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Solutions to exercises

Exercise I.l1 Using Equation 1.1, L = 47 R%0T, e4H’ the luminosities
corresponding to each combination of radius and temperature are as shown in
Table S1.1. (Remember to first convert the radii from solar units to metres, in
order to calculate the luminosity L in watts. Then divide by the solar luminosity
Lq to convert the answer into solar units.)

As an example, the first entry in Table S1.1 may be calculated as follows:
L =47R*0 T
= 4m x (0.1 x 6.96 x 108 m)? x (5.671 x 1073 Jm~2 K™% s71) x (2000 K)*
L
_ 27 —1 _ 22 1 —1 ©
=5.52x10"Js " =552 x 10 Js X I8 < 108 W

=144 x107* L,

Since Figure 1.1 has logarithmic axes, in order to plot this value, note that
log;((1.44 x 10~%) = —3.84. Hence one end of the line connecting points with
R = 0.1Rg lies at the point log,o(L/Le) = —3.84, Tex = 2000 K. The set

of lines of constant radii illustrating all the results in Table S1.1 is shown on
Figure S1.1 overleaf.

Table SI1.1 Luminosities for stars of a given temperature and radius, for use

with Exercise 1.1.
Teff R:O].R® R:1R®
2000K L=144x10""Ly L=144x10"2Lg
4000K L=231x10%Ly L=231x10"'Lg
6000K L=1.17x10"2Lg L=117Lg
10000K L =09.01x1072Lg L=9.01Lg
20000 K L=144L1g L =144 Lg
40000 K L =231Lg L =231x10°Lg
Tost R=10Rg R =100 R
2000 K L=144L¢ L =144 x10%Lg
4000 K L =231Lg L =231x10°Lg
6000 K L=117Lg L =117 x10* L,
10000 K L =901Lg L =901 x 10*Lg
20000K L =144x10*Lsy L =1.44x10Lg
40000K L =231x10°Ly, L =231x10"Lg

Exercise 1.2 Let us suppose the Sun contains /V ions in total. Each hydrogen
ion will be matched by one electron, whereas each helium ion will be matched by

two electrons. The mean molecular mass . is therefore

Nu(mpu/u) + Nue(mue/u) + Ne(me/u)

Mo =

Ny + Nge + Ne
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Figure S1.1 A schematic Hertzsprung—Russell diagram. The sloping lines

indicate where stars would have radii R = 0.1 R, R, 10Rg and 100 R,

Given the proportions in the question, Nyy = 0.927N, Ny = 0.073N and

Ne = 0.927N + (2 x 0.073N) = 1.073N. Assuming my/u ~ 1, mpe/u ~ 4
and me/u =~ 0, we can write

_ 0.927N + (0.073N x 4)
RO ™ 0,027 +0.073 + 1.073)N

So the mean molecular mass is p ~ 0.6 or mg ~ 0.6u.

~1.219/2.073 =~ 0.6.

Exercise 1.3 With a Kramers opacity, the opacity is given by

#(r) o< p(r)/T35(r). Using the argument from the previous example, the mean
opacity may be expressed as simply % oc p/T2-5, where T is the star’s central
temperature and p is its mean density. Now, from Worked Example 1.1, we
already have the relationships 7 oc M/R? and T, o M /R, where M and R are

the mass and radius of the star. So, the mean value of the Kramers opacity may be
re-written as & oc RO2 /M2,

We derive the same penultimate equation as in the previous worked example,
namely L oc M3 /R, where L is the star’s surface luminosity. So, using the
relationship above, this becomes L oc M®>R~0-5,

Exercise 1.4 The second branch of the proton—proton chain will include
one electron—positron annihilation reaction as only one instance of the initial
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proton+proton reaction is involved. The overall reaction may be written as
2¢” + 4p — jHe + ve(pp) + ve(Be) +pd + e + 2%,

where v, (pp) is the electron neutrino released by the proton+proton reaction step,
ve(Be) is the electron neutrino released by the beryllium-7 electron capture
reaction step, pq is the gamma-ray released by the proton+deuterium reaction
step, e 18 the gamma-ray released by the helium-3 + helium-4 reaction step, and
2, are the gamma-rays released by the electron—positron annihilation step.

Now, using the masses from earlier, i.e. 1.672 623 x 10727 kg for the }H nucleus
and 6.644 656 x 10727 kg for the §He nucleus, the mass defect can be calculated
as

Am = initial mass — final mass
= 2m(e”) + m(4p) — m(3He) — m(ve(pp)) — m(ve(Be)) — m(ypa) — m(vie) — m(27e)
=1.8218 x 1073 kg + 6.690492 x 10~ 2" kg — 6.644 656 x 102" kg—0—0—0—0—0
= 4.7658 x 10~ kg.

Exactly as for branch ppl, for branch ppll the energy equivalent £ = (Am)c? is
4.2833 x 10712 J or 26.74 MeV.

This includes the energy that goes into the y-rays, which is then absorbed by the
surrounding gas. As before, the two neutrinos escape the star without depositing
their energy, which in this case removes 0.26 MeV for the v, (pp) neutrino and
(0.9 x 0.86) + (0.1 x 0.38) MeV =0.81 MeV for the v,(Be) neutrino. This
leaves 26.74 MeV — (.26 MeV — 0.81 MeV = 25.67 MeV for the star.

Exercise 2.1 The free-fall time for the Sun is

1/2 1/2
. ( 3 ) B < 3 >
T7\32Gp)  ~ \32x (6673 x 10 Nm? kg 2) x (1.41 x 103 kg m—3)
= 1770 s.

The free-fall time of the Sun is therefore about half an hour.

Exercise 2.2 The limiting case is when f = 0.5. So, the first term in
Equation 2.19
363c (1-f)\* (36 3 % 2.998 x 108 m s~ 1-05\""
T 4o [

T Ax567Lx 105 Im 2K ts1 0.5
=6.029 x 10° m'/? s K? kg~ /2.
The second term in Equation 2.19 becomes
2 —23 7 =1 \ 2
(%) - (0.163511.26110x 15—1; kg> = 1,920 107 m K,
Finally, the third term in Equation 2.19 becomes
1y ! v 1.835 x 10" kg¥? m~9/% ¢
(G) (6.673 % 10~ N m2 kg—2> ‘ gomos
So the upper mass limit for a star is given by
M =~ (6.029 x 10® m"/2 s K? kg™ /?) x (1.920 x 10°* m* s™* K~2) x (1.835 x 10"° kg®/? m~/2 §%)
~ 2.12 x 1032 kg ~ 100 M.
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Exercise 2.3 The Kelvin—Helmholtz timescale for the Sun is

GMZ  6.673 x 107 N'm? kg™? x (1.99 x 10°0 kg)?
RoLo 6.96 x 108 m x 3.83 x 1026 Js~!

This is equivalent to 9.90 x 10'* s/ (365.25 x 24 x 3600) s yr—! ~ 3 x 107 yr.

=9.90 x 10™ s.

TKH,o =

Exercise 2.4 For a 0.5 Mg, star, the Kelvin—-Helmholtz contraction time is
TKH,05 ~ 3 % 107 yr x 0.5724 ~ 1.6 x 10° yr.

