shortcut [Edit] [Delete and code . . . ] for
the task of classifying truth table rows as either sufficient for the outcome, not sufficient,
or as logical remainders.
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and specify the outcome, conditions, and case descriptor in the new window
(see chapter 4). Set ‘Outcome 1 Explain’ and ‘Outcome 0 Exclude’. In addi-
tion, set ‘Remainders Include for Reduction’ and select ‘Compute Simplifying
Assumptions’. With this setup, the software reports the simplifying assump-
tions that went into the most parsimonious solution term. After clicking [go],
the output window appears and reports the most parsimonious solution term
together with the simplifying assumptions that went into it.2

The Boolean Calculator tool in Tosmana is useful whenever more complex
Boolean operations need to be performed. It can also be fruitfully used when
trying to identify the assumptions that went into the intermediate solution
term. For this, we need the intermediate solution term and the Boolean ex-
pression of all logical remainders. Both can be obtained with fsQCA 2.5 (see
above). Then in Tosmana click [Analysis] [Boolean Calculator]. In the new
window, create the Boolean expressions of the intermediate solution and for
all logical remainder, respectively. This is done by first selecting a condition
from window “Select Variable”, then specify whether it appears in its presence
or negation in the Boolean expression, then specify whether it is combined
by logical AND or logical OR. Once ready with one Boolean expression, click
[add] and the expression appears in the lower window. Once both the interme-
diate solution and the expression for all logical remainders have been specified,
highlight both and click [Compute Intersection]. The expression that appears
in the lower window describes all those logical remainders that are implied by
the intermediate solution term, i.e., all easy counterfactuals.

6.3 Stata

In Stata, logical remainder rows can be identified by using the command
fuzzy settest( ), which displays for all logically possible combinations of
conditions (a.k.a. truth table rows), the number of cases that are members and
whether it is a subset of the outcome or the non-occurrence of the outcome (see
chapter 4). The command truthtab saves a truth table, which, however, does
not contain enough information as to which rows are logical remainders. The
most parsimonious and the conservative solution can be produced by using the
commands reduce and remainders(#) combined with command settest().
There is no routine, however, for implementing directional expectations and

2Note the different notation form in Tosmana: A1 is equal to the condition A, whereas A0
denotes the complement ∼A. An expression such as A1B0C0 therefore has to be read as
A∼B∼C.
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thus producing the intermediate solution term. Stata also does not report the
assumptions that went into the most parsimonious solution term.

6.4 R

We now show how to deal with logical remainders and limited diversity in R.
As before we run the analysis with QCA. Let us load some data:

1 > data(VisFS)
2 > head(Vis)
3
4 p s r u
5 Lubbers1 0.33 0.83 1.0 0.83
6 Lubbers2 0.17 0.33 1.0 0.33
7 Lubbers3 0.33 0.67 0.6 0.67
8 Kok1 0.17 0.40 0.4 0.67
9 Kok2 0.33 0.33 0.4 0.17
10 Balkenende2 0.67 0.67 1.0 0.83
11
12 > data(LipsetFS)
13 > head(LipsetFS)
14 .
15 .
16 .
17
18 > data(LipsetCS)
19 > head(LipsetCS)
20 .
21 .
22 .

We get all the logical remainders in a truth table specifying the complete
option as TRUE using the truthTable() function. See the code below:

1 > TTfs <- truthTable(LipsetFS , outcome = "Survived",
2 + conditions = names(LipsetFS [ ,2:6]),
3 + incl.cut1 = .8, complete = TRUE)
4 > TTfs
5
6 OUT: outcome value
7 n: number of cases in configuration
8 incl: sufficiency inclusion score
9 PRI: proportional reduction in inconsistency
10
11 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT n incl PRI
12 1 0 0 0 0 0 0 3 0.216 0.000
13 2 0 0 0 0 1 0 2 0.278 0.000
14 3 0 0 0 1 0 ? 0 0.312 0.000
15 4 0 0 0 1 1 ? 0 0.295 0.000
16 5 0 0 1 0 0 0 2 0.521 0.113
17 .
18 .
19 .
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20 .

Then, we can subset the table and just get the remainders:
1 > REMfs <- subset(TTfs$tt, OUT == "?")
2 > REMfs
3
4 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT n incl PRI
5 3 0 0 0 1 0 ? 0 0.3125 0
6 4 0 0 0 1 1 ? 0 0.2950 0
7 7 0 0 1 1 0 ? 0 0.4590 0
8 8 0 0 1 1 1 ? 0 0.4590 0
9 9 0 1 0 0 0 ? 0 0.6105 0
10 10 0 1 0 0 1 ? 0 0.6716 0
11 .
12 .
13 .
14 .

With subset we only select those rows (configurations of conditions) in which
the outcome is not present in the data, and that are indicate by ?. The same
procedure is applicable to crisp sets:

1 > TTcs <- truthTable(LipsetCS , outcome = "SURVIVED",
2 + conditions = names(LipsetCS [1:5]) ,
3 + complete = TRUE)
4 > REMcs <- subset(TTcs$tt, OUT == "?")

We know show how to obtain the solutions using both QCA and QCA3. The
complex solution is obtained excluding logical remainders, which is done by
default by the function eqmcc.

1 > CompSolFS <- eqmcc(TTcs , details = TRUE)
2 > CompSolFS
3
4 n OUT = 1/0/C: 8/10/0
5 Total : 18
6
7 S1: DEVELOPED*LITERATE*INDUSTRIAL*GOVSTAB + DEVELOPED*urban*LITERATE*

GOVSTAB
8
9 incl PRI cov.r cov.u
10 --------------------------------------------------------------
11 1 DEVELOPED*LITERATE*INDUSTRIAL*GOVSTAB 1.000 1.000 0.750 0.500
12 2 DEVELOPED*urban*LITERATE*GOVSTAB 1.000 1.000 0.500 0.250
13 --------------------------------------------------------------
14 S1 1.000 1.000 1.000

The first entry in eqmcc is the trust table obtained with truthTable(). But
we can also use a different function called fs_truthTable() and then reduce:
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1 > TTfs2 <- fs_truthTable(LipsetFS , outcome = "Survived",
2 + conditions = names(LipsetFS [2:6]))
3 > CompSolFS2 <- reduce(TTfs2)
4 > CompSolFS2
5
6 Call:
7 reduce(x = TTfs2)
8
9 truthTable with 9 configuration(s)
10
11 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT freq1 freq0 NCase

Consistency
12 243 1 1 1 1 1 1 4 0 4 0.904
13 240 1 0 1 1 1 0 0 2 2 0.709
14 213 1 0 1 0 1 1 2 0 2 0.804
15 212 0 0 1 0 1 0 0 1 1 0.529
16 203 0 0 0 0 1 0 0 2 2 0.278
17 162 1 1 1 1 0 0 0 1 1 0.445
18 159 1 0 1 1 0 0 0 1 1 0.378
19 131 0 0 1 0 0 0 0 2 2 0.521
20 122 0 0 0 0 0 0 0 3 3 0.216
21 priConsistency sqrtProduct Cases
22 243 0.8858 0.8009 Belgium ,Czechoslovakia ,Netherlands ,

UnitedKingdom
23 240 0.6344 0.4496 France ,Sweden
24 213 0.7194 0.5786 Finland ,Ireland
25 212 0.2281 0.1206 Estonia
26 203 0.0000 0.0000 Italy ,Romania
27 162 0.0500 0.0223 Germany
28 159 0.0396 0.0150 Austria
29 131 0.1131 0.0589 Humgary ,Poland
30 122 0.0000 0.0000 Greece ,Portugal ,Spain
31
32 ----------------
33 Explaining 2 configuration(s)
34
35 ----------------
36 Prime implicant No. 1 with 2 implicant(s)
37
38 DEVELOPED*urban*LITERATE*industrial*STABLE +
39 DEVELOPED*URBAN*LITERATE*INDUSTRIAL*STABLE
40
41 Common configuration: DEVELOPED*LITERATE*STABLE

The parsimonious solution is obtained including logical remainders with the
option include using eqmcc:

1 > ParsSol <- eqmcc(TTfs , include = "?", details = TRUE)
2 > ParsSol
3
4 n OUT = 1/0/C: 6/12/0
5 Total : 18
6
7 S1: DEVELOPED*industrial + URBAN*STABLE
8
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9 incl PRI cov.r cov.u
10 ---------------------------------------------------
11 1 DEVELOPED*industrial 0.815 0.721 0.284 0.194
12 2 URBAN*STABLE 0.874 0.845 0.520 0.430
13 ---------------------------------------------------
14 S1 0.850 0.819 0.714

The intermediate solution is obtained specifying directional expectations. Be
careful, the elements of the vector of directional expectations, direxp, must
follow the order of column names:

1 > IntSol <- eqmcc(TTfs , include = "?",
2 + direxp = c(1, 0, 0, 1, 1), details = TRUE)
3 > IntSol
4
5 n OUT = 1/0/C: 6/12/0
6 Total : 18
7
8 p.sol: DEVELOPED*industrial + URBAN*STABLE
9
10 S1: DEVELOPED*urban*industrial*STABLE + DEVELOPED*URBAN*INDUSTRIAL

*STABLE
11
12 incl PRI cov.r cov.u
13 ----------------------------------------------------------------
14 1 DEVELOPED*urban*industrial*STABLE 0.804 0.719 0.265 0.204
15 2 DEVELOPED*URBAN*INDUSTRIAL*STABLE 0.904 0.886 0.454 0.393
16 ----------------------------------------------------------------
17 S1 0.870 0.843 0.658

direxp tells the function that the first condition must be present, the second
and third must be absent, and the last two must be present.

What about crisp sets? It is exactly the same:
1 > CompSolCS <- eqmcc(TTcs , details = TRUE)
2 > CompSolCS
3
4 n OUT = 1/0/C: 8/10/0
5 Total : 18
6
7 S1: DEVELOPED*LITERATE*INDUSTRIAL*GOVSTAB + DEVELOPED*urban*LITERATE*

GOVSTAB
8
9 incl PRI cov.r cov.u
10 --------------------------------------------------------------
11 1 DEVELOPED*LITERATE*INDUSTRIAL*GOVSTAB 1.000 1.000 0.750 0.500
12 2 DEVELOPED*urban*LITERATE*GOVSTAB 1.000 1.000 0.500 0.250
13 --------------------------------------------------------------
14 S1 1.000 1.000 1.000
15
16
17 > ParsSolCS <- eqmcc(TTcs , include="?", details = TRUE)
18 > ParsSolCS
19
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20 n OUT = 1/0/C: 8/10/0
21 Total : 18
22
23 S1: DEVELOPED*GOVSTAB
24
25 incl PRI cov.r cov.u
26 ------------------------------------------------
27 1 DEVELOPED*GOVSTAB 1.000 1.000 1.000 1.000
28 ------------------------------------------------
29 S1 1.000 1.000 1.000

The details option sets as TRUE tells the function to provide all the possible
information.

If you want or need to analyze the negative outcome set the option neg.out
as TRUE and the function will automatically gives you the solution leading to
the negative outcome.

