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Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic A Physical Introduction to Suspension Dynamics

Toward more sophisticated solution techniques



Point-particle Integral representation Resistance matrices Particle motion Slender body theory Boundary integral method

Point force

1 Point-particle solutions
Point force
Point torque and stresslet

2 Integral and multipole representation

3 Resistance matrices

4 Particle motion

5 Slender body theory

6 Boundary integral method
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Point force

Point force

Flow generated by a translating sphere in a quiescent fluid

u = (
I

r
+

xx

r3
) ·

Fe

8πµ
+ (

I

3r3
−

xx

r5
) ·

a2Fe

8πµ

Stokeslet = flow created by a point force = O(1/r)
(a → 0 with Fe = −Fh = 6πµaU constant)

uPF = (
I

r
+

xx

r3
) ·

Fe

8πµ
with Oseen-Burgers tensor: G =

I

r
+

xx

r3

Velocity field generated by the translating sphere = Stokeslet +
degenerate quadrupole

u =
Fe

8πµ
· (1 +

a2

6
∇2)G
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Point force

Flow lines created by a translating sphere and a point force
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Point torque and stresslet

Point torque

Flow generated by a rotating sphere in a quiescent fluid

u =
Te

8πµ
×

x

r3

Rotlet = flow created by a point torque = O(1/r2)
(a → 0 with Te = −Th = 8πµa3ω constant)

uRotlet =
Te

8πµ
×

x

r3

Velocity field generated by the rotating sphere ≡ Rotlet

u = uRotlet

particle size not explicitly involved
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Point torque and stresslet

Point stresslet

Disturbance flow around a sphere immersed in a straining motion

ui = −
Sh
jk

8πµ

3xixjxk
r5

−
3a2

5

Sh
jk

8πµ
(
δijxk + δikxj

r5
− 5

xixjxk

r7
)

Flow created by a point stresslet = O(1/r2)
(a → 0 with Sh = 20

3
πµa3E∞ constant)

uPSi = −
3xixjxk

r5

Sh
jk

8πµ

Velocity field generated by the sphere immersed in a straining
motion = flow created by a point stresslet + degenerate octopole

ui = E∞
ij xj +

Sh
jk

8πµ
(1 +

a2

10
∇2)

∂Gij

∂xk
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Point torque and stresslet

Flow fields produced by a point torque and a point stresslet
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Integral representation

Flow solution for a distribution of forces = superposition of the flow fields
generated independently by each of the forces

Disturbance flow created by a rigid particle = sum of the distribution of
point forces imparted to the fluid on the surface of the particle σ·ndS

ui (x)−u
∞

i (x) =

∫

Sp

Gij(x− y)

8πµ
(−σjknk)(y) dS(y)

single layer of forces similar to single layer of
charges in electrostatics

single layer potential
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Far field

|x| ≫ |y| ⇒ Gij(x− y) ∼ Gij(x)

ui (x)− u∞i (x) = −
Gij(x)

8πµ

∫

Sp

(σjknk)(y) dS(y)

= −
Gij(x)

8πµ
F h
j

If the particle experiences a drag, the influence seen at great
distances is that of a point force regardless of particle shape

Analogous to the single layer potential of electrostatics
reducing to the field of a point charge far away from the
conductor
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Multipole expansion

|x| ≫ |y| ⇒ Gij(x− y) ∼ Gij(x)− yk
∂Gij

∂xk
(x) + . . .

ui(x) − u∞i (x) = −
F h
j

8πµ
Gij(x) +

Mjk

8πµ

∂Gij

∂xk
(x) + . . .

