
Solutions to exercises

Solutions to exercises
Exercise 1.1 Using Equation 1.1, L = 4πR2σT 4

eff , the luminosities
corresponding to each combination of radius and temperature are as shown in
Table S1.1. (Remember to first convert the radii from solar units to metres, in
order to calculate the luminosity L in watts. Then divide by the solar luminosity
L% to convert the answer into solar units.)

As an example, the first entry in Table S1.1 may be calculated as follows:

L = 4πR2σT 4
eff

= 4π × (0.1 × 6.96 × 108 m)2 × (5.671 × 10−8 J m−2 K−4 s−1) × (2000 K)4

= 5.52 × 1022 J s−1 = 5.52 × 1022 J s−1 ×
L%

3.83 × 1026 W
= 1.44 × 10−4 L%.

Since Figure 1.1 has logarithmic axes, in order to plot this value, note that
log10(1.44 × 10−4) = −3.84. Hence one end of the line connecting points with
R = 0.1 R% lies at the point log10(L/L%) = −3.84, Teff = 2000 K. The set
of lines of constant radii illustrating all the results in Table S1.1 is shown on
Figure S1.1 overleaf.

Table S1.1 Luminosities for stars of a given temperature and radius, for use
with Exercise 1.1.

Teff R = 0.1 R% R = 1 R%
2000 K L = 1.44 × 10−4 L% L = 1.44 × 10−2 L%
4000 K L = 2.31 × 10−3 L% L = 2.31 × 10−1 L%
6000 K L = 1.17 × 10−2 L% L = 1.17 L%
10 000 K L = 9.01 × 10−2 L% L = 9.01 L%
20 000 K L = 1.44 L% L = 144 L%
40 000 K L = 23.1 L% L = 2.31 × 103 L%
Teff R = 10 R% R = 100 R%
2000 K L = 1.44 L% L = 1.44 × 102 L%
4000 K L = 23.1 L% L = 2.31 × 103 L%
6000 K L = 117 L% L = 1.17 × 104 L%
10 000 K L = 901 L% L = 9.01 × 104 L%
20 000 K L = 1.44 × 104 L% L = 1.44 × 106 L%
40 000 K L = 2.31 × 105 L% L = 2.31 × 107 L%

Exercise 1.2 Let us suppose the Sun contains N ions in total. Each hydrogen
ion will be matched by one electron, whereas each helium ion will be matched by
two electrons. The mean molecular mass µ% is therefore

µ% =
NH(mH/u) + NHe(mHe/u) + Ne(me/u)

NH + NHe + Ne
.
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Figure S1.1 A schematic Hertzsprung–Russell diagram. The sloping lines
indicate where stars would have radii R = 0.1 R%, R%, 10 R% and 100 R%.

Given the proportions in the question, NH = 0.927N , NHe = 0.073N and
Ne = 0.927N + (2 × 0.073N) = 1.073N . Assuming mH/u ≈ 1, mHe/u ≈ 4
and me/u ≈ 0, we can write

µ% ≈
0.927N + (0.073N × 4)

(0.927 + 0.073 + 1.073)N
≈ 1.219/2.073 ≈ 0.6.

So the mean molecular mass is µ% ≈ 0.6 or m% ≈ 0.6u.

Exercise 1.3 With a Kramers opacity, the opacity is given by
κ(r) ∝ ρ(r)/T 3.5(r). Using the argument from the previous example, the mean
opacity may be expressed as simply κ ∝ ρ/T 3.5

c , where Tc is the star’s central
temperature and ρ is its mean density. Now, from Worked Example 1.1, we
already have the relationships ρ ∝ M/R3 and Tc ∝ M/R, where M and R are
the mass and radius of the star. So, the mean value of the Kramers opacity may be
re-written as κ ∝ R0.5/M2.5.

We derive the same penultimate equation as in the previous worked example,
namely L ∝ M3/κ, where L is the star’s surface luminosity. So, using the
relationship above, this becomes L ∝ M5.5R−0.5.

Exercise 1.4 The second branch of the proton–proton chain will include
one electron–positron annihilation reaction as only one instance of the initial
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proton+proton reaction is involved. The overall reaction may be written as

2e− + 4p −→ 4
2He + νe(pp) + νe(Be) + γpd + γHe + 2γe,

where νe(pp) is the electron neutrino released by the proton+proton reaction step,
νe(Be) is the electron neutrino released by the beryllium-7 electron capture
reaction step, γpd is the gamma-ray released by the proton+deuterium reaction
step, γHe is the gamma-ray released by the helium-3 + helium-4 reaction step, and
2γe are the gamma-rays released by the electron–positron annihilation step.

Now, using the masses from earlier, i.e. 1.672 623 × 10−27 kg for the 1
1H nucleus

and 6.644 656 × 10−27 kg for the 4
2He nucleus, the mass defect can be calculated

as

Δm = initial mass – final mass

= 2m(e−) + m(4p) − m(42He) − m(νe(pp)) − m(νe(Be)) − m(γpd) − m(γHe) − m(2γe)

= 1.8218 × 10−30 kg + 6.690 492 × 10−27 kg − 6.644 656 × 10−27 kg − 0 − 0 − 0 − 0 − 0

= 4.7658 × 10−29 kg.

Exactly as for branch ppI, for branch ppII the energy equivalent E = (Δm)c2 is
4.2833 × 10−12 J or 26.74 MeV.

This includes the energy that goes into the γ-rays, which is then absorbed by the
surrounding gas. As before, the two neutrinos escape the star without depositing
their energy, which in this case removes 0.26 MeV for the νe(pp) neutrino and
(0.9 × 0.86) + (0.1 × 0.38) MeV = 0.81 MeV for the νe(Be) neutrino. This
leaves 26.74 MeV − 0.26 MeV − 0.81 MeV = 25.67 MeV for the star.

Exercise 2.1 The free-fall time for the Sun is

tff =

(
3π

32Gρ

)1/2

=

(
3π

32 × (6.673 × 10−11 N m2 kg−2) × (1.41 × 103 kg m−3)

)1/2

= 1770 s.

The free-fall time of the Sun is therefore about half an hour.

Exercise 2.2 The limiting case is when f = 0.5. So, the first term in
Equation 2.19(

36

π

3c

4σ

(1 − f)

f4

)1/2

=

(
36

π
×

3 × 2.998 × 108 m s−1

4 × 5.671 × 10−8 J m−2 K−4 s−1
×

1 − 0.5

0.54

)1/2

= 6.029 × 108 m1/2 s K2 kg−1/2.

The second term in Equation 2.19 becomes(
k

m

)2

=

(
1.381 × 10−23 J K−1

0.6 × 1.661 × 10−27 kg

)2

= 1.920 × 108 m4 s−4 K−2.

Finally, the third term in Equation 2.19 becomes(
1

G

)3/2

=

(
1

6.673 × 10−11 N m2 kg−2

)3/2

= 1.835 × 1015 kg3/2 m−9/2 s3.

So the upper mass limit for a star is given by

M ≈ (6.029 × 108 m1/2 s K2 kg−1/2) × (1.920 × 108 m4 s−4 K−2) × (1.835 × 1015 kg3/2 m−9/2 s3)

≈ 2.12 × 1032 kg ≈ 100 M%.
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Exercise 2.3 The Kelvin–Helmholtz timescale for the Sun is

τKH,% =
GM2%
R%L%

=
6.673 × 10−11 N m2 kg−2 × (1.99 × 1030 kg)2

6.96 × 108 m × 3.83 × 1026 J s−1 = 9.90 × 1014 s.

This is equivalent to 9.90 × 1014 s / (365.25 × 24 × 3600) s yr−1 ≈ 3 × 107 yr.

Exercise 2.4 For a 0.5 M% star, the Kelvin–Helmholtz contraction time is
τKH,0.5 ≈ 3 × 107 yr × 0.5−2.4 ≈ 1.6 × 108 yr.

For a 2 M% star, the Kelvin–Helmholtz contraction time is
τKH,2 ≈ 3 × 107 yr × 2−2.4 ≈ 5.7 × 106 yr.

For a 5 M% star, the Kelvin–Helmholtz contraction time is
τKH,5 ≈ 3 × 107 yr × 5−2.4 ≈ 6.3 × 105 yr.

