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PART I

CORE MATER IAL



2 Dynamical Systems

Problems

2.1 Balancing a pendulum by moving a cart.

a. Using a Lagrangian, derive Eq. (2.11).
b. For the case of a uniform stick of mass m and length �, show that

ẍ + 1
2

(
θ̈ cos θ − θ̇2 sin θ

)
= u , θ̈ + sin θ + 3

2 ẍ cos θ = d ,

where u(t) acts directly on the stick and d(t) is a torque on the pendulum.
c. Write these equations as an equivalent first-order equation of the form ẋ =

f (x,u).

Solution.

a. The Lagrangian L = T − V is

L = 1
2 M ẋ2 + 1

2 m [(ẋ + ẋ�)
2 + ẏ2

� ] − (1 − mg� cos θ)

= 1
2 (M + m)ẋ2 + 1

2 m�2θ̇2 + m� cos θ ẋθ̇ + mg� cos θ − 1 ,

with x� = � sin θ and y� = � cos θ. If we neglect friction, the Lagrangian gives
nonlinear equations of motion for x and θ. We begin with the x equation:

∂ẋL = (M + m)ẋ + m� cos θ θ̇ , ∂xL = 0 .

The x equation is then dt∂ẋL − ∂xL = u, where u(t) is the external force:

(M + m)ẍ − m� sin θ θ̇2 + m� cos θ θ̈ = u .

The θ equation is dt∂θ̇L−∂θL = d, where d(t) is an external torque disturbance:

∂θ̇L = m�2θ̇ + m� cos θ ẋ , ∂θL = −m� sin θ ẋθ̇ − mg� sin θ ,

which leads to

m�2θ̈ −�����
m� sin θ ẋθ̇ + m� cos θ ẍ +�����

m� sin θ ẋθ̇ + mg� sin θ = d .

Note that we put in the external force “by hand.” More formally, they can be
included in the Lagrangian: L → L− u(t)x− d(t)θ. The forcing terms are then
generated automatically by the Euler-Lagrange equations.
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Problems 3

Collecting the two equations, we have

(M + m) ẍ + m� (θ̈ cos θ − θ̇2 sin θ) = u ,

m� (ẍ cos θ + �θ̈ + g sin θ) = d .

Next, we scale the equations to make them dimensionless. We will use the
same variables to represent the scaled quantities. We define ω2 = g/� and let
t → ωt, x → x/�, u → u/[(M + m)g], and d → d/(mg�). We find

ẍ +
( m

M + m

) (
θ̈ cos θ − θ̇2 sin θ

)
= u , θ̈ + sin θ + ẍ cos θ = d ,

b. Now we consider the closely related case where we impose a uniform force on
a stick of mass m and length �. The easiest is to calculate the linear kinetic
energy relative to the center of mass, as 1

2�, and similarly for the potential
energy. The kinetic energy about the center of mass is then 1

2 Iθ̇2, where I =
1

12 m�2 for a stick about its center of mass. The Lagrangian becomes

L = 1
2 m

[(
ẋ + 1

2�θ̇ cos θ
)2
+

(
1
2�θ̇ sin θ

)2
]
+ 1

24 m�2θ̇2 −
(
1 − 1

2 mg� cos θ
)

= 1
2 mẋ2 + 1

6 m�2θ̇2 + 1
2 m� cos θ ẋθ̇ + 1

2 mg� cos θ − 1

Note that there is no “cart” in this problem: the hand exerts a force directly
on the stick. Then

∂ẋL = mẋ + 1
2 m� cos θ θ̇ , ∂xL = 0 ,

and the x-equation is

mẍ + 1
2 m�

(
θ̈ cos θ − θ̇2 sin θ

)
= u .

The θ-equation is obtained by first calculating

∂θ̇L =
1
3 m�2θ̇ + 1

2 m� cos θ ẋ , ∂θL = − 1
2 sin θ ẋθ̇ − 1

2 mg� sin θ ,

and, thus,

1
3 m�2θ̈ −������1

2 m� sin θ ẋθ̇ + 1
2 m� cos θẍ +����1

2 sin θ ẋθ̇ + 1
2 mg� sin θ = d .

Together, the two dimensional equations are

mẍ + 1
2 m�

(
θ̈ cos θ − θ̇2 sin θ

)
= u , 1

3 m�2θ̈ + 1
2 mg� sin θ + 1

2 m� cos θẍ = d .