Zeroth moment of the traction taken over the particle surface

F h
j =

∫

Sp

(σ · n)j dS(y) Drag force

First moment of the traction taken over the particle surface

Mjk =

∫

Sp

(σ · n)j ykdS(y) = Sjk + Ajk

Stresslet and Torque with Ti = −ǫijkAjk
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Translating particle

Homogeneous Stokes equations

∇ · u = 0

µ∇2u = ∇p

with boundary conditions

u = U x ∈ Sp

u and p → 0 r = ‖x‖ → ∞
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Linearity between force and velocity

F h ∼ −(µU
L
)L2 = −µLU

Drag force on the particle

Fh =

∫

Sp

σ · n dS

σ = linear in u

u = linear in U

Fh linear in U

Fh = −RFU ·U

RFU resistance tensor ∼ µL

depends on the shape of the body

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic A Physical Introduction to Suspension Dynamics

Toward more sophisticated solution techniques



Point-particle Integral representation Resistance matrices Particle motion Slender body theory Boundary integral method

Rotating particle

Homogeneous Stokes equations

∇ · u = 0

µ∇2u = ∇p

with boundary conditions

u = ω × x x ∈ Sp

u and p → 0 r = ‖x‖ → ∞
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Linearity between torque and rotation velocity

T h ∼ −L(µωL
L
)L2 = −µL3ω

Hydrodynamic torque on the particle

Th =

∫

Sp

x× (σ · n) dS

σ = linear in u

u = linear in ω

Th = linear in ω

Th = −RTω · ω

RTω resistance tensor ∼ µL3

depends on the shape of the body
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Resistance tensors

General linear relationship between the velocities and the
hydrodynamic force and torque for a rigid particle translating at U
and rotating with ω through an otherwise motionless fluid:

(

Fh

Th

)

= −

(

RFU RFω

RTU RTω

)

·

(

U
ω

)

= −R̃ ·

(

U
ω

)

RFU, RFω, RTU, RTω ∼ µ and determined by the geometry of
the particle

RFU ∼ L, RTω ∼ L3, both RFω and RTU ∼ L2
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Symmetry properties (1)

F
h(1)
i drag on particle translating at velocity U

(1)
i

F
h(2)
i drag on particle translating at velocity U

(2)
i

Reciprocal theorem:
∫

Sp

U
(2)
j σ

(1)
ij nidS =

∫

Sp

U
(1)
j σ

(2)
ij nidS

∴ U
(2)
j F

h(1)
j = U

(1)
j F

h(2)
j

Linearity: F
h(1)
j = −RFU

ji U
(1)
i and F

h(2)
j = −RFU

ji U
(2)
i

Substituting: RFU
ji U

(1)
i U

(2)
j = RFU

ji U
(1)
j U

(2)
i = RFU

ij U
(1)
i U

(2)
j

True for arbitrary U(1) and U(2): RFU
ij = RFU

ji

RFU symmetric and similarly RTω symmetric
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Symmetry properties (2)

Particle translating at velocity U
(1)
i

Same body rotating at ω
(2)
i

Reciprocal theorem:

⇒

∫

Sp

ǫjklω
(2)
k xlσ

(1)
ij nidS =

∫

Sp

U
(1)
j σ

(2)
ij nidS

Rotating the indices of the Levi-Civita tensor in a cyclic way:

ω
(2)
j T

h(1)
j = U

(1)
j F

h(2)
j

Linearity: T
h(1)
j = −RTU

ji U
(1)
i and F

h(2)
j = −RFω

ji ω
(2)
i

Substituting: ω
(2)
j RTU

ji U
(1)
i = ω

(2)
i RTU

ij U
(1)
j = U

(1)
j RFω

ji ω
(2)
i

True for arbitrary U(1) and ω
(2): RTU

ij = RFω
ji
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Particle of general geometry in a general linear flow

Resistance problem: the full “grand resistance matrix”





Fh

Th

Sh



 = −





RFU RFω RFE

RTU RTω RTE

RSU RSω RSE



 ·





U−U∞

ω − ω
∞

−E∞





= −R ·





U− U∞

ω −ω
∞

−E∞





Mobility problem:





U−U∞

ω −ω
∞

−E∞



 = −M ·





Fh

Th

Sh



 .

where M = R−1
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Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic A Physical Introduction to Suspension Dynamics

Toward more sophisticated solution techniques



Point-particle Integral representation Resistance matrices Particle motion Slender body theory Boundary integral method

