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Part III
Unconstrained optimization
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9
Case studies of unconstrained optimization

(i) Multi-variate linear regression (Section9.1), and
(ii) State estimation in an electric power system (Section9.2).
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9.1 Multi-variate linear regression
9.1.1 Motivation

• Suppose we have a hypothesized functional relationship between
dependent variablesthat vary according to some function of some
independent variables.

• We do not have a complete specification of the function relating the
variables.

• For example, if the hypothesized function is linear, the entries in
coefficient matrix will typically be unknown to us.

• These unknown entries are called theparametersof the function.
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9.1.2 Formulation
9.1.2.1 Measurement variables

• Assume that there is one dependent variable in our problem and call it ζ.
• Also assume that there are(n−1) independent variables.
• Collect the independent variables together into a vectorψ ∈ Rn−1.

9.1.2.2 Functional relationship
• We believe that there is an affine relationship betweenζ andψ.

∀ψ ∈ R
n−1,ζ = β†ψ+ γ. (9.1)

• We want to find the unknowns in the vectorx=

[

β
γ

]

∈ Rn.
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9.1.2.3 Trials
• We can perform a number of “trials” with varying values for the

independent variablesψ.
• We useψ(ℓ) andζ(ℓ), respectively, to denote the value of the independent

variablesψ and the corresponding measured value of the dependent
variableζ for theℓ-th trial.
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× (ψ(1),ζ(1))

×
(ψ(2),ζ(2)) × (ψ(3),ζ(3))

×(ψ(4),ζ(4))

× (ψ(5),ζ(5))

× (ψ(6),ζ(6))
× (ψ(7),ζ(7))

Fig. 9.1. The values of
(ψ(ℓ),ζ(ℓ)) (shown as
×) and affine fit.
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9.1.2.4 Measurement error

ζ(ℓ) = β†ψ(ℓ)+ γ+eℓ. (9.2)

• The measurementerror eℓ is also called theresidual.

Calibration error

• There may be a functionc : R→ R, called thecalibration function , such
that:

β†ψ(ℓ)+ γ = ζ(ℓ)−c(ζ(ℓ)).

Functional error

• The erroreℓ may be due to error in the assumed functional form:

ζ = β†ψ+ψ†Γψ, (9.3)

• whereΓ ∈ R(n−1)×(n−1) is a matrix of unknown parameters.
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Random error

• The erroreℓ may berandom with expected value, say, 0.
• That is,ζ also depends on other variables besidesψ that we can neither

control nor measure easily.
• It may be reasonable to model these errors as random variables that vary

independently of the trials as in the following examples.

Black-box circuit

• It may be reasonable to assume that the temperature is independent of the
injected currents.

Drug efficacy

• It may be reasonable to assume that immune system propertiesvary
randomly from patient to patient and are independent of the symptoms,
drugs, and treatment.

Discussion

• We should be very cautious about asserting independence between the
independent variablesψ(ℓ) and the erroreℓ.
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9.1.2.5 Random error distribution
• We will only consider random error in this case study.

Central limit theorem

• Suppose that there are a number of factors that sum toeℓ in trial ℓ.
• Thecentral limit theorem says that the sum of a large number of

independent random variables has a distribution that is approximately
Gaussian, with density:

1√
2πσℓ

exp

(

−(eℓ−µℓ)2

2(σℓ)2

)

, (9.4)

• whereµℓ is the expected value ofeℓ, in our case 0, andσℓ is its standard
deviation.

Error correlation

• We will assume thateℓ is uncorrelated witheℓ′ for ℓ 6= ℓ′.
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Distribution of dependent variables

∀ζ(ℓ) ∈ R,φℓ(ζ(ℓ);ψ(ℓ),x) =
1√

2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

.

• We use a semi-colon to separate the arguments of the functionfrom the
parametersψ(ℓ) andx.

Joint measurement distribution

• If the error distributions arejointly Gaussian and uncorrelated then the
joint probability density function,φ : Rm→ R, is the product of the
individual probability densities:

∀ζ(1) ∈ R, . . . ,∀ζ(m) ∈ R,φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

. (9.5)
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9.1.2.6 Problem variables
• After performing the trials, the values ofψ(ℓ) andζ(ℓ) are known and we

will re-interpret them as constants.
• The unknowns are the parametersβ andγ in the relationship (9.1).
• We have collected together these parameters into the vectorx and they

will be re-interpreted as the variables in our problem formulation since
they are the values that are to be determined to solve our regression
problem.
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9.1.2.7 Maximum likelihood estimation
• Need a criterion for choosing the “best value.”
• Suppose that we are given:

– a collection of measurementsζ(1) ∈ R, . . . ,ζ(m) ∈ R,
– values of the parametersx∈ Rn, and
– a distanceδ ∈ R+.

• Suppose we take new measurements,ζ̃(1), . . . , ζ̃(m) using the same
values of the independent variables

• Consider the probability that the new measurementsζ̃(1), . . . , ζ̃(m) lie in
the set:

S(x) = {ζ̃(1)∈R, . . . , ζ̃(m)∈R|ζ(ℓ)−δ≤ ζ̃(ℓ)≤ ζ(ℓ)+δ,∀ℓ= 1, . . . ,m}.
• This probability is approximately equal to:

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)(2δ)m.
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Maximum likelihood estimation, continued
• We pickx∈ Rn to maximize the probability that the new measurements

are in the setS(x), which is equivalent to maximizing:

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x)

• overx∈ Rn.
• We now maximizeφ, re-interpretedto be the functionφ : Rn → R defined

by:

∀x∈ R
n,φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ζ(ℓ)−β†ψ(ℓ)− γ)2

2(σℓ)2

)

,

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

)

, (9.6)

• wherex=

[

β
γ

]

.

Title Page ◭◭ ◮◮ ◭ ◮ 13 of 138 Go Back Full Screen Close Quit



9.1.2.8 Problem
• The maximum likelihood estimation problem:

max
x∈Rn

φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x). (9.7)

9.1.3 Change of number of trials or correction of data
• We may find that after solving the maximum likelihood estimation using

trials 1, . . . ,mwe conduct further trials or find that some of the data is in
error and needs to be corrected.

• We would like to be able obtain an updated estimation withoutstarting
from scratch.
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9.1.4 Problem characteristics
9.1.4.1 Parameters re-interpreted as variables

• We have re-interpreted theparametersβ andγ of the probability density
in (9.5) to be thevariablesin our optimization problem.

• We interpretψ(ℓ) andζ(ℓ) to beknownvalues once the trials have been
completed.

9.1.4.2 Objective
• The objectiveφ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x) is the product of terms.
• Each term in the product depends onx.

9.1.4.3 Number of parameters and trials
• If m≤ n then there is no redundancy and we will not be able to reduce the

effects of measurement errors.

9.1.4.4 Generalizations
• In some cases, we may have a non-linear relationship betweenthe

dependent and independent variables, as in (9.3).
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9.2 Power system state estimation
• We formulate anon-linear regressionproblem.

9.2.1 Motivation
9.2.1.1 Non-linear regression

• Suppose that we hypothesize a non-linear relationship, such asζ = γ(ψ)β,
between scalarsψ andζ with unknown parametersβ andγ.

• A standard approach for this particular non-linear relationship is to take
logarithms of both sides to form the equation:

ln(ζ) = β ln(ψ)+ ln(γ),
Ψ = ln(ψ),
Z = ln(ζ).
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Non-linear regression, continued
• We have implicitly defined an onto functionτ : R2

++ → R2 and a
transformed functional relationship specified by:

∀
[

ψ
ζ

]

∈ R
2
++,τ

([

ψ
ζ

])

=

[

ln(ψ)
ln(ζ)

]

,

Z = βΨ+Γ.

• It is not always possible to find such a transformation.
• For example, consider a functional relationship between scalarsψ andζ

of the form:

ζ = γ(ψ)β+δψ.

• We cannot transform this equation in a way such that all the unknown
parametersβ,γ, andδ (or their transformed versions) appear linearly.

• Such a problem is called anon-linear regressionproblem.
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9.2.1.2 Power system measurements
• We may want to observe theactualstate of the system to check if the

system is operating within limits.
• The state estimation problem involves finding the voltage angles and

magnitudes in the system that best match the measured values.
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9.2.2 Formulation
9.2.2.1 Measurements

• Real and reactive power injection at a bus;
• Real and reactive power flow along a line; and
• Voltage magnitude.

neutral

1 23

✚✙
✛✘
∼

P̃1,Q̃1,Ũ1

P̃12,Q̃12

P̃13,Q̃13

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 9.2. Three-bus
power system state
estimation problem.
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Real and reactive power injection

• LetB be the set of buses where there are measurements of the real and
reactive power injections into the system.

• In Figure9.2, B= {1}.

Real and reactive line flow

• Let F be the set of lines where we have line flow measurements.
• In Figure9.2, F= {(1,2),(1,3)}.

Voltage magnitude

• Finally, letU be the set of buses where there are voltage magnitude
measurements.

• In Figure9.2, U= {1}.
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9.2.2.2 Variables
• Change the definition ofx in Section6.2 to include:

– the voltage angles at all buses except the reference bus, and
– the voltage magnitudes at all buses in the system, includingthe

reference bus.
• Now x∈ Rn, wheren is equal to one less than twice the number of buses,

so that the vectorx has been re-defined compared to Section6.2.