For a 2 M, star, the Kelvin—Helmholtz contraction time is
TkH2 ~ 3 X 107 yr x 2724 ~ 5.7 x 10° yr.

For a 5 Mg, star, the Kelvin—Helmbholtz contraction time is
ks ~ 3 x 107 yr x 5724 2 6.3 x 10° yr.

Exercise 3.1 The time-independent Schrodinger equation in one dimension,
for a constant barrier potential V' is
n? 9?
[— — + V} Ys(r) = Eg(r),

2my Or?

where m, is the reduced mass. Equation 3.4 can also be written

0? 2m,
W%(T) ) (V = E)is(r)

or

82

2my
WwS(T) = X2¢s(7“) where X2 =

h2

(V - B).

To verify that the wave function v5(r) = exp(xr) is a solution for a constant
potential (i.e. when V' and hence y do not depend on r), substitute this into the
left-hand side of the Schrodinger equation:

0?2 0?2
wiﬁs(r) =57 exp(xr)

Expand the second derivative

0? 0 0
@ws(r) = oror exp(xr).

Evaluate the first derivative

9?2 0
st(r) = EX exp(xr)

and then the second, but note that exp(xr) = 1s(r)

82
53 ¥s(r) = x> exp(xr) = x*s(r),

which equals the right-hand side of Schrodinger equation, as required. Note that if
the barrier potential had not been constant, then x would depend on r, and the
differentiation would not be so straightforward.

Exercise 3.2 The Gamow energy is Eq = 2m.c?(raZxZg)?, where m, is the
reduced mass of the two-body system, given by m, = mamp/(ma + mg).

202



Solutions to exercises

(a) Begin by calculating the reduced mass:

mpmp mg _mp _ 1673 x 102" kg

=8.365 x 1072% kg.

e = mp + mp 2my, 2 2

Then
Eg = 2m,c*(raZ,7Z,)*

=2x 8365 x 1072 kg x (2.998 x 105 ms™)? x (7 x

=7.907 x 107 ¥ kgm?s72 =7.907 x 107147,

Since 1 eV =1.602 x10~1°J, Eq = 7.907 x 10714 J/1.602 x 10719 JeV—1 =
493.6 keV.

(b) In this case, the reduced mass is

mgms m% _m3 _ 3myp _ 3 x 1.673 x 10727 kg

= 2510 x 10727 kg.

my

T mz+ms  2ms 2 2 2
Then

Eq = 2m,c(raZsneZame)?

=2x2.510 x 107% kg x (2.998 x 105 ms™ )2 x (7 x x 2 x 2)?

137.0
=3.796 x 1072 kgm? s72 = 3.796 x 10712 J.

Since 1 eV =1.602 x 1072 J, Eq = 3.796 x 10712 J/1.602 x 10719 JeV~! =
23.70 MeV.

Exercise 3.3 The probability of barrier penetration is

Eq 1/2 Eq 1/2
- (E) - (kT)

(a) proton—proton:

Pyen = exp ~ exp

493.6 keV \ /2 -
Ppen ~ exp [— (W) =3.4x10 9.
(b) $He—3He:
23700 keV \ /2 .
Ppen ~ exp [— (W) =23x10 .

Note that the answers have been given to only 2 significant figures, rather than the
3 s.f. available, because the approximation that the energy is given by E ~ kT
degrades the accuracy further.

Exercise 3.4 Since S(FE) is being treated as a constant, the integrand can be
written

E\"? F

F) = — == R

f(E) = Sexp ( Z ) T
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Differentiating gives

df(E) d Ec\"* E
——— =S—exp|— | — -
dE dE E kT
but using Hint 2 gives
e _ g | (BN E| 4| (E\"?_E
dE P E kT | ™ dE E kT
_ - E\'"* E 2 1. 3 1
- Eq 1/2 E E(l}/2 _3/2 1
= SeXp — (f) exp _ﬁ X T(E ) — ﬁ

The integrand f(F) is either a minimum or maximum when df (E)/dE =0,

which is when one of the following terms is zero:

(1) S = 0; this is a trivial, uninteresting case.

(ii) exp[—(Eq/E)"/?] — 0; this occurs when F becomes very small.

(iii) exp[—E/kT] — 0; this occurs when E becomes very large.
(iv)
1

=3/2y _
(B™) = o7

EY?

5 =0.

We rearrange this to get an expression for £/

B2

1/2
E 2F
%(E—?ﬂ) = and simplifying, we get ﬁ =7
Comment : This result will be useful later.

Collecting terms in E, we have

T
k L2

3/2
E/:2 47

then take the (2/3)-power of all terms

2/3 2\ /3
oo (5 e ()

This is the interesting case, and the energy Fy = [Eq(kT/2)%]"/? is called the

Gamow peak.

(Do not confuse this with the Gamow energy F.)
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Exercise 3.5 (a) First calculate the energy ratio:
Eq - 2mpm130 « 02(7TOéZpZ13c)2
4kT — myp + masc 4kT
2x lux13u (2998 x 105 ms™)? x (7 x 13- x 1 x 6)*
= X
lu+13u 4x1.381 x 10-23JK ! x 15.6 x 106K

—1\2
3667 x 100, \™ SJ )
30 —o7 m? 52

Next compute the fusion rate per unit mass fraction:

2/3 1/3
Bz _ 6.48 x 10724 x (Ap + A1sc)pe X X S(Eo) E \* exp|—3 Fa / 3¢l
X13C (ApA13Cu)2[m_6]ZpZ130 [keV barns] 4kT 4kT
141 1.48 x 10° kg m—3)% x 0.
648 x 10~ x (1+13) x (1.48 x 10° kgm™>)* x 0.5
(1 x13x1.661 x 10727kg)? x [m~6] x 1 x 6
5.5 keV barns 9 3
20 8T oA (6091)%/* =3 % (6091)/3] m~* 57!
X KeV barns| x ( )*/? X exp x ( ) m s
=1.0x 10" m 3 s
(b) First calculate the energy ratio:
Eq - 2mpmignN o 02(7TOéZpZ14N)2
AT mp + Mi4N 4kT
2x lux 14u (2998 x 105 ms™)2 x (7 x 3= x 1 x 7)?
= X
lu + 14u 4x1.381 x 10723JK~ ! x 15.6 x 106K
—12
= 5.017 x 1030u(ms])
m? s~?2
=5.017 x 10° x 1.661 x 10 *" kg = 8333.
kg m# s~
Next compute the fusion rate per unit mass fraction:
-3 1

X14N (APA14NU)2[m_6]Zp Z14N [kCV barns] 4kT

BN _ g g5y 10721 5 — o+ AuidocXy  S(Eo) ( Yo )2/3 exp [—3 (i—(})w

(14 14) x (1.48 x 10° kgm—3)% x 0.5
(1 x14x1.661 x10727kg)?2 x m6] x1x7
» 3.3 keV barns
[keV barns|
=15x10"m™? s

=6.48 x 107 x

x (8333)%/3 x exp [—3 X (8333)1/3] m3 s
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(c) First calculate the energy ratio:
Eq - 2mpmisN o C2(7TOzZp215N)2
AKT mp + M1s5N 4kT

C2xlux15u (2998 x 108 ms™1)? x (m X 3= x 1 x 7)?