Translating particle

Drag force

Fh = −RFU ·U linear in U

Rate of energy dissipation

Φ = −U · Fh = U · RFU ·U quadratic in U
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Drag coefficient on a sphere

Since Stokes flow dissipates the least energy of all Navier-Stokes flows,
the Stokes drag law lies below the actual drag at finite Reynolds number
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Translating particle

Since symmetric, RFU may be diagonalized

RFU = µL





λ1 . .
. λ2 .
. . λ3





Rate of energy dissipation

Φ = µL(λ1U
2
1 + λ2U

2
2 + λ3U

2
3 ) ≥ 0

with eigenvalues λ1, λ2, λ3 all positive
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Settling sphere

Fh = −6πµaU

Fe =
4

3
πa3(ρp − ρ)g

RFU isotropic

RFU = µa





λ . .
. λ .
. . λ



 = 6πµa I

Force Balance Fh + Fe = 0

U = US =
2

9

a2

µ
(ρp − ρ)
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Settling cube

RFU isotropic

RFU = µa





λ . .
. λ .
. . λ



 = λµa I

Force Balance Fh + Fe = 0

U = Ucube =
a2(ρp − ρ)g

λµ

Bounds for drag force

6πµaU ≤ |Fh
cube| ≤ 6πµ

√
3aU

by using the minimum dissipation theorem for the
inscribing sphere Si of radius a and the sphere So

enclosing the cube of radius
√
3a
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Settling ellipsoid

Resistance matrix (x1 axis as the axis of revolution)

RFU = −µa1





λ1 . .
. λ2 .
. . λ2





Long ellipsoid: a1 ≫ a2 = a3

λ1 =
4π

ln 2a1
a2

− 1
2

λ2 = λ3 =
8π

ln 2a1
a2

+ 1
2

Very long ellipsoid: λ1 ≈ λ2/2
factor two between drag for perpendicular and parallel
motions at the same velocity
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Rotating particle

Hydrodynamic torque

Th = −RTω · ω linear in ω

Rate of energy dissipation

Φ = −ω ·Th = ω · RTω · ω quadratic in ω
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Rotating particle

Since symmetric, RTω may be diagonalized

RTω = −µL3





ζ1 . .
. ζ2 .
. . ζ3





Rate of energy dissipation

Φ = µL3(ζ1ω
2
1 + ζ2ω

2
2 + ζ3ω

2
3) ≥ 0

with eigenvalues ζ1, ζ2, ζ3 all positive
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Helicoidal particle

Coupling between translation and rotation

F1 ∝ −µL2ω1
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Escherichia coli

Propulsion accomplished by rotation of the trailing flagella

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic A Physical Introduction to Suspension Dynamics

Toward more sophisticated solution techniques



Point-particle Integral representation Resistance matrices Particle motion Slender body theory Boundary integral method

Axisymmetric particle in a simple shear

Equation for the director
(unit vector in the direction of the symmetry axis)

dp

dt
= Ω∞ · p+ β [E∞ · p− p(p · E∞ · p)]

The axis of symmetry rotates not only with the rotational portion
of the flow, but also with a fraction β = (r2 − 1)/(r2 + 1) of the
straining motion (with r = a/b where a and b are the
semi-diameters measured parallel and perpendicular, respectively,
to the axis of revolution)
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Rigid ellipsoidal particle in simple shear u∞ = (γ̇y , 0, 0)

Equations for the director

ṗx = γ̇[(β + 1)py/2− βp2xpy ]

ṗy = γ̇[(β − 1)px/2− βp2ypx ]

ṗz = −γ̇βpxpypz

Equations for polar angles θ1 and φ1

θ̇1 =
γ̇(r2 − 1)

4(r2 + 1)
sin 2θ1 sin 2φ1

φ̇1 =
γ̇

r2 + 1
(sin2 φ1 + r2 cos2 φ1)
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Jeffery orbits

tanφ1 = r tan

[

γ̇t

r + (1/r)

