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Chapter 1 - Bridging continuous and discrete optimization

Chapter 2 - Preliminaries

Definition 2.7 (Page 20)

  Old text:

New text:

Page 20:

  Old text:

New text:

Exercise 2.1 (a) (Page 29)

  Old text:

New text:

∑
k≥3

∇kf(a)[x − a, ..., x − a]

∑
k≥3

1

k!
∇kf(a)[x − a, ..., x − a]

{α0 +
k

∑
i=1

αivi : α0, α1, ..., αk ∈ R}

{v0 +
k

∑
i=1

αivi : v0 ∈ Rn,   α1, ..., αk ∈ R}

a1, ..., am ∈ Qm

a1, ..., am ∈ Qn

https://convex-optimization.github.io/
https://www.cs.yale.edu/homes/vishnoi/Home.html
https://www.amazon.com/Algorithms-Convex-Optimization-Nisheeth-Vishnoi/dp/1108741770
https://www.cambridge.org/core/books/algorithms-for-convex-optimization/8B5EEAB41F6382E8389AF055F257F233
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Exercise 2.1 (c) (Page 29)

  Old text:  is a symmetric  matrix and  runs over symmetric

matrices

New text:  is a real-symmetric  matrix and  runs over real-

symmetric matrices

Chapter 3 - Convexity

Theorem 3.6 (Page 39)

  Old text:

New text:

Chapter 4 - Convex Optimization and Efficiency

Section 4.1.1 (Page 50)

  Old text:

New text:

Exercise 4.9 (c) (Page 66)

  Old text: vertex of 

New text: vertex of 

Exercise 4.11 (c) (Page 67)

  Old text: polynomial time

New text: polynomial time algorithm

Chapter 5 - Duality and Optimality

Theorem 5.5 (Page 72)

  Old text: Suppose that the functions  and ...

New text: Suppose that the functions  are convex and ...

Exercise 5.11 (Page 80) 

  Old text: consider the primal problem where 

New text: consider the primal problem from Equation (5.2) where 

Exercise 5.11 (Page 80) 

  Old text: Prove that the dual is 

A n × n X

A n × n X

f : K → R

f : K → R

b ∈ Rn

b ∈ Rm

P

K

f, f1, f2, ..., fm

f, f1, f2, ..., fm
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New text: Prove that the objective of the dual is 

Exercise 5.12 (Page 80)

  Old text: primal convex optimization problem over

New text: primal convex optimization problem from Equation (5.2) over

Exercise 5.12 (Page 80) (Page 81)

  Old text:

New text:

Exercise 5.14 (c) (Page 81)

  Old text: positive orthant

New text: non-negative orthant

Chapter 6 - Gradient Descent

Page 91

The last inequality on this page is an equality

Last equation on Page 92

  Old text:

New text:

Exercise 6.5 (Page 102) 

  Old text: which satisfies for every , one has 

New text: which satisfies for every , 

Chapter 7 - Mirror Descent and Multiplicative Weights Update

Page 112

  Old text: we can ignore terms that depend only on 

New text: we can ignore terms that depend only on 

Page 112

  Old text:  may be more than 

New text:  may be more than 

Lemma 7.4 (Page 115)

In item 2, drop “for all “ at the end

a⊤Xa ≤ 0

a⊤Xa ≤ 1

Rt ≤

Rt =

x ∈ Rn mI ⪯ ∇2f(x) ⪯ MI

x ∈ Rn mI ⪯ ∇2f(x) ⪯ MI

x

xt

f(xt) f(xt+1)

f(xt+1) f(xt)

i = 1, 2, … , n
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Page 130

  Old text:

New text:

Page 131

In the first two inequalities replace  by 

Page 131

  Old text:

New text:

Page 134

  Old text:

New text:

Exercise 7.11 (Page 134) 

  Old text: Assume that 

New text: Assume that 

Exercise 7.17 (Page 139) 

  Old text: oracle satisfy 

New text: oracle satisfy  for all 

Exercise 7.17 (d) (Page 139) 

  Old text: the following always holds:

New text: the following holds for any fixed i:

αe := ∑
e∈N(v)

wt
v

αe := ∑
v: e∈N(v)

wt
v

xe xt
e

1

T
⋅

1

n
(∑

e: v∈e

xt
e − 1) ≤

1

T
⋅ T ⋅ 0 + δ

1

T
⋅

T−1

∑
t=0

1

n
(∑

e: v∈e

xt
e − 1) ≤

1

T
⋅ T ⋅ 0 + δ

x :=
1

T

T−1

∑
t=0

xi

x :=
1

T

T−1

∑
t=0

xt

||∇f(x)||2 ≤ G

E[||g(x)||
2
2] ≤ G2

gt ≤ 1.∣∣ ∣∣0 ≤ gt
i ≤ 1 i ∈ [n]

−ε
T−1

∑
t=0

ĝt
i − ln n ≤ −

ε

1 − nε

T−1

∑
t=0

⟨pt, ĝt⟩ +
2ε2

1 − nε
nT
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Chapter 8 - Accelerated Gradient Descent

Equation 8.15 (Page 147)

In this equation, also define 

Exercise 8.3 (Page 157) 

  Old text:

New text:

Exercise 8.3 (Page 157) 

Set . 