If you just want check the remainder, follow this simple procedure:

1. get a truth table using truthTable(), with the complete option as TRUE

2. get the truth table, after creating a new object

3. select the logical remainders with subset

4. sort by inclusion

See the code below:
1 > TTfs <- truthTable(LipsetFS , outcome = "Survived",
2 + conditions = names(LipsetFS [ ,2:6]),
3 + incl.cut1 = .8, complete = TRUE)
4
5 > TTfsRem <- TTfs$tt
6
7 > TTfsRem <- subset(TTfsRem , OUT == "?")
8
9 > TTfsRem <- TTfsRem[order(TTfsRem$incl , decreasing = TRUE), ]
10
11 > TTfsRem
12
13 DEVELOPED URBAN LITERATE INDUSTRIAL STABLE OUT n incl PRI
14 25 1 1 0 0 0 ? 0 0.875 0
15 26 1 1 0 0 1 ? 0 0.868 0
16 27 1 1 0 1 0 ? 0 0.868 0
17 .
18 .
19 .
20 .
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Chapter 7

The Truth Table Algorithm:
How to . . . Perform the Truth Table Algorithm with the

Appropriate Software

Overview:

• Implementation of Truth Table Algorithm

• Empirical examples:

– Freitag & Schlicht (2009): used in book

7.1 fsQCA 2.5

Open file “FreitagSchlicht_2009_fs.csv” and click [Analyze] [Fuzzy Sets]
[Truth Table Algorithm]. Then specify “socunequal” as the outcome, “latee-
duc”, “hdayschool”, “earlytrack”, “strongtripart” as conditions, “caseid” as the
variable name column, then [Run].1 In the new window that opens, first iden-
tify the logical remainders. As explained, these are the rows whose value in
column “number” is smaller than the pre-established frequency threshold. In
our example, the threshold is > 0. Point the cursor into the the first row
that displays the value 0 in column “number, then [Edit] [Delete current to
last row]. This visually eliminates the six logical remainder rows from the
truth table. In order to get an overview of the consistency levels of all the
non-remainder rows, move the cursor to the column “raw consist” and then
click [Sort] [Descending]. Now, the highest raw consistency value (0.977 in our
example) is at the top of the column. We notice a large gap in consistency be-
tween row 5 (0.861) and row 6 (0.789). This suggests a consistency threshold

1Notice that the label of the sets should be chosen such that it is clear what high membership
in the set signifies.
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of 0.86 or higher.2 All rows above this threshold are coded 1 in the hitherto
empty column for the outcome, those below are coded 0. This can be done
by hand or by clicking [Edit] [Delete and code . . . ] and then inserting the
value of 1 for the frequency threshold in the field “Delete rows with number
less than” and the consistency threshold of 0.86 in the field “and set Y to 1
for rows with consist >”. By clicking [OK], all rows receive a value (1, 0, or
logical remainder) in the outcome column. In order to save this truth table,
click [File] [Save As CSV File] “FreitagSchlicht_truthtab”.

Click [Standard Analyses]. The software automatically produces the conser-
vative (called “complex” by the software) and the most parsimonious solution
term. Then a new window opens, asking you to specify for each single condi-
tion whether it should contribute to outcome “socunequal” when the condition
is “Present”, “Absent”, or “Present or Absent”. Clicking [Present or Absent]
means that no directional expectation for a specific condition is formulate. We
choose the following directional expectation “strongtripart (present)”, “early-
track (present)”, “∼hdayschool (absent)”, and “lateeduc (present)”. This pro-
duces the following output:

1 **********************
2 *TRUTH TABLE ANALYSIS*
3 **********************
4
5 File: FreitagSchlicht_2009_fs.csv
6 Model: socunequal = f(lateeduc , hdayschool , earlytrack , strongtripart

)
7
8 Rows: 10
9
10 Algorithm: Quine -McCluskey
11 True: 1
12
13 --- COMPLEX SOLUTION ---
14 frequency cutoff: 1.000
15 consistency cutoff: 0.860
16
17 raw unique
18 coverage coverage consistency
19 lateeduc*earlytrack*~strongtripart 0.285 0.083 0.838
20 hdayschool*earlytrack*~strongtripart 0.355 0.153 0.882
21 lateeduc*hdayschool*strongtripart 0.448 0.305 0.944
22 solution coverage: 0.744
23 solution consistency: 0.892
24

2There is another gap between row 6 (0.789) and row 7 (0.703). As explained in chapter
chapter 11.2 of SMSS, researchers are encouraged to test the robustness of their findings
by performing the same analysis with a different raw consistency threshold, in the present
example of 0.789 or higher, thus including row 6 into the logical minimization.

74



7.1. fsQCA 2.5

25 Cases with greater than 0.5 membership in term lateeduc*earlytrack*~
strongtripart: SL (0.8 ,0.63), NW (0.65 ,0.83)

26 Cases with greater than 0.5 membership in term hdayschool*earlytrack*
~strongtripart: SL (0.8 ,0.63) , HH (0.79 ,0.65)

27 Cases with greater than 0.5 membership in term lateeduc*hdayschool*
strongtripart: BY (0.92 ,1), RP (0.75 ,0.87) , BW (0.71 ,0.84)

28
29 **********************
30 *TRUTH TABLE ANALYSIS*
31 **********************
32
33 File: FreitagSchlicht_2009_fs.csv
34 Model: socunequal = f(lateeduc , hdayschool , earlytrack , strongtripart

)
35 Rows: 10
36
37 Algorithm: Quine -McCluskey
38 True: 1-L
39
40 --- PARSIMONIOUS SOLUTION ---
41 frequency cutoff: 1.000
42 consistency cutoff: 0.860
43
44 raw unique
45 coverage coverage consistency
46 lateeduc 0.600 0.399 0.876
47 hdayschool*earlytrack*~strongtripart 0.355 0.153 0.882
48 solution coverage: 0.754
49 solution consistency: 0.880
50
51 Cases with greater than 0.5 membership in term lateeduc: BY (0.92 ,1),

RP (0.83 ,0.87) , SL (0.83 ,0.63) , BW (0.71 ,0.84) , NW (0.65 ,0.83)
52 Cases with greater than 0.5 membership in term hdayschool*earlytrack*

~strongtripart: SL (0.8 ,0.63) , HH (0.79 ,0.65)
53
54 **********************
55 *TRUTH TABLE ANALYSIS*
56 **********************
57
58 File: FreitagSchlicht_2009_fs.csv
59 Model: socunequal = f(strongtripart , earlytrack , hdayschool , lateeduc

)
60 Rows: 10
61
62 Algorithm: Quine -McCluskey
63 True: 1
64 0 Matrix: 0L
65 Don’t Care: -
66
67 --- INTERMEDIATE SOLUTION ---
68 frequency cutoff: 1.000
69 consistency cutoff: 0.860
70 Assumptions:
71 strongtripart (present)
72 earlytrack (present)
73 ~hdayschool (absent)
74 lateeduc (present)
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75
76 raw unique
77 coverage coverage consistency
78 strongtripart*lateeduc 0.467 0.083 0.925
79 earlytrack*lateeduc 0.507 0.064 0.902
80 ~strongtripart*earlytrack*hdayschool 0.355 0.153 0.882
81 solution coverage: 0.744389
82 solution consistency: 0.892377
83
84
85 Cases with greater than 0.5 membership in term strongtripart*lateeduc

: BY (0.92 ,1), RP (0.75 ,0.87) , BW (0.71 ,0.84)
86 Cases with greater than 0.5 membership in term earlytrack*lateeduc:

BY (0.92 ,1), SL (0.8 ,0.63), BW (0.71 ,0.84) , NW (0.65 ,0.83)
87 Cases with greater than 0.5 membership in term ~strongtripart*

earlytrack*hdayschool: SL (0.8 ,0.63) , HH (0.79 ,0.65)

These results should be further examined. XY plots should be produced for
single paths and the entire solution terms; uncovered cases and true logical
contradictory cases should be identified; and the assumptions made for the
most parsimonious and the intermediate solution should be made explicit.
For this task, other software packages should be chosen.

7.2 Tosmana 1.3.2

Tosmana 1.3.2 does not process fuzzy set data. Researchers can, however,
use the software to identify the simplifying assumptions that went into the
most parsimonious solution. In order to do so, save the truth table produced
by fsQCA 2.5 (see above) and import it into Tosmana 1.3.2, clicking [File]
[Import] [Excel or fsqca (csv file)] “FreitagSchlicht_truthtab”. Click [Analysis]
[Start (mvQCA)], specify “socunequal” as the outcome and the four other sets
as condition. Tosmana 1.3.2 requests a case descriptor, so choose “number”
as a fake descriptor. Then set “Outcome 1” to ‘explain” and “Remainders” to
“Include for Reduction”. Also tick [Compute Simplifying Assumptions] and
click [Go]. A new window opens that reports the same most parsimonious
solution as fsQCA 2.5. In addition, the following simplifying assumptions are
reported:

1 lateeduc {1} hdayschool {0} earlytrack {0} strongtripart {0} +
2 lateeduc {1} hdayschool {0} earlytrack {0} strongtripart {1} +
3 lateeduc {1} hdayschool {0} earlytrack {1} strongtripart {1} +
4 lateeduc {1} hdayschool {1} earlytrack {0} strongtripart {0}

It shows that four of the six logical remainders are assumed to be sufficient
for “socunequal”. The same information – the most parsimonious solution
term and the simplifying assumptions that went into it – can be graphically
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displayed by clicking [Visualize]. A new window opens that displays a Venn
diagram (see figure 9.1). With four conditions, there are 16 different areas or
truth table rows. Those colored in green are sufficient for outcome “socuneqal”,
those in red are not. The white areas are logical remainders. If we choose
[Highlight solution], vertical lines are added to the graph, indicating which
areas are covered by the most parsimonious solution. We see that not only all
five green areas are covered, but also four out of the six white areas for logical
remainders. These represent the simplifying assumptions that went into the
most parsimonious solution.

Figure 7.1: Venn diagram produced by TOSMANA

	  

Since Tosmana 1.3.2 does not have a routine for producing the intermediate
solution term, this procedure of identifying simplifying assumption only works
for the most parsimonious solution term.

7.3 Stata

Stata calculates the parameters of fit and can sort the data into truth ta-
bles. One cannot specify directional expectations, and there is therefore no
convenient procedure for producing the intermediate solution term.
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The following command line creates a truth table with information for each
row’s consistency level and the number of cases with membership higher than
0.5. In addition, the F distribution and the p values are reported, expressing
whether each row’s consistency threshold significantly differs from the pre-
established threshold of 0.8:

1 fuzzy socunequal lateeduc hdayschool earlytrack ///
2 strongtripart , label(Y A B C D) settest(yvv) conval (0.8)

7.4 R

We show how to the truth table algorithm in the previous chapter. However,
we used R functions. In this section we show what is behind the truth table
algorithm performing it step-by-step by “hand” with R. We use data from
Pennings (2003):

1 > data(Pennings)
2 > head(Pennings)
3
4 K C P N R
5 AU 0.33 0.33 0.00 0.33 0.83
6 AT 0.33 0.50 0.50 0.33 0.67
7 BD 0.33 0.17 0.17 1.00 0.67
8 BE 0.17 1.00 0.00 0.17 0.67
9 RB 0.00 0.00 1.00 0.67 0.17
10 BG 0.67 0.50 0.00 1.00 0.17
11
12 summary(Pennings) # check the data
13 .
14 .
15 .

There is a missing value so we drop it:
1 Pennings <- na.omit(Pennings)

We can construct the truth table by hand. First , find all the possible logical
configurations: it is easy, they are 16 (42). We can do this by hand:

1 > LogConf <- data.frame(rbind(
2 + c(0, 0, 0, 0),
3 + c(0, 0, 0, 1),
4 + c(0, 0, 1, 0),
5 + c(0, 0, 1, 1),
6 + c(0, 1, 0, 0),
7 + c(0, 1, 0, 1),
8 + c(0, 1, 1, 0),
9 + c(0, 1, 1, 1),
10 + c(1, 0, 0, 0),
11 + c(1, 0, 0, 1),
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12 + c(1, 0, 1, 0),
13 + c(1, 0, 1, 1),
14 + c(1, 1, 0, 0),
15 + c(1, 1, 0, 1),
16 + c(1, 1, 1, 0),
17 + c(1, 1, 1, 1)))
18 > colnames(LogConf) <- c("C", "P", "N", "R") # Columns names
19 > rownames(LogConf) <- 1:16 # Row names

Below is the matrix of logical configurations:
1 > LogConf
2
3 C P N R
4 1 0 0 0 0
5 2 0 0 0 1
6 3 0 0 1 0
7 4 0 0 1 1
8 5 0 1 0 0
9 6 0 1 0 1
10 7 0 1 1 0
11 8 0 1 1 1
12 9 1 0 0 0
13 10 1 0 0 1
14 11 1 0 1 0
15 12 1 0 1 1
16 13 1 1 0 0
17 14 1 1 0 1
18 15 1 1 1 0
19 16 1 1 1 1

We now calculate cases score memberships for each logical combination, we
can follow the the matrix LogConf and we use attach() so we do not have to
use the $ sign and we include them in the dataset:

1 > attach(Pennings)
2 > Pennings$cpnr <- pmin(1-C, 1-P, 1-N, 1-R) # 1
3 > Pennings$cpnR <- pmin(1-C, 1-P, 1-N, R) # 2
4 > Pennings$cpNr <- pmin(1-C, 1-P, N, 1-R) # 3
5 > Pennings$cpNR <- pmin(1-C, 1-P, N, R) # 4
6 > Pennings$cPnr <- pmin(1-C, P, 1-N, 1-R) # 5
7 > Pennings$cPnR <- pmin(1-C, P, 1-N, R) # 6
8 > Pennings$cPNr <- pmin(1-C, P, N, 1-R) # 7
9 > Pennings$cPNR <- pmin(1-C, P, N, R) # 8
10 > Pennings$Cpnr <- pmin(C, 1-P, 1-N, 1-R) # 9
11 > Pennings$CpnR <- pmin(C, 1-P, 1-N, R) # 10
12 > Pennings$CpNr <- pmin(C, 1-P, N, 1-R) # 11
13 > Pennings$CpNR <- pmin(C, 1-P, N, R) # 12
14 > Pennings$CPnr <- pmin(C, P, 1-N, 1-R) # 13
15 > Pennings$CPnR <- pmin(C, P, 1-N, R) # 14
16 > Pennings$CPNr <- pmin(C, P, N, 1- R) # 15
17 > Pennings$CPNR <- pmin(C, P, N, R) # 16
18 > detach(Pennings)

We extract the membership scores and create a new matrix:

79



7. The Truth Table Algorithm

1 > MemScores <- Pennings[, 6:ncol(Pennings)]
2 > head(MemScores)
3 .
4 .
5 .

and we exclude them from the data, dusk taking the first five columns:
1 > Keeps <- names(Pennings[, 1:5])
2 > Pennings <- Pennings[Keeps]

We look for the cases having a score higher than .5:
1 > TFtab <- MemScores > .5
2 > head(TFtab)
3 .
4 .
5 .