Title Page ◭◭ ◮◮ ◭ ◮ 21 of 138 Go Back Full Screen Close Quit



9.2.2.3 Measurement functions
• Recall the definitions of the functionspℓ,qℓ : Rn → R in (6.12) and (6.13)

that were used in the power flow case study:

∀x∈ R
n, pℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)]−Pℓ,

∀x∈ R
n,qℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)]−Qℓ.

• Let us define new functions by omitting the values of the real and reactive
injections,Pℓ andQℓ.

• That is, define ˜pℓ : Rn → R andq̃ℓ : Rn → R to be:

∀x∈ R
n, p̃ℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓkcos(θℓ−θk)+Bℓksin(θℓ−θk)],

∀x∈ R
n, q̃ℓ(x) = ∑

k∈J(ℓ)∪{ℓ}
uℓuk[Gℓksin(θℓ−θk)−Bℓkcos(θℓ−θk)].
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9.2.2.4 Measurement functions
• We denote the measurement functions by:

p̃ℓ, q̃ℓ, for the real and reactive power injection measurements, ℓ ∈ B,

p̃ℓk, q̃ℓk, for the real and reactive line flow measurements,(ℓ,k) ∈ F,

ũℓ, for the voltage magnitude measurements, ℓ ∈ U.

• We collect the measurement functions into a vector functiong̃ and collect
the measurements together into a corresponding vectorG̃:

∀x∈ R
n, g̃(x) =













[

p̃ℓ(x)
q̃ℓ(x)

]

ℓ∈B
[

p̃ℓk(x)
q̃ℓk(x)

]

(ℓ,k)∈F
[ ũℓ(x) ]ℓ∈U













,G̃=















[

P̃ℓ
Q̃ℓ

]

ℓ∈B
[

P̃ℓk
Q̃ℓk

]

(ℓ,k)∈F
[

Ũℓ

]

ℓ∈U















.

• Let us define a new index setM that specifies all the measurements.
• We re-index the entries of ˜g andG̃ using the setM, so that ˜g= (g̃k)k∈M

andG̃∈ RM.

Title Page ◭◭ ◮◮ ◭ ◮ 23 of 138 Go Back Full Screen Close Quit



9.2.2.5 Error distribution
• Assuming independent Gaussian measurement errors then we can write

the probability density,φ : RM → R, of the measurement vectorG̃ as the
product of probability densities:

∀G̃∈ R
M,φ(G̃;x) = ∏

ℓ∈B
φp̃ℓ(P̃ℓ;x)∏

ℓ∈B
φq̃ℓ(Q̃ℓ;x) ∏

(ℓ,k)∈F
φp̃ℓk(P̃ℓk;x)

× ∏
(ℓ,k)∈F

φq̃ℓk(Q̃ℓk;x)∏
ℓ∈U

φũℓ(Ũℓ;x),

• where each functionφp̃ℓ(P̃ℓ;x),φq̃ℓ(Q̃ℓ;x),φp̃ℓk(P̃ℓk;x),φq̃ℓk(Q̃ℓk;x), and
φũℓ(Ũℓ;x) represents the probability density function of the corresponding
error distribution and is parameterized byx.
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Error distribution, continued
• For example,

∀P̃ℓ ∈ R,φp̃ℓ(P̃ℓ;x) =
1√

2πσp̃ℓ

exp

(

−(p̃ℓ(x)− P̃ℓ)2

2(σp̃ℓ)
2

)

,

• whereσp̃ℓ is the standard deviation of the measurement error of real
power at busℓ and where we have assumed that the expected error is zero.

• After the measurements are made, we can re-interpretφ to be a function
φ : Rn → R. That is, we re-interpretφ as being defined by:

∀x∈ R
n,φ(G̃;x) = ∏

ℓ∈B
φp̃ℓ(P̃ℓ;x)∏

ℓ∈B
φq̃ℓ(Q̃ℓ;x) ∏

(ℓ,k)∈F
φp̃ℓk(P̃ℓk;x)

× ∏
(ℓ,k)∈F

φq̃ℓk(Q̃ℓk;x)∏
ℓ∈U

φũℓ(Ũℓ;x).

• Our maximum likelihood estimation problem is then:

max
x∈Rn

φ(G̃;x). (9.8)
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9.2.3 Change in measurement data
• We will consider how a change in measurement data affects theresult.

9.2.4 Problem characteristics
9.2.4.1 Objective

• The objective of this problem is very similar to that of multi-variate linear
regression Problem (9.7), except that each term in the product has one of
the non-linear functions ˜pℓ, q̃ℓ, p̃ℓk, q̃ℓk, or ũℓ in the exponent instead of the
linear measurement equationψ(ℓ)†β+ γ.
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9.2.4.2 Solvability
• The measurements shown in the system illustrated in Figure9.2have just

enough information to determine all the values of the entries inx.
• It is important to have redundancy of measurements in the system and to

“spread out” the measurements across the system as illustrated in
Figure9.3.

neutral

1 23

✚✙
✛✘
∼

P̃1,Q̃1,Ũ1

P̃12,Q̃12

P̃2,Q̃2,Ũ2P̃3,Q̃3

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 9.3. Three-bus
power system state
estimation problem
with spread out mea-
surements.
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10
Algorithms for unconstrained minimization

• In this chapter we will develop algorithms for unconstrained optimization
problems of the form:

min
x∈Rn

f (x),

• wherex∈ Rn and f : Rn → R.
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Key issues
• Descent directionsto reduce the value of the objective,
• optimality conditions based ondescent directions,
• optimality conditions forconvex objectives,
• the development ofiterative algorithms, and
• sensitivity analysis.
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10.1 Optimality conditions
10.1.1 Descent direction

10.1.1.1 Analysis

Definition 10.1 Let x̂∈ Rn and f : Rn → R. Then the vector∆x∈ Rn is
called adescent directionfor f at x̂ if:

∃α ∈ R++ such that(0< α ≤ α)⇒ ( f (x̂+α∆x)< f (x̂)).

✷
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10.1.1.2 Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2. (10.1)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 10.1. Descent
direction (shown as
the longer arrow) for
a function at a point

x̂ =

[

2
1

]

, shown as

a ◦. The contours of
the function decrease

towards x⋆ =

[

1
3

]

,

which is shown as a•.
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10.1.1.3 Steepest descent step direction
• ∆x=−∇f (x) is called the direction ofsteepest descent.

−5 −4 −3 −2 −1 0 1 2 3 4 5
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3

4

5

x1

x2

Fig. 10.2. Steepest
descent directions for
a function at various
points. The contours of
the function decrease

towards x⋆ =

[

1
3

]

,

which is shown as a•.
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10.1.1.4 Analysis

Lemma 10.1 Let f : Rn → R be partially differentiable with continuous
partial derivatives and let̂x∈ Rn, ∆x∈ Rn. Suppose that∇f (x̂)†∆x< 0.
Then∆x is a descent direction for f at̂x.

Proof Let φ : R→ R be defined by:

∀t ∈ R,φ(t) = f (x̂+ t∆x).

By the chain rule,
dφ
dt (t) =

∂ f
∂x (x̂+ t∆x)∆x. Evaluating this att = 0 yields:

dφ
dt (0) =

∂ f
∂x (x̂)∆x,

= ∇f (x̂)†∆x,
= −2ε,

say, whereε > 0 by assumption.
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Proof, continued But, by definition, sincef is partially differentiable
with continuous partial derivatives,

dφ
dt (0) = lim

α→0

f (x̂+α∆x)− f (x̂)
α

.

Let α ∈ R++ be small enough such that

(0< |α| ≤ α)⇒
(∣

∣

∣

∣

f (x̂+α∆x)− f (x̂)
α

− dφ
dt (0)

∣

∣

∣

∣

≤ ε
)

.

But this means that:

(0< |α| ≤ α)⇒
(∣

∣

∣

∣

f (x̂+α∆x)− f (x̂)
α

− (−2ε)
∣

∣

∣

∣

≤ ε
)

,

which implies that:

(0< |α| ≤ α)⇒
(

f (x̂+α∆x)− f (x̂)
α

≤−ε
)

.
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Proof, continued So:

(0< α ≤ α) ⇒ ( f (x̂+α∆x)− f (x̂)≤−αε < 0),
⇒ ( f (x̂+α∆x) < f (x̂)),

and∆x is a descent direction forf at x̂. ✷

• ∇f (x̂)†∆x is called thedirectional derivative of f at x̂ in the direction
∆x.

• Analytically, the condition in Lemma10.1that∇f (x̂)†∆x< 0 requires that
the directional derivative in the direction∆x be negative.

• Geometrically, this condition requires that the angle between∆x and
−∇f (x̂) be less than 90◦ for ∆x to be a descent direction as illustrated in
Figure10.3.
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Descent directions
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x2

Fig. 10.3. Various
descent directions for
a function a particu-

lar point x̂ =

[

3
−3

]

.

The contours decrease
towards the point

x⋆ =

[

1
3

]

, which is

shown as a•.
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Corollary 10.2 Let x̂∈ Rn, let M∈ Rn×n be positive definite, and let
f : Rn → R be partially differentiable with continuous partial derivatives
and such that∇f (x̂) 6= 0. Then∆x=−M ∇f (x̂) is a descent direction for
f at x̂.