X
lu 4 15u 4 %1381 x 10~ JK ! x 15.6 x 106K
1)2

(ms™

=5.039 x 1030 ;

— 5.039 x 10% x 1.661 x 1027 kgﬂ — 8370.
kg m2 s—2

Next compute the fusion rate per unit mass fraction:

BoisN _ g ga 102w ot As)seXy o S(E) (e 2/3e bol-s(ZLe - 1
X15N . (ApAisnu)?m=0]Z,Zi5n  [keV barns] \ 4kT AT
5 —3)2
648 x 1024 5 (1 115) x (1.48 x 10> kgm™*)” x 0.5

(1 x15x1.661 x 10727kg)? x [m™ 6] x 1 x 7

y 78 keV barns
[keV barns|

=30x10%m3s L

x (8370)%/3 x exp [—3 X (8370)1/3] m3 5!

Exercise 3.6 (a) In equilibrium Rpyjoc = Rpian, 50 3.5 x 1017 X 5¢ =
0.015 x 107 X 4n. This means

X1n/X12c = 3.5/0.015 = 230 and therefore '2N/12C = 12/14x230 = 200.

(b) In equilibrium Rp14n = Rp1sn, 50 0.015 x 1017 X 4n = 0.30 x 1017 X 5x.
This means

X14n/X15n = 0.30/0.015 = 20 and therefore '2N/'SN = 15/14x20 = 21.

Exercise 3.7 (a) We begin with

48 x 1024 2/3 1/3
Rup = 848X 1077 mans _ S(Eo) (EG> xp _3(EG) m3 s,

A ZA 78 m=6] ~ [keV barns] ~ \ 4kT 4kT

Following Hint 1, define

648 x 107 o MANB S(Ep)
A ZAZB [m=6] " [keV barns]

B EG 2/3 EG 1/3
RAB = a <4k—T) exXp -3 (4]{;—T>

and in preparation for using Hint 2, write

Ee 2/3 Ee 1/3
uU=a (4kT) and v=-exp|—3 (4kT)
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ARy _ v du
ar ~ "ar " Var
For the sake of clarity, calculate these two parts separately.

Step 1. Calculate dv/dT.

1/3
_s( Fa
4kT

so Rap =wuv andthen

dv d
— = —exp

dT  dT

but using Hint 3

dexp(y) dexp(y) dy dy
de  dy T exp(y) dz’
Hence
dv Ec\"?| d Eq \"?
— =exp|-3|—% — |-3(—=
dr 4kT dr 4kT

Note the the first exponential is just v again. Taking constants out of the
differentiation gives

do _ (B d s
dT 4k dT

So, differentiating the 7—/3 part

d'U [ EG 1/3_ ]. _4/3
ar _3(E) —3) T =

Step 2: Calculate du/dT'.
du d [ Eg\"?
dr — a7 \ kT
taking the constants out of the differentiation gives
2/3 2/3 2/3
du (BN s (EGNT (2 pesps [ Eo 2\ L
dTr 4k dr 4k 3 4kT 3)T
but the first term on the right-hand side of the equation is just w again, so
du 2\ 1
—=ul|l—=) =
dT 3)T
Step 3: Calculate dRpp/dT = udv/dT + vdu/dT.
Substitute the results from Steps 1 and 2:

Eg\l1, ro2y1
4kT T 3)T

take out the common factor uv /T

Eg\'/? 2
(M) ~3

dRap
dar

dRap _ wv
dr T
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and note that uv is simply Rap

dRap _ Ras | Ea \'* 2
4kT 3

ar T
(b) From the chain rule

dlog, Rap  dlog, Rap dRap dT" 1 dRap (dlog,T -1 T dRaB
dlog, 7 dRap  dT" dlog,T Rap dT dT  Rag dT
So finally
dlog, Rap | [ Ec 13 2
dlog, T | \4kT 3]
Exercise 3.8 Rap x T[(EG/ 4kT)1/3_%], so you need to evaluate the value
Eq\"? 2
v=|—— — =
4kT 3
for each reaction. Recall that Eg = 2m.c?(raZx Zg)? so
2m,c(raZaZg)? 3 9
v = - —.
4kT 3
(a) For p + p, begin by calculating the reduced mass:
m 1. 10727k
my = M My mp VO XATTRE g gnn 028y
mp+mp  2my 2 2
Then, using 75, . = 15.6 x 10° K we obtain
2mc(raZyZ,)? V3 9
V= - -
4kT 3
1/3
(2% 8365 x 1072 kg x (2.998 x 108 ms™)% x (7 X 305 X 1 x 1)? / 2
4x1.381 x 102 JK ! x 15.6 x 106K 3

=3.84

ie. Rpp o< 38,
(b) Forp+ 1‘%N begin by calculating the reduced mass (where the reduced mass
of 1$N is given as mi4):

mpmis  lux1du 140?14

14
= = = = —u=— x1.673x 1072 kg = 1.550 x 10~ " kg.
T+ ms lutldu  1su 150 15 8 £ 8 £

Then, using Ti; . = 15.6 x 10% K we obtain

L= (2mr62(7raZpZ14N)2)1/3 _ 2

4kT 3
1/3
(2 x1.550 x 107 %7 kg x (2.998 x 108ms™1)? x (7 X 305 X 1 X 7)? Py
- 4x1.381 x 10-28JK! x 15.6 x 106K 3

= 19.6. Therefore R,14n o 7196,
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Exercise 3.9 Your amended Figure 3.6 should resemble Figure S3.1.

10

ot

lOglo Enuc

=

—5F .

6.5 7.0 7.5 8.0
logo 1%

Figure S3.1 Copy of Figure 3.6, but with lines for ¢ oc 7" added, for v = 3.8
(p—p chain) and v = 19.6 (CNO cycle).
Exercise 4.1 The initial hydrogen content of the Sun is 0.70 M.

If it converted all of this into helium via the proton—proton chain, 0.0066 (i.e.
= (0.7%) of the hydrogen mass would be converted into energy. The total mass
consumed would be

m = Mg x 0.70 x 0.0066 = 1.99 x 10%° kg x 0.70 x 0.0066 = 9.2 x 10*" kg.
This corresponds to an energy

Efusion = mc® = 9.2 x 10%7 kg x (2.998 x 108 ms™1)2 = 8.3 x 10**J
over its lifetime.

The Sun’s current luminosity is L, = 3.83 x 1026 J s71, so it could radiate at this
rate for a lifetime given by

Toue = Frusion/ Lo = 8.3 x 1044 7/3.83 x 1026 7571 =22 x 10 s &~ 70 x 10? yr
if it could indeed burn all of its hydrogen to helium.

Exercise 4.2 Lifetime oc M/L oc M/M?3® = 1/M?5. If the solar lifetime is
10 x 10? yr, then the lifetime of a 0.5 M, star will be 1/0.5%-% = 5.7 times longer,
i.e. 57 x 109 yr, and the lifetime of a 10 M, star will be 1/10%% = 0.0032 times as
long, i.e. 32 x 10° yr.