Exercise 3.1 The time-independent Schrödinger equation in one dimension,
for a constant barrier potential V is[

−
!2

2mr

∂2

∂r2
+ V

]
ψs(r) = Eψs(r),

where mr is the reduced mass. Equation 3.4 can also be written

∂2

∂r2
ψs(r) =

2mr

!2
(V − E)ψs(r)

or

∂2

∂r2
ψs(r) = χ2ψs(r) where χ2 =

2mr

!2
(V − E).

To verify that the wave function ψs(r) = exp(χr) is a solution for a constant
potential (i.e. when V and hence χ do not depend on r), substitute this into the
left-hand side of the Schrödinger equation:

∂2

∂r2
ψs(r) =

∂2

∂r2
exp(χr)

Expand the second derivative

∂2

∂r2
ψs(r) =

∂

∂r

∂

∂r
exp(χr).

Evaluate the first derivative

∂2

∂r2
ψs(r) =

∂

∂r
χ exp(χr)

and then the second, but note that exp(χr) = ψs(r)

∂2

∂r2
ψs(r) = χ2 exp(χr) = χ2ψs(r),

which equals the right-hand side of Schrödinger equation, as required. Note that if
the barrier potential had not been constant, then χ would depend on r, and the
differentiation would not be so straightforward.

Exercise 3.2 The Gamow energy is EG = 2mrc
2(παZAZB)2, where mr is the

reduced mass of the two-body system, given by mr = mAmB/(mA + mB).
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(a) Begin by calculating the reduced mass:

mr =
mpmp

mp + mp
=

m2
p

2mp
=

mp

2
=

1.673 × 10−27 kg
2

= 8.365 × 10−28 kg.

Then

EG = 2mrc
2(παZpZp)

2

= 2 × 8.365 × 10−28 kg × (2.998 × 108 m s−1)2 × (π ×
1

137.0
× 1 × 1)2

= 7.907 × 10−14 kg m2 s−2 = 7.907 × 10−14 J.

Since 1 eV = 1.602 ×10−19 J, EG = 7.907 × 10−14 J/1.602 × 10−19 J eV−1 =
493.6 keV.

(b) In this case, the reduced mass is

mr =
m3m3

m3 + m3
=

m2
3

2m3
=

m3

2
=

3mp

2
=

3 × 1.673 × 10−27 kg
2

= 2.510 × 10−27 kg.

Then

EG = 2mrc
2(παZ3HeZ3He)

2

= 2 × 2.510 × 10−27 kg × (2.998 × 108 m s−1)2 × (π ×
1

137.0
× 2 × 2)2

= 3.796 × 10−12 kg m2 s−2 = 3.796 × 10−12 J.

Since 1 eV = 1.602 × 10−19 J, EG = 3.796 × 10−12 J/1.602 × 10−19 J eV−1 =
23.70 MeV.

Exercise 3.3 The probability of barrier penetration is

Ppen ≈ exp

[
−

(
EG

E

)1/2
]
≈ exp

[
−

(
EG

kTc

)1/2
]

.

(a) proton–proton:

Ppen ≈ exp

[
−

(
493.6 keV
1.3 keV

)1/2
]

= 3.4 × 10−9.

(b) 3
2He–3

2He:

Ppen ≈ exp

[
−

(
23 700 keV

1.3 keV

)1/2
]

= 2.3 × 10−59.

Note that the answers have been given to only 2 significant figures, rather than the
3 s.f. available, because the approximation that the energy is given by E ≈ kTc

degrades the accuracy further.

Exercise 3.4 Since S(E) is being treated as a constant, the integrand can be
written

f(E) = S exp

[
−

(
EG

E

)1/2

−
E

kT

]
.
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Differentiating gives

df(E)

dE
= S

d
dE

exp

[
−

(
EG

E

)1/2

−
E

kT

]
but using Hint 2 gives

df(E)

dE
= S exp

[
−

(
EG

E

)1/2

−
E

kT

]
×

d
dE

[
−

(
EG

E

)1/2

−
E

kT

]

= S exp

[
−

(
EG

E

)1/2

−
E

kT

]
×

[
−E

1/2
G

(
−

1

2
E−3/2

)
−

1

kT

]

= S exp

[
−

(
EG

E

)1/2
]

exp

(
−

E

kT

)
×

[
E

1/2
G

2
(E−3/2) −

1

kT

]
.

The integrand f(E) is either a minimum or maximum when df(E)/dE = 0,
which is when one of the following terms is zero:

(i) S = 0; this is a trivial, uninteresting case.

(ii) exp[−(EG/E)1/2] → 0; this occurs when E becomes very small.

(iii) exp[−E/kT ] → 0; this occurs when E becomes very large.

(iv)[
E

1/2
G

2
(E−3/2) −

1

kT

]
= 0.

We rearrange this to get an expression for E

E
1/2
G

2
(E−3/2) =

1

kT
, and simplifying, we get

E
1/2
G

E1/2
=

2E

kT
.

Comment : This result will be useful later.

Collecting terms in E, we have

E3/2 =
kT

2
E

1/2
G ,

then take the (2/3)-power of all terms

E =

(
kT

2

)2/3

E
1/3
G =

(
EG

(
kT

2

)2
)1/3

.

This is the interesting case, and the energy E0 = [EG(kT/2)2]1/3 is called the
Gamow peak.

(Do not confuse this with the Gamow energy EG.)
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Exercise 3.5 (a) First calculate the energy ratio:

EG

4kT
=

2mpm13C

mp + m13C
×

c2(παZpZ13C)2

4kT

=
2 × 1u × 13u

1u + 13u
×

(2.998 × 108 m s−1)2 × (π × 1
137 × 1 × 6)2

4 × 1.381 × 10−23 J K−1 × 15.6 × 106 K

= 3.667 × 1030u
(m s−1)2

J

= 3.667 × 1030 × 1.661 × 10−27 kg
m2 s−2

kg m2 s−2
= 6091.

Next compute the fusion rate per unit mass fraction:

Rp13C

X13C
= 6.48 × 10−24 ×

(Ap + A13C)ρ2
cXp

(ApA13Cu)2[m−6]ZpZ13C
×

S(E0)

[keV barns]

(
EG

4kT

)2/3

exp

[
−3

(
EG

4kT

)1/3
]

m−3 s−1

= 6.48 × 10−24 ×
(1 + 13) × (1.48 × 105 kg m−3)2 × 0.5

(1 × 13 × 1.661 × 10−27 kg)2 × [m−6] × 1 × 6

×
5.5 keV barns
[keV barns]

× (6091)2/3 × exp
[
−3 × (6091)1/3

]
m−3 s−1

= 1.0 × 1018 m−3 s−1.

(b) First calculate the energy ratio:

EG

4kT
=

2mpm14N

mp + m14N
×

c2(παZpZ14N)2

4kT

=
2 × 1u × 14u

1u + 14u
×

(2.998 × 108 m s−1)2 × (π × 1
137 × 1 × 7)2

4 × 1.381 × 10−23 J K−1 × 15.6 × 106 K

= 5.017 × 1030u
(m s−1)2

J

= 5.017 × 1030 × 1.661 × 10−27 kg
m2 s−2

kg m2 s−2
= 8333.

Next compute the fusion rate per unit mass fraction:

Rp14N

X14N
= 6.48 × 10−24 ×

(Ap + A14N)ρ2
cXp

(ApA14Nu)2[m−6]ZpZ14N
×

S(E0)

[keV barns]

(
EG

4kT

)2/3

exp

[
−3

(
EG

4kT

)1/3
]

m−3 s−1

= 6.48 × 10−24 ×
(1 + 14) × (1.48 × 105 kg m−3)2 × 0.5

(1 × 14 × 1.661 × 10−27 kg)2 × [m−6] × 1 × 7

×
3.3 keV barns
[keV barns]

× (8333)2/3 × exp
[
−3 × (8333)1/3

]
m−3 s−1

= 1.5 × 1015 m−3 s−1.
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(c) First calculate the energy ratio:

EG

4kT
=

2mpm15N

mp + m15N
×

c2(παZpZ15N)2

4kT

=
2 × 1u × 15u

1u + 15u
×

(2.998 × 108 m s−1)2 × (π × 1
137 × 1 × 7)2

4 × 1.381 × 10−23 J K−1 × 15.6 × 106 K

= 5.039 × 1030u
(m s−1)2

J

= 5.039 × 1030 × 1.661 × 10−27 kg
m2 s−2

kg m2 s−2
= 8370.