We see that the only case member of the combination cpnr is the United
Kingdom, the cases member of the combination cpnR are Australia, Canada
and Ireland, etc., etc. This procedure is long and we could miss some cases.
So, we can make a loop and store the cases in a matrix called Comb:

1 > Comb <- matrix(NA, 16, 2)
2 > for(i in 1:16){
3 + Comb[i, 1] <- length(rownames(MemScores[MemScores[, i] > .5,]))
4 + Comb[i, 2] <- paste(rownames(MemScores[MemScores[, i] > .5,]),
5 + collapse="; ")
6 + }

We get a matrix with cases that have membership > .5 in each logical config-
uration:

1 > Comb
2
3 [,1] [,2]
4 [1,] "1" "GB"
5 [2,] "2" "AU; CA"
6 [3,] "3" "LT; MT; ES"
7 [4,] "3" "BD; GY; JA"
8 [5,] "0" ""
9 [6,] "0" ""
10 [7,] "3" "RB; NA; CL"
11 [8,] "3" "PK; PT; ZA"
12 [9,] "3" "LU; NZ; SE"
13 [10,] "3" "BE; NL; NO"
14 [11,] "2" "ET; HU"
15 [12,] "2" "LV; RO"
16 [13,] "1" "IS"
17 [14,] "1" "FI"
18 [15,] "1" "SK"
19 [16,] "0" ""
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Then we bind it with the matrix LogConf and we have the distribution of
cases to ideal types (see chapter in the book):

1 > IdTypes <- data.frame(LogConf , data.frame(Comb))
2 > colnames(IdTypes) <- c("C", "P", "N", "R", "No.", "Cases")
3 > IdTypes
4
5 C P N R No. Cases
6
7 1 0 0 0 0 1 GB
8 2 0 0 0 1 2 AU; CA
9 3 0 0 1 0 3 LT; MT; ES
10 4 0 0 1 1 3 BD; GY; JA
11 5 0 1 0 0 0
12 6 0 1 0 1 0
13 7 0 1 1 0 3 RB; NA; CL
14 8 0 1 1 1 3 PK; PT; ZA
15 9 1 0 0 0 3 LU; NZ; SE
16 10 1 0 0 1 3 BE; NL; NO
17 11 1 0 1 0 2 ET; HU
18 12 1 0 1 1 2 LV; RO
19 13 1 1 0 0 1 IS
20 14 1 1 0 1 1 FI
21 15 1 1 1 0 1 SK
22 16 1 1 1 1 0

Now we can identify logical remainders (the rows with no cases) and perform
the test of sufficiency of these rows. This means that for each combination we
have to calculate the consistency. So, get QCAfit() or the functions in QCA3 or
in QCA we presented in the previous chapters. We get a vector of consistency
scores for each logical combination:

1 > SufTest
2
3 [1] 0.77 0.74 0.85 0.78 0.67 0.63 0.67 0.67 0.79 0.78 0.90 0.86 0.69

0.63 0.78 0.78

We bind it to IdTypes and we make some substitutions:
1 > IdTypesCons <- data.frame(IdTypes , "Consistency" = SufTest)
2 > IdTypesCons
3
4 C P N R No. Cases Consistency
5 1 0 0 0 0 1 GB 0.77
6 2 0 0 0 1 2 AU; CA 0.74
7 3 0 0 1 0 3 LT; MT; ES 0.85
8 4 0 0 1 1 3 BD; GY; JA 0.78
9 5 0 1 0 0 0 0.67
10 6 0 1 0 1 0 0.63
11 7 0 1 1 0 3 RB; NA; CL 0.67
12 8 0 1 1 1 3 PK; PT; ZA 0.67
13 9 1 0 0 0 3 LU; NZ; SE 0.79
14 10 1 0 0 1 3 BE; NL; NO 0.78
15 11 1 0 1 0 2 ET; HU 0.90
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16 12 1 0 1 1 2 LV; RO 0.86
17 13 1 1 0 0 1 IS 0.69
18 14 1 1 0 1 1 FI 0.63
19 15 1 1 1 0 1 SK 0.78
20 16 1 1 1 1 0 0.78

Then we sort the table by consistency:
1 > IdTypesCons <- IdTypesCons[order(IdTypesCons[, "Consistency"],
2 + decreasing = T),]
3 > IdTypesCons
4
5 C P N R No. Cases Consistency
6 11 1 0 1 0 2 ET; HU 0.90
7 12 1 0 1 1 2 LV; RO 0.86
8 3 0 0 1 0 3 LT; MT; ES 0.85
9 9 1 0 0 0 3 LU; NZ; SE 0.79
10 4 0 0 1 1 3 BD; GY; JA 0.78
11 10 1 0 0 1 3 BE; NL; NO 0.78
12 15 1 1 1 0 1 SK 0.78
13 16 1 1 1 1 0 0.78
14 1 0 0 0 0 1 GB 0.77
15 2 0 0 0 1 2 AU; CA 0.74
16 13 1 1 0 0 1 IS 0.69
17 5 0 1 0 0 0 0.67
18 7 0 1 1 0 3 RB; NA; CL 0.67
19 8 0 1 1 1 3 PK; PT; ZA 0.67
20 6 0 1 0 1 0 0.63
21 14 1 1 0 1 1 FI 0.63

Decide the threshold for consistency (.79, for rounding reasons) and create a
vector with values (1) indicating whether the row is sufficient for the outcome
and we bind it to the table:

1 > Thres <- ifelse(IdTypesCons[,"Consistency"] >= .79, 1, 0)
2 > TT <- cbind(IdTypesCons , "Sufficiency ?" = Thres)
3 > TT[c(8, 12, 15), 8] <- c("?", "?", "?")
4 > TT
5
6 C P N R No. Cases Consistency Sufficiency ?
7 11 1 0 1 0 2 ET; HU 0.90 1
8 12 1 0 1 1 2 LV; RO 0.86 1
9 3 0 0 1 0 3 LT; MT; ES 0.85 1
10 9 1 0 0 0 3 LU; NZ; SE 0.79 1
11 4 0 0 1 1 3 BD; GY; JA 0.78 0
12 10 1 0 0 1 3 BE; NL; NO 0.78 0
13 15 1 1 1 0 1 SK 0.78 0
14 16 1 1 1 1 0 0.78 ?
15 1 0 0 0 0 1 GB 0.77 0
16 2 0 0 0 1 2 AU; CA 0.74 0
17 13 1 1 0 0 1 IS 0.69 0
18 5 0 1 0 0 0 0.67 ?
19 7 0 1 1 0 3 RB; NA; CL 0.67 0
20 8 0 1 1 1 3 PK; PT; ZA 0.67 0
21 6 0 1 0 1 0 0.63 ?
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22 14 1 1 0 1 1 FI 0.63 0

By looking at TT we see that we have 5 rows that are sufficient for the outcome,
therefore we have our complex solution: CpNr + CpNR + cpNr + Cpnr +
CpnR→ K However, it should be minimized. So we get: Cp+ pNr → K.

We know compute fit measures:
1 # Scores
2 > Cp <- pmin(Pennings$C, 1 - Pennings$P)
3 > Cp
4
5 [1] 0.33 0.50 0.17 1.00 0.00 0.50 0.17 0.17 0.83 0.67 0.33 0.50 0.50

0.33 0.00 0.67 0.17
6 [18] 0.33 0.33 1.00 0.33 0.00 0.17 0.83 0.33 0.67 0.50 0.00 0.00 0.83

0.67 0.67 0.00 0.50
7 [35] 0.17 0.67 0.17 0.50 0.00 0.33 0.00 0.67 0.50 0.00
8
9 > pNr <- pmin(1 - Pennings$P, Pennings$N, 1 - Pennings$R)
10 > pNr
11
12 [1] 0.17 0.33 0.33 0.17 0.00 0.83 0.17 0.17 0.17 0.67 0.33 0.50 0.17

0.33 0.33 0.67 0.17
13 [18] 0.33 0.33 0.50 0.33 0.33 0.00 0.33 0.67 0.17 0.33 0.67 0.17 0.17

0.17 0.17 0.00 0.50
14 [35] 0.33 0.00 0.17 0.50 0.33 0.67 0.00 0.17 0.00 0.00
15
16 > solution <- pmax(Cp, pNr)
17 > solution
18
19 [1] 0.33 0.50 0.33 1.00 0.00 0.83 0.17 0.17 0.83 0.67 0.33 0.50 0.50

0.33 0.33 0.67 0.17
20 [18] 0.33 0.33 1.00 0.33 0.33 0.17 0.83 0.67 0.67 0.50 0.67 0.17 0.83

0.67 0.67 0.00 0.50
21 [35] 0.33 0.67 0.17 0.50 0.33 0.67 0.00 0.67 0.50 0.00
22
23 # Raw coverages
24 > Cp_rc <- QCAfit(Cp, Pennings$K)[2]
25 > Cp_rc
26
27 [1] 0.697
28
29 > pNr_rc <- QCAfit(pNr , Pennings$K)[2]
30 > pNr_rc
31
32 [1] 0.588
33
34 # Consistencies
35 > Cp_co <- QCAfit(Cp, Pennings$K)[1]
36 > Cp_co
37
38 [1] 0.745
39
40 > pNr_co <- QCAfit(pNr , Pennings$K)[1]
41 > pNr_co
42
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43 [1] 0.832
44
45 # Solution coverage and consistency
46 > sol_cov <- QCAfit(solution , Pennings$K)[2] # Solution coverage
47 > sol_cov
48
49 [1] 0.807
50
51 > sol_con <- QCAfit(solution , Pennings$K)[1] # Solution consist.
52 > sol_con
53
54 [1] 0.727
55
56 # Unique coverages
57 > pNr_u_cov <- sol_cov - Cp_rc
58 > pNr_u_cov
59
60 [1] 0.11
61
62 > Cp_u_cov <- sol_cov - pNr_rc
63 > Cp_u_cov
64
65 [1] 0.219

Check the cases covered by the solution. Before, we make a data frame with
solution scores:

1 > SolScores <- data.frame(Cp , pNr , solution , "K" = Pennings$K)
2 > rownames(SolScores) <- rownames(Pennings)
3 > SolScores
4
5 Cp pNr solution K
6 AU 0.33 0.17 0.33 0.33
7 AT 0.50 0.33 0.50 0.33
8 BD 0.17 0.33 0.33 0.33
9 BE 1.00 0.17 1.00 0.17
10 RB 0.00 0.00 0.00 0.00
11 BG 0.50 0.83 0.83 0.67
12 CA 0.17 0.17 0.17 0.33
13 CZ 0.17 0.17 0.17 0.50
14 DK 0.83 0.17 0.83 0.50
15 ET 0.67 0.67 0.67 0.67
16 FI 0.33 0.33 0.33 0.17
17 FR 0.50 0.50 0.50 0.00
18 DE 0.50 0.17 0.50 0.67
19 GR 0.33 0.33 0.33 0.50
20 GY 0.00 0.33 0.33 0.17
21 HU 0.67 0.67 0.67 1.00
22 IS 0.17 0.17 0.17 0.17
23 IN 0.33 0.33 0.33 0.33
24 IE 0.33 0.33 0.33 0.50
25 IL 1.00 0.50 1.00 0.83
26 IT 0.33 0.33 0.33 0.67
27 JA 0.00 0.33 0.33 0.33
28 JP 0.17 0.00 0.17 0.33
29 LV 0.83 0.33 0.83 0.83
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30 LT 0.33 0.67 0.67 0.17
31 LU 0.67 0.17 0.67 0.50
32 MK 0.50 0.33 0.50 1.00
33 MT 0.00 0.67 0.67 0.33
34 NA 0.00 0.17 0.17 0.17
35 NL 0.83 0.17 0.83 0.50
36 NZ 0.67 0.17 0.67 0.17
37 NO 0.67 0.17 0.67 0.50
38 PK 0.00 0.00 0.00 0.00
39 PL 0.50 0.50 0.50 0.50
40 PT 0.17 0.33 0.33 0.50
41 RO 0.67 0.00 0.67 0.50
42 SK 0.17 0.17 0.17 0.67
43 SL 0.50 0.50 0.50 0.33
44 ZA 0.00 0.33 0.33 0.50
45 ES 0.33 0.67 0.67 0.50
46 CL 0.00 0.00 0.00 0.17
47 SE 0.67 0.17 0.67 0.50
48 TR 0.50 0.00 0.50 0.17
49 GB 0.00 0.00 0.00 0.17

Then we look for the cases that are members of the sets:
1 > CovCases <- NA
2 > for(i in 1:2){
3 + CovCases[i] <- paste(rownames(SolScores[SolScores[, i] > .5, ]),
4 + collapse = "; ")
5 + }
6
7 > CovCases
8
9 [1] "BE; DK; ET; HU; IL; LV; LU; NL; NZ; NO; RO; SE"
10 [2] "BG; ET; HU; LT; MT; ES"

The first scalar indicates cases member of solution Cp the second scalar indi-
cates cases member of solution pNr:

1 # Get uncovered cases
2 > UncovCases <- paste(rownames(SolScores[
3 + SolScores$solution <= .5 & SolScores$K >= .5, ]),
4 + collapse = "; ")
5
6 > UncovCases
7
8 [1] "CZ; DE; GR; IE; IT; MK; PL; PT; SK; ZA"

Now we build the output table:
1 > Output <- rbind(round(c(Cp_rc , pNr_rc), 3),
2 + round(c(Cp_u_cov , pNr_u_cov), 3),
3 + CovCases ,
4 + round(c(Cp_co, pNr_co), 3),
5 + c(round(sol_cov , 3), ""),
6 + c(round(sol_con , 3), ""),
7 + c(UncovCases , ""))
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8
9 > rownames(Output) <- c("Raw coverage", "Unique Coverage",
10 + "Covered cases", "Consistency", "Sol. coverege",
11 + "Sol. consistency", "Uncovered cases")
12 > colnames(Output) <- c("Cp", "pNr")
13 > Output <- data.frame(Output)
14 > Output # the table
15
16 Cp pNr
17 Raw coverage 0.697 0.588
18 Unique Coverage 0.219 0.110
19 Covered cases BE; DK; ET; HU; IL; LV; LU; NL; NZ; NO; RO;
20 SE BG; ET; HU; LT; MT; ES
21 Consistency 0.745 0.832
22 Sol. coverege 0.807
23 Sol. consistency 0.727
24 Uncovered cases CZ; DE; GR; IE; IT; MK; PL; PT; SK; ZA

We also make an xyplot. Before we apply some jittering so the cases slighly
change position and the plot looks better:

1 > x <- jitter(Cp, 1.8)
2 > y <- jitter(Pennings$K, 1.7)
3 > xy.plot(x, y, labs = rownames(Pennings))

We get the following xyplot:
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Figure 7.2: XY plot of the analysis of Pennings’ data

XY plot
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Chapter 8

Potential Pitfalls in the Standard Analysis Procedure
and Suggestions for Improvement:

How to. . .Use the Software to Perform the Enhanced
Standard Analysis and the Theory-Guided Analysis

Overview:

• Avoiding untenable assumptions

• Including good (non-simplifying) assumptions

• Empirical examples:

– Vis (2009): used in book

– Koenig-Archibugi (2004): used in book

8.1 fsQCA 2.5

In order to avoid untenable assumptions, researchers must know which logical
remainder rows should not be included into the logical minimization. This is a
conceptual task. Once the non-eligible remainder rows are identified, it is easy
in fsQCA 2.5 to bar them from being included into the logical minimization
process.

For illustration, open file “Vis_2009_fs.csv” and produce the truth table for
outcome “∼U” following the steps described above [Analyze] [Fuzzy Sets]
[Truth Table Algorithm], then highlight “u” and click [Set Negated] and high-
light “p”, “s”, “r” and click [Add], then [Run]. As explained in chapter 8
of SMSS, condition ∼P is necessary for outcome ∼U. Therefore, any logi-
cal remainder row containing condition P cannot be included into the logical
minimization during the analysis of sufficiency. The two remainders rows –
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P∼S∼R and P∼SR – must therefore be bared from the logical minimization
process. This is done by coding them with the value 0 in column “∼u” of
the truth table and to delete all remaining remainder rows (just one in this
example) by moving the cursor into them and then [Edit] [Delete current row].
All remaining rows are coded 1 if their consistency is above 0.8 and 0 if below.
Then click [Standard Analysis].

Figure 8.1: Standard analysis

	  
In the window for directional expectations “S (absent)” and R (absent)” and
[Ok]. In the output window you find the result of the enhanced Standard
Analysis: all three solution formulas are identical: ∼S∼P + SPR→ ∼U. This
is because the only eligible remainder row– ∼PS∼R – does not contribute to
parsimony and is therefore ruled out as both difficult or easy counterfactual.

TESA requires the inclusion of good but non-simplifying counterfactuals into
the logical minimization procedure. In order to demonstrate how this is done,
open file “Koenig_Archibugi_2004.csv” and produce the truth table following
the procedure described with “supranat” as outcome and the remaining four
sets as conditions. In order to allow only one counterfactual - namely, that
countries with a European identity that do not expect conformity, who have a
domestic multilevel governance structure and no high power capabilities are in
favor of supranational foreign and security policy – we need to identify which
logical remainder row in the truth table describes this hypothetical case. We
can force the inclusion into the logical minimization of this row by inserting
the value 1 into the oucome column “supranat” for it. All other remainder rows
are deleted from the truth table using [Edit] [Delete current row]. All non-
remainder rows receive the value of 1 if they reach the consistency threshold
of 1 and the value of 0 otherwise. Click [Specify Analysis] and in the new
window set [Positive cases (1)] to [True], [Negative Cases (0)] to [False], and
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[Remainders] to [False] as well. Then click run. This produces the TESA
solution term:

1 raw unique
2 coverage coverage consistency
3 ---------- ---------- ----------
4 conform*region 0.494292 0.211187 1.000000
5 identmass*region*~capab 0.289954 0.006849 1.000000
6 solution coverage: 0.501141
7 solution consistency: 1.000000

Cases with greater than 0.5 membership in term conform*region: Ger-
many (0.88,0.92), Belgium (0.8,1), Austria (0.7,0.92), Italy (0.6,0.92),
Spain (0.59,0.83) Cases with greater than 0.5 membership in term
identmass*region*∼capab: Belgium (0.63,1), Spain (0.55,0.83)

As explained in chapter 8 of SMSS, choosing entire truth table rows can be seen
as an extreme form of conjunctural directional expectations. If researchers do
not have expectations on entire truth table rows but only on the conjunction
of, say, two conditions, the implementation of these assumptions is similar to
the one just described for choosing entire truth table rows.

Continuing with the example from Koenig-Archibugi (2004), suppose, the ex-
pectation is that the joint presence of CONFORMITY and CAPABILITIES
should produce the outcome. We now need to identify all those remainder
rows that contain both conditions. There are two such logical remainder
rows. Once identified, there outcome value must be coded as 1 and all other
remainder rows be coded as 0. All non-remainder rows are coded as 1 if their
consistency is 1, otherwise 0. Click [Specify Analysis] and in the new win-
dow set [Positive cases (1)] to [True] and [Negative Cases (0)] to [False], then
[Run]. This produces the Theory-Guided Enhanced Solution term as reported
in chapter 8 of SMSS.

1 raw unique
2 coverage coverage consistency
3 ---------- ---------- ----------
4 conform*region 0.494292 0.184931 1.000000
5 conform*capab 0.334475 0.025114 1.000000
6 solution coverage: 0.519406
7 solution consistency: 1.000000

Cases with greater than 0.5 membership in term conform*region: Ger-
many (0.88,0.92), Belgium (0.8,1), Austria (0.7,0.92), Italy (0.6,0.92), Spain
(0.59,0.83) Cases with greater than 0.5 membership in term conform*capab:
Germany (0.88,0.92), Italy (0.64,0.92)
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8.2 Tosmana 1.3.2

Before untenable assumptions can be avoided or good assumptions be in-
cluded, researcher must know which of the logical remainders would give rise
to untenable assumptions and which of them can count as good assumptions.
The most efficient way of performing this task is to represent all logical re-
mainders, untenable assumptions, and good assumptions, respectively in the
form of Boolean expressions. By calculating the intersection between all logi-
cal remainders and the untenable assumptions, we obtain a Boolean expression
of all those remainders that must be excluded from the logical minimization.
Likewise, by calculating the intersection between all logical remadiners and
all good assumptions, we obtain a Boolean expression of all those truth table
rows that must be included into the logical minimization.

We can use Tosmana’s 1.3.2 Boolean calculator already presented in chapter 2
above for this task. Click [Analysis] [Boolean Calculator] and then create the
logical expressions which have to be intersected. Calculate the intersection
between two or more logical expressions by first highlighting the expression(s)
and then clicking [Compute Intersection].

8.3 Stata

In Stata, the commands remainders(#) and dnc can be used in order to spec-
ify truth table rows about which the computer is allowed to make assump-
tions. By simply not listing remainder rows that would give rise to untenable
assumptions, they are excluded from the logical minimization process.

8.4 R

In this section we see how to test unteneable assumptions using R. Get the
data from Koenig-Archibugi (2004):

1 > data(KA
2 > head(KA)
3
4 supranat identmass conform region capab
5 Austria 0.92 0.18 0.70 0.8 0.09
6 Belgium 1.00 0.63 0.97 0.8 0.14
7 Denmark 0.25 0.21 0.96 0.0 0.05
8 Finland 0.25 0.19 0.80 0.0 0.09
9 France 0.33 0.84 0.26 0.4 0.68
10 Germany 0.92 0.47 0.88 1.0 1.00
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We look for logical remainders, we need to set compete as TRUE so we have all
the combinations:

1 > TTka <- truthTable(data = KA , outcome = "supranat",
2 + complete = T)
3 > TTka
4
5 OUT: outcome value
6 n: number of cases in configuration
7 incl: sufficiency inclusion score
8 PRI: proportional reduction in inconsistency
9
10 IDENTMASS CONFORM REGION CAPAB OUT n incl PRI
11 1 0 0 0 0 0 1 0.921 0.833
12 2 0 0 0 1 0 1 0.547 0.277
13 3 0 0 1 0 ? 0 0.916 0.846
14 4 0 0 1 1 ? 0 0.909 0.792
15 5 0 1 0 0 0 3 0.737 0.581
16 6 0 1 0 1 ? 0 1.000 1.000
17 7 0 1 1 0 1 1 1.000 1.000
18 8 0 1 1 1 1 1 1.000 1.000
19 9 1 0 0 0 ? 0 1.000 1.000
20 10 1 0 0 1 0 1 0.818 0.550
21 11 1 0 1 0 ? 0 1.000 1.000
22 12 1 0 1 1 ? 0 0.944 0.844
23 13 1 1 0 0 0 2 0.981 0.967
24 14 1 1 0 1 ? 0 1.000 1.000
25 15 1 1 1 0 1 2 1.000 1.000
26 16 1 1 1 1 1 1 1.000 1.000