Exercise 4.3 For high-mass stars, the CNO cycle dominates energy production
and the opacity is due entirely to electron scattering. For this case, v ~ 17. For
stars of uniform chemical composition, 4 is constant, so the p-term can be
absorbed into the unknown constant of proportionality.

(a) Equation 4.6 becomes L oc M3, ie. L oc M3.
(b) Equation 4.8 becomes
TC x M4/(V+3) M7/(V+3) x M4/(17+3) x M4/20
ie. T, oc M2,
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(c) Equation 4.7 becomes

R oc M&=D/W43) | r=0)/(43) o pfAT=-1/(T43) o 116/20

ie Roc MO8,

That is, the luminosity increases strongly with mass, the core temperature
increases weakly with mass, and the radius increases almost linearly with mass.

Exercise 4.4 For high-mass stars, the CNO cycle dominates energy production
and the opacity is due entirely to electron scattering. For this case, v ~ 17. For
stars of constant mass, The M -term can be absorbed into the unknown constant of
proportionality.

(a) Equation 4.6 becomes L oc M3u4,ie. L o< p?.

(b) Equation 4.8 becomes

T, oc MY @+3) 7/ (43) o T/(AT43) o 7/20

ie. T, oc uO4.

(c) Equation 4.7 becomes

v—1 v—4 17—4 13
R X Mu+3'uu+3 X M17+3 X ,LL20

ie Rocpud.

That is, the luminosity increases steeply with mean molecular mass, the radius
increases moderately and the core temperature increases very moderately with
mean molecular mass.

Exercise 4.5 (a) (i) For fully ionized hydrogen and helium in Big Bang
proportions, the mean molecular mass is

Do mity
o= i v . NHmp+NHemHe+Neme
Z n; U(NH + NHe =+ Ne)
i

Let Ny be the (unknown) total number of nuclei, so Ng = 0.93 Ny,

Nge = 0.07Nyue, Ne = Nig + 2Nge = 0.93Npye + 2 X 0.07Nyye = 1.07 Nyye,
mue & 4my, and me/my, = 9.109 x 1073 kg/1.673 x 10727 kg = 1/1837, so
me = my/1837. Note also that m;,/u = 1.673 x 10727 kg/1.661 x 10727 kg =
1.007.

Substituting these into the expression for j gives:

0.93Npuemmy + 0.07 Nyuedmy, + 1.07Nyye (my,/1837)
- 1(0.93Nye 4 0.07Nyue + 1.07Npye)

but the N, terms cancel, and m, is a common factor on the top line, so

_ (0.93 + 0.28 4- 0.00058) m;,
(093 +0.07+1.07) w

= (.58 x 1.007 = 0.58.

Note that the electrons make a negligible contribution to the mass of the material
(the numerator of the equation), but account for more than half of the number of
particles, and hence greatly affect the denominator.
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(i1) For fully ionized helium, the mean molecular mass is

n,; T
= zz: o _ Nuemue + Neme
S T u(Nae V)
i

Now, Ne = 2Ny, mye = 4myp and me = my, /1837, so

Nitedmy, + 2N, 1 4+0.001
_ Nuedmy + 2Nue(my/1837) _ (44 0.00109)mp _ o5 4 07 — 1 34,
u(NHe + 2NHe) 1+ 2 U

I

The ratio of  in case (ii) to p in case (i) is 1.34/0.58 = 2.3.
(b) (i) For stars burning hydrogen by the p—p chain: R oc 1, so
Rfinal/ Rinitial ¢ (Minal/tinitial)® o< 2.3° & 1. So the star would be the same size.

L o pi*, 50 Lgnat/ Linitial ¢ (Mfinal/ Minitial)* oc 2.3% & 28. So the star would be a
lot brighter!

Tc X ,U/l, SO Tc,ﬁnal/Tc,initial X (ﬂﬁnal/ﬂinitial)l X 231 ~ 2.3. So the star would
be hotter.
(ii) For stars burning hydrogen by the CNO-cycle: R o< u’7, so
Réinal/ Rinitial ¢ (Minal/finitial)* " o< 2.3%7 2 1.8. So the star would expand.
L o< p?, 50 Lgnal/ Linitial ¢ (ffinal/ finitial)* o< 2.3% &~ 28. So the star would be a
lot brighter!
Tc X MOA, SO Tc,ﬁnal/Tc,initial X (Nﬁnal//JJinitial)(l4 X 2-30'4 ~ 1.4. So the star
would be hotter.
Exercise 4.6 (a) Fors =3,v=(145s/2)+(s/2)=(5/2) + (3/2) =5/3, s0
the coefficient (y — 1)/v = ((5/3) — 1) = (5/3) = 2/5.
(b) Ass — 00,7y — (1/s+1/2) +(1/2) =(0+ 1) + 1 =1, so the coefficient
(Y=1/y=01-1)=1=0.
The critical temperature gradient for convection is

dr - (y=1)TdP

dr v Pdr’
Since, in part (b), d7/dr < 0 and (y — 1)/ = 0, this material is always unstable
to convection.
Exercise 5.1 (a) p/(§Be) = 1/ (3He) + 1/ (3He) = 24/ (3He).

(b) Since the chemical potential is i = mc® — kT log,(gsngnr/n), in this case
the result of part (a) and Equation 5.1 give

mgc® — kT log, (w) =2 [m402 — kT log, (94 nQ4)] .
ng nq

We need to find an expression for ng/ng, so rearrange the equation to work
towards that goal. As a first step, collect the logarithms on one side and the mc?
terms on the other:

mgc® — 2myc? = kT (loge (gSnQB> — 2log, <g4 nQ4))
ng T4

(mg — 2my)c? o [ (g8 nqs/ns) ]
KT | (ganqa/ns)?
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exp[(ms - 2m4)02] _ (g93nqs/ns)
kT (94 TLQ4/”4)2
2
Z—g - exp[—(ms ;T2m4)c ] : i8:§48)2, (5.9
Since nqa = (2rmakT/h?)3/2, the nq-term at the end of Equation 5.9 is
ngs  (2mmskT/R2) (2emgkT/ %)Y (27rkT)‘3/ 2 (@ )3/ 2
o s~ i~ CF) ()

Substituting this into Equation 5.9 gives

ns_ . —(mg — 2my)c? gs ((ms 32 1 2 32
n? P kT g2 \'m? 2nkT ’

As we want to find the relative abundances of the nuclei, ng/n4, we must multiply
both sides by n4. Doing this, and using ny = pX4/m4, we obtain the final

expression
3/2 2 \3/2
ng —(mg — 2my4)c?] gs myg h
— = 2oX . 5.10
nyg P [ kT g3 pa mi \27kT (5-10)

We assume that the material is primarily %He, so X4 = 1. In evaluating the

ratio mg/ 2 / mi we can use the approximation m4 = 4u and mg = 8u, but

the term mg — 2my involves the subtraction of nearly equal numbers, and

for that we cannot use this approximation. However, we are given that

AQ = (2m4 —mg)c® = —91.8keV so (mg — 2my4)c? = 91.8keV. We calculated
the polarizations g4 and gg in the bulleted question at the end of Section 5.2.