Next compute the fusion rate per unit mass fraction:

Rp15N

X15N
= 6.48 × 10−24 ×

(Ap + A15N)ρ2
cXp

(ApA15Nu)2[m−6]ZpZ15N
×

S(E0)

[keV barns]

(
EG

4kT

)2/3

exp

[
−3

(
EG

4kT

)1/3
]

m−3 s−1

= 6.48 × 10−24 ×
(1 + 15) × (1.48 × 105 kg m−3)2 × 0.5

(1 × 15 × 1.661 × 10−27 kg)2 × [m−6] × 1 × 7

×
78 keV barns
[keV barns]

× (8370)2/3 × exp
[
−3 × (8370)1/3

]
m−3 s−1

= 3.0 × 1016 m−3 s−1.

Exercise 3.6 (a) In equilibrium Rp12C = Rp14N, so 3.5 × 1017X12C =
0.015 × 1017X14N. This means

X14N/X12C = 3.5/0.015 = 230 and therefore 14
7N/12

6C = 12/14×230 = 200.

(b) In equilibrium Rp14N = Rp15N, so 0.015 × 1017X14N = 0.30 × 1017X15N.
This means

X14N/X15N = 0.30/0.015 = 20 and therefore 14
7N/15

7N = 15/14×20 = 21.

Exercise 3.7 (a) We begin with

RAB =
6.48 × 10−24

ArZAZB
×

nAnB

[m−6]
×

S(E0)

[keV barns]
×

(
EG

4kT

)2/3

exp

[
−3

(
EG

4kT

)1/3
]

m−3 s−1.

Following Hint 1, define

a =
6.48 × 10−24

ArZAZB
×

nAnB

[m−6]
×

S(E0)

[keV barns]

so

RAB = a

(
EG

4kT

)2/3

exp

[
−3

(
EG

4kT

)1/3
]

m−3 s−1

and in preparation for using Hint 2, write

u = a

(
EG

4kT

)2/3

and v = exp

[
−3

(
EG

4kT

)1/3
]
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so RAB = uv and then
dRAB

dT
= u

dv

dT
+ v

du

dT
.

For the sake of clarity, calculate these two parts separately.

Step 1: Calculate dv/dT .

dv

dT
=

d
dT

exp

[
−3

(
EG

4kT

)1/3
]

but using Hint 3

d exp(y)

dx
=

d exp(y)

dy
×

dy

dx
= exp(y)

dy

dx
.

Hence

dv

dT
= exp

[
−3

(
EG

4kT

)1/3
]

d
dT

[
−3

(
EG

4kT

)1/3
]

.

Note the the first exponential is just v again. Taking constants out of the
differentiation gives

dv

dT
= v

[
−3

(
EG

4k

)1/3
]

d
dT

T−1/3.

So, differentiating the T−1/3 part

dv

dT
= v

[
−3

(
EG

4k

)1/3
] (

−
1

3

)
T−4/3 = v

[(
EG

4kT

)1/3
]

1

T
.

Step 2: Calculate du/dT .

du

dT
=

d
dT

a

(
EG

4kT

)2/3

taking the constants out of the differentiation gives

du

dT
= a

(
EG

4k

)2/3 d
dT

T−2/3 = a

(
EG

4k

)2/3 (
−

2

3

)
T−5/3 = a

(
EG

4kT

)2/3 (
−

2

3

)
1

T

but the first term on the right-hand side of the equation is just u again, so

du

dT
= u

(
−

2

3

)
1

T
.

Step 3: Calculate dRAB/dT = udv/dT + vdu/dT.

Substitute the results from Steps 1 and 2:

dRAB

dT
= uv

[(
EG

4kT

)1/3
]

1

T
+ vu

(
−

2

3

)
1

T

take out the common factor uv/T

dRAB

dT
=

uv

T

[(
EG

4kT

)1/3

−
2

3

]
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and note that uv is simply RAB

dRAB

dT
=

RAB

T

[(
EG

4kT

)1/3

−
2

3

]
.

(b) From the chain rule

d loge RAB

d loge T
=

d loge RAB

dRAB

dRAB

dT

dT

d loge T
=

1

RAB

dRAB

dT

(
d loge T

dT

)−1

=
T

RAB

dRAB

dT
.

So finally

d loge RAB

d loge T
=

[(
EG

4kT

)1/3

−
2

3

]
.

Exercise 3.8 RAB ∝ T [(EG/4kT )1/3− 2
3 ], so you need to evaluate the value

ν =

(
EG

4kT

)1/3

−
2

3

for each reaction. Recall that EG = 2mrc
2(παZAZB)2 so

ν =

(
2mrc

2(παZAZB)2

4kT

)1/3

−
2

3
.

(a) For p + p, begin by calculating the reduced mass:

mr =
mpmp

mp + mp
=

m2
p

2mp
=

mp

2
=

1.673 × 10−27 kg
2

= 8.365 × 10−28 kg.

Then, using T%,c = 15.6 × 106 K we obtain

ν =

(
2mrc

2(παZpZp)
2

4kT

)1/3

−
2

3

=

(
2 × 8.365 × 10−28 kg × (2.998 × 108 m s−1)2 × (π × 1

137.0 × 1 × 1)2

4 × 1.381 × 10−23 J K−1 × 15.6 × 106 K

)1/3

−
2

3

= 3.84

i.e. Rpp ∝ T 3.8.

(b) For p + 14
7N begin by calculating the reduced mass (where the reduced mass

of 14
7N is given as m14):

mr =
mpm14

mp + m14
=

1u × 14u

1u + 14u
=

14u2

15u
=

14

15
u =

14

15
× 1.673 × 10−27 kg = 1.550 × 10−27 kg.

Then, using T%,c = 15.6 × 106 K we obtain

ν =

(
2mrc

2(παZpZ14N)2

4kT

)1/3

−
2

3

=

(
2 × 1.550 × 10−27 kg × (2.998 × 108 m s−1)2 × (π × 1

137.0 × 1 × 7)2

4 × 1.381 × 10−23 J K−1 × 15.6 × 106 K

)1/3

−
2

3

= 19.6. Therefore Rp14N ∝ T 19.6.
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Exercise 3.9 Your amended Figure 3.6 should resemble Figure S3.1.

ν = 3.8

ν = 19.6

Sun

lo
g
1
0
ε n

u
c

C
N
O

7.5

10

Sirius A

log10 Tc

−5

6.5

p-p

0
M0

7.0 8.0

5

Figure S3.1 Copy of Figure 3.6, but with lines for ε ∝ T ν added, for ν = 3.8
(p–p chain) and ν = 19.6 (CNO cycle).

Exercise 4.1 The initial hydrogen content of the Sun is 0.70M%.

If it converted all of this into helium via the proton–proton chain, 0.0066 (i.e.
≈ 0.7%) of the hydrogen mass would be converted into energy. The total mass
consumed would be

m = M% × 0.70 × 0.0066 = 1.99 × 1030 kg × 0.70 × 0.0066 = 9.2 × 1027 kg.

This corresponds to an energy

Efusion = mc2 = 9.2 × 1027 kg × (2.998 × 108 m s−1)2 = 8.3 × 1044 J

over its lifetime.

The Sun’s current luminosity is L% = 3.83 × 1026 J s−1, so it could radiate at this
rate for a lifetime given by

τnuc = Efusion/L% = 8.3 × 1044 J/3.83 × 1026 J s−1 = 2.2 × 1018 s ≈ 70 × 109 yr

if it could indeed burn all of its hydrogen to helium.

Exercise 4.2 Lifetime ∝ M/L ∝ M/M3.5 = 1/M2.5. If the solar lifetime is
10 × 109 yr, then the lifetime of a 0.5M% star will be 1/0.52.5 = 5.7 times longer,
i.e. 57× 109 yr, and the lifetime of a 10M% star will be 1/102.5 = 0.0032 times as
long, i.e. 32 × 106 yr.