We look for good counterfactual. We choose a specific configuration of condi-
tion, that is:

• eu identity, no conformity, multilevel governance and

• no power capabilities

We look for this configuration in the truth table and this is row (11) that is
the 5th row. We can substitute the ? sign indicating a logical remainder with
a 1, so we force the software to think there is a case with this combination of
condition also showing the presence of the outcome:

1 > TTka$tt[11, 5] <- 1
2 > TTka
3
4 OUT: outcome value
5 n: number of cases in configuration
6 incl: sufficiency inclusion score
7 PRI: proportional reduction in inconsistency
8
9 IDENTMASS CONFORM REGION CAPAB OUT n incl PRI
10 1 0 0 0 0 0 1 0.921 0.833
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11 2 0 0 0 1 0 1 0.547 0.277
12 3 0 0 1 0 ? 0 0.916 0.846
13 4 0 0 1 1 ? 0 0.909 0.792
14 5 0 1 0 0 0 3 0.737 0.581
15 6 0 1 0 1 ? 0 1.000 1.000
16 7 0 1 1 0 1 1 1.000 1.000
17 8 0 1 1 1 1 1 1.000 1.000
18 9 1 0 0 0 ? 0 1.000 1.000
19 10 1 0 0 1 0 1 0.818 0.550
20 11 1 0 1 0 1 0 1.000 1.000
21 12 1 0 1 1 ? 0 0.944 0.844
22 13 1 1 0 0 0 2 0.981 0.967
23 14 1 1 0 1 ? 0 1.000 1.000
24 15 1 1 1 0 1 2 1.000 1.000
25 16 1 1 1 1 1 1 1.000 1.000

We minimize the truth table excluding logical remainders:
1 > Sol <- eqmcc(TTka , details = T)
2 > Sol
3
4 n OUT = 1/0/C: 5/8/0
5 Total : 13
6
7 S1: CONFORM*REGION + IDENTMASS*REGION*capab
8
9 incl PRI cov.r cov.u
10 -----------------------------------------------------
11 1 CONFORM*REGION 1.000 1.000 0.494 0.211
12 2 IDENTMASS*REGION*capab 1.000 1.000 0.290 0.007
13 -----------------------------------------------------
14 S1 1.000 1.000 0.501

The same procedure applies to csQCA.
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Chapter 9

Potential Pitfalls in the Analysis of Necessity and
Sufficiency and Suggestions for Avoiding Them:
How To. . .Avoid Wrong Inferences on Necessary
Conditions and How To. . .Detect Skewed Set

Membership Scores

Overview:

• Avoiding the appearance of false necessary conditions

• Avoiding the disappearance of necessary conditions

• Detecting skewed set membership scores

• PRI for sufficient condition

• Relevance parameter for necessary conditions

• Visual inspection for both

• Empirical examples:

– Fake data Selbst: used in book

• For appearance of false necessary conditions

• For skewed membership in analysis of sufficiency

– Schneider, Schulze-Bentrop, & Paunescu (2010): used in book

• For skewed membership in analysis of necessity
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As explained in chapter 9 of SMSS, necessary conditions can disappear from
the sufficiency solution term for two reasons. First, researchers make inco-
herent assumptions, i.e., assumptions on logical remainders that contradict
the statement of necessity. In the How To section to chapter 8, we have ex-
plained how to bar specific remainders from the logical minimization process.
The same commands and strategies equally apply to barring remainders that
would produce incoherent assumptions. So here we do not demonstrate this
remedy again. Second, necessary conditions might disappear if researchers
include inconsistent truth table rows into the logical minimization.

9.1 fsQCA 2.5

In order to replicate the analysis on the disappearance of necessary conditions
due to the inclusion of inconsistent truth table rows as discussed in chapter
9.1.1.2 in SMSS, load data file “Selbst_1_disappear_nec_incons.csv”. First
we test the necessity of condition ∼B for outcome Y. Click [Analyze] [Neces-
sary Conditions] and specify “y” as [Outcome] and “∼b” from the drop-down
menu under [Add Condition], then send it over by clicking [– >] and [Run].
In the output window we see that ∼B passes the conventional threshold for
consistency and can therefore be considered as a necessary condition for Y.

1 Analysis of Necessary Conditions
2
3 Outcome variable: y
4
5 Conditions tested:
6 Consistency Coverage
7 ~b 0.918367 0.978261

In order to perform the analysis of sufficiency, follow the procedure as de-
scribed above: [Analyze] [Crisp Sets] [Truth Table Algorithm] “y” as [Out-
come], “a”, “b”, “c” [Add]. As we can see from the truth table, there are no
logical remainders and all but one row is either fully consistent or fully incon-
sistent with the statement of being sufficient for Y. Only row AB∼C shows
a consistency value of 0.8. Let’s impose a consistency threshold of 0.75, thus
including row AB∼C into the logical minimization. Click [Specify Analysis]
and set [Positive cases (1)] to [True] and [Negative cases (0)] to [False], then
[Run]. This yields the following solution term:

1 raw unique
2 coverage coverage consistency
3 ---------- ---------- ----------
4 a*~c 0.285714 0.285714 0.933333
5 ~b*c 0.714286 0.714286 1.000000
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6 solution coverage: 1.000000
7 solution consistency: 0.980000

There are two sufficient paths but only one contains the necessary condition
∼B. As explained in chapter 9 of SMSS, this happens because by the in-
consistent row AB∼C is combined with row A∼B∼C into A∼C. How can
researchers avoid this pitfall. Apart from only accepting perfectly consistent
set relations, which is not really a solution in applied set-theoretic research,
researchers should check to which truth table rows those cases belong that
contradict the statement of necessity. Those truth table rows should not be
included into the logical minimization during the analysis of sufficiency.

As table 9.2 in chapter 9 of SMSS shows, row AB∼C contains five cases.
None of them should be a member of outcome Y if ∼B was a fully consistent
necessary condition. However, four cases are members of Y. In this example,
all cases contradicting the statement of necessity are falling into the same
truth table but this does not have to be like this. In other data sets, they
could be located in different rows. It therefore is important to know the names
of the cases contradicting the statement of necessity and to then locate them
in the truth table.

For an illustration of the appearance of false necessary conditions, open file
“Vis_2009_cs.csv”, click [Analyze] [Crisp Sets] [Truth Table Algorithm], “u”
as [Outcome], “p”, “s’, “r” [Add] as conditions, [Run], [Edit] [Delete andcode
. . . ] [[Delete rows with number less than “1”] [and set u to 1 for rows with
consist > “0.85”] [OK] [Specify Analysis] [Positive cases (1)] as [True], [Negative
Cases (0)] as [False] and [Remainders] as [False] as well. This produces the
conservative solution, which looks as follows:

1 raw unique
2 coverage coverage consistency
3 ---------- ---------- ----------
4 p*s*~r 0.153846 0.153846 1.000000
5 ~p*s*r 0.461538 0.461538 0.857143
6 solution coverage: 0.615385
7 solution consistency: 0.888889

There are two sufficient paths. Factoring out condition S, which appears
in both, we can rewrite the solution term as S (P∼R + ∼PR) → U. Since
condition S appears in both paths, it might seem that Y only occurs in the
presence of condition S and that therefore S is also necessary for U. it is not,
though. To see this, click [Analyze] [Necessary Conditions] “u” as [Outcome],
“s” [Add] [Run].
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1 Analysis of Necessary Conditions
2
3 Outcome variable: u
4
5 Conditions tested:
6 Consistency Coverage
7 s 0.769231 0.833333

The consistency score of S as a necessary condition for Y is very low (0.769).
How can this pitfall be avoided? As explained in chapter 9 of SMSS, the most
straightforward strategy is to simply perform a separate test of necessity and
to do so prior to the analysis of sufficiency. Even if S is contained in each
path, it would not be interpreted as a necessary condition.

Skewed set membership scores in either X and/or Y can lead to two analytic
pitfalls. In the analysis of necessity, a trivial condition is declared as necessary.
And in the analysis of sufficiency, a condition is declared sufficient both for
outcome Y and ∼Y.

For the problem of trivial necessary conditions, in chapter 9 of SMSS, we
offer a formula for calculating the relevance of a necessary condition, that is
a condition that has already passed the threshold of consistency. Currently,
none of the available software packages is calculating this relevance score by
default. With the syntax-based programs (Stata and R) the formula can be
implemented, though (see below). Researchers should, however, graphically
display their claim of necessity. With fuzzy sets, the most useful way of doing
this is via an XY plot. For illustration, load file “Samford_2010_only_nec_-
cond.csv”. Click [Graphs] [Fuzzy] [XY Plot], then “y” on [Y Axis] and tick
the box for [Negate], because it is the non-occurrence of rapid liberalization
that we are interested in. on [X Axis] choose “horg”, which is the union of the
two sets H and G. After clicking [Plot], we see that the consistency with the
statement of necessity of the distribution is 0.904 (the number in the lower
right corner) and that its “coverage” score is rather high (0.875), thus signaling
that it is a relevant necessary condition. However, as the graphical display
shows, with a few exceptions, all cases are (almost) full members in condition
H+G. The hogh coverage score is simply a the result of the fact that also
many cases have high membership in outcome Y.

To illustrate the problem of simultaneous set relations in the analysis of suffi-
ciency, open file “Vis_2009_fs.csv”. Create the truth tables once for outcome
U and once for outcome ∼U. Remember, for the latter you need to highlight
“u” and click [Set Negated] in the “Select Variables” window. We see that truth
table row PSR passes a consistency threshold of 0.8 as a sufficient condition
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for both outcomes. In addition to the consistency score, we therefore should
also take into account the PRI measure (see chapter 9 of SMSS), which is
reported by the fsQCA 2.5 software.

Since row PSR has a low PRI score for outcome ∼U, we should not declare it
as a sufficient condition for ∼U. In addition, researchers should check, which of
the two sufficiency statements (PSR→ U and PSR→∼U) rests on true logical
contradictory cases. Here, again, an XY plot is an efficient way of doing this.
In fsQCA, 2.5, we must first create the logical AND combination PSR. Click
[Variables] [Compute] [Target Variable] “psr” [Expression] “fuzzyand(p,s,r)”,
[Ok]. This adds a new column to the data called “psr” which contains the
minimum set membership score across the three conditions P, S, and R. Then
produce the XY plot with condition PSR and outcome U and ∼U, respectively,
both times specfifying “government” as [Case ID Variable]. We see that there
is one true logical contradictory case for outcome u and two for outcome ∼U,
thus providing further arguments not to refute the claim that PSR → ∼U.
The parameters PRI and PRODUCT guard against the pitfall of simultaneous
subset relation when membership in X is small. Click [Analyze] [Fuzzy Sets]
[Truth Table Algorithm], then select the outcome and conditions and click
[Run]. A new window with a truth table appears. The last three columns
report, for each row, the consistency as a sufficient condition for the outcome,
PRI, and PRODUCT. Only rows with high values in PRODUCT should be
considered as sufficient conditions for the outcome.

101



9. Potential Pitfalls in the Analysis of Necessity and
Sufficiency and Suggestions for Avoiding Them

9.2 Tosmana 1.3.2

Not available.

9.3 Stata

Regarding the problem of simultaneous subset relations, in Stata, the com-
mand settest(yvn) reports each truth table row’s consistency as a sufficient
condition for Y and for ∼Y, respectively. While mathematically not the same
as the PRI parameter, this information is also useful for detecting simultane-
ous subset relations. Furthermore, the command fzplot (see chapter 3 above)
produces XY plots that are useful in detecting simultaneous subset relations
and true logical contradictory cases.

9.4 R

To show the disappearance of necessary condition to test the inclusion of
inconsistent truth table rows. We use Selbst’s data.

1 > data(Selbst)
2 > head(Selbst)
3
4 A B C Y
5 A1 0 0 0 0
6 A2 0 0 1 1
7 A3 0 0 1 1
8 A4 0 0 1 1
9 A5 0 0 1 1
10 A6 0 0 1 1

We test the necessity of the condition ∼b for the outcome Y. We see that it
is a necessary condition. This is just an alternative way of calculating the
negation of a crisp set condition. It is exactly the same as 1 - condition.