So, evaluating Equation 5.10 at 7' = 2 x 10% K and p = 10% kg m~3 gives:

ng 91.8keV x 1.602 x 10716 JkeV~! 1 5 3
pl— — — X — x10°kgm ™~ x 1
1381 x 10" JK 1 x 2 x 108K

12

(8u)3/2 ( (6.626 x 1034 J 5)? )3/ 2

(4u)* 271 x 1.381 x 10723 JK~! x 2 x 108 K

—4.87 x 107 x 10 kg m ™3 x 0.0884u %/ x 1.27 x 1077 J3/2 3
=547 x 1077 x (1.661 x 10727)75/2 kg=3/2 m™3 J3/2 §3

= 4.86 x 1075,

14

Equivalently, ny/ng = 1/4.86 x 10~% = 2.1 x 107. That is, there is roughly one
Be nucleus for every 21 million 3He nuclei!

Exercise 5.2 (a) The Gamow energy is Eq = 2m,c?(raZxZg)?, where m,
is the reduced mass of the two-body system, given by m, = mamg/(ma + mp).

Begin by calculating the reduced mass:

2
my = A T M 9y — 9 % 1661 x 107 kg = 3.322 x 10727 kg,
my + my 2my 2
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Then
Eq = 2m,c? (Tr()zZ4Z4)2

2
=2x3.322 x 107% kg x (2.998 x 108 m s~ )2 x (71' X X 2 X 2)

137.0
=5.024 x 1012 7.

Since 1eV = 1.602 x 1079 J, the Gamow energy,
Eq =5.024 x 10712 J/1.602 x 10719 JeV~! = 31.4MeV.

(b) The energy of the Gamow peak is By = (Eq(kT')?/4)'/3. So, cubing both
sides and multiplying by 4/ Eg gives (kT)? = 4E3 / E¢;. Taking the square root
and dividing by k gives

r_2 B
k\ Eq

Now AQ = 91.8keV can be written in SI units as
AQ =91.8keV x 1.602 x 10716 JkeV~! = 1.47 x 10~ ]. So, if the energy of
the Gamow peak coincides with this value of AQ), then

r_2 B _ 2 \/(1.47 x 1011 )3
kB 1381 x10-2JK 'V 5.024 x 107127

=1.448 x 102 'K x 7.95 x 10767 = 1.15 x 10° K.

Exercise 5.3  (a) The Gamow energy is Eq = 2m,c?(raZaZg)?, where m;
is the reduced mass of the two-body system, given by m, = mamp/(ma + mg).

Begin by calculating the reduced mass:

mamg  4u X 8u 32u? 8u

= = = =~ =8x1.661 x 10727 kg/3 = 4.429 x 10~%7 kg.
M my +mg  4u+ 8u 12u 3 . . g/ x &
Then
Eq = 2mr62(7raZ4Z8)2
1 2
=2x4.429 x 1072 kg x (2.998 x 10 ms~1)% x (w X 375 X 2% 4)

=2.679 x 10711 J.

Since 1eV = 1.602 x 1077 J, the Gamow energy,
Eg =2.679 x 10711 J/1.602 x 10~ JeV~! = 167.2MeV.

(b) The energy of the Gamow peak is Ey = (Eq(kT')?/4)'/3. So, cubing both
sides and multiplying by 4/ Eg gives (kT)? = 4E3 / E¢. Taking the square root
and dividing by k gives

v 2 B
k\ Eg
Now AQ = 287.7keV can be written in SI units as

AQ = 287.7keV x 1.602 x 10716 J keV~1 = 4.611 x 10~ J. So, if the energy
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of the Gamow peak coincides with this value of AQ), then

o2 B _ 2 \/(4.611 x 10-147)3
k| Eg  1.381x10723JK'V 2679 x 101

=1.448 x 102J7 1 K x 1.913 x 10719 J = 2.77 x 10® K.

Exercise 5.4  (a) Ignoring the electronic parts, we find the mass defect is
Minitial — Menal = 3 X 4.002 60 amu — 12 amu = 0.007 800 amu.

(b) Using E = Am c? we have E = (0.007800 x 1.661 x 10727 kg)

% (2.998 x 10® ms™1)? =1.164 x 10712 J. Since 1 eV = 1.602 x 10719 J, this is
equivalent to £ = 1.164 x 10712 J/1.602 x 1071 J eV~ = 7.269 x 10 eV or
about 7.27 MeV.

In the earlier subsections, Step 1 is said to require 91.8 keV and Step 2 is said to
require 287.7 keV, whilst Step 3 releases 7.65 MeV. The net energy released is
therefore (7.65 — 0.2877 — 0.0918) MeV = 7.27 MeV, in agreement with the
above.

(c) As a fraction of the initial mass this is
0.007 800 amu/(3 x 4.002 60 amu) = 0.000 65. Recall that for hydrogen burning,
the mass defect corresponds to 0.0066 of the initial mass, a factor of ten larger.

Exercise 5.5 (a) (i) For the proton
Aag(p) = h/(3mypkT)"?
6.626 x 10734 J's

/3 x1.673x 10 2Tkg x 1.381 x 1028 J K ! x 15.6 x 106 K
=6.372 x 1073 m.

(i1) For the electron
Aag(e) = h/(3mekT)/?
6.626 x 10734 J s

/3% 9.109 x 1031 kg x 1.381 x 10~ JK~! x 15.6 x 106 K
=2.731 x 107" m.

(b) The ratio of de Broglie wavelengths is therefore

Aap(e) h L BmpkD)Y?_ (my V21673 x 1072 kg \'? .55
Aa(p)  (3mekT)1/2 h — \me 9109 x 10-31kg ) ~ %

The de Broglie wavelength of an electron is greater than that of a proton, by a
factor of ~ 43.

(c) From part (b), this ratio depends only on the mass of the particles, and hence
is independent of the environment and hence of the temperature. The electron’s
wavelength is /= 43 times longer than the proton’s in any star. Since a proton and
a neutron have nearly the same mass, we can say that the de Broglie wavelength
of an electron is about 40 times greater than that of a nucleon in any star.
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Exercise 5.6 The second condition is n >> nq, i.e. n > (2rmkT/h?)3/2,
Since n = 1/1°, substituting for n gives 1/1% > (2rmkT/h?)3/2,
Taking the (1/3)-power gives 1/1 > (2rmkT/h?)'/2, and multiplying through by
1/(2nemkT /h?)'/? gives
I < h)(2rmkT)"? = (3/21)"/% x h/(3mkT)"/? = (3/27)"/? x Aqp < 0.TAgB-

That is, from the second degeneracy condition n >> nq we obtain the first
degeneracy condition [ < A\gB.