Exercise 4.3 For high-mass stars, the CNO cycle dominates energy production
and the opacity is due entirely to electron scattering. For this case, ν ≈ 17. For
stars of uniform chemical composition, µ is constant, so the µ-term can be
absorbed into the unknown constant of proportionality.

(a) Equation 4.6 becomes L ∝ M3µ4, i.e. L ∝ M3.

(b) Equation 4.8 becomes

Tc ∝ M4/(ν+3) µ7/(ν+3) ∝ M4/(17+3) ∝ M4/20

i.e. Tc ∝ M0.2.
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(c) Equation 4.7 becomes

R ∝ M (ν−1)/(ν+3) µ(ν−4)/(ν+3) ∝ M (17−1)/(17+3) ∝ M16/20

i.e. R ∝ M0.8.

That is, the luminosity increases strongly with mass, the core temperature
increases weakly with mass, and the radius increases almost linearly with mass.

Exercise 4.4 For high-mass stars, the CNO cycle dominates energy production
and the opacity is due entirely to electron scattering. For this case, ν ≈ 17. For
stars of constant mass, The M -term can be absorbed into the unknown constant of
proportionality.

(a) Equation 4.6 becomes L ∝ M3µ4, i.e. L ∝ µ4.

(b) Equation 4.8 becomes

Tc ∝ M4/(ν+3)µ7/(ν+3) ∝ µ7/(17+3) ∝ µ7/20

i.e. Tc ∝ µ0.4.

(c) Equation 4.7 becomes

R ∝ M
ν−1
ν+3 µ

ν−4
ν+3 ∝ µ

17−4
17+3 ∝ µ

13
20

i.e. R ∝ µ0.7.

That is, the luminosity increases steeply with mean molecular mass, the radius
increases moderately and the core temperature increases very moderately with
mean molecular mass.

Exercise 4.5 (a) (i) For fully ionized hydrogen and helium in Big Bang
proportions, the mean molecular mass is

µ =

∑
i

ni
mi
u∑

i
ni

=
NHmp + NHemHe + Neme

u(NH + NHe + Ne)
.

Let Nnuc be the (unknown) total number of nuclei, so NH = 0.93Nnuc,
NHe = 0.07Nnuc, Ne = NH + 2NHe = 0.93Nnuc + 2 × 0.07Nnuc = 1.07Nnuc,
mHe ≈ 4mp, and me/mp = 9.109 × 10−31 kg/1.673 × 10−27 kg = 1/1837, so
me = mp/1837. Note also that mp/u = 1.673 × 10−27 kg/1.661 × 10−27 kg =
1.007.

Substituting these into the expression for µ gives:

µ =
0.93Nnucmp + 0.07Nnuc4mp + 1.07Nnuc(mp/1837)

u(0.93Nnuc + 0.07Nnuc + 1.07Nnuc)

but the Nnuc terms cancel, and mp is a common factor on the top line, so

µ =
(0.93 + 0.28 + 0.00058)

(0.93 + 0.07 + 1.07)

mp

u
= 0.58 × 1.007 = 0.58.

Note that the electrons make a negligible contribution to the mass of the material
(the numerator of the equation), but account for more than half of the number of
particles, and hence greatly affect the denominator.
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(ii) For fully ionized helium, the mean molecular mass is

µ =

∑
i

ni
mi
u∑

i
ni

=
NHemHe + Neme

u(NHe + Ne)
.

Now, Ne = 2NHe, mHe = 4mp and me = mp/1837, so

µ =
NHe4mp + 2NHe(mp/1837)

u(NHe + 2NHe)
=

(4 + 0.00109)

1 + 2

mp

u
= 1.33 × 1.007 = 1.34.

The ratio of µ in case (ii) to µ in case (i) is 1.34/0.58 = 2.3.

(b) (i) For stars burning hydrogen by the p–p chain: R ∝ µ0, so
Rfinal/Rinitial ∝ (µfinal/µinitial)

0 ∝ 2.30 ≈ 1. So the star would be the same size.

L ∝ µ4, so Lfinal/Linitial ∝ (µfinal/µinitial)
4 ∝ 2.34 ≈ 28. So the star would be a

lot brighter!

Tc ∝ µ1, so Tc,final/Tc,initial ∝ (µfinal/µinitial)
1 ∝ 2.31 ≈ 2.3. So the star would

be hotter.

(ii) For stars burning hydrogen by the CNO-cycle: R ∝ µ0.7, so
Rfinal/Rinitial ∝ (µfinal/µinitial)

0.7 ∝ 2.30.7 ≈ 1.8. So the star would expand.

L ∝ µ4, so Lfinal/Linitial ∝ (µfinal/µinitial)
4 ∝ 2.34 ≈ 28. So the star would be a

lot brighter!

Tc ∝ µ0.4, so Tc,final/Tc,initial ∝ (µfinal/µinitial)
0.4 ∝ 2.30.4 ≈ 1.4. So the star

would be hotter.

Exercise 4.6 (a) For s = 3, γ = (1 + s/2) ÷ (s/2) = (5/2) ÷ (3/2) = 5/3, so
the coefficient (γ − 1)/γ = ((5/3) − 1) ÷ (5/3) = 2/5.

(b) As s → ∞, γ → (1/s + 1/2) ÷ (1/2) = (0 + 1) ÷ 1 = 1, so the coefficient
(γ − 1)/γ = (1 − 1) ÷ 1 = 0.

The critical temperature gradient for convection is

dT

dr
<

(γ − 1)

γ

T

P

dP

dr
.

Since, in part (b), dT /dr < 0 and (γ − 1)/γ = 0, this material is always unstable
to convection.

Exercise 5.1 (a) µ′(84Be) = µ′(42He) + µ′(42He) = 2µ′(42He).

(b) Since the chemical potential is µ′ = mc2 − kT loge(gsnQNR/n), in this case
the result of part (a) and Equation 5.1 give

m8c
2 − kT loge

(
g8 nQ8

n8

)
= 2

[
m4c

2 − kT loge

(
g4 nQ4

n4

)]
.

We need to find an expression for n8/n4, so rearrange the equation to work
towards that goal. As a first step, collect the logarithms on one side and the mc2

terms on the other:

m8c
2 − 2m4c

2 = kT

(
loge

(
g8 nQ8

n8

)
− 2 loge

(
g4 nQ4

n4

))
(m8 − 2m4)c

2

kT
= loge

[
(g8 nQ8/n8)

(g4 nQ4/n4)
2

]
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exp

[
(m8 − 2m4)c

2

kT

]
=

(g8 nQ8/n8)

(g4 nQ4/n4)
2

n8

n2
4

= exp

[
−(m8 − 2m4)c

2

kT

]
g8 nQ8

(g4 nQ4)2
. (5.9)

Since nQA = (2πmAkT/h2)3/2, the nQ-term at the end of Equation 5.9 is

nQ8

(nQ4)2
=

(
2πm8kT/h2

)3/2[
(2πm4kT/h2)3/2

]2 =

(
2πm8kT/h2

)3/2

(2πm4kT/h2)3
=

(
2πkT

h2

)−3/2 (
m8

m2
4

)3/2

.

Substituting this into Equation 5.9 gives

n8

n2
4

= exp

[
−(m8 − 2m4)c

2

kT

]
g8

g2
4

(
m8

m2
4

)3/2 (
h2

2πkT

)3/2

.

As we want to find the relative abundances of the nuclei, n8/n4, we must multiply
both sides by n4. Doing this, and using n4 = ρX4/m4, we obtain the final
expression

n8

n4
= exp

[
−(m8 − 2m4)c

2

kT

]
g8

g2
4

ρX4
m

3/2
8

m4
4

(
h2

2πkT

)3/2

. (5.10)

We assume that the material is primarily 4
2He, so X4 = 1. In evaluating the

ratio m
3/2
8 /m4

4 we can use the approximation m4 = 4u and m8 = 8u, but
the term m8 − 2m4 involves the subtraction of nearly equal numbers, and
for that we cannot use this approximation. However, we are given that
ΔQ = (2m4 −m8)c

2 = −91.8 keV so (m8 − 2m4)c
2 = 91.8 keV. We calculated

the polarizations g4 and g8 in the bulleted question at the end of Section 5.2.

