
Correction of the Exercises 

 

Exercise 1.1. The electrostatic field of the diffue layer. 1. As we are dealing with a binary 

symmetric electrolyte eq )(  and in the free electrolyte (the one not influence by the electrical 

diffuse layer), we have fCC  )()(  where fC  is the salinity of the electrolyte. Far from the 

wall, the electrostatic potential created by the charge on the wall vanishes. 

So, fb CTkx ln)( 0

)()(     while in the vicinity of the wall, at distance x, we have 
0

( ) ( ) ( ) ( )( ) ln ( ) ( )bx k T C x q x        . Equilibrium is given by the equality of the 

electrochemical potentials, so, 
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Another totally equivalent way to show this result is to say that at equilibrium the flux of ions 

due to the electrostatic field (due to the charged surface) counterbalances the diffusive flux of 

ions. This yields, 

)()()()( )()()()( xxCxCD    ,    (9.3) 
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2. Because of the symmetry of the problem, the electrical field E has not one component normal 

to the charged wall therefore we can write   Ef  as, 
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Now the local bulk charge density is given by: 
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with )exp()exp()sinh(2 xxx  . It follows, 
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3.  Note first that eTkb /  has the dimension of an electrostatic potential. At 25°C (298K), its 

value is close to 25 mV. If the electrostatic potential ( )x  is much smaller than eTkb / , we can 

use a first or second order development of the exponential. 

sinh( =    +,      (9.10) 

… and therefore, 



22

2

2
( )

f

f b

e Cd
x

dx k T





 .      (9.11) 

Such type of linear partial differential equation is very classical and you should think that the 

solution is an exponential (the second derivative is equal to the function !). This is also a seocnd 

order linear partial differential equation with constant coefficients. We can try a solution of the 

type, 

0( ) exp( / )dx x x   ,   (9.12) 

0( ) / ( / )exp( / )d dd x dx x x x    ,   (9.13) 
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and therefore 2 2 2( ) / (1/ ) ( ))dd x dx x x  ,    (9.15) 

with, 
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A numerical application shows that dx  is much smaller than the size of the pore.  

 

Exercise 1.2. Self-potential map. The self-potential map should look like the one shown in 

Figure 9.1.  

 

Exercise 1.3. Stern Layer Complexation and CEC. 1. The solution of the problem is,
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2. The solution is given by,  
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At high pH values, 
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3. The solution is given by, 
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where 

 

0 0

SCEC ( )M X spe S    corresponds to the maximum CEC at value at high pH values. 

 

Exercise 2.1. Prigogine Theorem. We write the fluxes in the new Lagrangian framework 

associated with deformation of the grain skeleton ("superscript "s"),  
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In this equation D
s
 is the total dissipation function written in the Lagrangian framework 

associated with deformation of the solid phase. In order to demonstrate the validity of the 

Prigogine's theorem, D
m
D

s
 in Eq. (A2), I can use the force balance equation written under the 

assumption of mechanical equilibrium,  
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d
. In addition the Gibbs-Duhem relationship of thermostatic yields,  
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The equations yield immediately to Prigogine’s theorem D
m
D

s
. 

 

Exercise 2.2. Donnan model of Osmotic pressure. 1. Thermodynamic equilibrium between the 

fictitious reservoir and the pore space implies,  
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2. Solution.  
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3. Solution. 

 ln ln 1 2 2b b
w f f b f

w w

k T k T
C C k TC       

 
,   (9.35) 

0 lnw w w b wp k T C    ,     (9.36) 

*w w p    where *p p   .      (9.37) 

 

4. Solution, 

lnb
w

w

k T
C  

 ,      (9.38) 

0 lnw w w b wp k T C    ,     (9.39) 

( ) ( )( ) 1w w fC C      ,     (9.40) 

( ) ( ) ( ) ( ) 1w wC C C       ,    (9.41) 

w w  .        (9.42) 

lnb w

w w

k T C

C
  

 
       

,      (9.43) 

( ) ( )

1 2
ln

1

w fb

w w w

Ck T

C C


 

  
   

   

,    (9.44) 

 ( ) ( ) 2b fk T C C C      ,     (9.45) 

We have used a first-order Taylor expansion of the argument of the logarithm  
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Similarly, the osmotic pressure in the pore space can be written as, 
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diffusion and electromigration, respectively ( ( ) ( )b e   ), and ( )   are the chemical potentials of 

the cations and anions.  

 

Exercise 2.3. Ionic fluxes in the Stern layer in a capillary. From the Nernst-Planck equation, 

the ionic flux densities of the cations and anions are given by, 
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Exercise 2.4. Electrical conductivity and effective charge density of a bundle of capillaries. 

Solution: We consider first a single capillary i. The current density Ji is given by the local Ohm's 

law,  
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where Ii and Ai are the current and surface area of a cross-section of the capillary, respectively, 

/L is the electrical field, Ri the radius of the capillary, and L its length. The porosity is given 

by 
2 /n A   . For a collection of n capillaries, the total current I is defined as the sum of all 

the currents through all the capillaries (fluxes are cumulative):  

 
1 1

2
n n

i f i i i S

i i

I I A R g
L




 


     .   (9.64) 

where 
ig  denotes the dicretized version of the probability density of the pore size distribution. 