Exercise 5.7 (a) nq = (2rmkT/h?)3/2, so the degeneracy condition
n > nq implies that n > (2rmkT/h?)%/2.
Taking the (2/3)-power and multiplying both sides by h%/2mm gives
n?/3h%/(2mm) > kT, ie. kT < n?/3h?/(2mm).
The third equivalent condition for degeneracy is: the gas is degenerate if its
temperature 7' < n?/3h2/(2wmk).
(b) (i) np = po.cXn/mp=1.48 x 10° kg m— x0.5/1.673 x 10727 kg =
4.42 x 103! m~3 (i.e. hydrogen nuclei per m?).
Therefore

W2ng/® (6,626 x 1073 T 5)2 x (4.42 x 103! m~3)2/3

2rmpk (2 x ™ x 1.673 x 10727 kg x 1.381 x 10~ JK 1)

=378 x10°Ts>m 2 kg ! K~ 3780 K.

(i1) In the solar core, all atoms are ionized. The electrons are provided by the
hydrogen and helium which each account for 0.5 of the composition by mass.

X 2 X X 2X
Ne = Np + 2nge = Poc H + PO He = Poc 1 + Zolle
mMp MHe ’

mp 4u
0.5 n 2 x 0.5
1.673 x 10727kg = 4 x 1.661 x 10~27 kg

=148 x 10°kgm™3 (
=6.65 x 103 m~3.

Therefore

h2nd'? (6.626 x 10734 J'5)2 x (6.65 x 1031 m=3)2/3

2rmek (2 x 1 x 9.109 x 10731 kg x 1.381 x 10-23 J K1)
=9.12x10°Ts>m? kg ! K~ 9.12 x 10° K.

(c) The temperature condition for degeneracy is T' < n?/3h?/(2rmk).

To,c =15.6 x 10% K, so the temperature in the core of the Sun is (i) much too
high for proton degeneracy to have set in, and (ii) marginally too high for electron
degeneracy to have set in.

Exercise 6.1 (a) Equating the core pressure P. = (77/36)1/3GM2/3pf31/3 to
the pressure of non-relativistic degenerate electrons Png = Kng(pcYe/ mH)5/ 3,
where Kxg = (h2/5me) (3/87)%/%, we have Ky (peYe/mu )/ =
(m/36)1/3GM2/3pd 3.
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Collecting terms in p on the left-hand side, and all others on the right, we get
5/3
v (TYV G i
¢ 36 KNr Yf’/ 3
cubing this gives
3.5
T G m
e ) () e
36 Knr/) Y
and substituting for Kng gives

T 5me\* [ 87\ MY o
f’r(%)(m) (?)GW»M'

e

Consolidating the numerical factors, we have
1673\ (5me\’ sm}
== GP =M.

= (5r) () o5

(b) The electron number density in the core of the star is n, = p.Ye/myi, so
substituting the core density from above gives

1673 M 3 omd
= GP M.

=) () o3

Exercise 6.2 The Fermi energy is

2\ 2/3 2 8/3
Ep ~ 25 (277 G MH MY 3m,
2\ 27 h Ye

which as a fraction of the electron rest-mass energy is

Be 25 (202\*® (G\? (g \*P M43
mec 2 \ 27 h Y, 2
So in this case for a 0.4 M, white dwarf, the Fermi energy as a fraction of the
electron rest-mass energy is

Er 25 (20°\? (6.673 x 107" Nm? kg ®\* /1673 x 10727 kg \*/? (0.4 x 1.99 x 107 kg)*/3
6.626 x 10 31T s 0.5 (2.998 x 105 ms 1)

27

mec 2
~ 0.228.

Exercise 6.3 (a) For the ultra-relativistic case, equating Pyg to
P. gives Pyr = Kur(pcYe/mu)"/? = (7/36)/3GM?/3p¢* where
Kur = (he/4)(3/8m)V/3.

Note that in contrast to the non-relativistic case, the density term is the same on
both sides (pf;l/ 3), so cancels, leaving

Ve \Y2 a3 o
KUR<mH) —(%) GM?/3.

Collecting M on one side and swapping left and right sides, gives

2/ 36 3 Kum Y. \ V3
7 G myg '
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Taking the (3/2)-power and substituting for Kyp gives
3/2
(36 V2 ( (hea)(3/8m)13\” Yo (3x36 \Y2 (he\ P Ve Y
N ™ G my N 43 x 82 G my
17 97 \Y2 [/ he\3/2 Y. \2
“elm) (&) Gl
(b) Putting in the numbers we have
97 \V2 / he\3/2 Y. \2
(i) (¢) ()
( 27 )1/2 (6.626 x 1073 J s x 2.998 x 108m s_1)3/2 ( 0.5 )2

128 6.673 x 101! N m2 kg 2 1.673 x 102" kg
=2.121 x 10°* kg.

Since Mg, = 1.99 x 1030 kg, M = 2.121 x 103 kg/1.99 x 103 kgM_' =
1.07 M.

Exercise 6.4 (a) The radius as a function of mass and average density is
R = (3M/4n{p))'/*.

(b) If the average density is 1/6 of the core density, then R = (9M/ 27rpc)1/ ’
(c) Substituting the core density gives:

—1/3 — —5/3
Rwp = % v iﬂ-g / % ' G—lmH / M_2/3,
2 81 h? Ye_5/3

Rearranging the terms with negative powers

1/3 1/3 2 5/3
o= (3" (2 ()
2w 167 HMee Gmyl

Now consolidate the mass terms and the numerical factors

9 1/3 2 }/;35/3
Rwp = (372 94) <5h ) 5/3M_1/3.
m me ) Gmy

Now for convenience, express the mass in solar units

20\ B2\ YO M \TVR
=\ — ) —= | 1.99x 100 kgMgh)~1/3.
Rwp (32774) <5m) e (MQ) x (1.99x 10% kg M)
Then putting in the numbers

729 \'*  (6.626 x 10734 J 5)? (0.5)5/3 x (1.99 x 103 kg M !)~1/3 M3
327t (5 x 9.109 x 10~31 kg) (6.673 x 10-11 N m? kg~?) x (1.673 x 1027 kg)5/3 \ Mg, :

RWD=(

And so

Mo\ LB
Rwp = 9.45 x 10° (—) m.
Mg

217



Solutions to exercises

Since R, = 6.96 x 108 m,

o[ 945x10°m ) <M)_1/3
WP 6.96 x 108 m R Mo

_ Ry (MNP
T4 Mo '

(d) Since Rpapn = 6.4 x 106 m,

o 945x10°m ) ( M )‘1/3
WP\ 64 x 100 mRgL, Mo

M\ L3
- 1.5REarth X M7® .