Proof Note that∇f (x̂)†∆x=−∇f (x̂)†M ∇f (x̂)< 0, sinceM is positive
definite and∇f (x̂) 6= 0. Apply Lemma10.1. ✷

• The “middle” arrow in Figure10.3shows the steepest descent step
direction at ˆx, corresponding to the choiceM = I .

• The other directions correspond to other choices of positive definiteM
and also yield descent directions in thatf is also reducing in these
directions away from ˆx.
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10.1.2 First-order conditions
10.1.2.1 Necessary conditions

Theorem 10.3 Let f : Rn → R be partially differentiable with continuous
partial derivatives. If x⋆ is a local minimizer of f then∇f (x⋆) = 0.

Proof We prove the contra-positive. That is, we prove that if
∇f (x⋆) 6= 0 thenx⋆ is not a local minimizer. LetM ∈ Rn×n be positive
definite. By Corollary10.2, ∆x=−M ∇f (x⋆) is a descent direction forf
atx⋆ and sox⋆ is not a local minimizer off . ✷

• The statement and proof of Theorem10.3, respectively, suggest two
approaches to finding a minimizer off :

(i) solve∇f (x) = 0, or
(ii) from the current pointx, move in the direction∆x=−M ∇f (x),

whereM is positive definite.
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10.1.2.2 Example of insufficiency
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x̂ ˆ̂x x⋆

f (x)

Fig. 10.4. Graph of f
and points (illustrated
by the ◦) satisfying
∇f (x) = 0 but which
may or may not corre-
spond to a minimum.

Title Page ◭◭ ◮◮ ◭ ◮ 39 of 138 Go Back Full Screen Close Quit



Example of insufficiency, continued
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Fig. 10.5. First deriva-
tive ∇f of the functionf
shown in Figure10.4.
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Example of insufficiency, continued
• ∇f (x) = 0 is not sufficient to guarantee a minimum.
• We call points that satisfy∇f (x) = 0 critical points.
• Not all critical points are minimizers.
• For the function shown in Figure10.4:

(i) x̂=−3, f (x̂) = 8, a local maximizer and maximum off ,
respectively,

(ii) ˆ̂x= 0, f ( ˆ̂x) = 0, ahorizontal inflection point of f , and
(iii) x⋆ = 3, f (x⋆) =−8, a local minimizer and minimum off ,

respectively.
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10.1.3 Second-order conditions
10.1.3.1 Necessary conditions

Analysis

Theorem 10.4 Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives and suppose that x⋆ is a local
minimizer of f . Then:

∇f (x⋆) = 0, (10.2)

∇2f (x⋆) is positive semi-definite. (10.3)

✷
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Example
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∇2f (x)

x̂ ˆ̂x x⋆

Fig. 10.6. Second
derivative ∇2f of the
function f shown in
Figure10.4.
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Example, continued

• Again consider the functionf shown in Figure10.4.
• Its first and second derivatives are shown in Figures10.5and10.6,

respectively.
• Since f : R→ R in this case, the Hessian∇2f : R→ R is positive

semi-definite if and only if it is non-negative.
• The critical points off are at:

x̂=−3. At this point, the Hessian off , shown in Figure10.6, is negative
and hence not positive semi-definite. Therefore, by Theorem10.4, x̂=−3
cannot be a local minimizer off .

ˆ̂x= 0. At this point, the Hessian off is zero and hence positive
semi-definite. The second-order necessary conditions are satisfied but by
inspection of Figure10.4, ˆ̂x= 0 is clearly not a minimizer.

x⋆ = 3. This point is a local minimizer off . Figure10.6and Theorem10.4
both concur that the Hessian is positive semi-definite.
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10.1.3.2 Sufficient conditions
Analysis

Theorem 10.5 Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives and suppose that:

∇f (x⋆) = 0,
∇2f (x⋆) is positive definite.

Then x⋆ is a strict local minimizer of f .

Proof By hypothesis,∇2f (x⋆) is positive definite and∇2f is continuous.
Therefore:

∃ε ∈ R++ such that(‖x⋆−x‖ ≤ ε)⇒ (∇2f (x) is positive definite).
(10.4)

Let ∆x be any step direction such that 0< ‖∆x‖ ≤ ε and defineφ : R→ R

by:

∀t ∈ R,φ(t) = f (x⋆+ t∆x).
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Proof, continued Then:

dφ
dt (t) =

∂ f
∂x (x⋆+ t∆x)∆x,

dφ
dt (0) =

∂ f
∂x (x⋆)∆x,

= ∇f (x⋆)†∆x,
= 0, by hypothesis, (10.5)

d2φ
dt2

(t) = ∆x†∂2 f
∂x2 (x⋆+ t∆x)∆x,

> 0,∀0< t ≤ 1, (10.6)

where the last inequality follows from (10.4) since∆x 6= 0 and since:

(0< t ≤ 1)⇒ (‖x⋆− (x⋆+ t∆x)‖= t ‖∆x‖ ≤ ‖∆x‖ ≤ ε).
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Proof, continued We have thatφ(0) = f (x⋆) and:

∀∆x∈ R
n,(0< ‖∆x‖ ≤ ε)⇒

f (x⋆+∆x) = φ(1),

= φ(0)+
∫ 1

t=0

dφ
dt (t)dt,

= φ(0)+
∫ 1

t=0

[

dφ
dt (0)+

∫ t

t ′=0

d2φ
dt2

(t ′)dt′
]

dt,

= φ(0)+ dφ
dt (0)+

∫ 1

t=0

∫ t

t ′=0

d2φ
dt2

(t ′)dt′dt,

= φ(0)+
∫ 1

t=0

∫ t

t ′=0

d2φ
dt2

(t ′)dt′dt, by (10.5),

> f (x⋆), since the integrand is strictly positive by (10.6).

That is,x⋆ is a strict local minimizer.✷

• Positivesemi-definiteness of the second derivative matrix at a critical
point ˆ̂x is not sufficient to guarantee thatˆ̂x is a minimizer.
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Example

• Continuing with the example from Section10.1.1.2, note that:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2,

∀x∈ R
2,∇2f (x) =

[

2 0
0 2

]

,

• which is positive definite.

• Therefore, by Theorem10.5, the pointx⋆ =

[

1
3

]

is a strict local

minimizer of f .
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Example of insufficiency

∀x∈ R, f (x) =−(x)4.

−1.5 −1 −0.5 0 0.5 1 1.5
−5

−4

−3

−2

−1

0

1

x

f

ˆ̂x

Fig. 10.7. A critical
point ˆ̂x = 0, illustrated
by the◦, where the sec-
ond derivative matrix is
positive semi-definite at
ˆ̂x yet the point is not a
minimizer.
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Example of insufficiency, continued

• Consider the point̂̂x= 0 as illustrated in Figure10.7.
• In this case:

∇f ( ˆ̂x) = [−4( ˆ̂x)3],

= [0],

∇2f ( ˆ̂x) = [−12( ˆ̂x)2],

= [0],

• so that:

∀∆x∈ R,0= ∆x∇2f ( ˆ̂x)∆x≥ 0,

• and so∇2f ( ˆ̂x) is positive semi-definite.
• However,ˆ̂x= [0] is clearly not a minimizer off .
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10.1.4 Convex objectives
10.1.4.1 First-order sufficient conditions

Analysis

• If f is twice partially differentiable with continuous partialderivatives
and the second derivative matrix off is positive semi-definiteeverywhere
then the objective is convex by Theorem2.7.
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Corollary 10.6 Let f : Rn → R be convex and partially differentiable with
continuous partial derivatives onRn and let x⋆ ∈ Rn. If ∇f (x⋆) = 0 then
f (x⋆) is the global minimum and x⋆ is a global minimizer of f .

Proof Recall Theorem2.6. The hypothesis of Theorem2.6 is satisfied
for S= Rn. Consequently, (2.31) holds, which we repeat:

∀x,x′ ∈ S, f (x)≥ f (x′)+∇f (x′)†
(x−x′).

Letting x′ = x⋆ andS= Rn in (2.31) and noting that∇f (x⋆) = 0, we
obtain:

∀x∈ R
n, f (x)≥ f (x⋆).

That isx⋆ is a global minimizer off . ✷
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Example

• Continuing with the example from Sections10.1.1.2and10.1.3.2, note
that∇2f is positive definite so thatf is convex.

• Therefore, by Corollary10.6, the pointx⋆ =

[

1
3

]

is the global minimizer

of f .

Title Page ◭◭ ◮◮ ◭ ◮ 53 of 138 Go Back Full Screen Close Quit



10.1.4.2 Uniqueness of minimizer

Theorem 10.7Let f : Rn → R be twice partially differentiable with
continuous second partial derivatives onRn. If ∇2f is positive definite
throughoutRn andminx∈Rn f (x) possesses a minimum then the
associated minimizer is unique.

Proof Applying Theorems2.3and2.2to ∇f we find that there is at
most one point that satisfies the necessary conditions for minimizing f .
Alternatively, Theorem2.7and Item(iii) of the conclusion of
Theorem2.4 imply the same result.✷
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10.2 Approaches to finding minimizers
10.2.1 Steepest descent

x(ν+1) = x(ν)−α(ν)∇f (x(ν)). (10.7)

10.2.1.1 Advantages

• Unless∇f (x(ν)) = 0, it is always possible to find a step-sizeα(ν) such that
the objective will be reduced fromf (x(ν)) by updating the iterate to
x(ν)−α(ν)∇f (x(ν)).