The total (macroscopic) current density of the porous material is therefore given by: 
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As J is also given by a macroscopic Ohm's law and assuming that the capillaries are 

characterized by a certain tortuosity F , the electrical conductivity of the porous material is 

given by,  
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 We focus now on the scaling between the volumetric excess of charge and the raw 

moments of the pore size distribution. For a single capillary i, the local volumetric charge density 
i

Vq  (averaged over the pore space of the capillary) is related to the effective surface charge 

density QS on the surface of the walls of the capillary by,  
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In this eqaution, the factor 2/Ri corresponds to the surface per pore volume ratio. If Ni represents 

the number of charges in excess to neutrality in the capillary i, we have also,  
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where 
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pV  is the volume of the capillary i. For a collection of n capillaries, the volumetric charge 



density of the porous material is defined by,  
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where Vp is the total pore volume (therefore the total number of excess charge is cumulative). 

This yields,  
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We observe therefore that surface conductivity and the volumetric charge density share the same 

scaling law.  

2. We look now at the streaming current density. For a single capillary, we have, 
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For a collection of n capillaries and following the chain rules as previously, we find, 
ˆ

VJ Q U ,   

2 3

4 1

ˆ
V V VQ Q Q

 
 

 
.  

 

Exercise 3.1. Electrical conductivity tensor of a pile of N planar sedimentary layers. In the x 

and y directions, the total flux (total current for the conductivity) is the sum of the fluxes 

(current) of each layer (resistors in parallel). In the vertical direction, the all the fluxes in each 

layer are the same and the potential drop sum up to the total difference of potential through the 

pile (resistors in series). 

 

Exercise 3.2. Complex conductivity of clayey materials. The conductivity data occurs over 

more than an order of magnitude. Using a linear fit would favor the high values while using a log 

log expression provides a more similar weight to high and low conductivities. the petrophysical 

properties of the three samples are given in the following table. 

 

Property S9 S16 S22 

Connected porosity  (-) 

Formation factor F (-) 

Surface conductivity S (S m
-1

) 

Cementation exponent m (-) 

Excess of charge 
VQ (C m

-3
) 

CEC (cmol kg
-1

)  

0.48 

4.1±0.3 

(39±6) ×10
-4

 

1.9 

3.9×10
6
 

1.4 

0.49 

5.9±0.1 

(95±2) ×10
-4

 

2.5 

1.4×10
7
 

5.3 

0.43 

4.4±0.5 

(376±34) ×10
-4

 

1.8 

4.2×10
7
 

12 

 



Exercise 3.3. Interpretation of a geobattery experiment. From the self-potential data, we can 

see that there is no self-potential anomaly associated with the buried ISO1 while there is a 

negative self-potential anomaly associated with ISO2. To interpret these data you have to picture 

what is a vertical redox potential profile: positive in the vadose zone, negative below the water 

table and having a strong gradient through the capillary fringe. ISO1 experiences a relatively 

small redox potential gradient bit ISO2, which crossed the capillary fringe experience a much 

stronger redox potential gradient. Therefore the forcing term for ISO2 is much greater than for 

ISO1. This explains a much greater negative self-potential anomaly associated with the 

geobattery associated with ISO2.  

 

 

Exercice 4.1. We consider a tube with a length of 50 cm where the porous medium has a height 

of 40 cm. We take a hydraulic conductivity K = 10
-4

m s
-1

, an electrical conductivity of 0.01 S m
-

1
, and a streaming current coupling coefficient L = 10

-4 
A m

2
. The numerical simulation shows 

that the self potential is linear with the hydraulic head. The head gradient is 1 (1m m
-1

) and the 

electrical field is 0.0125 V m
-1

. 

 

Exercice 4.2. Correction, 
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we see that the SVD of G depends to the eigenvalue decompositions of the symmetric positive 

semi-defnite matrices TG G  and TGG , then the minimum solution can be written as: 
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Exercise 4.3. The results of the inversion is shown in Figure 9.2.  

 

Exercise 6.1. Figure 9.3 represents the comparison between of the observed and computed self 

potential data. 

 

Exercice 7.1.  The solution of the groundwater flow equation allows to obtain the hydraulic 

pressure and Darcy velocity which was used to estimate the electrical streaming density. The 

electric problem is solved after the compute of the source term using numerical approximations 

of the divergence operator of the Darcy velocity distribution times the effective excess 

volumetric charges. The areas of the ground water infiltration are associated with the negative 

self-potential anomalies. The results are shown in Figure 9.4.  



 

Exercise 8.1. Drained and Undrained self-potential Response to Loading. 1. The first part of 

this problem is to show that the mass of the pore fluid per unit volume of porous material obeys a 

diffusion equation and to determine the diffusivity.  1. a. Solution:  
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c. Solution: We start with 
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We take the Laplacian of this equation, 
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e. Solution. We compare the following two equations 
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We need to replace the deformation as a function of the fluid pressure. 
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Finally we need to replace the Laplacian of the fluid pressure by  
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2. The deformation can be decomposed into two parts: an undrained response (primary 

consolidation) where a fluid pressure pu is created (which is equal to the Skempton coefficient B 

time the load P) and then start the secondary consolidation corresponding to the drained regime 

in which fluid flow out of the pores below the load in response to the increment in the confining 

stress. The self-potential response follows a similar response: an underained response associated 

iwth the fluid pressure builup pu. This increase is followed by a relaxation of the potential 

associated with the flow of the pore water in response to the load (secondary consolidation). 

Having a network of self-potential stations, we can easily use a stochastic approaches (like the 

AMA algorithm) to invert the poroelastic parameters.  

 