Exercise 6.5

Table S6.1 Nucleosynthesis processes
Process Major reactions Products Mass range of stars  Ignition temp/K  Timescale
BigBang  (not studied) 1H, ?H, 3He (not applicable) (not studied) ~ 15 minutes
3He, Li
H-burning  p—p chain (3 branches) 3He Mys > 0.08 Mg, (2-10) x 109 ~ 107 to
CNO cycle 3He, 13C, 1‘%N 100 yr
He-burning triple-alpha process 2¢,1%0 Mys > 0.5Mg (1-2) x 108 ~ 106 yr
C-burning  12C + 12C #9Ne + jHe Mys > 8Mg (5-9) x 108 ~ 500 yr
120+ 120 2Na +p
2c+12C 23Mg +n
Ne-burning  29Ne + v %0 + 4He Mys > 10Mg (1-2) x 10° ~1yr
foNe + 5He ToMg
O-burning 180 +1%0 28Si + He Mppms > 10Mg, (2-3) x 10° ~ 6 months
Si-burning  2§Si + 22Mg + 3He Mps > 11 Mg (3-4) x 107 ~ 1 day
28Si + niHe 3283, A,
(successive captures 30Ca, 33Ca,
of a-particles) 35Ti, 53Cr, 39Fe
neutron- AX +n ATLX
capture
(-decay AHZX éﬁ(X +1)+e” +7e
s-process Zr, Mo, Ba, Ce, My > 1Mg ~ 10% yr
Pb, Bi
r-process Kr, Sr, Te, Xe, Mps > 10Mg ~ 1 second
Cs, Os, Pt, Au,
Hg, Th, U
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Exercise 7.1 We begin by balancing the chemical potentials:
[y = 245, + 2q1,

and since i/ = me? — kT log,(gsnqgnr/n) we have

mac®—kT log, (g = nQ4> = 2mpc?—2kT log, (L “Qp ) 1 2mnc?—2kT log, (‘L nQn)
n4 np .

where my4, m,, and m,, are the masses of a helium-4 nucleus, a proton and

a neutron respectively; nqa4, nqp and ngy, are the non-relativistic quantum
concentrations of a helium-4 nucleus, a proton and a neutron respectively; g4, gp
and g, are the number of polarizations of helium-4 nuclei, protons and neutrons
respectively; and n4, n, and n,, are the number densities of helium-4 nuclei,
protons and neutrons respectively. This may be rearranged as

2 2 -1
9p "Qp 9n NQn ganqQa
np Ny ng '
The left-hand side is simply A, so taking the exponential of both sides and
rearranging slightly, we have:

AQY  (gpngp/n )*(9n nQn/nn)2
eXp(ﬁ) - p9410%4/”4 '

Since we are interested in the proportion of helium-4 nuclei that are dissociated,
we take this fraction onto the left-hand side to get:

2.2 2 2 2 2
Tip Ty _ 9p 9n ""Qp "Qn ox (_%) )
na gq nQ4 kT

2mp02 +2muc? —myc® = kT log,,

Exercise 7.2 The number of particles is N = M/m. For a total core mass of
M = (1/2) x 1.4 Mg, the number of helium-4 nuclei is N = (1/2) x 1.4 Mg /
du = (0.7 x 1.99 x 103 kg) / (4 x 1.661 x 10727 kg) = 2.10 x 10°% nuclei.

Each nucleus absorbs 28.3 MeV = 28.3 x 106 eV x 1.602 x 10719 JeV~! =
4534 x 107127,

So the core absorbs 2.10 x10% x 4.534 x 10712 J = 9.5 x10%* J by the
photodisintegration of helium-4 nuclei.
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Exercise 7.3

Table S7.1

Properties of white dwarfs and neutron stars

White dwarf

Neutron star

(a) Pressure of non-relativistic
degenerate matter

Pxr = 5}:;6 (87r)2/3 J?

1)2/3 ni/?’

(b) In terms of mass density

Ne = ePc/mH nn = pc/mn

R (3\2/3 (Yepe\?/? _on2 3823 ( pe \?/3
PNR ~ 5me (g) (mf[ ) PNR ~ 5mn (g) (rzin)
(c) Clayton model

P, = (n/36)Y/3GM?/3p¢/
pe = (36/7r)1/4G_3/4M_1/2P3/4

= (7/36)V/3GM*/3 e/
pe = (36/77)1/4G_3/4M_1/2PC3/4

(d) Put (b) into (c)
_ (@)1/4 G-3/ApN—1/2

9/3 5/3 3/4
<o (% (i)™

5Me my

C

_ (@) 1/4 G-3/401—1/2

()" (@) ()™

Collect powers of p
—1/4 1/4 ~_ _
P / :(%6) /4 q-3/4p1-1/2

()" @ ()"

,0(:_1/4 _ (3—)1/4(? 3/431-1/2

X(%;zm(%)l/z(m%fm

Raise both sides to the power 4/3
pC—1/3 _ (@)1/3 G-1p-2/3

™

() @ ()"

_ 32413 ( h2 ) (Y )5/3M 2/3

4G 5Me my

(e) Adopt (p) = p./6 in density expression
R = (3M /4n(p))"/* = (9M /27pc)"/*
(9/27‘()1/3 1/3]\41/3

R = (3M/4n(p))'/* = (9M /2mpc)'/?
R = (9/2m)Y/3p. /2 011/

(f) Substitute for p. using (d)

Rwp =

(20" & () ()

s = (204 (4 ()

Exercise 7.4

571/3
( >
27

Rmax =
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So in this case,
La\2]e
Ry = [6.673 % 1071 N m? kg2 x 1.99 x 103 kg x (2—5) ]
7T

= 1.5 x 10 m = 1500 km.

So any object larger than 1500 km radius cannot rotate more quickly than once a
second. This effectively rules out rotating white dwarfs as the origin of pulsars.
(b) Equation 7.5 is
1/2

Prin = 27 ((Z\g/j) / .
So in this case

Panin = 27 ( (107 m)* )1/2

6.673 x 10~11 Nm? kg2 x 1.99 x 1030 kg

=0.55 x 107 s = 0.55 ms.

So a 1 Mg neutron star can rotate as fast as 2000 times per second. Rapidly
rotating neutron stars clearly can provide an explanation for pulsars.

Exercise 7.5 The magnetic field strength is

_ Hom
ATR3’
Substituting for the magnetic dipole moment,

. 1/2
B 3¢ 471 /

m S —
wisin?8 2 o
we have
. 1/2
B— o . Erot g 4_7T /
C4TR3 | whsin?l 2 po

and then substituting for the rate of loss of energy Erot = Twi> = 2M R%wi /5 we
have

5t [ 2MR%0 3¢ ax 1/2
C 4nR3 | Swisin®f 2 o '

Then collecting together some terms we get

B (M2 1 (2M 2 1363\Y2 1 —o\M? 1

N (E) R? (?) <7> (F) sinf’

Now we note that, since P = 27 /w, then P = x (—2n/w?), s0 —w/w? =
PP/4m?, hence

po (M) L (2 (32 P
- \4r R2\ 5 2 2r  sin@’

As required, this is an expression for the magnetic field strength of a pulsar in
terms of its rotation period, rate of change of rotation period, mass, radius and
other physical constants.
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Exercise 7.6 Equation 7.10 may be rearranged to give
201 w?

1+ ===
w UJ%

w3 1/2
wop = E—— .
0 w+ 2wt

So for the Crab pulsar we have an initial angular frequency of
(190 s~1)3 1/2
wn =
0 (190 s71) + (2 x —2.4 x 1079 s72 x 950 x 365 x 24 x 3600 s)
wo ~ 400 s

or

Exercise 8.1  (a) The Jeans mass is My = 3kT'R/2Gm. Rearranging this,
setting the mass equal to that of the Sun and setting m = 2u, gives
2Gm 2G 2u
R=Mj—— = .
T3KT T T 3kT
Substituting in values gives
L 26673 x 1 Nm? kg2 x 2 x 1.661 x 10727 kg

3x1.381 x 10728 JK 1 x 20K

R=1.99 x 103 kg

=1.07 x 10" m.