10.2.1.2 Example
• Consider the quadratic function illustrated in Figure10.2.
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Example, continued

∇f (x) =

[

2(x1−1)
2(x2−3)

]

,

x(0) =

[

3
−5

]

,

∇f (x(0)) =

[

2(3−1)
2(−5−3)

]

,

=

[

4
−16

]

,

x(1) = x(0)+α(0)∆x(0),

=

[

3
−5

]

+α(0)
[

−4
16

]

.

• If we setα(0) = 0.5 thenx(1) = x⋆ =

[

1
3

]

so that we would have reached

the minimizer in one iteration.
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10.2.1.3 Disadvantages
• Progress towards the solution may be very slow if the contoursets of the

function are very “eccentric.”
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x1

x2

Fig. 10.8. Scaled ver-
sions of the steepest
descent step directions
for an objective, defined
in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•.
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10.2.1.4 Example
• Figure10.8shows scaled versions of the steepest descent step directions

for a quadratic functionf : R2 → R defined by:

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2−1.8(x1−1)(x2−3), (10.8)

=
1
2

x†Qx+c†x+ constant,

Q = ∇2f (x),

=

[

2 −1.8
−1.8 2

]

,

c =

[

3.4
−4.2

]

.

• This function has the same minimizer,x⋆ =

[

1
3

]

, as the function in

Figure10.2, but has eccentric contour sets.
• This function is more typical of functions encountered in practice.
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Example, continued

• For a step-size ofα(ν), the next iterate has objective value:

f (x(ν+1)) = f (x(ν)−α(ν)∇f (x(ν))).

• Even if we chooseα(ν) at each iteration to minimize
f
(

x(ν)−α(ν)∇f (x(ν))
)

exactlywith respect toα(ν), it can take many
iterations to find the minimum of a quadratic function havingeccentric
contour sets.

• The iterates will “zig-zag” back and forth across the axes ofthe eccentric
contour sets, making slow progress towardsx⋆.

• Non-quadratic functions with eccentric contour sets will exhibit similarly
poor behavior using the steepest descent step direction.
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Example, continued
• Using the function defined in (10.8), we obtain:

∀x∈ R
2,∇f (x) =

[

2(x1−1)−1.8(x2−3)
2(x2−3)−1.8(x1−1)

]

.

• Again, suppose that we usex(0) =

[

3
−5

]

as the initial guess.

• Then:

∇f (x(0)) =

[

2(3−1)−1.8(−5−3)
2(−5−3)−1.8(3−1)

]

=

[

18.4
−19.6

]

,

• and the steepest descent step direction atx(0) is ∆x(0) =

[

−18.4
19.6

]

.
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Example, continued
• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)
[

−18.4
19.6

]

.

• For the value ofα(0) that minimizesf (x(0)+α(0)∆x(0)) over choices of

α(0), x(1) ≈
[

−1.8467
0.1628

]

, which is relatively far from the minimizer off .

• Figure10.9illustrates the progress of iterations using steepest descent

step direction, starting atx(0) =

[

3
−5

]

, and assuming that at theν-th

iteration the step-sizeα(ν) is chosen to minimizef (x(ν)+α(ν)∆x(ν)).
• Figure10.9shows that after two iterations of steepest descent we are

close to the minimizer of this function.
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Example, continued
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Fig. 10.9. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined
in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

3
−5

]

.
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Example, continued
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Fig. 10.10. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined
in (10.8), with contour
sets that are highly
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

−2
−5

]

.
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Example, continued

• However, starting atx(0) =

[

−2
−5

]

, the progress is much slower, as

illustrated in Figure10.10, requiring six steepest descent step directions
to get close to the minimizer.

• In higher dimensions, withn larger than 2, the steepest descent algorithm
will repeatedly take us in directions that do not point directly towards the
minimizer.

• The steepest descent step direction can be arbitrarily close to being at
right anglesto the direction that points towards the minimizer.

• Moreover, we cannot expect to exactly minimizef (x(ν)+α(ν)∆x(ν)) over
choices ofα(ν) as assumed in Figures10.9and10.10.

• This typically increases further the number of iterations required to find a
useful answer.
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10.2.1.5 Example with non-quadratic objective

∀x∈ R
2, f (x) = 0.01× (x1−1)4+0.01× (x2−3)4+(x1−1)2+(x2−3)2

−1.8(x1−1)(x2−3). (10.9)
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Fig. 10.11. Scaled ver-
sions of the steepest
descent step directions
for an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the function
decrease towardsx⋆ =
[

1
3

]

, which is shown as

a•.
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Example with non-quadratic objective, continued

∀x∈ R
2,∇f (x) =

[

0.04(x1−1)3+2(x1−1)−1.8(x2−3)
0.04(x2−3)3−1.8(x1−1)+2(x2−3)

]

.

• Again, suppose that we usex(0) =

[

3
−5

]

as the initial guess.

• Then,∇f (x(0)) =

[

18.72
−40.08

]

and the steepest descent step direction atx(0)

is ∆x(0) =

[

−18.72
40.08

]

.

• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)
[

−18.72
40.08

]

.

• Figure10.12shows the progress of a steepest descent algorithm assuming
that at theν-th iteration the step-sizeα(ν) is chosen to minimize
f (x(ν)+α(ν)∆x(ν)).
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Example with non-quadratic objective, continued
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Fig. 10.12. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

3
−5

]

.
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Example with non-quadratic objective, continued
• Figure10.13shows the progress of a steepest descent algorithm starting

atx(0) =

[

−2
−5

]

, again with the step-size chosen to minimize

f (x(ν)+α(ν)∆x(ν)) at each iteration.
• The iterates again zig-zag back and forth across the axis of the contour

sets and many iterations are required to approach the minimizer.
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Example with non-quadratic objective, continued
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Fig. 10.13. Progress
of iterations, shown
as ◦, using steepest
descent step directions
for an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

−2
−5

]

.
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10.2.2 Solving∇f (x) = 0

• Another approach to minimizingf is based on the observation that
∇f (x) = 0 is a system of either linear or non-linear equations having the
same number of equations as variables.

10.2.2.1 Linear first-order necessary conditions

Analysis

• Suppose thatf : Rn → R is quadratic of the form:

∀x∈ R
n, f (x) =

1
2

x†Qx+c†x,

• In this case, the equations∇f (x) = 0 are linear and of the form
Qx+c= 0.

• We can solve the equations:

Qx⋆ =−c.
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Example

∀x∈ R
2, f (x) = (x1−1)2+(x2−3)2−1.8(x1−1)(x2−3),

=
1
2

x†Qx+c†x+ constant,

Q = ∇2f (x),

=

[

2 −1.8
−1.8 2

]

,

c =

[

3.4
−4.2

]

.

• SolvingQx⋆ =−c we obtain the minimizerx⋆ =

[

1
3

]

.
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10.2.2.2 Non-linear first-order necessary conditions
Analysis

• Apply the Newton–Raphson update to solve∇f (x) = 0.

∇2f (x(ν))∆x(ν) = −∇f (x(ν)),

x(ν+1) = x(ν)+α(ν)∆x(ν),

• The choice of step is called theNewton–Raphson step directionto
minimize f .
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Example with quadratic objective

• For a quadratic function, the necessary conditions are linear.
• Nevertheless, we can consider applying the Newton–Raphsonupdate to

solve them as though they were non-linear.
• For a quadratic functionf : Rn → R defined by:

∀x∈ R
n, f (x) =

1
2

x†Qx+c†x,

• whereQ∈ Rn×n andc∈ Rn, the Newton–Raphson step direction is the
solution toQ∆x(ν) =−Qx(ν)−c.

• Using this update with step-size one yields a point satisfying the
first-order necessary conditions for minimizingf .

• Figure10.14shows scaled versions of the Newton–Raphson step
directions for the function (10.8) at various points.

• They all point towards the minimizerx⋆ =

[

1
3

]

.
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Example with quadratic objective, continued
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Fig. 10.14. Scaled ver-
sions of the Newton–
Raphson step directions
for an objective, defined
in (10.8), with contour
sets that are highly ec-
centric ellipses. The
contours of the function
decrease towardsx⋆ =
[

1
3

]

, which is shown as

a•.
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Example with non-quadratic objective

∀x∈ R
2, f (x) = 0.01(x1−1)4+0.01(x2−3)4+(x1−1)2+(x2−3)2

−1.8(x1−1)(x2−3),

∀x∈ R
2,∇2f (x) =

[

0.12(x1−1)2+2 −1.8
−1.8 0.12(x2−3)2+2

]

.

• Again, suppose that we usex(0) =

[

3
−5

]

as the initial guess.

• The Newton–Raphson step direction atx(0) is the solution to:
[

2.48 −1.8
−1.8 9.68

]

∆x(0) =

[

−18.72
40.08

]

,

∆x(0) ≈
[

−5.250
3.164

]

.
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Example with non-quadratic objective, continued

• We update according to:

x(1) = x(0)+α(0)∆x(0) =

[

3
−5

]

+α(0)
[

−5.250
3.164

]

.

• For step-sizeα(0) = 1, we obtainx(1) =

[

−2.250
−1.836

]

.

