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Point-particle Integral representation Resistance matrices Particle motion Slender body theory =~ Boundary integral method
O@00000

Point force

Point force

Flow generated by a translating sphere in a quiescent fluid

u_(1+xx) F_e+(L_ﬁ) aF
N 8ru  3r3 7 8w

rn
Stokeslet = flow created by a point force = O(1/r)
(a — 0 with F¢ = —F" = 67;.aU constant)

I  xx, F¢ |

UPF = (; =F ﬁ) . % with Oseen-Burgers tensor: G = — + -3

Velocity field generated by the translating sphere = Stokeslet +
degenerate quadrupole

Fe
2
u= (1 + 2 V )G
87T
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Point torque and stresslet

Point torque

Flow generated by a rotating sphere in a quiescent fluid
T® " X
8w r3

Rotlet = flow created by a point torque = O(1/r?)

(a — 0 with T® = —T" = 8rpadw constant)
e
uRotlet — T % i
8~ r3

Velocity field generated by the rotating sphere = Rotlet

u= uRotlet

particle size not explicitly involved
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Point torque and stresslet

Point stresslet

Disturbance flow around a sphere immersed in a straining motion

h h
L Sik 3xixjxk B 3_32 Sik (5in1< + 0ikXj 5XinXk)
8wy r° 5 8mu ro r?

Flow created by a point stresslet = O(1/r?)

(a — 0 with Sh = %wuaa’E‘x’ constant)
h
ps _ _ 3XiXpXk Sk
u; = —758—
r T

Velocity field generated by the sphere immersed in a straining
motion = flow created by a point stresslet + degenerate octopole

Sh 2
ik a 9Gjj
ui = EPx; + (1 + —v?) =2
1 17 vl
8T 10 OXe
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1) Point-particle solutions
Point force
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~

Particle motion

o1

Slender body theory

(o)}

Boundary integral method
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O Flow solution for a distribution of forces = superposition of the flow fields
generated independently by each of the forces

O Disturbance flow created by a rigid particle = sum of the distribution of
point forces imparted to the fluid on the surface of the particle o-ndS

u()=u (0 = [ P (auni)(y) ds(y)

P

single layer of forces similar to single layer of
charges in electrostatics

single layer potential
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Far field

o x| > ly| = Gji(x —y) ~ Gji(x)

ui(x) — u(x) = —géjT(:) g (ojkni)(y) dS(y)

Gij(x)

= 28\ ph
8ru

o If the particle experiences a drag, the influence seen at great
distances is that of a point force regardless of particle shape

o Analogous to the single layer potential of electrostatics
reducing to the field of a point charge far away from the
conductor
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Multipole expansion

o x| > |y| = Gij(x —y) ~ Gjj(x) _Yk%(X) -
Fh M. 0G::
] — y*>® —__J . Jjk YYij

() = 0(0) =~ LG5 + g T+

o Zeroth moment of the traction taken over the particle surface

th = / (o -n);dS(y) Drag force

Sp

o First moment of the traction taken over the particle surface

Mjk = /5 (0’ . n)j yde(y) = Sjk + Ajk

P

Stresslet and Torque with T; = —€;Ajk
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Homogeneous Stokes equations

V-u=0

pV2u = Vp
with boundary conditions

u=U

x€ S,
uand p—0

r=|x|| = o0
«O>» «4F)» «=» <« > o>



p <

F'w =)L = —pLU

Drag force on the particle

Fh:/ o-ndS
S

p

o o = linear in u
o u=linearin U

o F" linear in U

Fhr=-RFYV.U

RV resistance tensor ~ pul

depends on the shape of the body
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Homogeneous Stokes equations
V-u=0
2, _
uVeu=Vp
with boundary conditions
u=w xx

x€ S,
uand p—0

r= x| - o0
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'~ —L(ph) P = —plPw

Hydrodynamic torque on the particle

Thz/ x x (o -n)dS
S,

p

o o = linear in u

o u = linear in w

o Th = linear in w
Th= R™v.w

R resistance tensor ~ pl3

depends on the shape of the body
«O0>» «Fr «=Z» «E)>» = Q>
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Resistance tensors

General linear relationship between the velocities and the
hydrodynamic force and torque for a rigid particle translating at U
and rotating with w through an otherwise motionless fluid:

(F)-- (8 B (2)-= (1)

o RFY RFw RTU RT« ~ 4 and determined by the geometry of
the particle

o RFU ~ [, R™ ~ [3 both RF¥ and RTY ~ [2
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Symmetry properties (1)

o FMY drag on particle translating at velocity U,-(l)

1
o F,-h(z) drag on particle translating at velocity U,-(z)

o Reciprocal theorem:

(2) (1) _ (1) _(2)
/ UJ U,-j n,-dS = UJ U,-j n,-dS
S Sp

LUP I — Y0
o Linearity: F/V) = RFUU() and F® = _REVYP)
o Substituting: REU U(l)U(Z) = REV U.(l)U.(2) = REVYD Y@
i Y

o True for arbltrary U(l) and U(z) RFU RFU

h(2) _

RFY symmetric and similarly RT* symmetric
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Symmetry properties (2)

1)

©

Particle translating at velocity U,-(

Same body rotating at wfz)

¢ ©

Reciprocal theorem:

:>/ ejk/wg)xlafjl)n;dS: U}l)a,(-jz)n;ds
Sy S

©

Rotating the indices of the Levi-Civita tensor in a cyclic way:
wj@) -,-jh(l) _ U§1),:!7(2)
Linearity: T (1) RTUU() and Fh(z) RF"J ()

(2 )RTUu(l) ( )RTUu(l) — UJ( )lel:wwl( )

©

©

Substituting: w;
True for arbltrary U(l) and w(z) RTU RF”

©
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O Resistance problem: the full “grand resistance matrix”

Fh RFU RFw RFE U—UuU>®
Th — _ RTU RTw RTE W — w>®
Sh RSU RSw RSE _E>®
U—-uU=
R | w—w™
—E°°

O Mobility problem:

U—u Fh
w—w>® =-M- Th
—E® Sh

where M =R™!
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| \/ n
N o Drag force

F=-RW.U
0 Rate of energy dissipation

¢=-U-F'=U-R.U

«O>» «4F)» «=» <«

linear in U

quadratic in U
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Cp

Fh
i wafeU?/2

10°

10!

10t 10° 104

10° 716‘
Re = ZuU/v

Since Stokes flow dissipates the least energy of all Navier-Stokes flows,

the Stokes drag law lies below the actual drag at finite Reynolds number
«O>» «4F)» «=» <« > o>



o Since symmetric, RFY may be diagonalized

Ao
RFY = L DY
A3
0 Rate of energy dissipation
® = pL(AMUZ + M U3 + X\3U32) >0

with eigenvalues A1, A2, A3 all positive

«O>» «4F)>»r « =>»
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§7Ta3(pp _ p)g

o RFY isotropic
A
R™ = pa
J

orce E - /‘L I
I: )\ a

2 32
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o RY isotropic

A
RFY = 1a

= Aual
LA
o Force Balance F" + F¢ =0
2 —
U= U, — 2 (rp— P8
A
O Bounds for drag force

6mpal < |icube| < 67ru\/§aU

by using the minimum dissipation theorem for the
inscribing sphere S; of radius a and the sphere S,
enclosing the cube of radius v/3a

DA



O Resistance matrix (x1 axis as the axis of revolution)

RFY — _pa;

A1

A2 = A3
O Very long ellipsoid: A1 = X\2/2

motions at the same velocity

factor two between drag for perpendicular and parallel

«Or «F»r «

O Long ellipsoid: a1 > a» = a3

A1

A2

4
In 2a1

29 1
a

8

22 4 1
Inaz—i-2

A2
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o Hydrodynamic torque

T™=-R™. w

0 Rate of energy dissipation

¢=-w T"=w-R™ w

«O>» «4F)» «=» <«

linear in w

quadratic in w

it
v

DA



o Since symmetric, R may be diagonalized

S
RTw — _HL3 <2

-G
0 Rate of energy dissipation

¢ = pl3(Gw? + Qw3 + Gw3) >0

with eigenvalues (1, (2, (3 all positive

«O>» «4F)» «=» <« > o>



Coupling between translation and rotation

Fx —,uszl

DA



Propulsion accomplished by rotation of the trailing flagella

DA
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Axisymmetric particle in a simple shear