This is the Jeans length for a solar mass of molecular hydrogen at a temperature of
20 K.

Since 1 pc =3.086 x10'®m, 1 AU = 1.496 x10'' m, and R, = 6.96 x 10% m, we
can also express this distance as

R =1.07 x 10 m/3.086 x 10" m pc™' = 0.0347 pc (= 0.03 pc)
R=1.07 x 10" m/1.496 x 10! m AU™! = 7.15 x 103 AU (= 7000 AU)
R=1.07x 10" m/6.96 x 10* m R_' = 1.54 x 10° Ry, (= 1.5 million Rg).
So, a cloud of molecular hydrogen at 20 K with a mass equal to that of the Sun
will collapse if its radius is less than about 7000 AU.
(b) The Jeans density is

3 3T \?
PI= "3\ 5~=
4o M? \ 2Gm

so in this case

, 3 ( 3x1.381 x 1028 TK~! x 20K )3
J P—

47(1.99 x 1030 kg)2 \ 2 x 6.673 x 10~11 Nm? kg2 x 2 x 1.661 x 10—27 kg
~4x10" % kgm3.

The Jeans density for a 1 Mg cloud of molecular hydrogen at 20 K is
4 x 10716 kg m~3 or about 120 billion molecules per cubic metre.

Exercise 8.2 The density is

3 3TN
P=PI= e \ 20m

222



Solutions to exercises

so the free-fall time is found by substituting this in Equation 2.5:

1/2 1/2
o (V2 (s amar Gy m
32G p 32G 3 3kT 3kT i

The mass of the molecules of Hy is m ~ 2u, so putting M = Mg, we have

2u \* 12 2u \*/?
T = ((WG)2M2® (M) > = 7TGM@ (M)

=7 x6.673 x 1071' Nm? kg™2 x 1.99 x 103 kg x (

2 x 1.661 x 107" kg 3/2
3x1.381 x 10728 JK ! x 20K

=3.35 x 102 s ~ 1.1 x 10° yr.

So, a 1 Mg, cloud of molecular hydrogen at 20 K with the Jeans density will
collapse (if unopposed by internal pressure) within about one hundred thousand
years.

Exercise 8.3 The Jeans density is

3 3T\
PI= T | 5~=
47 M 2Gm

which can be rearranged to give

3 (3kT\?
My = 47 py (QGW) '

We now substitute into this py = nm to give

e 3 \U2 /307 \3/2
17 \dnnm 2G'm '

We can now evaluate the Jeans masses.

(a) Using m =~ lu (i.e. 1 amu) for neutral atomic hydrogen,

e 3% 1.381 x 1072 JK~! x 100 K v 3 1/2
7T \2%6673x 10T Nm?kg 2 x 1.661 x 1027 kg 47 x 106 m—3 x 1.661 x 10~27 kg

=3.06 x 10** kg.

Since 1 Mg, = 1.99 x 10%0 kg, we have M = 3.06 x 103 kg/1.99 x 103 kg M
=1.54 x 10* M.

(b) Using m = 2u (i.e. 2 amu) for molecular hydrogen,

I 3% 1.381 x 1073 JK~! x 10K 3/2 3 172
77\ 2% 6.673 x 1011 Nm? kg™? x 2 x 1.661 x 10~27 kg 47 x 109 m—3 x 2 x 1.661 x 10-27 kg
= 7.66 x 10*" kg.

Since 1M, = 1.99 x 103 kg, we have My = 7.66 x 103 kg/1.99 x 103 kg M
= 3.85M,.
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Solutions to exercises

Exercise 8.4 (a) Beginning with the Jeans mass (written in terms of density
and temperature)

3 [ 3kT\*
My = —— (2=
! \/47er (QGW)

we re-arrange this to get
1/2 —\3/2
4dmpy 2 raGm\Y My = T2,
3 3k
Raising each side to the (2/3)-power, and re-ordering the terms gives

2Gm (4w 1/3 2/3 1/3
ng—k(?) M=y

(b) Since log;y AB = log;y A + log;, B, and log;, A* = klog;, A, we get

oGm [(4r\?\ 2 1
logyo T = logy <S—k- (g) t3 logyo My + 3 logyg ps-

The first term on the right-hand side of the equation is merely a constant,
whereas the second and third terms depend on mass and density. Drawn in

the log temperature versus log density plane, the curve of 7" against pj for a
given protostellar mass M7 is a straight line of slope 1/3. The Jeans line for a
protostellar mass 10 times higher (or lower) is also a straight line of slope 1/3, but
offset vertically from the first by +2/3 (or —2/3) logarithmic units.

Exercise 8.5 (a) We have two expressions for pressure, P o p” for an
adiabatic process, and P = pkT'/m for an ideal gas.

Substituting for P in the first gives pkT/m  p?.

Dividing both sides by pk/m gives T o< (m/k)p?~!, but m and k are both
constants, so we can write 7' oc p? 1.

(b) Since T ox p?~!, we can also write 7 = constant x p7 1.
Taking logarithms of both sides of the equation gives

log;o T = log;(constant) + (v — 1) log;, p-

Therefore the adiabats are straight lines of slope v — 1.

(c) Since
14(s/2)
o (s/2)

so for s = 3, then y = 5/3, and the slope v — 1 of the adiabat of an ideal gas with
three degrees of freedom is 5/3 — 3/3 = 2/3.

(d) s takes values from 3 to oo, so ~y takes values from 5/3 to 1, and the slope is
in the range from 2/3 to 0.

(e) If v = 4/3, then the adiabat has slope v — 1 = 1/3.
Exercise 8.6 (a) Using Equation 8.5,

M M 1.99 x 10%° kg <4.5 eV

Epi= —— FEp+ —FB =
DL o P g™ T 16T x 10 kg \ 2

+13.6 eV) = 1.885 x 10°% eV.
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Solutions to exercises

Since 1 eV = 1.602 x 107! J, this is equivalent to
(1.885 x 107 eV) x (1.602 x 107 JeV~1) ~ 3 x 1037 J.

(b) Equating this energy to the change in gravitational potential energy, we have

GM? GM?
- ~3x10%7]
R, Ry ”
SO
GM? -1
RngM2( 2 +3><10391)
1

=6.673 x 107" Nm? kg™2 x (1.99 x 103 kg)?

. ((6:673 x 107" Nm? kg2 x (1.99 x 1030 kg)?
101 m

-1
+3x10% J)
=88 x 10" m.

Hence the cloud collapses to a radius of about 10! m or ~ 150 Re.

Exercise 8.7 Equation 8.8 can be re-written as

N(Ml) _ (Ml)—2.35

N(Ma) M,
where M7 and Ms are two particular masses. So the number of stars with each
mass are:
50 \ 23 10 \ 235
(50) (10(]) 5 and (10) (100) 00,
5 \ 295 1\ 23
(5) (1()0) 000 and (1) (100) 50000,
0.5\ 23 0.1\ 23
N(0.5) = (100> ~ 250000 and N(0.1) = (100) ~ 11 million.
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