Exercise 8.3 (b) (Page 158) 

  Old text:

New text:

Chapter 9 - Newton’s Method

Figure 9.1 (Page 161) 

Replace  by  and  by 

Page 168 

  Old text:

New text:

Theorem 9.4 (Page 167) 

  Old text: Let  be an arbitrary starting point 

New text: Let  be the starting point specified in the NE condition 

Proof of 9.4 (Page 167) 

  Old text: We can take 

New text: Since  and  satisfy the NE condition, we can take 

−ε
T−1

∑
t 0

gt
i − ln n ≤ −

ε

1 − nε

T−1

∑
t 0

⟨pt, gt⟩ +
2ε2

1 − nε
nT

λt := (1 − γt)λt−1

f(x):= min
x∈Rn

1

2
(x − x⋆)⊤A(x − x⋆)

min
x∈Rn

1

2
(x − x⋆)

⊤
A(x − x⋆)

x0 = x1

θ:= max { 1 − √ηλ1 , 1 − √ηλn }∣ ∣ ∣ ∣θ:= max { 1 − √ηλ1 , 1 − √ηλn }
2∣ ∣ ∣ ∣f g f(x0) g(x0)

D(3)

D3

x0

x0

M =
L H(x0)−1

2
≤

L

2h∣∣ ∣∣f x0

M =
L H(x0)−1

2
≤

L

2h∣∣ ∣∣
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Chapter 10 - An Interior Point Method for Linear Programming

Theorem 10.2 (Page 186)

  Old text: or terminates stating that the polyhedron is infeasible. The

algorithm runs in poly  time.

New text: The algorithm runs in poly  time.

Lemma 10.9 (Page 194)

Let  and  be the variables defined in Algorithm 8

Theorem 10.10 (Page 194)

  Old text: outputs a point  that satisfies

New text: outputs a point int  that satisfies

Proof of Lemma 10.7 (Page 196)

  Old text:

New text:

Lemma 10.15 (Page 203)

  Old text: For any  denote

New text: For any  and  denote

Chapter 11 - Variants of the Interior Point Method and Self-Concordance

Equation 11.3 (Page 218)

  Old text:

New text:

(L, log
1

ɛ
)

(L, log
1

ɛ
)

xT ηT

x̂ ∈ P

x̂ ∈ (P)

nη′(x) = H(x)−1∇fη′(x)

−nη′(x) = H(x)
−1

∇fη′(x)

η > 0

η > 0 x ∈ Rn

[ ] [ ] = [ ]
B 0

I I

x

y

b

u

[ ] [ ] = [ ]
B 0

I I

x

y

b

ρ
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Section 11.2.2 (Page 222)

  Old text: (where  such that

New text: (where ) such that

Equation 11.8 (Page 225)

  Old text:

New text:

Lemma 11.10 (Page 228)

  Old text:

New text:

Page 229

  Old text:

New text:

Page 229

  Old text:

New text:

Page 231

  Old text:

New text:

Page 231

  Old text:

New text:

Exercise 11.10 (Page 244)

  Old text: self-concordance implies that for all 

New text: self-concordance implies that for all int

Exercise 11.15 (Page 247)

Part (d) of this exercise should be its own exercise 11.16 

Chapter 12 - Ellipsoid Method for Linear Programming

E = ...

E = ...

ñη(x) := X 2(A⊤(AX−2A⊤)
−1

AX 2 − I)(ηc + X−11)

ñη(x) := X 2(A⊤(AX 2A⊤)
−1

AX 2 − I)(ηc + X−11)

s, t ∈ G

s, t ∈ V

F

2
≤ x

î
≤ F = u

î
− F

F

2
≤ x

î
≤ F = ρ

î
− F

min {
1

2
,

F

2
} ≤ yi

min {
1

2
, F} ≤ yi

H(x)−1g(x)
x

= g(x)⊤H(x)−1g(x)∣∣ ∣∣H(x)−1g(x)
2

x
= g(x)⊤H(x)−1g(x)∣∣ ∣∣H(x)−1g(x)

x
= 1⊤Π1 = ||Π1||2

2 ≤ ||1||2
2 = m∣∣ ∣∣H(x)−1g(x)

2

x
= 1⊤Π1 = ||Π1||2

2 ≤ ||1||2
2 = m∣∣ ∣∣ x ∈ K

x ∈ (K)
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Algorithm 9 (Page 253) 

  Old text: A number  such that 

New text: A number  such that 

Algorithm 10 (Page 255) 

Before Line 1 add “Initialize ” and after Line 9 add “Set ”

Proof of Theorem 12.7 (Page 256) 

Replace all occurences of  by 

Section 12.2.2 (Page 257) 

  Old text: the method developed we present in 

New text: the method developed in 

Section 12.4 (Page 262) 

  Old text: The proof of Lemma 12.12 is has two parts 

New text: The proof of Lemma 12.12 has two parts 

Proof of Lemma 12.18 (Page 272) 

  Old text:

New text:

Section 12.5.5 (Page 273) 

  Old text: but still manageable The idea 

New text: but still manageable. The idea 

Exercise 12.3 (Page 274) 

Replace all occurences of  by 

Part (c), Exercise 12.3 (Page 274)

  Old text: a polynomial time linear optimization oracle 

New text: a polynomial time separation oracle 

Exercise 12.6 (Page 276) 

  Old text: larger than the lower bound derived above 

New text: larger than the upper bound derived above 

Chapter 13 - Ellipsoid Method for Convex Optimization

Section 13.2.2 (Page 287) 

Lovász misspelt as Lovás.

u u ≤ y⋆ + ɛ
u y⋆ ≤ u ≤ y⋆ + ɛ

t = 0 t := t + 1

n m

≥ ⟨c, x⋆⟩ + (1 − α)

= ⟨c, x⋆⟩ + (1 − α)

n m
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Theorem 13.12 (Page 287) 

  Old text:

New text:

Section 13.3 (below Definition 13.14) (Page 289) 

  Old text:  is convex 

New text:  is convex 

Definition of  in Exercise 13.10 (Page 305) 

  Old text:

New text:

l0 ≤ u0 ∈ R

l0 ≤ u0

Δω

ΔΩ

f −(x)

∑
S⊆[n]

αSf(S)

∑ αSF(S)