1 > Selbst$b <- ifelse(Selbst$B == 1, 0, 1)
2 > Selbst$b
3
4 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
5 [44] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1
6 [87] 1 1 1 1 1 0 0 0 0 0 0 0

We use QCAfit() with option necessity as TRUE:
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1 > QCAfit(Selbst$b, Selbst$Y, cond.lab = "b",
2 + necessity = TRUE)
3
4 Cons. Nec. Cov. Nec. RoN
5 b 0.918 0.978 0.981

Consistency is quite high, so it may be a necessary condition. We look at the
truth table. We see that there are no logical remainders:

1 > TT <- truthTable(Selbst , outcome = "Y",
2 conditions = c("A", "B", "C"), complete = T)
3
4 > TT
5
6 OUT: outcome value
7 n: number of cases in configuration
8 incl: sufficiency inclusion score
9 PRI: proportional reduction in inconsistency
10
11 A B C OUT n incl PRI
12 1 0 0 0 0 1 0.000 0.000
13 2 0 0 1 1 20 1.000 1.000
14 3 0 1 0 0 30 0.000 0.000
15 4 0 1 1 0 15 0.000 0.000
16 5 1 0 0 1 10 1.000 1.000
17 6 1 0 1 1 15 1.000 1.000
18 7 1 1 0 0 5 0.800 0.800
19 8 1 1 1 0 2 0.000 0.000

So, we compute the solution setting the inclusion threshold to .7:
1 > Sol <- eqmcc(Selbst , outcome = "Y",
2 conditions = c("A", "B", "C"), incl.cut1 = .7, details = T)
3 > Sol
4
5 OUT: outcome value
6 n: number of cases in configuration
7 incl: sufficiency inclusion score
8 PRI: proportional reduction in inconsistency
9
10 A B C OUT n incl PRI
11 1 0 0 0 0 1 0.000 0.000
12 2 0 0 1 1 20 1.000 1.000
13 3 0 1 0 0 30 0.000 0.000
14 4 0 1 1 0 15 0.000 0.000
15 5 1 0 0 1 10 1.000 1.000
16 6 1 0 1 1 15 1.000 1.000
17 7 1 1 0 1 5 0.800 0.800
18 8 1 1 1 0 2 0.000 0.000
19
20 n OUT = 1/0/C: 50/48/0
21 Total : 98
22
23 S1: Ac + bC
24
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25 incl PRI cov.r cov.u
26 ---------------------------------
27 1 Ac 0.933 0.933 0.286 0.286
28 2 bC 1.000 1.000 0.714 0.714
29 ---------------------------------
30 S1 0.980 0.980 1.000

To show the appearance of false necessary conditions we use the Vis (2009)
data:

1 > data(VisCS)
2 > head(Vis)
3
4 P S R U
5 Lubbers I 0 1 1 1
6 Lubbers II 0 0 1 0
7 Lubbers III 0 1 1 1
8 Kok I 0 0 0 1
9 Kok II 0 0 0 0
10 Balkenende II 1 1 1 1

Then find the truth table and look for solution setting the consistency thresh-
old to .85:

1 > TT <- truthTable(Vis , outcome = "U", complete = T)
2 > TT
3
4 OUT: outcome value
5 n: number of cases in configuration
6 incl: sufficiency inclusion score
7 PRI: proportional reduction in inconsistency
8
9 P S R OUT n incl PRI
10 1 0 0 0 0 7 0.286 0.286
11 2 0 0 1 0 6 0.167 0.167
12 3 0 1 0 ? 0 - -
13 4 0 1 1 0 7 0.857 0.857
14 5 1 0 0 ? 0 - -
15 6 1 0 1 ? 0 - -
16 7 1 1 0 1 2 1.000 1.000
17 8 1 1 1 0 3 0.667 0.667
18
19
20 > Sol <- eqmcc(Vis , outcome = "U", incl.cut1 = .85, details = T)
21 > Sol
22
23 OUT: outcome value
24 n: number of cases in configuration
25 incl: sufficiency inclusion score
26 PRI: proportional reduction in inconsistency
27
28 P S R OUT n incl PRI
29 1 0 0 0 0 7 0.286 0.286
30 2 0 0 1 0 6 0.167 0.167
31 4 0 1 1 1 7 0.857 0.857
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32 7 1 1 0 1 2 1.000 1.000
33 8 1 1 1 0 3 0.667 0.667
34
35 n OUT = 1/0/C: 9/16/0
36 Total : 25
37
38 S1: pSR + PSr
39
40 incl PRI cov.r cov.u
41 ----------------------------------
42 1 pSR 0.857 0.857 0.462 0.462
43 2 PSr 1.000 1.000 0.154 0.154
44 ----------------------------------
45 S1 0.889 0.889 0.615

We see two sufficient paths and that S is in two solutions. We can factorize
the formula using factorize():

1 > FSol <- factorize(Sol)
2 > FSol
3
4 S: pSR + PSr
5
6 F1: S(pR + Pr)

It might be possible that S is a necessary condition as it appears in the two
terms, so we test its necessity:

1 > QCAfit(Vis$S, Vis$U, cond.lab = "S",
2 + necessity = TRUE)
3
4 Cons. Nec. Cov. Nec. RoN
5 S 0.769 0.833 0.867

However, S is not necessary. This can be avoided performing the tests before
the analysis of sufficiency.

In order to show the problem of set memebership scores skeweness we use the
Samford data:

1 > data(Samford)
2 > head(Samford)
3
4 Y G H HorG
5 arg 73-74 0.01 1.00 0.28 1.00
6 arg 74-76 0.01 1.00 0.81 1.00
7 arg 76-83 1.00 0.26 0.00 0.26
8 arg 83-89 0.07 1.00 0.00 1.00
9 arg 89-95 0.17 0.00 0.00 0.00
10 arg 95-99 0.03 1.00 0.98 1.00
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We can use a “relevance of necessity” test. To test the presence of an “actual”
necessary condition we use the function QCAfit() with the option necessity
is set as TRUE:

1 > QCAfit(Samford$HorG , 1 - Samford$Y, cond.lab = "HorG",
2 + necessity = TRUE)
3
4 Cons. Nec. Cov. Nec. RoN
5 HorG 0.904 0.875 0.562

From the set-relational fit measures it may seem that the condition is nec-
essary. But from the plot we notice that the condition might be a trivial
one:

1 xy.plot(Samford$HorG , 1 - Samford$Y)

Figure 9.1: XY plot of a trivial condition
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Consistency Sufficient Condition: 0.875 - Coverage Sufficient Condition: 0.904

To show the problem of simultaneous set relations in the analysis of sufficiency
we use the Vis (2009) data:
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1 > data(VisFS)
2 > head(VisFS)
3
4 p s r u
5 Lubbers1 0.33 0.83 1.0 0.83
6 Lubbers2 0.17 0.33 1.0 0.33
7 Lubbers3 0.33 0.67 0.6 0.67
8 Kok1 0.17 0.40 0.4 0.67
9 Kok2 0.33 0.33 0.4 0.17
10 Balkenende2 0.67 0.67 1.0 0.83

We build the truth tables for positive and negative outcomes:
1 > TTpos <- truthTable(VisFS , outcome = "u",
2 + sort.by = "incl", incl.cut1 = .8)
3 > TTpos
4
5 OUT: outcome value
6 n: number of cases in configuration
7 incl: sufficiency inclusion score
8 PRI: proportional reduction in inconsistency
9
10 P S R OUT n incl PRI
11 4 0 1 1 1 7 0.918 0.782
12 7 1 1 0 1 2 0.911 0.773
13 8 1 1 1 1 3 0.911 0.647
14 2 0 0 1 0 6 0.719 0.242
15 1 0 0 0 0 7 0.642 0.307
16
17 > TTneg <- truthTable(VisFS , outcome = "u",
18 + neg.out = TRUE , sort.by = "incl", incl.cut1 = .8)
19 > TTneg
20
21 OUT: outcome value
22 n: number of cases in configuration
23 incl: sufficiency inclusion score
24 PRI: proportional reduction in inconsistency
25
26 P S R OUT n incl PRI
27 2 0 0 1 1 6 0.911 0.758
28 8 1 1 1 1 3 0.836 0.353
29 1 0 0 0 1 7 0.829 0.668
30 4 0 1 1 0 7 0.706 0.218
31 7 1 1 0 0 2 0.696 0.227

The row PSR has a consistency threshold of > 0.8 as a sufficient condition for
both outcomes. So we take into account the PRI measure. It is possible to
get PRI in two ways. Using QCA:

1 > TTpos
2
3 OUT: outcome value
4 n: number of cases in configuration
5 incl: sufficiency inclusion score
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6 PRI: proportional reduction in inconsistency
7
8 P S R OUT n incl PRI
9 4 0 1 1 1 7 0.918 0.782
10 7 1 1 0 1 2 0.911 0.773
11 8 1 1 1 1 3 0.911 0.647
12 2 0 0 1 0 6 0.719 0.242
13 1 0 0 0 0 7 0.642 0.307

Or it is found after minimization with the function eqmcc() set details as
TRUE. This gives the PRI for each configuration in the solution formula:

1 > eqmcc(TTpos , details = TRUE)
2
3 n OUT = 1/0/C: 12/13/0
4 Total : 25
5
6 S1: PS + SR
7
8 incl PRI cov.r cov.u
9 ---------------------------------
10 1 PS 0.914 0.736 0.623 0.151
11 2 SR 0.900 0.776 0.709 0.237
12 ---------------------------------
13 S1 0.904 0.794 0.860

Otherwise, you can use QCAfit() to get PRI:
1 > QCAfit(pmin(VisFS$p, VisFS$s, VisFS$r), 1 - VisFS$u, "psr")
2
3 Cons. Suf. Cov. Suf. PRI PRODUCT
4 psr 0.836 0.45 0.353 0.295

We can notice the the PRI score is low for for ∼u. This is confirmed by the
xyplot (figure 9.2):

1 > xy.plot(pmin(VisFS$p, VisFS$s, VisFS$r), 1 - VisFS$u)

QCAfit() works for multiple conditions as well:
1 > QCAfit(cbind(VisFS$p, VisFS$s, VisFS$r), 1 - VisFS$u,
2 + cond.lab = c("p", "s", "r"))
3
4 Cons. Suf. Cov. Suf. PRI PRODUCT
5 p 0.764 0.551 0.303 0.232
6 s 0.634 0.643 0.213 0.135
7 r 0.523 0.738 0.297 0.155

PRODUCT is another fit measure combining consistency and it can be ob-
tained using QCAfit():
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Figure 9.2: XY plot of a low PRI score condition
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Consistency Sufficient Condition: 0.836 - Coverage Sufficient Condition: 0.450

1 > QCAfit(pmin(VisFS$p, VisFS$s, VisFS$r), VisFS$u,
2 + cond.lab = "PSR")
3
4 Cons. Suf. Cov. Suf. PRI PRODUCT
5 PSR 0.911 0.472 0.647 0.589
6
7 > QCAfit(cbind(VisFS$p, VisFS$s, VisFS$r), 1 - VisFS$u,
8 + cond.lab = c("P", "S", "R"))
9
10 Cons. Suf. Cov. Suf. PRI PRODUCT
11 P 0.764 0.551 0.303 0.232
12 S 0.634 0.643 0.213 0.135
13 R 0.523 0.738 0.297 0.155
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Part IV

Variants of QCA as a Technique
Meet QCA as an Approach





Chapter 10

Variants of QCA:
How To. . . Perform Two-Step QCA, mvQCA and tQCA

Overview:

• Two-step QCA

• mvQCA

• tQCA

• Empirical examples:

– Cronqvist & Berg-Schlosser (2009)

– Caren & Panofsky (2005) and Ragin & Strand (2008): used in
book

10.1 fsQCA 2.5

Not available.

10.2 Tosmana 1.3.2

Not available.

10.3 Stata

Not available.
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10.4 R

10.4.1 Two-step QCA

Let us load the “Consolidation of Democracy” data (Schneider 2009) from
QCA3:

1 data(CoD)
2 .
3 .
4 .

It is assumed that the output is the product of two sets of conditions: remote
and proximate. So we perform two analyses (or steps). The first analyzes
remote conditions. This produces a solution that outlines “outcome-enabling
conditions”. In a way, they are pre-requisites of the outcome.