• Figure10.15shows the progress of a Newton–Raphson algorithm starting

atx(0) =

[

3
−5

]

and assuming that at theν-th iteration the step-sizeα(ν)

were chosen to minimizef (x(ν)+α(ν)∆x(ν)).
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Example with non-quadratic objective, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

Fig. 10.15. Progress of
iterations, shown as◦,
using Newton–Raphson
step directions for
an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

3
−5

]

.
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Example with non-quadratic objective, continued

• Figure10.16shows the progress of a Newton–Raphson algorithm starting

atx(0) =

[

−2
−5

]

, again with the step-size chosen to minimize

f (x(ν)+α(ν)∆x(ν)) at each iteration.
• The progress is much faster than for the steepest descent step direction for

the same value of initial guess.
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Example with non-quadratic objective, continued

−5 −4 −3 −2 −1 0 1 2 3 4 5
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x1

x2

Fig. 10.16. Progress of
iterations, shown as◦,
using Newton–Raphson
step directions for
an objective, defined
in (10.9), with contour
sets that are perturbed
eccentric ellipses. The
contours of the func-
tion decrease towards

x⋆ =

[

1
3

]

, which is

shown as a•. The initial

guess wasx(0) =

[

−2
−5

]

.
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10.2.2.3 Advantages
• Convergence to the solution of∇f (x) = 0 will be rapid, at least for initial

guesses that are near to a solution of the equations or after the iterate
becomes close to a solution of the equations.

• If f is quadratic then, as discussed in Section10.2.2.2, the
Newton–Raphson step direction with step-sizeα(ν) = 1 takes us to a
critical point in just one iteration.

• Since∇2f (x) is symmetric, we can take advantage of symmetry in
factorization.
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10.2.2.4 Disadvantages
• For non-quadratic objectives and particularly at points that are far from

the minimizer, the Newton–Raphson step direction is not necessarily a
better direction than the steepest descent step direction.

• Factorization of the Hessian may require considerable effort if n is large
or the Hessian is dense.

• If ∇f (x(ν)) is not known analytically then it may be difficult or impossible
to directly calculate∇2f (x(ν)).

• If ∇2f (x(ν)) is not positive definite, then the Newton–Raphson update
may take us towards a maximum or a point of inflection.
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10.2.3 Generalization of Newton–Raphson and steepest descent
• In this section we generalize the Newton–Raphson and steepest descent

updates in a way that can combine the advantages of each approach.

10.2.3.1 Uniform treatment of updates

∆x(ν) =−M ∇f (x(ν)), (10.10)

• with M ∈ Rn×n positive definite as in Corollary10.2to guarantee descent.
• M = I yields the steepest descent step direction.

• M = [∇2f (x(ν))]
−1

(if the Hessian∇2f is positive definite) yields the
Newton–Raphson step direction.
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10.2.3.2 Modified update

• To calculate∆x(ν) satisfying (10.10), we would solve the linear system:

∇2f (x(ν))∆x(ν) =−∇f (x(ν)). (10.11)

• Suppose that at thej-th stage of the factorization there are no positive
diagonal pivots available.

• By Lemma5.4, this means that∇2f (x(ν)) is not positive definite, so that
the Newton–Raphson step direction, even if it is defined, maynot be a
descent direction.

• Let us modify the factorization by adding a positive quantity E j j to A( j)
j j to

make the pivot positive, whereA( j) is the matrix obtained at thej-th stage
of the factorization of∇2f (x(ν)).

Title Page ◭◭ ◮◮ ◭ ◮ 83 of 138 Go Back Full Screen Close Quit



Modified update, continued

• Adding E j j to A( j)
j j is equivalent to adding the matrix:

E =



















0
...

0
E j j

0
...

0



















(10.12)

• to ∇2f (x(ν)).
• By construction,∇2f (x(ν))+E is symmetric and positive definite.

• Its inverseM = [∇2f (x(ν))+E]
−1

exists and is also symmetric and
positive definite.

• By Corollary10.2, the search direction defined by (10.10) using thisM is
a descent direction.

• This is called amodified factorization.
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10.2.3.3 Further variations
• We have considerable flexibility to either:

(i) construct positive definite approximations to[∇2f (x)]
−1

, or
(ii) approximately solve the equation:

∇2f (x)∆x=−∇f (x),

• in a way that guarantees that for the resulting∆x we have that
∆x=−M∇f (x) for some positive definiteM.
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10.2.4 Step-size
10.2.4.1 Need for step-size selection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f

f (x(ν))

x(ν) x̌x(ν+1)

Fig. 10.17. The need
for a step-size rule. The
function f is illustrated
with a solid line to-
gether with a quadratic
approximation to it,
illustrated as a dashed
line. The quadratic
approximation is a
second-order Taylor
approximation of f
aboutx(ν) = 0.3.
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Need for step-size selection, continued
• Suppose that we use the Newton–Raphson step direction to minimize the

function shown in Figure10.17, starting atx(ν) = 0.3.

∇2f (x(ν))∆x(ν) = −∇f (x(ν)),

∆x(ν) = 0.5.

• For this choice, ˇx= x(ν)+∆x(ν) = 0.8 minimizes the quadratic
approximation tof .

• However:

f (x̌) = f (x(ν)+∆x(ν))),

> f (x(ν)).

• A step-size ofα(ν) = 1 would lead to anincreasein the objective.
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10.2.4.2 Armijo step-size rule

• Suppose that we had chosenα(ν) that is small enough so thatf is
accurately represented by asecond-order Taylor approximationabout
x(ν).

• Then:

f (x(ν)+α(ν)∆x(ν))

≈ f (x(ν))+α(ν) [∇f (x(ν))]
†
∆x(ν)+

1
2
(α(ν))2[∆x(ν)]

†
∇2f (x(ν))∆x(ν),

by a second-order Taylor approximation,

≈ f (x(ν))+α(ν) [∇f (x(ν))]
†
∆x(ν)− 1

2
(α(ν))2[∆x(ν)]

†
∇f (x(ν)),

assuming that∆x(ν) approximately solves∇2f (x(ν))∆x(ν) =−∇f (x(ν)),

= f (x(ν))+α(ν)
(

1− 1
2

α(ν)
)

[∇f (x(ν))]
†
∆x(ν),

≤ f (x(ν))+
1
2

α(ν) [∇f (x(ν))]
†
∆x(ν). (10.13)
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Armijo step-size rule, continued
• In practice, the reduction may not be as small as predicted by(10.13) and

we may have to accept a smaller reduction.
• We choose an acceptance tolerance 0< δ < 1.
• We start with tentative step-sizeα(ν) = 1 and calculate the trial objective

f (x(ν)+α(ν)∆x(ν)).
• The step-size is accepted if:

f (x(ν)+α(ν)∆x(ν))≤ f (x(ν))+
δ
2

α(ν) [∇f (x(ν))]
†
∆x(ν). (10.14)

• Otherwise, reduce the step-size by a factor of, say, one halfand repeat the
process until an iterate is produced that satisfies (10.14).
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10.2.4.3 Wolfe condition
• The rule for reducing the step-size discussed in the last section does not

check for “improvement” in the gradient∇f .
• An alternative that makes use of gradient information rather than

objective values is provided by theWolfe condition:
∣

∣

∣
[∇f (x(ν)+α(ν)∆x(ν))]

†
∆x(ν)

∣

∣

∣
≤ η

∣

∣

∣
[∇f (x(ν))]

†
∆x(ν)

∣

∣

∣
. (10.15)

• The Wolfe condition ensures that thedirectional derivative in the
direction∆x(ν) evaluated at the next iterate,[∇f (x(ν+1))]

†∆x(ν), is small
compared to the directional derivative in the direction∆x(ν) at the current

iterate,[∇f (x(ν))]
†∆x(ν).
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10.2.4.4 Combined Armijo and Wolfe conditions

• The Wolfe condition (10.15) is often used in conjunction with the Armijo
condition (10.14).

• The Armijo condition (10.14) ensures that the step-size is not so large as
to invalidate the quadratic approximation of the objective.

• The Wolfe condition (10.15) ensures that the gradient of the objective is
reduced sufficiently by the step.

Title Page ◭◭ ◮◮ ◭ ◮ 91 of 138 Go Back Full Screen Close Quit



10.2.4.5 Curve fitting
• If f is relatively easy to evaluate, then we can evaluate it at several points

along the linex(ν)+α∆x(ν) for 0≤ α ≤ 1 and then fit a polynomial curve.

• We can minimize a quadratic function ofα using the following:

(i) If the coefficient of(α)2 in the quadratic function is positive, then
the minimum of the function occurs at the pointx(ν)+α∆x(ν) for α
such that the derivative of the quadratic function with respect toα is
equal to zero. If this value ofα lies outside the range[0,1] then the
closest end-point should be selected.

(ii) If the coefficient of(α)2 in the quadratic function is negative, then
the minimizer is one of the end-pointsα = 0 or α = 1.