Equation for the director
(unit vector in the direction of the symmetry axis)

dp

2 =2 p+B[EY p—p(p-EX-p)]

The axis of symmetry rotates not only with the rotational portion
of the flow, but also with a fraction 8 = (r?> —1)/(r? + 1) of the
straining motion (with r = a/b where a and b are the
semi-diameters measured parallel and perpendicular, respectively,

to the axis of revolution)
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o Equations for the director

px = B+ 1)py /2~ Bpip,]
py = '7[(/3 - 1)px/2 - /BP}%Px]
pz = —YBPxpyp:

0 Equations for polar angles 61 and ¢

- A(r?—1) . .
01 = m sin 201 sin 2¢1
| fY -2 2 2
\x b = r2+1(sm @1+ r° cos” ¢1)
«4O0>» «Fr «=» « =

> =




T
RS

| LN

v S

e

St

Yt
]tan¢>1 = rtan[ v
i

tanf; = cr
Bt (sin? g1 + r2 cos? ¢ )1/2

0 Periodic motion with a period
2n(r+1/r)/%

o Orbit constant C defines the
eccentricity of this elliptical orbit

«O>» «4F)» «=» <«
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applied point forces

uP (x) = ui(x) — uf®(x) =

O Disturbance created by a long body = Disturbance due to a line density of

? Gij(x—

xi) PF/ 7/ /
i (x1) dxg
8mu
—a
O Boundary conditions for x = Xsurface: for translation U; = uP (Xsurface)
«O>» «Fr «=»r» «=>» AP1NE1
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First approximation to the uniform point force distribution

o Uniform point force density

? Gy(x —x7)

dxy
_, 8mu 1

uPlx) = £

o Leading order with ¢ = [In(2a/b)]~! small parameter

In(2a/b
uP (x) = rﬁTa/i)[ffPF + 61 7T + |FPF|O(e)]  constant

o Drag force for slender body translating at U

Flh ~ 4mpaely parallel translation

F£3 ~ 8mpaely3 perpendicular translation
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General features

o Drag on an arbitrary object is not much less than that on the
enclosing sphere which gives an upper bound by a maximum
dissipation argument

0 For a long slender body, drag for perpendicular motion ~ twice drag
for parallel motion at the same velocity <= the induced velocity due
to an isolated Stokeslet is twice as large at a point on the axis of
symmetry as at a point at an equal distance in the transverse
direction

o Resistance to motion parallel to the long body & half that in
the perpendicular direction = a fiber parallel to gravity settles
twice as fast as a fiber perpendicular to gravity

o Velocity perpendicular to the axis of revolution reduced by a
factor two = a fiber inclined at an angle to the vertical will
not settle vertically but will have a sideway drift
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Force balance:
Perpendicular velocity reduced by a
factor 2
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Boundary integral method [Pozrikidis, 1992]

o Direct application of the integral representation of Stokes flow

o Reduction of dimensionality: 3D PDE — 2D (boundary)
integral equation in which the unknowns are densities of the
Stokes singularities distributed over the boundary of the fluid
domains

o Methods particularly well-suited for calculation of flows
associated with complex geometries which does not easily fit a
finite difference grid

o Methods primarily used for deformable boundary problems or
for such geometries as fibers
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- element ©

@ Surface discretized into small area elements §5;
O Velocity field at the surface considered

O Integral equation written as a matrix equation
u(xi) = u®(x) + Y G(xi — %) - o - n(x)dS;
j

@ Oseen-Burgers tensor integrated over each of the
N elements: 3N x 3N square matrix G relating

the velocity at element /i to the traction at
element j

«Or 4F»r « =
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Resistance and mobility problems

Resistance problem: velocity known
O Tractions computed by a matrix inversion

O Flow field away from the particle surface computed from the full boundary
integral

Mobility problem: force and torque known
O 6N unknown quantities but at present 3N equations
O Velocities must satisfy solid body motion (additional 3N equations):

u(x;) = U+ w X (% —xp)

+ additional constraints on the tractions (6 equations):

Fh = Z o -n(x)6S; and ™ = Z(xj —Xp) X @ -n(xj)05;
J J
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Low Reynolds Number Flows
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Pozrikidis, C. 1992. Boundary integral and singularity methods
for linearized viscous flow. Cambridge University Press.
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