In scaling the equations, one difference is that we define ω2 = 3
2 g/�, so that ω

is the frequency of small oscillations of the stick. Then it is straightforward
to verify that

ẍ + 1
2

(
θ̈ cos θ − θ̇2 sin θ

)
= u , θ̈ + sin θ + 3

2 ẍ cos θ = d ,

where we scale u by 3
2 mg and d by mg

( 1
2�

)
. The last quantity is again the

torque to hold the stick horizontally. The factors of 3
2 can be interpreted as

defining an effective mass 3
2 m.
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c. To write these equations as a system of four coupled, nonlinear equations in
the form ẋ = f (x,u), we must first decouple the ẍ and θ̈ terms in the second-
order equations. We write

(
1 1

2 cos θ
3
2 cos θ 1

) (
ẍ
θ̈

)
=

( 1
2 θ̇

2 sin θ + u
− sin θ + d

)
.

Inverting the matrix gives

(
ẍ
θ̈

)
=

1

1 − 3
4 cos2 θ

(
1 − 1

2 cos θ
− 3

2 cos θ 1

) ( 1
2 θ̇

2 sin θ + u
− sin θ + d

)

=
1

1 − 3
4 cos2 θ

⎛⎜⎜⎜⎜⎜⎝ 1
2 θ̇

2 sin θ + u + 1
2 sin θ cos θ − 1

2 d cos θ

− sin θ + d − 3
4 sin θ cos θ − 3

2 u cos θ

⎞⎟⎟⎟⎟⎟⎠ .
By defining

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x
ẋ
θ

θ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and u =
(
u
d

)
≡

(
u1

u2

)
,

we can write first-order equations of motion:

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

x4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1

1− 3
4 cos2 x3

(
1
2 x2

4 sin x3 + u1 +
1
2 sin x3 cos x3 − 1

2 u2 cos x3

)
x4

1
1− 3

4 cos2 x3

(
− sin x3 + u2 − 3

4 sin x3 cos x3 − 3
2 u1 cos x3

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Comments:

• The nonlinear state-space form ẋ = f (x,u) in the last part is neither intuitive
nor convenient for derivations done by hand. For humans, the coupled second-
order equations are easier. The state-space form, however, eases automated
symbolic computations and numerical solution.

• We choose a coordinate system where θ increases counterclockwise from 0, the
down equilibrium orientation of the pendulum. Often, people choose coordi-
nates where θ = 0 corresponds to the unstable top position of the pendulum
and increases for clockwise rotation. The transformation between them is
θ = π − φ, which implies cos θ = − cos φ, sin θ = + sin φ, θ̇ = −φ̇, and θ̈ = −φ̈.

2.2 First-order systems, frequency domain. Derive analytically the curves in the
graphs of the first-order dynamical system G(s) = 1

1+s (Bode plots, pole-zero, and
Nyquist plots) shown in Figure 2.4. For the Nyquist plot, derive the geometric
shape of the curve, not just the parametric form.
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Solution.

a. Bode plots. The frequency-domain transfer function is G(iω) = 1
1+iω =

1−iω
1+ω2 .

The magnitude and phase relations are then

|G| = 1√
(1 + iω)(1 − iω)

=
1√

1 + ω2

ϕ = tan−1
(−ω

1

)
= − tan−1 ω .

b. Pole-zero plots. From G(s) = 1
1+s , we see that there is a pole at s = −1.

c. Nyquist plots. We plot Im G(iω) vs. Re G(iω):

G =
1 − iω
1 + ω2

≡ x + iy ,

where x = 1
1+ω2 and y = −ω

1+ω2 . Thus,

x2 + y2 =
1

1 + ω2
= x ,

and

x2 − x + 1
4 − 1

4 + y2 = 0

(x − 1
2 )2 + y2 = 1

4 ,

which is a circle with center ( 1
2 , 0) and radius 1

2 . Because Nyquist plots are
conventionally the locus of positive frequencies, we see, from the explicit form
of G(iω), that the negative half-circle branch is covered.

2.3 Second-order systems.

a. Consider a generic second-order system G(s) = (1 + 2 ζ s + s2)−1. As in Prob-
lem 2.2, derive analytic expressions for the Bode, pole-zero, and Nyquist plots
(Figure 2.5), for ζ < 1, ζ = 1, and ζ > 1, (underdamped, critically damped,
and overdamped), respectively, for some parts of this problem. Find analytic
approximations for ζ � 1 and ζ � 1. Give the Nyquist plots in parametric
form.

b. A common control goal is to have critically damped closed-loop dynamics
(ζ = 1). Show that the damping time of the decay of an oscillator is shortest
for critical damping. Confirm the time-decay plots at right? (ζ = 0.2, 1, 5)
and the plot below.