]

with φ1(0) = 0

tan θ1 =
Cr

(sin2 φ1 + r2 cos2 φ1)1/2

Periodic motion with a period
2π(r + 1/r)/γ̇

Orbit constant C defines the
eccentricity of this elliptical orbit
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Replacement of the body by a line of point forces

Disturbance created by a long body ≈ Disturbance due to a line density of
applied point forces

uDi (x) = ui (x) − u∞i (x) =

∫ a

−a

Gij(x − x′1)

8πµ
f PF

j (x ′1) dx ′1

Boundary conditions for x → xsurface: for translation Ui = uD
i
(xsurface)
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First approximation to the uniform point force distribution

Uniform point force density

uDi (x) = f PFj

∫ a

−a

Gij(x− x′1)

8πµ
dx ′1

Leading order with ǫ = [ln(2a/b)]−1 small parameter

uDi (x) =
ln(2a/b)

4πµ
[f PFi + δi1f

PF
1 + |fPF|O(ǫ)] constant

Drag force for slender body translating at U

F h
1 ∼ 4πµaǫU1 parallel translation

F h
2,3 ∼ 8πµaǫU2,3 perpendicular translation
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General features

Drag on an arbitrary object is not much less than that on the
enclosing sphere which gives an upper bound by a maximum
dissipation argument

For a long slender body, drag for perpendicular motion ≈ twice drag
for parallel motion at the same velocity ⇐ the induced velocity due
to an isolated Stokeslet is twice as large at a point on the axis of
symmetry as at a point at an equal distance in the transverse
direction

Resistance to motion parallel to the long body ≈ half that in
the perpendicular direction ⇒ a fiber parallel to gravity settles
twice as fast as a fiber perpendicular to gravity
Velocity perpendicular to the axis of revolution reduced by a
factor two ⇒ a fiber inclined at an angle to the vertical will
not settle vertically but will have a sideway drift
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Drift of a settling fiber

Fh ∼ −µa





4πǫ 0 0
0 8πǫ 0
0 0 8πǫ



 · U

Force balance:
Perpendicular velocity reduced by a

factor 2
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Boundary integral method [Pozrikidis, 1992]

Direct application of the integral representation of Stokes flow

Reduction of dimensionality: 3D PDE → 2D (boundary)
integral equation in which the unknowns are densities of the
Stokes singularities distributed over the boundary of the fluid
domains

Methods particularly well-suited for calculation of flows
associated with complex geometries which does not easily fit a
finite difference grid

Methods primarily used for deformable boundary problems or
for such geometries as fibers

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic A Physical Introduction to Suspension Dynamics

Toward more sophisticated solution techniques



Point-particle Integral representation Resistance matrices Particle motion Slender body theory Boundary integral method

Sketch of the method for a solid particle

Surface discretized into small area elements δSj

Velocity field at the surface considered

Integral equation written as a matrix equation

u(xi) = u∞(xi) +
∑

j

G(xi − xj) · σ · n(xj)δSj

Oseen-Burgers tensor integrated over each of the
N elements: 3N × 3N square matrix G relating
the velocity at element i to the traction at
element j
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Resistance and mobility problems

Resistance problem: velocity known

Tractions computed by a matrix inversion

Flow field away from the particle surface computed from the full boundary
integral

Mobility problem: force and torque known

6N unknown quantities but at present 3N equations

Velocities must satisfy solid body motion (additional 3N equations):

u(xi) = U+ω × (xi − xp)

+ additional constraints on the tractions (6 equations):

Fh =
∑

j

σ · n(xj)δSj and Th =
∑

j

(xj − xp)× σ · n(xj)δSj
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Movie reference

Taylor, G. I.
Low Reynolds Number Flows

1966 National Committee for Fluid Mechanics Films
http://web.mit.edu/fluids/www/Shapiro/ncfmf.html
http://media.efluids.com/galleries/ncfmf?medium=305
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General reference on boundary integral method

Pozrikidis, C. 1992. Boundary integral and singularity methods

for linearized viscous flow. Cambridge University Press.
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