The hypothesis of the first step is that: econdev ∗ eduhi ∗ ethlihom ∗ close ∗
demex ∗ nocom→ cod. Therefore we look for the configurations of conditions
sufficient for the outcome

1 # We label rownames
2 rownames(CoD) <- CoD$label
3
4 # Truth table
5 > TT <- truthTable(CoD , outcome = "cod",
6 + conditions = c("econdev", "eduhi", "ethlihom",
7 + "close", "demex", "nocom"),
8 + sort.by = "incl", incl.cut1 = .8, show.cases = T)
9
10 > TT
11
12 OUT: outcome value
13 n: number of cases in configuration
14 incl: sufficiency inclusion score
15 PRI: proportional reduction in inconsistency
16
17 ECONDEV EDUHI ETHLIHOM CLOSE DEMEX NOCOM OUT n incl PRI cases
18 28 0 1 1 0 1 1 1 1 1.000 1.000 BR
19 50 1 1 0 0 0 1 1 1 1.000 1.000 AR
20 56 1 1 0 1 1 1 1 1 1.000 1.000 SP
21 58 1 1 1 0 0 1 1 1 1.000 1.000 MX
22 60 1 1 1 0 1 1 1 2 1.000 1.000 CH ,UR
23 63 1 1 1 1 1 0 1 2 1.000 1.000 CR ,SK
24 64 1 1 1 1 1 1 1 2 1.000 1.000 GR ,PO
25 61 1 1 1 1 0 0 1 3 0.946 0.897 HU ,PL

,SL
26 12 0 0 1 0 1 1 1 1 0.930 0.585 HO
27 20 0 1 0 0 1 1 1 1 0.921 0.683 PE
28 29 0 1 1 1 0 0 1 1 0.917 0.800 BU
29 13 0 0 1 1 0 0 1 2 0.915 0.721 RO ,AL
30 25 0 1 1 0 0 0 1 1 0.899 0.667 MO
31 10 0 0 1 0 0 1 1 2 0.873 0.419 NI ,PA
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32 2 0 0 0 0 0 1 1 2 0.862 0.185 BO,
GUA

33 18 0 1 0 0 0 1 1 1 0.836 0.386 EC
34 6 0 0 0 1 0 1 1 1 0.827 0.151 TU
35 53 1 1 0 1 0 0 1 1 0.813 0.441 EST
36 17 0 1 0 0 0 0 0 1 0.701 0.000 GE
37 21 0 1 0 1 0 0 0 5 0.680 0.355 BE ,RU

,UK ,LAT ,LIT
38
39
40 # Parsimoniuos solution:
41 # econdev + ethlihom + nocom -> cod
42 > ParsSol <- eqmcc(TT, include = "?", details = T)
43 > ParsSol
44
45 n OUT = 1/0/C: 26/6/0
46 Total : 32
47
48 S1: ECONDEV + ETHLIHOM + NOCOM
49
50 incl PRI cov.r cov.u
51 ---------------------------------------
52 1 ECONDEV 0.945 0.913 0.621 0.062
53 2 ETHLIHOM 0.807 0.721 0.689 0.124
54 3 NOCOM 0.605 0.442 0.563 0.082
55 ---------------------------------------
56 S1 0.668 0.543 0.910

The second step consists in running the analysis for the proximate factors in
combination with one remote condition one by one. So we look for sufficient
paths leading to CoD:

1 # Complex solutions
2
3 # with econdev
4 > TTecondev <- truthTable(CoD , outcome = "cod",
5 + conditions = c("parlia", "efpahi", "decent", "econdev"),
6 + sort.by = "incl", incl.cut1 = .8, show.cases = T)
7 > TTecondev
8
9 OUT: outcome value
10 n: number of cases in configuration
11 incl: sufficiency inclusion score
12 PRI: proportional reduction in inconsistency
13
14 PARLIA EFPAHI DECENT ECONDEV OUT n incl PRI cases
15 14 1 1 0 1 1 5 0.991 0.983 CR ,HU,PO,SL,EST
16 10 1 0 0 1 1 1 0.986 0.967 GR
17 16 1 1 1 1 1 2 0.976 0.943 SK ,SP
18 11 1 0 1 0 1 1 0.974 0.911 BU
19 13 1 1 0 0 1 2 0.966 0.880 RO ,LAT
20 3 0 0 1 0 1 2 0.930 0.748 NI,LIT
21 6 0 1 0 1 1 2 0.927 0.800 CH,PL
22 8 0 1 1 1 1 3 0.904 0.746 AR,MX ,UR
23 7 0 1 1 0 1 2 0.885 0.657 BR,RU
24 9 1 0 0 0 1 3 0.816 0.461 MO,TU ,AL
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25 1 0 0 0 0 1 2 0.808 0.385 HO,PA
26 5 0 1 0 0 0 7 0.675 0.260 BE,BO ,GE ,GUA ,PE,

UK,EC
27
28
29 > ParsSolecondev <- eqmcc(TTecondev , details = T)
30 > ParsSolecondev
31
32 n OUT = 1/0/C: 25/7/0
33 Total : 32
34
35 S1: PARLIA*decent + efpahi*econdev + EFPAHI*ECONDEV + (parlia*DECENT*

econdev)
36 S2: PARLIA*decent + efpahi*econdev + EFPAHI*ECONDEV + (parlia*EFPAHI*

DECENT)
37
38 -------------------
39 incl PRI cov.r cov.u (S1) (S2)
40 ------------------------------------------------------------------
41 1 efpahi*econdev 0.752 0.450 0.378 0.044 0.044 0.062
42 2 EFPAHI*ECONDEV 0.937 0.888 0.531 0.066 0.084 0.066
43 3 PARLIA*decent 0.907 0.840 0.436 0.055 0.055 0.055
44 ------------------------------------------------------------------
45 4 parlia*DECENT*econdev 0.872 0.642 0.392 0.004 0.050
46 5 parlia*EFPAHI*DECENT 0.847 0.630 0.381 0.007 0.054
47 ------------------------------------------------------------------
48 S1 0.824 0.707 0.819
49 S2 0.806 0.682 0.823
50
51
52 # with ethlihom
53 > TTethlihom <- truthTable(CoD , outcome = "cod",
54 + conditions = c("parlia", "efpahi", "decent", "ethlihom"),
55 + sort.by = "incl", incl.cut1 = .8, show.cases = T)
56 > TTethlihom
57
58 OUT: outcome value
59 n: number of cases in configuration
60 incl: sufficiency inclusion score
61 PRI: proportional reduction in inconsistency
62
63 PARLIA EFPAHI DECENT ETHLIHOM OUT n incl PRI cases
64 3 0 0 1 0 1 1 0.979 0.918 LIT
65 12 1 0 1 1 1 1 0.974 0.931 BU
66 14 1 1 0 1 1 5 0.973 0.952 CR,HU,PO,RO ,SL
67 15 1 1 1 0 1 1 0.963 0.887 SP
68 13 1 1 0 0 1 2 0.962 0.884 EST ,LAT
69 16 1 1 1 1 1 1 0.962 0.925 SK
70 6 0 1 0 1 1 2 0.957 0.888 CH ,PL
71 4 0 0 1 1 1 1 0.920 0.757 NI
72 8 0 1 1 1 1 3 0.906 0.785 BR ,MX ,UR
73 9 1 0 0 0 1 1 0.891 0.632 TU
74 10 1 0 0 1 1 3 0.873 0.730 GR,MO,AL
75 7 0 1 1 0 1 2 0.838 0.492 AR ,RU
76 2 0 0 0 1 1 2 0.812 0.527 HO ,PA
77 5 0 1 0 0 0 7 0.616 0.122 BE ,BO ,GE ,GUA ,PE,

UK,EC
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78
79 > ParsSolethlihom <- eqmcc(TTethlihom , details = T)
80 > ParsSolethlihom
81
82 n OUT = 1/0/C: 25/7/0
83 Total : 32
84
85 S1: ETHLIHOM + parlia*DECENT + PARLIA*decent + (EFPAHI*DECENT)
86 S2: ETHLIHOM + parlia*DECENT + PARLIA*decent + (PARLIA*EFPAHI)
87
88 -------------------
89 incl PRI cov.r cov.u (S1) (S2)
90 ----------------------------------------------------------
91 1 ETHLIHOM 0.807 0.721 0.689 0.103 0.124 0.103
92 2 parlia*DECENT 0.819 0.614 0.445 0.025 0.025 0.088
93 3 PARLIA*decent 0.907 0.840 0.436 0.000 0.023 0.000
94 ----------------------------------------------------------
95 4 EFPAHI*DECENT 0.873 0.740 0.570 0.000 0.016
96 5 PARLIA*EFPAHI 0.941 0.905 0.463 0.016 0.032
97 ----------------------------------------------------------
98 S1 0.787 0.682 0.904
99 S2 0.785 0.682 0.920
100
101 # with nocom
102 > TTnocom <- truthTable(CoD , outcome = "cod",
103 + conditions = c("parlia", "efpahi", "decent", "nocom"),
104 + sort.by = "incl", incl.cut1 = .8, show.cases = T)
105 > TTnocom
106
107 OUT: outcome value
108 n: number of cases in configuration
109 incl: sufficiency inclusion score
110 PRI: proportional reduction in inconsistency
111
112 PARLIA EFPAHI DECENT NOCOM OUT n incl PRI cases
113 3 0 0 1 0 1 1 1.000 1.000 LIT
114 11 1 0 1 0 1 1 1.000 1.000 BU
115 13 1 1 0 0 1 6 1.000 1.000 CR ,HU ,RO ,SL,EST ,LAT
116 15 1 1 1 0 1 1 0.986 0.966 SK
117 16 1 1 1 1 1 1 0.967 0.919 SP
118 14 1 1 0 1 1 1 0.946 0.886 PO
119 8 0 1 1 1 1 4 0.940 0.844 AR,BR,MX,UR
120 4 0 0 1 1 1 1 0.913 0.719 NI
121 10 1 0 0 1 1 2 0.901 0.810 GR ,TU
122 9 1 0 0 0 1 2 0.869 0.593 MO,AL
123 2 0 0 0 1 0 2 0.766 0.400 HO,PA
124 6 0 1 0 1 0 5 0.746 0.397 BO,CH,GUA ,PE ,EC
125 7 0 1 1 0 0 1 0.726 0.333 RU
126 5 0 1 0 0 0 4 0.648 0.295 BE,GE,PL,UK
127
128
129 > ParsSolnocom <- eqmcc(TTnocom , details = T)
130 > ParsSolnocom
131
132 n OUT = 1/0/C: 20/12/0
133 Total : 32
134
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135 S1: PARLIA*decent + (PARLIA*EFPAHI + efpahi*DECENT*nocom + parlia*
DECENT*NOCOM)

136 S2: PARLIA*decent + (PARLIA*nocom + EFPAHI*DECENT*NOCOM + parlia*
efpahi*DECENT)

137
138 -------------------
139 incl PRI cov.r cov.u (S1) (S2)
140 -----------------------------------------------------------------
141 1 PARLIA*decent 0.907 0.840 0.436 0.024 0.037 0.043
142 -----------------------------------------------------------------
143 2 PARLIA*EFPAHI 0.941 0.905 0.463 0.007 0.078
144 3 PARLIA*nocom 0.904 0.847 0.436 0.020 0.099
145 4 efpahi*DECENT*nocom 1.000 1.000 0.158 0.000 0.014
146 5 EFPAHI*DECENT*NOCOM 0.943 0.862 0.375 0.000 0.106
147 6 parlia*DECENT*NOCOM 0.870 0.714 0.314 0.022 0.272
148 7 parlia*efpahi*DECENT 0.933 0.790 0.255 0.000 0.021
149 -----------------------------------------------------------------
150 S1 0.878 0.797 0.810
151 S2 0.892 0.817 0.800

For further details see Schneider and Wagemann (2006).

10.4.2 mvQCA

It uses multi valued sets, meaning that the score do not range between 0 and
1, but are “categories”. The analysis can be carried out in R as well and we
use some fake data and, if you want to use real data you can use data included
in the QCA package.