So, evaluating Equation 5.10 at T = 2 × 108 K and ρ = 108 kg m−3 gives:

n8

n4
= exp

[
−

91.8 keV × 1.602 × 10−16 J keV−1

1.381 × 10−23 J K−1 × 2 × 108 K

]
×

1

12
× 108 kg m−3 × 1

×
(8u)3/2

(4u)4
×

(
(6.626 × 10−34 J s)2

2π × 1.381 × 10−23 J K−1 × 2 × 108 K

)3/2

= 4.87 × 10−3 × 108 kg m−3 × 0.0884u−5/2 × 1.27 × 10−79 J3/2 s3

= 5.47 × 10−75 × (1.661 × 10−27)−5/2 kg−3/2 m−3 J3/2 s3

= 4.86 × 10−8.

Equivalently, n4/n8 = 1/4.86 × 10−8 = 2.1 × 107. That is, there is roughly one
8
4Be nucleus for every 21 million 4

2He nuclei!

Exercise 5.2 (a) The Gamow energy is EG = 2mrc
2(παZAZB)2, where mr

is the reduced mass of the two-body system, given by mr = mAmB/(mA + mB).

Begin by calculating the reduced mass:

mr =
m4m4

m4 + m4
=

m2
4

2m4
=

m4

2
= 2u = 2 × 1.661 × 10−27 kg = 3.322 × 10−27 kg.
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Then

EG = 2mrc
2(παZ4Z4)

2

= 2 × 3.322 × 10−27 kg × (2.998 × 108 m s−1)2 ×

(
π ×

1

137.0
× 2 × 2

)2

= 5.024 × 10−12 J.

Since 1 eV = 1.602 × 10−19 J, the Gamow energy,
EG = 5.024 × 10−12 J/1.602 × 10−19 J eV−1 = 31.4 MeV.

(b) The energy of the Gamow peak is E0 = (EG(kT )2/4)1/3. So, cubing both
sides and multiplying by 4/EG gives (kT )2 = 4E3

0/EG. Taking the square root
and dividing by k gives

T =
2

k

√
E3

0

EG
.

Now ΔQ = 91.8 keV can be written in SI units as
ΔQ = 91.8 keV × 1.602 × 10−16 J keV−1 = 1.47 × 10−14 J. So, if the energy of
the Gamow peak coincides with this value of ΔQ, then

T =
2

k

√
E3

0

EG
=

2

1.381 × 10−23 J K−1

√
(1.47 × 10−14 J)3

5.024 × 10−12 J

= 1.448 × 1023J−1 K × 7.95 × 10−16 J = 1.15 × 108 K.

Exercise 5.3 (a) The Gamow energy is EG = 2mrc
2(παZAZB)2, where mr

is the reduced mass of the two-body system, given by mr = mAmB/(mA + mB).

Begin by calculating the reduced mass:

mr =
m4m8

m4 + m8
=

4u × 8u

4u + 8u
=

32u2

12u
=

8u

3
= 8 × 1.661 × 10−27 kg/3 = 4.429 × 10−27 kg.

Then

EG = 2mrc
2(παZ4Z8)

2

= 2 × 4.429 × 10−27 kg × (2.998 × 108 m s−1)2 ×

(
π ×

1

137.0
× 2 × 4

)2

= 2.679 × 10−11 J.

Since 1 eV = 1.602 × 10−19 J, the Gamow energy,
EG = 2.679 × 10−11 J/1.602 × 10−19 J eV−1 = 167.2 MeV.

(b) The energy of the Gamow peak is E0 = (EG(kT )2/4)1/3. So, cubing both
sides and multiplying by 4/EG gives (kT )2 = 4E3

0/EG. Taking the square root
and dividing by k gives

T =
2

k

√
E3

0

EG
.

Now ΔQ = 287.7 keV can be written in SI units as
ΔQ = 287.7 keV × 1.602 × 10−16 J keV−1 = 4.611 × 10−14 J. So, if the energy
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of the Gamow peak coincides with this value of ΔQ, then

T =
2

k

√
E3

0

EG
=

2

1.381 × 10−23 J K−1

√
(4.611 × 10−14 J)3

2.679 × 10−11 J

= 1.448 × 1023J−1 K × 1.913 × 10−15 J = 2.77 × 108 K.

Exercise 5.4 (a) Ignoring the electronic parts, we find the mass defect is
minitial − mfinal = 3 × 4.002 60 amu − 12 amu = 0.007 800 amu.

(b) Using E = Δm c2 we have E = (0.007 800 × 1.661 × 10−27 kg)
×(2.998 × 108 m s−1)2 = 1.164 × 10−12 J. Since 1 eV = 1.602 × 10−19 J, this is
equivalent to E = 1.164 × 10−12 J / 1.602 × 10−19 J eV−1 = 7.269 × 106 eV or
about 7.27 MeV.

In the earlier subsections, Step 1 is said to require 91.8 keV and Step 2 is said to
require 287.7 keV, whilst Step 3 releases 7.65 MeV. The net energy released is
therefore (7.65 − 0.2877 − 0.0918) MeV = 7.27 MeV, in agreement with the
above.

(c) As a fraction of the initial mass this is
0.007 800 amu/(3 × 4.002 60 amu) = 0.000 65. Recall that for hydrogen burning,
the mass defect corresponds to 0.0066 of the initial mass, a factor of ten larger.

Exercise 5.5 (a) (i) For the proton

λdB(p) = h/(3mpkT )1/2

=
6.626 × 10−34 J s√

3 × 1.673 × 10−27 kg × 1.381 × 10−23 J K−1 × 15.6 × 106 K

= 6.372 × 10−13 m.

(ii) For the electron

λdB(e) = h/(3mekT )1/2

=
6.626 × 10−34 J s√

3 × 9.109 × 10−31 kg × 1.381 × 10−23 J K−1 × 15.6 × 106 K

= 2.731 × 10−11 m.

(b) The ratio of de Broglie wavelengths is therefore

λdB(e)
λdB(p)

=
h

(3mekT )1/2
×

(3mpkT )1/2

h
=

(
mp

me

)1/2

=

(
1.673 × 10−27 kg
9.109 × 10−31 kg

)1/2

= 42.85.

The de Broglie wavelength of an electron is greater than that of a proton, by a
factor of ≈ 43.

(c) From part (b), this ratio depends only on the mass of the particles, and hence
is independent of the environment and hence of the temperature. The electron’s
wavelength is ≈ 43 times longer than the proton’s in any star. Since a proton and
a neutron have nearly the same mass, we can say that the de Broglie wavelength
of an electron is about 40 times greater than that of a nucleon in any star.
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Exercise 5.6 The second condition is n ' nQ, i.e. n ' (2πmkT/h2)3/2.

Since n = 1/l3, substituting for n gives 1/l3 ' (2πmkT/h2)3/2.

Taking the (1/3)-power gives 1/l ' (2πmkT/h2)1/2, and multiplying through by
l/(2πmkT/h2)1/2 gives

l ) h/(2πmkT )1/2 = (3/2π)1/2 × h/(3mkT )1/2 = (3/2π)1/2 × λdB < 0.7λdB.

That is, from the second degeneracy condition n ' nQ we obtain the first
degeneracy condition l ) λdB.

Exercise 5.7 (a) nQ = (2πmkT/h2)3/2, so the degeneracy condition
n ' nQ implies that n ' (2πmkT/h2)3/2.

Taking the (2/3)-power and multiplying both sides by h2/2πm gives
n2/3h2/(2πm) ' kT , i.e. kT ) n2/3h2/(2πm).

The third equivalent condition for degeneracy is: the gas is degenerate if its
temperature T ) n2/3h2/(2πmk).

(b) (i) np = ρ%,cXH/mp = 1.48 × 105 kg m−3 ×0.5/1.673 × 10−27 kg =
4.42 × 1031 m−3 (i.e. hydrogen nuclei per m3).

Therefore

h2n
2/3
p

2πmpk
=

(6.626 × 10−34 J s)2 × (4.42 × 1031 m−3)2/3

(2 × π × 1.673 × 10−27 kg × 1.381 × 10−23 J K−1)

= 3.78 × 103 J s2 m−2 kg−1 K ≈ 3780 K.