10.2.4.6 Trust region
• In a trust region approach the selection of an appropriate search

direction and step-size both explicitly consider the region over which a
second-order Taylor approximation represents the function f accurately.
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10.2.5 Stopping criteria

• A typical criterion is to require that
∥

∥

∥
∇f (x(ν))

∥

∥

∥
and

∥

∥

∥
∆x(ν)

∥

∥

∥
be

sufficiently small.
• By Theorem2.6, if f is convex then any minimizerx⋆ of f (x) must

satisfy:

f (x⋆) ≥ f (x(ν))+ [∇f (x(ν))]
†
(x⋆−x(ν)),

≥ f (x(ν))−
∣

∣

∣
[∇f (x(ν))]

†
(x⋆−x(ν))

∣

∣

∣
,

≥ f (x(ν))−
∥

∥

∥∇f (x(ν))
∥

∥

∥

∥

∥

∥x⋆−x(ν)
∥

∥

∥ . (10.16)

• If we know ana priori bound on the minimizer, then we can bound
∥

∥

∥
x⋆−x(ν)

∥

∥

∥
independently ofx⋆ by someρ.

• We can ensure thatf (x(ν)) is within ε f of the value of the global

minimum by iterating until
∥

∥

∥
∇f (x(ν))

∥

∥

∥
≤ ε f/ρ.
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Stopping criteria, continued
• The stopping criterion is often implemented in practice as aslightly

differentrelativecriterion by testing if:
∥

∥

∥∇f (x(ν))
∥

∥

∥≤ ε f

ρ

(

1+ | f (x(ν))|
)

.
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10.2.6 Avoiding critical points that are not minimizers
• If, at some iterationν, we find that∇f (x(ν)) = 0 then our basic algorithm

cannot make further progress.
• If f is convex, then by Corollary10.6, x(ν) is a minimizer andf (x(ν)) is a

minimum.
• If f is not convex, then we may be at a point of inflection or a local

maximizer.
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Avoiding critical points that are not minimizers, continued

• In Figure10.18, the iteratex(ν) = 0.5 is a horizontal inflection point of the
objective.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

x

f

x(ν−1) x(ν)

Fig. 10.18. Iterate that
is a horizontal inflection
point of the objective
function.
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Avoiding critical points that are not minimizers, continued
• If the first-order necessary conditions are satisfied, but wecan detect that

the current iterate is not a minimizer, then we can restart the algorithm by
perturbingx(ν) by a random amount to move it away from the point of
inflection or local maximum.

• Alternatively, at a horizontal inflection, we can use the previous iterate in
a secant approximation as discussed in Section7.2.1.5, to seek a descent
direction.

• For example, in Figure10.18, using a secant approximation based on
x(ν−1) andx(ν) would yield a descent direction.

• If we are not at a horizontal inflection point then another approach is to
look for negative eigenvalues of the Hessian and move in the direction of
the corresponding eigenvector.
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10.3 Sensitivity
• Suppose that the objectivef is parameterizedby a parameterχ ∈ Rs.

That is, f : Rn×Rs→ R.
• We imagine that we have solved the unconstrained minimization problem:

min
x∈Rn

f (x;χ),

• for a base-case value of the parameters, sayχ = 0, to find the base-case
minimizerx⋆.

• We now consider the sensitivity of the minimizer and minimumto
variation of the parameters aroundχ = 0.
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10.3.1 Implicit function theorem

Corollary 10.8 Let f : Rn×Rs→ R be twice partially differentiable with
continuous second partial derivatives. Consider the minimization
problem:

min
x∈Rn

f (x;χ),

whereχ ∈ Rs is a parameter. Suppose that x⋆ is a local minimizer of this
problem for the base-case value of the parametersχ = 0. We call x= x⋆

a base-case minimizer. Define the (parameterized) Hessian
∇2

xxf : Rn×Rs→ Rn×n by:

∀x∈ R
n,∀χ ∈ R

s,∇2
xxf (x;χ) = ∂2 f

∂x2 (x;χ).

Suppose that∇2
xxf (x

⋆;0) is positive definite, so that x⋆ satisfies the
second-order sufficient conditions for the base-case problem. Then, there
is a local minimizer of f(x;χ) for χ in a neighborhood of the base-case
values of the parametersχ = 0 and the local minimizer is a partially
differentiable function ofχ in this neighborhood. The sensitivity of the
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local minimizer x⋆ with respect to variation of the parametersχ,
evaluated at the base-caseχ = 0, is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x

⋆;0)]
−1

K(x⋆;0),

where K: Rn×Rs→ Rn×s is defined by:

∀x∈ R
n,∀χ ∈ R

s,K(x;χ) = ∂2 f
∂x∂χ(x;χ).

The sensitivity of the corresponding local minimum f⋆ to variation of the
parametersχ, evaluated at the base-caseχ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂ f
∂χ (x⋆;0).

If f (•;χ) is convex for eachχ in a neighborhood of0 then the minimizers
and minima are global in this neighborhood.
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Proof The sensitivity of the local minimizer follows from
Corollary7.5, noting that by assumption the Hessian is positive definite
in a neighborhood of the base-case minimizer and parameters.
The sensitivity of the local minimum follows by totally differentiating
the value of the local minimumf ⋆(χ) = f (x⋆(χ);χ) with respect toχ. In
particular,

∂ f ⋆

∂χ (0) =
d f(x⋆(χ);χ)
dχ (0),

=
∂ f
∂χ (x⋆;0)+

∂ f
∂x (x⋆;0)

∂x⋆

∂χ (0),

on totally differentiatingf (x⋆(χ);χ) with respect toχ,

=
∂ f
∂χ (x⋆;0),

since the first-order necessary conditions at the base-caseare
∂ f
∂x (x⋆;0) = 0.

The global results follow from Corollary10.6. ✷
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Discussion

• If ∇2
xxf (x

⋆;0) has already been factorized then each sensitivity ofx⋆ with
respect to an entry ofχ requires only a forwards and backwards
substitution.

• The sensitivity of the local minimum is calledthe envelope theorem.
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10.3.2 Example
• Consider the parameterized objective functionf : R2×R→R defined by:

∀x∈R
2,∀χ ∈ R, f (x;χ) = (x1−exp(χ))2+(x2−3exp(χ))2+5χ.

• This is a parameterized version of the function defined in (10.1).
• For χ = 0, the parameterized function is the same as the function defined

in (10.1) and from the discussion in Section10.1.1.2we know that the

base-case unconstrained minimizer isx⋆ =

[

1
3

]

.

• By Corollary10.8, there is a minimizer off (•;χ) for χ in a neighborhood
of the base-case value of the parameterχ = 0 and the minimizer is a
differentiable function ofχ in this neighborhood.

• The sensitivity of the minimizerx⋆ with respect to variation of the
parameterχ, evaluated at the base-caseχ = 0, is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x

⋆;0)]
−1

K(x⋆;0),
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Example, continued
• where∇2

xxf : R2×R→ R2×2 andK : R2×R→ R2×1 are defined by:

∀x∈ R
2,∀χ ∈ R,∇2

xxf (x;χ) =
∂2 f
∂x2 (x;χ),

=

[

2 0
0 2

]

,

∇2
xxf (x

⋆;0) =

[

2 0
0 2

]

,

∀x∈ R
2,∀χ ∈ R,K(x;χ) =

∂2 f
∂x∂χ(x;χ),

=

[

−2exp(χ)
−6exp(χ)

]

,

K(x⋆;0) =

[

−2
−6

]

,

• where we observe that∇2
xxf (x

⋆;0) is positive definite.
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Example, continued
• The sensitivity of the minimizerx⋆ to variation of the parameterχ,

evaluated at the base-caseχ = 0, is:

∂x⋆

∂χ (0) = −[∇2
xxf (x

⋆;0)]
−1

K(x⋆;0),

= −
[

2 0
0 2

]−1[−2
−6

]

,

=

[

1
3

]

.
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Example, continued
• The sensitivity of the minimumf ⋆ to variation of the parameterχ,

evaluated at the base-caseχ = 0, is given by:

∂ f ⋆

∂χ (0) =
∂ f
∂χ (x⋆;0).

• We have that:

∂ f
∂χ (x;χ) = 2(x1−exp(χ))(−exp(χ))+2(x2−3exp(χ))(−3exp(χ))+5,

• and so the sensitivity is:

∂ f ⋆

∂χ (0) =
∂ f
∂χ (x⋆;0) = 5.
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10.4 Summary

• Descent directions,
• Optimality conditions,
• Algorithms,
• Sensitivity analysis.

Title Page ◭◭ ◮◮ ◭ ◮ 107 of 138 Go Back Full Screen Close Quit



11
Solution of the unconstrained minimization case

studies

• Multi-variate linear regression case study in Section11.1, and
• Power system state estimation case study in Section11.2.
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11.1 Multi-variate linear regression
11.1.1 Transformation of objective

• Recall Problem (9.7):

max
x∈Rn

φ(ζ(1), . . . ,ζ(m);ψ(1), . . . ,ψ(m),x),

• whereφ : Rn → R was defined in (9.6), which we repeat here:

∀x∈ R
n,φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)

=
m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

)

.