1 > data(DTmv)
2 > head(DTmv)
3
4 Y A B C
5 1 1 1 1 0
6 2 1 0 0 2
7 3 0 0 0 2
8 4 1 0 0 2
9 5 0 2 0 0
10 6 0 0 1 1
11
12 # Truth table
13 > TTfake <- truthTable(DTmv , outcome = "Y", complete = T)
14 > TTfake <- truthTable(DTmv , outcome = "Y",
15 + incl.cut1 = 0.8, complete = T)
16 > TTfake
17
18 OUT: outcome value
19 n: number of cases in configuration
20 incl: sufficiency inclusion score
21 PRI: proportional reduction in inconsistency
22
23 A B C OUT n incl PRI
24 1 0 0 0 ? 0 - -
25 2 0 0 1 ? 0 - -
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26 3 0 0 2 1 6 0.833 0.833
27 4 0 1 0 ? 0 - -
28 5 0 1 1 0 6 0.667 0.667
29 6 0 1 2 ? 0 - -
30 7 0 2 0 0 2 0.500 0.500
31 8 0 2 1 ? 0 - -
32 9 0 2 2 ? 0 - -
33 10 1 0 0 ? 0 - -
34 11 1 0 1 1 2 1.000 1.000
35 12 1 0 2 ? 0 - -
36 13 1 1 0 0 8 0.750 0.750
37 14 1 1 1 ? 0 - -
38 15 1 1 2 ? 0 - -
39 16 1 2 0 ? 0 - -
40 17 1 2 1 ? 0 - -
41 18 1 2 2 ? 0 - -
42 19 2 0 0 0 1 0.000 0.000
43 20 2 0 1 ? 0 - -
44 21 2 0 2 ? 0 - -
45 22 2 1 0 ? 0 - -
46 23 2 1 1 ? 0 - -
47 24 2 1 2 ? 0 - -
48 25 2 2 0 ? 0 - -
49 26 2 2 1 ? 0 - -
50 27 2 2 2 ? 0 - -
51
52
53 # Complex solution
54 > CompSolFake <- eqmcc(DTmv , outcome = "Y", details = T)
55 > CompSolFake
56
57 OUT: outcome value
58 n: number of cases in configuration
59 incl: sufficiency inclusion score
60 PRI: proportional reduction in inconsistency
61
62 A B C OUT n incl PRI
63 3 0 0 2 0 6 0.833 0.833
64 5 0 1 1 0 6 0.667 0.667
65 7 0 2 0 0 2 0.500 0.500
66 11 1 0 1 1 2 1.000 1.000
67 13 1 1 0 0 8 0.750 0.750
68 19 2 0 0 0 1 0.000 0.000
69
70 n OUT = 1/0/C: 2/23/0
71 Total : 25
72
73 S1: A{1}*B{0}*C{1}
74
75 incl PRI cov.r cov.u
76 ---------------------------------------------
77 1 A{1}*B{0}*C{1} 1.000 1.000 0.111 0.111
78 ---------------------------------------------
79 S1 1.000 1.000 0.111
80
81
82 NB: There is only one configuration to be explained. No minimization
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was performed.
83
84
85 > # Parsimonious solution
86 > ParsSolFake <- eqmcc(DTmv , outcome = "Y",
87 + include = "?", details = T)
88 > ParsSolFake
89
90 OUT: outcome value
91 n: number of cases in configuration
92 incl: sufficiency inclusion score
93 PRI: proportional reduction in inconsistency
94
95 A B C OUT n incl PRI
96 3 0 0 2 0 6 0.833 0.833
97 5 0 1 1 0 6 0.667 0.667
98 7 0 2 0 0 2 0.500 0.500
99 11 1 0 1 1 2 1.000 1.000

100 13 1 1 0 0 8 0.750 0.750
101 19 2 0 0 0 1 0.000 0.000
102
103 n OUT = 1/0/C: 2/23/0
104 Total : 25
105
106 S1: A{1}*B{0}
107 S2: A{1}*C{1}
108 S3: B{0}*C{1}
109
110 --------------------------
111 incl PRI cov.r cov.u (S1) (S2) (S3)
112 -------------------------------------------------------------
113 1 A{1}*B{0} 1.000 1.000 0.111 0.000 0.111
114 2 A{1}*C{1} 1.000 1.000 0.111 0.000 0.111
115 3 B{0}*C{1} 1.000 1.000 0.111 0.000 0.111
116 -------------------------------------------------------------
117 S1 1.000 1.000 0.111
118 S2 1.000 1.000 0.111
119 S3 1.000 1.000 0.111

We now use real data from Berg-Schlosser and Cronqvist (2005):
1 data(CronBerg)
2 # Vector of conditions
3 > cond <- names(CronBerg)[1:4]
4 > cond
5
6 [1] "GNP" "URB" "LIT" "INDUS"
7
8 # Truth table
9 > TTCronBerg <- truthTable(CronBerg , outcome = "DEMOC", complete = T,
10 + conditions = cond , incl.cut1 = 0.8)
11 > TTCronBerg
12
13 OUT: outcome value
14 n: number of cases in configuration
15 incl: sufficiency inclusion score
16 PRI: proportional reduction in inconsistency
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17
18 GNP URB LIT INDUS OUT n incl PRI
19 1 0 0 0 0 0 5 0.000 0.000
20 2 0 0 0 1 ? 0 - -
21 3 0 0 1 0 0 3 0.000 0.000
22 4 0 0 1 1 ? 0 - -
23 5 0 1 0 0 ? 0 - -
24 6 0 1 0 1 ? 0 - -
25 7 0 1 1 0 ? 0 - -
26 8 0 1 1 1 ? 0 - -
27 9 1 0 0 0 ? 0 - -
28 10 1 0 0 1 ? 0 - -
29 11 1 0 1 0 1 2 1.000 1.000
30 12 1 0 1 1 0 1 0.000 0.000
31 13 1 1 0 0 ? 0 - -
32 14 1 1 0 1 ? 0 - -
33 15 1 1 1 0 ? 0 - -
34 16 1 1 1 1 0 2 0.500 0.500
35 17 2 0 0 0 ? 0 - -
36 18 2 0 0 1 ? 0 - -
37 19 2 0 1 0 ? 0 - -
38 20 2 0 1 1 1 2 1.000 1.000
39 21 2 1 0 0 ? 0 - -
40 22 2 1 0 1 ? 0 - -
41 23 2 1 1 0 ? 0 - -
42 24 2 1 1 1 1 3 1.000 1.000
43
44
45 # Complex solution
46 > CompSolCronBerg <- eqmcc(TTCronBerg , details = TRUE)
47 > CompSolCronBerg
48
49 n OUT = 1/0/C: 7/11/0
50 Total : 18
51
52 S1: GNP{2}*LIT{1}*INDUS {1} + GNP {1}*URB {0}*LIT{1}*INDUS {0}
53
54 incl PRI cov.r cov.u
55 ------------------------------------------------------------
56 1 GNP {2}*LIT{1}*INDUS {1} 1.000 1.000 0.625 0.625
57 2 GNP {1}*URB{0}*LIT{1}*INDUS {0} 1.000 1.000 0.250 0.250
58 ------------------------------------------------------------
59 S1 1.000 1.000 0.875
60
61
62 # Parsimonious solution
63 > ParsSolCronBerg <- eqmcc(TTCronBerg , include = "?",
64 + details = T)
65 > ParsSolCronBerg
66
67 n OUT = 1/0/C: 7/11/0
68 Total : 18
69
70 S1: GNP{2} + GNP {1}*INDUS {0}
71
72 incl PRI cov.r cov.u
73 ----------------------------------------------
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74 1 GNP {2} 1.000 1.000 0.625 0.625
75 2 GNP {1}*INDUS {0} 1.000 1.000 0.250 0.250
76 ----------------------------------------------
77 S1 1.000 1.000 0.875
78
79
80 # Intermediate solution
81 # GDP{1}, URB{0}, LIT{0}, INDUS {1} contribute to DEMOC
82 > IntSolCronBerg <- eqmcc(TTCronBerg , include = "?", direxp = c(1, 0,

0, 1))
83 > IntSolCronBerg
84
85 p.sol: GNP {2} + GNP{1}*INDUS {0}
86
87 S1: GNP {2}*INDUS {1} + GNP {1}*URB{0}*INDUS {0}

10.4.3 tQCA

To show tQCA we use the crisp set fake data:
1 > data(FakeCS)
2 > head(FakeCS)
3
4 y j z w k
5 1 0 1 0 1 1
6 2 0 1 0 1 1
7 3 0 1 0 0 0
8 4 1 0 0 1 0
9 5 1 1 1 1 0
10 6 1 0 0 1 1

We assume w defines whether or not j was present before z so we can study
time. We rename w to w_before_z and perform the analysis:

1 > names(FakeCS)[names(FakeCS)=="w"] <- "w_before_z"
2
3 # Truth table
4 > TT <- truthTable(FakeCS , outcome = "y", complete = TRUE)
5 > TT
6
7 OUT: outcome value
8 n: number of cases in configuration
9 incl: sufficiency inclusion score
10 PRI: proportional reduction in inconsistency
11
12 J Z W_BEFORE_Z K OUT n incl PRI
13 1 0 0 0 0 ? 0 - -
14 2 0 0 0 1 1 3 1.000 1.000
15 3 0 0 1 0 0 2 0.500 0.500
16 4 0 0 1 1 1 1 1.000 1.000
17 5 0 1 0 0 1 1 1.000 1.000
18 6 0 1 0 1 0 2 0.500 0.500
19 7 0 1 1 0 1 1 1.000 1.000
20 8 0 1 1 1 0 1 0.000 0.000
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21 9 1 0 0 0 0 1 0.000 0.000
22 10 1 0 0 1 ? 0 - -
23 11 1 0 1 0 ? 0 - -
24 12 1 0 1 1 0 4 0.500 0.500
25 13 1 1 0 0 1 3 1.000 1.000
26 14 1 1 0 1 0 2 0.500 0.500
27 15 1 1 1 0 0 3 0.333 0.333
28 16 1 1 1 1 0 6 0.500 0.500
29
30
31 # Complex solution
32 > CompSol <- eqmcc(TT, details = TRUE)
33 > CompSol
34
35 n OUT = 1/0/C: 9/21/0
36 Total : 30
37
38 S1: j*z*K + j*Z*k + Z*w_before_z*k
39
40 incl PRI cov.r cov.u
41 ---------------------------------------------
42 1 j*z*K 1.000 1.000 0.222 0.222
43 2 j*Z*k 1.000 1.000 0.111 0.056
44 3 Z*w_before_z*k 1.000 1.000 0.222 0.167
45 ---------------------------------------------
46 S1 1.000 1.000 0.500

Now we look at some real data, as in the book (chapter 10). Data come from
the article by Ragin and Stand (2008) (included in QCA):

1 > data(RagStr)
2 > head(RagStr)
3
4 # Complex solution
5 > CompSol <- eqmcc(RagStr , outcome = "REC", details = TRUE)
6 > CompSol
7
8 OUT: outcome value
9 n: number of cases in configuration
10 incl: sufficiency inclusion score
11 PRI: proportional reduction in inconsistency
12
13 P E A S EBA OUT n incl PRI
14 3 0 0 0 0 dc 0 3 0.000 0.000
15 15 0 1 0 0 dc 0 1 0.000 0.000
16 22 0 1 1 1 0 1 1 1.000 1.000
17 27 1 0 0 0 dc 0 1 0.000 0.000
18 30 1 0 0 1 dc 0 3 0.000 0.000
19 36 1 0 1 1 dc 0 2 0.000 0.000
20 42 1 1 0 1 dc 1 1 1.000 1.000
21 44 1 1 1 0 1 1 2 1.000 1.000
22 46 1 1 1 1 0 1 1 1.000 1.000
23 47 1 1 1 1 1 1 2 1.000 1.000
24
25 n OUT = 1/0/C: 7/10/0
26 Total : 17
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27
28 S1: P*E*S + E*A*S*eba + P*E*A*EBA
29
30 incl PRI cov.r cov.u
31 ----------------------------------------
32 1 P*E*S 1.000 1.000 0.571 0.143
33 2 E*A*S*eba 1.000 1.000 0.571 0.143
34 3 P*E*A*EBA 1.000 1.000 0.714 0.286
35 ----------------------------------------
36 S1 1.000 1.000 1.000

The solution says that: P ∗E ∗S+E ∗A ∗S ∗ eba+P ∗E ∗A ∗EBA→ REC
which means that union recognition happens when 1) the university is public,
there are alliance and there is a strike threat; 2) there are alliances with elites,
national union affiliation, strikes and the alliances were not present before
national union affiliation; 3) the university is public, there are alliance, there
is national union affiliation and the alliances were present before national
union affiliation. Other solutions can be obtain with standard functions and
options.
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