(ii) In the solar core, all atoms are ionized. The electrons are provided by the
hydrogen and helium which each account for 0.5 of the composition by mass.

ne = np + 2nHe =
ρ%,cXH

mp
+

2ρ%,cXHe

mHe
= ρ%,c

(
XH

mp
+

2XHe

4u

)
= 1.48 × 105 kg m−3

(
0.5

1.673 × 10−27 kg
+

2 × 0.5

4 × 1.661 × 10−27 kg

)
= 6.65 × 1031 m−3.

Therefore

h2n
2/3
e

2πmek
=

(6.626 × 10−34 J s)2 × (6.65 × 1031 m−3)2/3

(2 × π × 9.109 × 10−31 kg × 1.381 × 10−23 J K−1)

= 9.12 × 106 J s2 m−2 kg−1 K ≈ 9.12 × 106 K.

(c) The temperature condition for degeneracy is T ) n2/3h2/(2πmk).
T%,c = 15.6 × 106 K, so the temperature in the core of the Sun is (i) much too
high for proton degeneracy to have set in, and (ii) marginally too high for electron
degeneracy to have set in.

Exercise 6.1 (a) Equating the core pressure Pc = (π/36)1/3GM2/3ρ
4/3
c to

the pressure of non-relativistic degenerate electrons PNR = KNR(ρcYe/mH)5/3,
where KNR = (h2/5me) (3/8π)2/3, we have KNR(ρcYe/mH)5/3 =

(π/36)1/3GM2/3ρ
4/3
c .
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Collecting terms in ρc on the left-hand side, and all others on the right, we get

ρ1/3
c =

( π

36

)1/3 G

KNR

m
5/3
H

Y
5/3
e

M2/3

cubing this gives

ρc =
( π

36

) (
G

KNR

)3 m5
H

Y 5
e

M2

and substituting for KNR gives

ρc =
( π

36

) (
5me

h2

)3 (
8π

3

)2

G3 m5
H

Y 5
e

M2.

Consolidating the numerical factors, we have

ρc =

(
16π3

81

) (
5me

h2

)3

G3 m5
H

Y 5
e

M2.

(b) The electron number density in the core of the star is ne = ρcYe/mH, so
substituting the core density from above gives

ne =

(
16π3

81

) (
5me

h2

)3

G3 m4
H

Y 4
e

M2.

Exercise 6.2 The Fermi energy is

EF ≈
25

2

(
2π2

27

)2/3 (
G

h

)2 (
mH

Ye

)8/3

M4/3me

which as a fraction of the electron rest-mass energy is

EF

mec2
≈

25

2

(
2π2

27

)2/3 (
G

h

)2 (
mH

Ye

)8/3 M4/3

c2
.

So in this case for a 0.4 M% white dwarf, the Fermi energy as a fraction of the
electron rest-mass energy is

EF

mec2
≈

25

2

(
2π2

27

)2/3 (
6.673 × 10−11 N m2 kg−2

6.626 × 10−34 J s

)2 (
1.673 × 10−27 kg

0.5

)8/3
(0.4 × 1.99 × 1030 kg)4/3

(2.998 × 108 m s−1)2

≈ 0.228.

Exercise 6.3 (a) For the ultra-relativistic case, equating PUR to
Pc gives PUR = KUR(ρcYe/mH)4/3 = (π/36)1/3GM2/3ρ

4/3
c where

KUR = (hc/4)(3/8π)1/3.

Note that in contrast to the non-relativistic case, the density term is the same on
both sides (ρ4/3

c ), so cancels, leaving

KUR

(
Ye

mH

)4/3

=
( π

36

)1/3
GM2/3.

Collecting M on one side and swapping left and right sides, gives

M2/3 =

(
36

π

)1/3 (
KUR

G

) (
Ye

mH

)4/3

.
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Taking the (3/2)-power and substituting for KUR gives

M =

(
36

π

)1/2
(

(hc/4)(3/8π)1/3

G

)3/2 (
Ye

mH

)2

=

(
3 × 36

43 × 8π2

)1/2 (
hc

G

)3/2 (
Ye

mH

)2

=
1

π

(
27

128

)1/2 (
hc

G

)3/2 (
Ye

mH

)2

.

(b) Putting in the numbers we have

M =
1

π

(
27

128

)1/2 (
hc

G

)3/2 (
Ye

mH

)2

=
1

π

(
27

128

)1/2 (
6.626 × 10−34 J s × 2.998 × 108 m s−1

6.673 × 10−11 N m2 kg−2

)3/2 (
0.5

1.673 × 10−27 kg

)2

= 2.121 × 1030 kg.

Since M% = 1.99 × 1030 kg,M = 2.121 × 1030 kg/1.99 × 1030 kg M−1
% =

1.07 M%.

Exercise 6.4 (a) The radius as a function of mass and average density is
R = (3M/4π〈ρ〉)1/3 .

(b) If the average density is 1/6 of the core density, then R = (9M/2πρc)
1/3 .

(c) Substituting the core density gives:

RWD =

(
9M

2π

)1/3 (
16π3

81

)−1/3 (
5me

h2

)−1

G−1 m
−5/3
H

Y
−5/3
e

M−2/3.

Rearranging the terms with negative powers

RWD =

(
9M

2π

)1/3 (
81

16π3

)1/3 (
h2

5me

)
Y

5/3
e

Gm
5/3
H

M−2/3.

Now consolidate the mass terms and the numerical factors

RWD =

(
729

32π4

)1/3 (
h2

5me

)
Y

5/3
e

Gm
5/3
H

M−1/3.

Now for convenience, express the mass in solar units

RWD =

(
729

32π4

)1/3 (
h2

5me

)
Y

5/3
e

Gm
5/3
H

(
M

M%

)−1/3

×(1.99×1030 kg M−1
% )−1/3.

Then putting in the numbers

RWD =

(
729

32π4

)1/3 (6.626 × 10−34 J s)2

(5 × 9.109 × 10−31 kg)

(0.5)5/3 × (1.99 × 1030 kg M−1
% )−1/3

(6.673 × 10−11 N m2 kg−2) × (1.673 × 10−27 kg)5/3

(
M

M%

)−1/3

.

And so

RWD = 9.45 × 106

(
M

M%

)−1/3

m.
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Since R% = 6.96 × 108 m,

RWD =

(
9.45 × 106 m

6.96 × 108 m R−1
%

)
×

(
M

M%

)−1/3

=
R%
74

×

(
M

M%

)−1/3

.

(d) Since REarth = 6.4 × 106 m,

RWD =

(
9.45 × 106 m

6.4 × 106 m R−1
Earth

)
×

(
M

M%

)−1/3

= 1.5 REarth ×

(
M

M%

)−1/3

.

Exercise 6.5

Table S6.1 Nucleosynthesis processes

Process Major reactions Products Mass range of stars Ignition temp/K Timescale

Big Bang (not studied) 1
1H, 2

1H, 3
2He (not applicable) (not studied) ∼ 15 minutes

4
2He, 7

4Li

H-burning p–p chain (3 branches) 4
2He Mms ≥ 0.08 M% (2–10) × 106 ∼ 107 to

CNO cycle 4
2He, 13

6C, 14
7N 1010 yr

He-burning triple-alpha process 12
6C, 16

8O Mms ≥ 0.5 M% (1–2) × 108 ∼ 106 yr

C-burning 12
6C + 12

6C 20
10Ne + 4

2He Mms ≥ 8 M% (5–9) × 108 ∼ 500 yr
12
6C + 12

6C 23
11Na + p

12
6C + 12

6C 23
12Mg + n

Ne-burning 20
10Ne + γ 16

8O + 4
2He Mms ≥ 10 M% (1–2) × 109 ∼ 1 yr

20
10Ne + 4

2He 24
12Mg

O-burning 16
8O + 16

8O 28
14Si + 4

2He Mms ≥ 10 M% (2–3) × 109 ∼ 6 months

Si-burning 28
14Si + γ 24

12Mg + 4
2He Mms ≥ 11 M% (3–4) × 109 ∼ 1 day

28
14Si + n 4

2He 32
16S, 36

18Ar,

(successive captures 40
20Ca, 44

20Ca,

of α-particles) 48
22Ti, 52

24Cr, 56
26Fe

neutron- A
ZX + n A+1

ZX
capture
β-decay A+1

ZX A+1
Z+1(X + 1) +e− + νe

s-process Zr, Mo, Ba, Ce, Mms ≥ 1 M% ∼ 104 yr

Pb, Bi

r-process Kr, Sr, Te, Xe, Mms ≥ 10 M% ∼ 1 second

Cs, Os, Pt, Au,

Hg, Th, U
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Exercise 7.1 We begin by balancing the chemical potentials:

µ′
4 = 2µ′

p + 2µ′
n

and since µ′ = mc2 − kT loge(gsnQNR/n) we have

m4c
2−kT loge

(
g4 nQ4

n4

)
= 2mpc

2−2kT loge

(
gp nQp

np

)
+2mnc

2−2kT loge

(
gn nQn

nn

)
where m4, mp and mn are the masses of a helium-4 nucleus, a proton and
a neutron respectively; nQ4, nQp and nQn are the non-relativistic quantum
concentrations of a helium-4 nucleus, a proton and a neutron respectively; g4, gp

and gn are the number of polarizations of helium-4 nuclei, protons and neutrons
respectively; and n4, np and nn are the number densities of helium-4 nuclei,
protons and neutrons respectively. This may be rearranged as

2mpc
2 +2mnc

2−m4c
2 = kT loge

[(
gp nQp

np

)2 (
gn nQn

nn

)2 (
g4 nQ4

n4

)−1
]

.

The left-hand side is simply ΔQ, so taking the exponential of both sides and
rearranging slightly, we have:

exp

(
ΔQ

kT

)
=

(gp nQp/np)
2(gn nQn/nn)

2

g4 nQ4/n4
.

Since we are interested in the proportion of helium-4 nuclei that are dissociated,
we take this fraction onto the left-hand side to get:

n2
p n2

n

n4
=

g2
p g2

n

g4

n2
Qp n2

Qn

nQ4
exp

(
−

ΔQ

kT

)
.

Exercise 7.2 The number of particles is N = M /m. For a total core mass of
M = (1/2) × 1.4 M%, the number of helium-4 nuclei is N = (1/2) × 1.4 M% /
4u = (0.7 × 1.99 × 1030 kg) / (4 × 1.661 × 10−27 kg) = 2.10 × 1056 nuclei.

Each nucleus absorbs 28.3 MeV = 28.3 × 106 eV × 1.602 × 10−19 J eV−1 =
4.534 × 10−12 J.

So the core absorbs 2.10 ×1056 × 4.534 × 10−12 J = 9.5 ×1044 J by the
photodisintegration of helium-4 nuclei.
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Exercise 7.3

Table S7.1 Properties of white dwarfs and neutron stars

White dwarf Neutron star
(a) Pressure of non-relativistic
degenerate matter

PNR = h2

5me

(
3
8π

)2/3
n

5/3
e PNR = h2

5mn

(
3
8π

)2/3
n

5/3
n

(b) In terms of mass density
ne = Yeρc/mH nn = ρc/mn

PNR = h2

5me

(
3
8π

)2/3
(

Yeρc

mH

)5/3
PNR = h2

5mn

(
3
8π

)2/3
(

ρc

mn

)5/3

(c) Clayton model

Pc = (π/36)1/3GM2/3ρ
4/3
c Pc = (π/36)1/3GM2/3ρ

4/3
c

ρc = (36/π)1/4G−3/4M−1/2P
3/4
c ρc = (36/π)1/4G−3/4M−1/2P

3/4
c

(d) Put (b) into (c)

ρc =
(

36
π

)1/4
G−3/4M−1/2 ρc =

(
36
π

)1/4
G−3/4M−1/2

×

[
h2

5me

(
3
8π

)2/3
(

Yeρc

mH

)5/3
]3/4

×

[
h2

5mn

(
3
8π

)2/3
(

ρc

mn

)5/3
]3/4

=
(

36
π

)1/4
G−3/4M−1/2 =

(
36
π

)1/4
G−3/4M−1/2

×
(

h2

5me

)3/4 (
3
8π

)1/2
(

Yeρc

mH

)5/4
×

(
h2

5mn

)3/4 (
3
8π

)1/2
(

ρc

mn

)5/4

Collect powers of ρc

ρ
−1/4
c =

(
36
π

)1/4
G−3/4M−1/2 ρ

−1/4
c =

(
36
π

)1/4
G−3/4M−1/2

×
(

h2

5me

)3/4 (
3
8π

)1/2
(

Ye
mH

)5/4
×

(
h2

5mn

)3/4 (
3
8π

)1/2
(

1
mn

)5/4

Raise both sides to the power 4/3

ρ
−1/3
c =

(
36
π

)1/3
G−1M−2/3 ρ

−1/3
c =

(
36
π

)1/3
G−1M−2/3

×
(

h2

5me

) (
3
8π

)2/3
(

Ye
mH

)5/3
×

(
h2

5mn

) (
3
8π

)2/3
(

1
mn

)5/3

= 3241/3

4πG

(
h2

5me

)(
Ye
mH

)5/3
M−2/3 = 3241/3

4πG

(
h2

5mn

)(
1

mn

)5/3
M−2/3

(e) Adopt 〈ρ〉 = ρc/6 in density expression

R = (3M/4π〈ρ〉)1/3 = (9M/2πρc)
1/3 R = (3M/4π〈ρ〉)1/3 = (9M/2πρc)

1/3

R = (9/2π)1/3ρ
−1/3
c M1/3 R = (9/2π)1/3ρ

−1/3
c M1/3

(f) Substitute for ρc using (d)

RWD =
(

729
32π4

)1/3 1
G

(
h2

5me

)(
Ye
mH

)5/3
M−1/3 RNS =

(
729
32π4

)1/3 1
G

(
h2

5mn

)(
1

mn

)5/3
M−1/3

Exercise 7.4 (a) Equation 7.5 may be re-arranged as

Rmax =

[
GM

(
P

2π

)2
]1/3

.
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So in this case,

Rmax =

[
6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg ×

(
1 s
2π

)2
]1/3

= 1.5 × 106 m = 1500 km.

So any object larger than 1500 km radius cannot rotate more quickly than once a
second. This effectively rules out rotating white dwarfs as the origin of pulsars.

(b) Equation 7.5 is

Pmin = 2π

(
R3

GM

)1/2

.

So in this case

Pmin = 2π

(
(104 m)3

6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

)1/2

= 0.55 × 10−3 s = 0.55 ms.

So a 1 M% neutron star can rotate as fast as 2000 times per second. Rapidly
rotating neutron stars clearly can provide an explanation for pulsars.

Exercise 7.5 The magnetic field strength is

B =
µ0m

4πR3
.

Substituting for the magnetic dipole moment,

m =

[
−

Ėrot

ω4 sin2 θ

3c3

2

4π

µ0

]1/2

we have

B =
µ0

4πR3

[
−

Ėrot

ω4 sin2 θ

3c3

2

4π

µ0

]1/2

and then substituting for the rate of loss of energy Ėrot = Iωω̇ = 2MR2ωω̇/5 we
have

B =
µ0

4πR3

[
−

2MR2ωω̇

5ω4 sin2 θ

3c3

2

4π

µ0

]1/2

.

Then collecting together some terms we get

B =
(µ0

4π

)1/2 1

R2

(
2M

5

)1/2 (
3c3

2

)1/2 (
−ω̇

ω3

)1/2 1

sin θ
.

Now we note that, since P = 2π/ω, then Ṗ = ω̇ × (−2π/ω2), so −ω̇/ω3 =
ṖP/4π2, hence

B =
(µ0

4π

)1/2 1

R2

(
2M

5

)1/2 (
3c3

2

)1/2
(ṖP )1/2

2π

1

sin θ
.

As required, this is an expression for the magnetic field strength of a pulsar in
terms of its rotation period, rate of change of rotation period, mass, radius and
other physical constants.
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Exercise 7.6 Equation 7.10 may be rearranged to give

1 +
2ω̇τ

ω
=

ω2

ω2
0

or

ω0 =

(
ω3

ω + 2ω̇τ

)1/2

.

So for the Crab pulsar we have an initial angular frequency of

ω0 =

(
(190 s−1)3

(190 s−1) + (2 ×−2.4 × 10−9 s−2 × 950 × 365 × 24 × 3600 s)

)1/2

ω0 ∼ 400 s−1.