• First definef̂ : Rn → R by:

∀x∈ R
n, f̂ (x) =− ln(φ(ζ(1), . . . ,ζ(m);ψ(1), . . .,ψ(m),x)).
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Transformation of objective, continued

• Then:

∀x∈ R
n, f̂ (x) = − ln

(

m

∏
ℓ=1

1√
2πσℓ

exp

(

−(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

))

,

= −
m

∑
ℓ=1

[

ln

(

1√
2πσℓ

)

− (ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

]

,

=
m

∑
ℓ=1

[

(ψ(ℓ)†β+ γ−ζ(ℓ))2

2(σℓ)2

]

−
m

∑
ℓ=1

ln

(

1√
2πσℓ

)

,

• where we recall that:

x=

[

β
γ

]

∈ R
n.
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Transformation of objective, continued
• Assuming thatσℓ = σ,∀ℓ= 1, . . . ,m, we can definef : Rn → R by:

∀x∈ R
n, f (x) = σ2

[

f̂ (x)+
m

∑
ℓ=1

ln

(

1√
2πσℓ

)

]

,

=
1
2

m

∑
ℓ=1

(ψ(ℓ)†β+ γ−ζ(ℓ))2,

=
1
2

m

∑
ℓ=1

(Aℓx−bℓ)
2,

whereAℓ =
[

ψ(ℓ)† 1
]

∈ R1×n andbℓ = ζ(ℓ) ∈ R,

=
1
2
(Ax−b)†(Ax−b),

whereA=





A1
...

Am



 ∈ Rm×n andb=





b1
...

bm



 ∈ Rm,

=
1
2
‖Ax−b‖2

2 .
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Transformation of objective, continued
• By Theorem3.1, so long as either:

(i) Problem (9.7) has a maximum or
(ii) the problem:

min
x∈Rn

f (x), (11.1)

has a minimum,
• then they both have the same set of optimizers.
• Problem (11.1) involves minimizing (half of) the sum of squares of linear

functions ofx and is called alinear least-squares problem.
• We refer to the corresponding specification of the affine function defined

in (9.1) as aleast-squares fitto the data.
• The necessary conditions for a minimum of Problem (11.1) are a set of

linear simultaneous equations.
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11.1.2 Comparison of objectives
• The necessary conditions for a minimum of Problem (11.1) are a set of

linear simultaneous equations.
• In contrast, the necessary conditions for a maximum of Problem (9.7) are

a set of non-linear simultaneous equations sinceφ is non-quadratic.

11.1.3 Derivatives of objective

∀x∈ R
n,∇f (x) = A†(Ax−b), (11.2)

∀x∈ R
n,∇2f (x) = A†A. (11.3)
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11.1.4 Optimality conditions
• ∇2f (x) is positive semi-definite.
• Therefore the objectivef is convex.
• First-order conditions are sufficient.
• Solving either Problem (11.1) or Problem (9.7) yields the same set of

minimizers.

• In summary, by solving∇f (x) = 0 for x⋆ =

[

β⋆

γ⋆
]

we will find a

maximizer of Problem (9.7).
• Setting∇f (x) = 0 and re-arranging, we obtain:

Ax= B , (11.4)

• whereA = A†A andB = A†b.
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11.1.5 Further transformation
• The condition number ofA†A can be large.
• Instead of calculating and factorizingA†A, weQRfactorizeA itself to

obtain (ignoring any permutations of the rows or columns ofA):

A= QR,

• with Q∈ Rm×m unitary,R=

[

U
0

]

∈ Rm×n upper triangular, with

U ∈ Rn×n upper triangular andU is non-singular ifA has linearly
independent columns.

• We have:

∀x∈ R
n, f (x) =

1
2
(Ax−b)†(Ax−b),

=
1
2
(x†A†−b†)(Ax−b),

=
1
2
(x†R†Q†−b†)(QRx−b), by definition ofQR,
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Further transformation, continued

=
1
2
(x†R†Q†−b†QQ†)(QRx−QQ†b), sinceQ is unitary,

=
1
2
(x†R†−b†Q)Q†Q(Rx−Q†b), on factorizing,

=
1
2
(x†R†−b†Q)(Rx−Q†b), becauseQ is unitary,

=
1
2

(

x†
[

U
0

]†

−b†Q

)

([

U
0

]

x−Q†b

)

, whereR=

[

U
0

]

,

=
1
2

∥

∥

∥

∥

[

U
0

]

x−Q†b

∥

∥

∥

∥

2

2
,

=
1
2

∥

∥

∥

∥

∥

[

U
0

]

x−
[

[Q‖]
†

[Q⊥]
†

]

b

∥

∥

∥

∥

∥

2

2

, whereQ=
[

Q‖ Q⊥ ],

with Q‖ ∈ Rm×n′,Q⊥ ∈ Rm×(m−n′),
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Further transformation, continued

=
1
2

∥

∥

∥

∥

∥

[

Ux− [Q‖]
†
b

0x− [Q⊥]
†
b

]∥

∥

∥

∥

∥

2

2

,

=
1
2

∥

∥

∥
Ux− [Q‖]

†
b
∥

∥

∥

2

2
+

1
2

∥

∥

∥
[Q⊥]

†
b
∥

∥

∥

2

2
, by definition of theL2 norm.

• Geometrically, we have resolved the vectorAx−b into the sum of two
vectors:

Ux− [Q‖]
†
b, which depends onx, and

0x− [Q⊥]
†
b=−[Q⊥]

†
b, which does not depend onx.

• The columnsQ‖ are such that[Q‖]
†
b “aligns” with Ux.

• The columnsQ⊥ are such that(−[Q⊥]
†
b) is perpendicular toUx.

• If U is non-singular then the first-order necessary conditions for

minimizing
∥

∥

∥
Ux− [Q‖]

†
b
∥

∥

∥

2

2
areUx= [Q‖]

†
b.
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Further transformation, continued

✻

Ux′− [Q‖]
†
b

✻

Ux′′− [Q‖]
†
b

✲

−[Q⊥]
†
b

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✯

Ax′−b

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿

Ax′′−b

Fig. 11.1. Resolution
of the vector Ax − b
into two perpendicular
vectors for the values
x= x′ andx= x′′.
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Further transformation, continued
• We can obtain the solution to Problem (11.1) by:

– evaluatingy⋆ = [Q‖]
†
b, and

– performing a backwards substitution to solveUx⋆ = y⋆.

• The solutionx⋆ =

[

β⋆

γ⋆
]

specifies the maximum likelihood estimate of the

relationship between the independent and dependent variables:

∀ψ ∈ R
n−1,ζ = [β⋆]†ψ+ γ⋆.
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11.1.6 Relationship of optimality conditions to linear regression
• In designing the values ofψ(ℓ) for the trials, there are two related issues

to be addressed:

(i) Providing enough variety in the trials to ensure that∇2f = A†A is
positive definite. We discuss this issue in Sections11.1.6.1
and11.1.6.2.

(ii) Providing enough redundancy so that the effects of measurement
error can be “averaged out.” We discuss this briefly in
Section11.1.6.3.
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11.1.6.1 Insufficient variety in the trials
• If ∇2f (x) is singular then there will be many possible values of the

parametersx that satisfy the maximum likelihood criterion in the
model (9.1), based on the data from trialsℓ= 1, . . . ,m.

11.1.6.2 Sufficient variety in the trials
• On the other hand, if there is ann element subset{ℓ1, ℓ2, . . . , ℓn} of the

trials{1, . . . ,m} such that then rows ofA corresponding to these trials are
linearly independent, then∇2f (x) = A†A is non-singular.

11.1.6.3 Redundancy and validation of model
• We may want to find not only the maximum likelihood estimator but also

estimate the variance of the error.
• In general, it requires thatm be larger, and typically considerably larger,

thann.
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11.1.7 Changes in the problem
11.1.7.1 Additional trials

• If additional trials are added then there will be additionalrows added toA
and additional entries added tob, necessitating factorization of the
augmentedA.
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11.1.7.2 Sensitivity
• We consider the sensitivity of the coefficientsβ⋆ andγ⋆ to changes in the

measurements.
• That is, for eachℓ= 1, . . . ,m, we will imagine that theℓ-th measurement

is actuallyζ(ℓ)+χℓ, with χ ∈ Rm.
• We calculate the sensitivity ofβ⋆ andγ⋆ to χ, evaluated atχ = 0.
• By Corollary10.8, the sensitivity of the minimizerx⋆ is given by:

∂x⋆

∂χ (0) =−[∇2
xxf (x

⋆;0)]
−1

K(x⋆;0),

• where∇2
xxf : Rn×Rm→ Rn×n andK : Rn×Rm→ Rn×m are defined by:

∀x∈ R
n,∀χ ∈ R

m,∇2
xxf (x;χ) =

∂2 f
∂x2 (x;χ),

= A†A,

∀x∈ R
n,∀χ ∈ R

m,K(x;χ) =
∂2 f
∂x∂χ(x;χ),

= −A†.
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Sensitivity, continued

• That is, the sensitivity toχℓ is given by[A†A]
−1

A†I ℓ, whereI ℓ ∈ Rm is a
vector with zeros in all places except theℓ-th place, which is a one.

• This is the same as the solution of a regression problem that had the same
values of independent variables as in the base-case, but where the vector
of measurements was changed fromb to I ℓ.