Exercise 8.1 (a) The Jeans mass is MJ = 3kTR/2Gm. Rearranging this,
setting the mass equal to that of the Sun and setting m = 2u, gives

R = MJ
2Gm

3kT
= M%

2G 2u

3kT
.

Substituting in values gives

R = 1.99 × 1030 kg ×
2 × 6.673 ×−11 N m2 kg−2 × 2 × 1.661 × 10−27 kg

3 × 1.381 × 10−23 J K−1 × 20 K
= 1.07 × 1015 m.

This is the Jeans length for a solar mass of molecular hydrogen at a temperature of
20 K.

Since 1 pc = 3.086 ×1016 m, 1 AU = 1.496 ×1011 m, and R% = 6.96 × 108 m, we
can also express this distance as

R = 1.07 × 1015 m/3.086 × 1016 m pc−1 = 0.0347 pc (≈ 0.03 pc)

R = 1.07 × 1015 m/1.496 × 1011 m AU−1 = 7.15 × 103 AU (≈ 7000 AU)

R = 1.07 × 1015 m/6.96 × 108 m R−1
% = 1.54 × 106 R% (≈ 1.5 million R%).

So, a cloud of molecular hydrogen at 20 K with a mass equal to that of the Sun
will collapse if its radius is less than about 7000 AU.

(b) The Jeans density is

ρJ =
3

4πM2

(
3kT

2Gm

)3

so in this case

ρJ =
3

4π(1.99 × 1030 kg)2

(
3 × 1.381 × 10−23 J K−1 × 20 K

2 × 6.673 × 10−11 N m2 kg−2 × 2 × 1.661 × 10−27 kg

)3

∼ 4 × 10−16 kg m−3.

The Jeans density for a 1 M% cloud of molecular hydrogen at 20 K is
4 × 10−16 kg m−3 or about 120 billion molecules per cubic metre.

Exercise 8.2 The density is

ρ = ρJ =
3

4πM2

(
3kT

2Gm

)3
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so the free-fall time is found by substituting this in Equation 2.5:

τff =

(
3π

32G

1

ρ

)1/2

=

(
3π

32G

4πM2

3

(
2Gm

3kT

)3
)1/2

=

(
(πG)2M2

(
m

3kT

)3
)1/2

.

The mass of the molecules of H2 is m ≈ 2u, so putting M = M% we have

τff =

(
(πG)2M2

%

(
2u

3kT

)3
)1/2

= πGM%
(

2u

3kT

)3/2

= π × 6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg ×

(
2 × 1.661 × 10−27 kg

3 × 1.381 × 10−23 J K−1 × 20 K

)3/2

= 3.35 × 1012 s ≈ 1.1 × 105 yr.

So, a 1 M% cloud of molecular hydrogen at 20 K with the Jeans density will
collapse (if unopposed by internal pressure) within about one hundred thousand
years.

Exercise 8.3 The Jeans density is

ρJ =
3

4πM2

(
3kT

2Gm

)3

which can be rearranged to give

MJ =

√
3

4πρJ

(
3kT

2Gm

)3

.

We now substitute into this ρJ = nm to give

MJ =

(
3

4πnm

)1/2 (
3kT

2Gm

)3/2

.

We can now evaluate the Jeans masses.

(a) Using m ≈ 1u (i.e. 1 amu) for neutral atomic hydrogen,

MJ =

(
3 × 1.381 × 10−23 J K−1 × 100 K

2 × 6.673 × 10−11 N m2 kg−2 × 1.661 × 10−27 kg

)3/2

×

(
3

4π × 106 m−3 × 1.661 × 10−27 kg

)1/2

= 3.06 × 1034 kg.

Since 1 M% = 1.99× 1030 kg, we have MJ = 3.06× 1034 kg/1.99× 1030 kg M−1
%

= 1.54 × 104 M%.

(b) Using m ≈ 2u (i.e. 2 amu) for molecular hydrogen,

MJ =

(
3 × 1.381 × 10−23 J K−1 × 10 K

2 × 6.673 × 10−11 N m2 kg−2 × 2 × 1.661 × 10−27 kg

)3/2 (
3

4π × 109 m−3 × 2 × 1.661 × 10−27 kg

)1/2

= 7.66 × 1030 kg.

Since 1 M% = 1.99×1030 kg, we have MJ = 7.66×1030 kg/1.99×1030 kg M−1
%

= 3.85 M%.
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Exercise 8.4 (a) Beginning with the Jeans mass (written in terms of density
and temperature)

MJ =

√
3

4πρJ

(
3kT

2Gm

)3

we re-arrange this to get(
4πρJ

3

)1/2 (
2Gm

3k

)3/2

MJ = T 3/2.

Raising each side to the (2/3)-power, and re-ordering the terms gives

T =
2Gm

3k

(
4π

3

)1/3

M
2/3
J ρ

1/3
J .

(b) Since log10 AB = log10 A + log10 B, and log10 Ak = k log10 A, we get

log10 T = log10

(
2Gm

3k

(
4π

3

)1/3
)

+
2

3
log10 MJ +

1

3
log10 ρJ.

The first term on the right-hand side of the equation is merely a constant,
whereas the second and third terms depend on mass and density. Drawn in
the log temperature versus log density plane, the curve of T against ρJ for a
given protostellar mass MJ is a straight line of slope 1/3. The Jeans line for a
protostellar mass 10 times higher (or lower) is also a straight line of slope 1/3, but
offset vertically from the first by +2/3 (or –2/3) logarithmic units.

Exercise 8.5 (a) We have two expressions for pressure, P ∝ ργ for an
adiabatic process, and P = ρkT/m for an ideal gas.

Substituting for P in the first gives ρkT/m ∝ ργ .

Dividing both sides by ρk/m gives T ∝ (m/k)ργ−1, but m and k are both
constants, so we can write T ∝ ργ−1.

(b) Since T ∝ ργ−1, we can also write T = constant × ργ−1.
Taking logarithms of both sides of the equation gives
log10 T = log10(constant) + (γ − 1) log10 ρ.
Therefore the adiabats are straight lines of slope γ − 1.

(c) Since

γ =
1 + (s/2)

(s/2)
,

so for s = 3, then γ = 5/3, and the slope γ − 1 of the adiabat of an ideal gas with
three degrees of freedom is 5/3 – 3/3 = 2/3.

(d) s takes values from 3 to ∞, so γ takes values from 5/3 to 1, and the slope is
in the range from 2/3 to 0.

(e) If γ = 4/3, then the adiabat has slope γ − 1 = 1/3.

Exercise 8.6 (a) Using Equation 8.5,

EDI =
M

2mH
ED +

M

mH
EI =

1.99 × 1030 kg
1.673 × 10−27 kg

(
4.5 eV

2
+ 13.6 eV

)
= 1.885 × 1058 eV.
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Since 1 eV = 1.602 × 10−19 J, this is equivalent to
(1.885 × 1058 eV) × (1.602 × 10−19 J eV−1) ∼ 3 × 1039 J.

(b) Equating this energy to the change in gravitational potential energy, we have

GM2

R2
−

GM2

R1
∼ 3 × 1039 J

so

R2 = GM2

(
GM2

R1
+ 3 × 1039 J

)−1

= 6.673 × 10−11 N m2 kg−2 × (1.99 × 1030 kg)2

×

(
6.673 × 10−11 N m2 kg−2 × (1.99 × 1030 kg)2

1015 m
+ 3 × 1039 J

)−1

= 8.8 × 1010 m.

Hence the cloud collapses to a radius of about 1011 m or ≈ 150 R%.

Exercise 8.7 Equation 8.8 can be re-written as

N(M1)

N(M2)
=

(
M1

M2

)−2.35

where M1 and M2 are two particular masses. So the number of stars with each
mass are:

N(50) =

(
50

100

)−2.35

∼ 5 and N(10) =

(
10

100

)−2.35

∼ 200,

N(5) =

(
5

100

)−2.35

∼ 1000 and N(1) =

(
1

100

)−2.35

∼ 50 000,

N(0.5) =

(
0.5

100

)−2.35

∼ 250 000 and N(0.1) =

(
0.1

100

)−2.35

∼ 11 million.
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