• Using the analysis in Section11.1.5, we can calculate the sensitivity toχℓ

by:

– evaluatingy= [Q‖]
†
I ℓ, and

– performing a backwards substitution to solveU
∂x⋆

∂χ (0) = y.
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11.2 Power system state estimation
11.2.1 Transformation of objective

• We use a similar transformation to the one in Section11.1.
• We define:

∀x∈ R
n, f (x) = − lnφ(G̃;x)+ ∑

ℓ∈M
ln

1√
2πσℓ

, (11.5)

∀x∈ R
n, f (x) = ∑

ℓ∈M

(g̃ℓ(x)− G̃ℓ)
2

2σ2
ℓ

,

=
1
2
(g̃(x)− G̃)

†
[Σ]−2(g̃(x)− G̃), (11.6)

• where:
Σ ∈ RM×M is the diagonal matrix withℓ-th diagonal entry equal to

σℓ, ℓ ∈M,
g̃ : Rn → RM is the vector of all measurement functions, and
G̃∈ RM is the vector of all measurements.
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Transformation of objective, continued
• The transformed problem is:

min
x∈Rn

f (x). (11.7)

• We have a least-squares problem since the objective is the sum of squares
of terms.

• Since each term(g̃(x)− G̃) is non-linear, we classify Problem (11.7) as a
non-linear least-squares problem.
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11.2.2 Derivatives of objective

∀x∈ R
n,∇f (x) = J̃(x)†

[Σ]−2(g̃(x)− G̃),

= ∑
ℓ∈M

∇g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ), (11.8)

∀x∈ R
n,∇2f (x) = J̃(x)†

[Σ]−2J̃(x)+ ∑
ℓ∈M

∇2g̃ℓ(x)[Σℓ]
−2(g̃ℓ(x)− G̃ℓ),

(11.9)

• whereJ̃ is the Jacobian of ˜g and∇g̃ℓ is the transpose of theℓ-th row of J̃.
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11.2.3 Optimality conditions and algorithms
11.2.3.1 Qualitative comparison between Problems (9.8) and (11.7)

• The first-order necessary conditions for Problem (9.8), ∇φ(G̃;x) = 0, are
non-linear.

• The first-order necessary conditions for Problem (11.7), ∇f (x) = 0, are
also non-linear.

• Consider the measurement functions in detail:
(i) Each voltage magnitude measurement function, ˜uk(x) = uk, is

linear.
(ii) The real and reactive injection measurement functionsand the real

and reactive flow measurement functions areapproximatelylinear.
This observation and the expression for∇f , (11.8), mean that the
necessary conditions for Problem (11.7), ∇f (x) = 0, are also
approximately linear.

• The transformation (11.5) transforms a non-linear objective into an
approximatelyquadratic objective.
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Qualitative comparison between Problems (9.8) and (11.7), continued
• The necessary conditions for minimizing Problem (11.7) are

approximatelylinear.
• We use the hypotheses of the chord and Kantorovich theorems to

qualitativelycompare the convergence properties of the Newton–Raphson
update applied to:
– Problem (9.8); that is,∇φ(x) = 0, and
– Problem (11.7); that is,∇f (x) = 0.

• Since∇f is approximately linear, then∇2f is approximately constant and
a Lipschitz constant can be found for∇2f that is smaller than a Lipschitz
constant for∇2φ.

• We expect the radiiρ−,ρ+, andρ defined in Theorems7.3and7.4 to be
larger for the problem of solving∇f (x) = 0 than for the problem of
solving∇φ(x) = 0.

• That is, we can expect to converge to a solution from a poorer initial
guess if we apply the chord or Newton–Raphson methods to solve
∇f (x) = 0 instead of applying it to solve∇φ(x) = 0.
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11.2.3.2 Problem (11.7)
Hessian

• The Hessian∇2f from (11.9) consists of the sum of two terms:

(i) J̃(x)†
[Σ]−2J̃(x), which is of the formA†A for A= [Σ]−1J̃(x) and so

the matrixJ̃(x)†[Σ]−2J̃(x), is positive semi-definite, and
(ii) ∑ℓ∈M∇2g̃ℓ(x)[Σℓ]

−2(g̃ℓ(x)− G̃ℓ), which can turn out to be not
positive semi-definite.

Search direction

• Recall that in defining a search direction, we found that
∆x(ν) =−M∇f (x(ν)) is a descent direction ifM is positive definite.

• We know thatJ̃(x)†
[Σ]−2J̃(x) is positive semi-definite, but we do not

know if the Hessian is positive semi-definite.
• Instead of using the exact Newton–Raphson update, we approximate∇2f

by its first term:

J̃(x)†
[Σ]−2J̃(x). (11.10)
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Search direction, continued

• We solve for the approximate update direction:

J̃(x(ν))
†
[Σ]−2J̃(x(ν))∆x(ν) = −∇f (x(ν)),

= J̃(x(ν))
†
[Σ]−2(G̃− g̃(x(ν))). (11.11)

• This approximation is called theGauss–Newton method.
• We must still consider the possibility thatJ̃(x(ν))

†
[Σ]−2J̃(x(ν)) is not

positive definite.
• We can follow the approach discussed in Section10.2.3.2and add terms

to the diagonal of the matrix during factorization to ensurethat the
modified matrix is positive definite.
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Search direction by solving a related linear least-squaresproblem

• The use of (11.11) to calculate a search direction suffers from a similar
drawback to the solution of (11.4) in the linear case.

• By definingA= [Σ]−1J̃(x(ν)) andb= [Σ]−1(G̃− g̃(x(ν))), note that (11.11)
is equivalent toA†A∆x(ν) = A†b, which is the same form as the optimality
condition for the multi-variate linear regression problem.

• We can therefore find∆x(ν) by noting that∆x(ν) is the solution to the
linear least-squares problem:

min
∆x∈Rn

1
2
‖A∆x−b‖2

2 . (11.12)
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Levenberg–Marquardt

• An alternative approach is to approximate the possibly not positive
semi-definite term∑ℓ∈M∇2g̃ℓ(x)[Σℓ]

−2(g̃ℓ(x)− G̃ℓ) by the positive
definite matrixλI , whereλ > 0 is chosen to be large enough to make the
resulting approximation of the Hessian positive definite.

• This is called theLevenberg–Marquardt method. and is related to the
trust region approach mentioned in Section10.2.4.

Further approximation

• We can further approximatẽJ using the using the fast-decoupled or other
approximations to the Jacobian of the power flow equations, as in the
discussion of the solution of the power flow equations in Section 8.2.4.2.
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11.2.4 Placement of meters in the system
11.2.4.1 Insufficient variety in the measurements

neutral

1 23

✚✙
✛✘
∼

P̃1,Q̃1,Ũ1

P̃12,Q̃12

P̃13,Q̃13

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 11.2. The three-
bus power system
state estimation prob-
lem, repeated from
Figure9.2.

Title Page ◭◭ ◮◮ ◭ ◮ 134 of 138 Go Back Full Screen Close Quit



Insufficient variety in the measurements, continued
• If the measurements are not spread out throughout the systemor if there

is a measurement failure, theñJ(x)†
[Σ]−2J̃(x) can be singular.

• For example, consider the system in Figure9.2, which is repeated in
Figure11.2.

• The are five unknown variables:u1,θ2,u2,θ3, andu3.
• There are seven measurements:P̃1,Q̃1,Ũ1, P̃12,Q̃12, P̃13, andQ̃13.
• However, since:

p̃1(x) = p̃12(x)+ p̃13(x),
q̃1(x) = q̃12(x)+ q̃13(x),

• there is redundant information concerning bus 1.
• This would enable us to estimate the voltage magnitude and flows around

node 1, even in the presence of measurement errors.
• There is just enough information to estimate all the voltageand flows in

the system.
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Insufficient variety in the measurements, continued
• Suppose that there is a failure of the voltage measurement inthe system

in Figure11.2.
• In this case, there will be many sets of voltages and anglesθ2, |v2|,θ3, and
|v3| that are consistent with maximizing the likelihood of the observed
measurements.

• We say that the system isunobservable.
• If we aredesigninga measurement system, then singularity of

J̃(x)†[Σ]−2J̃(x) for a candidate meter placement plan suggests that we
should add more meters to the plan.

• If we areoperatinga measurement system and we find that because of,
for example, meter failures, the matrix̃J(x)†

[Σ]−2J̃(x) is singular, then we
cannot estimate the state completely.

• In practice, in the latter case, the user of the software usually specifies
pseudo-measurements; that is, guesses at what the actual measurement
would be, based on experience, so that a rough estimate of thecomplete
state can be found.
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11.2.4.2 Sufficient variety in the measurements

neutral

1 23

✚✙
✛✘
∼

P̃1,Q̃1,Ũ1

P̃12,Q̃12

P̃2,Q̃2,Ũ2P̃3,Q̃3

t Y13
t

t

l
o
a
d

Y23
t

✚✙
✛✘
∼

Y12

Fig. 11.3. The three-
bus power system state
estimation problem
with spread out mea-
surements repeated
from Figure9.3.
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Sufficient variety in the measurements, continued
• Usually, if there is sufficient variety in the measurements,the positive

semi-definite matrixJ̃(x)†
[Σ]−2J̃(x) will turn out to be positive definite for

almost all, if not all values ofx, and hence be non-singular.
• If it is non-singular then the approximate update equation (11.11) has a

unique solution.
• For example, for the arrangement in Figure9.3, which is repeated in

Figure11.3, for almost all values ofx there is a five element subset of the
rows of J̃(x) that is linearly independent, so thatJ̃(x)†

[Σ]−2J̃(x) is
non-singular.

• This remains true even in the presence of a single failure of avoltage
measurement.

11.2.4.3 Sensitivity
• We can consider variation of the estimate with variation in the

measurement data.
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