Solution.

a. Graphical aids
i. Bode plots. We write

G(iω) =
1

1 − ω2 + 2 iζω
=

1 − ω2 − 2 iζω
(1 − ω2)2 + 4ζ2ω2

,
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so that

|G(iω)| = 1√
(1 − ω2)2 + 4ζ2ω2

, tanϕ =
−2ζω
1 − ω2

.

ii. Pole-zero plot. The poles are the roots of

s2 + 2ζ s + 1 = 0 ,

which have three cases:
• ζ < 1: s = −ζ ± i

√
1 − ζ2 (Complex-conjugate pair). For ζ � 1, we have

s ≈ −ζ ± i.
• ζ = 1: s = −1 (two-fold degeneracy).
• ζ > 1: s = −ζ ± √

ζ2 − 1 (two real roots). For ζ � 1, we have s+ ≈ − 1
2ζ

and s− ≈ −2ζ. Notice how the second root “comes in from infinity” as
ζ increases.

iii. Nyquist plot. This is complicated to express geometrically. In parametric
from (for 0 < ω < ∞), we have

x =
1 − ω2

(1 − ω2)2 + 4ζ2ω2
, y =

−2ζω
(1 − ω2)2 + 4ζ2ω2

.

b. The transfer function of the closed-loop system might typically be given by

T (s) = 1
1+2ζs+s2 ,

whose decay time is given by

1

Re
(
ζ − √

ζ2 − 1
) .

For ζ ≤ 1, this is just 1/ζ. For ζ > 1, the expression is real. Plotting this gives
the graph in the main text.

2.4 Transfer function for thermal conduction. We showed that a semi-infinite, one-
dimensional thermal conductor gives rise to a transfer function between heater
and thermometer of G(s) = e−

√
s /
√

s. See Eq. (2.44). The probe is at x = �

(scaled to 1).

a. Derive explicit expressions for the magnitude and phase of the frequency
response. Use the results to reproduce the Bode and Nyquist plots.

b. How are Bode and Nyquist plots altered for a different sensor point (x = 2)?
c. We can approximate non-rational transfer functions by rational polynomials

(Padé approximants; Cf. Section 3.6.4). The second-order Padé approxima-
tion to G(s) about s = 1 is G2,2(s) =

(
e−1) 44−76s+8s2

5+26s−55s2 . Compare its Bode plot
with that of G(s). Use a computer-algebra program to compute and compare
G3,3(s).

d. Show that if we use two temperature probes, at distances x1 and x2, the
transfer function between the two probes is G(s) = e−

√
s�, where � = x2 − x1.
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Solution.

a. Frequency response. For G(s) = e−
√

s /
√

s, the frequency response is

G(iω) =
e−

√
iω

√
iω

We recall that
√

i= ei π/4 = 1√
2
(1 + i). Substituting and collecting terms gives

G(iω) =
e
− (1+i)

√
ω√

2
√
ω

e− i π/4 =
e−

√
ω/2

√
ω

e− i(π/4+
√
ω/2 ) .

Thus,

|G(iω)| = e−
√
ω/2

√
ω

, ϕ = −
(
π/4 +

√
ω/2

)
.

b. Change the sensor point. Repeating the derivation for a sensor at position
x = �, we have

G(s) =
e−�

√
s

√
s
.

The Bode plots are shown below.

The � = 1 curves are shown as a heavy trace and correspond to � = 1. The
� = 2 curves basically have a bit more delay, are closer to instability, and so
forth.

c. The approximation G3,3(s) is

G3,3(s) =
(
e−1

) 551s3 − 10521s2 + 115029s + 32701
6508s3 + 84468s2 + 44940s + 1844

.
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The Bode plots are given below:

We see that the approximations are better for the magnitude than the phase.
One of the issues with the phase is that the exact transfer function has
unbounded phase lag, while the nth-order Padé approximation asymptotes
to a phase lag of 180(n − 1).

For the magnitude, the second-order approximation is reasonable in the range
ω ∈ (0.1, 3) and the third-order approximation is reasonable in the range ω ∈
(0.03, 10).

In practice, a range of 100 in frequency is reasonable, so that the (2,2) or (3,3)
Padé approximation is useful.

d. The problem is the same as that solved in the text, except that

G(s) =
T (x2, s)
T (x1, s)

=
B e−

√
sx2

B e−
√

sx1
= e−

√
s� ,

where � = x2 − x1. Note that one might want to reconsider the scaling of
distance. If x1 ≈ 0 (probe near heater), we can use the same scaling as before.
The two-temperature configuration is nice because we can measure the trans-
fer function without knowing many details about the heater. For example,
although temperature probes can be pretty small, heaters tend to be big, and
their size might need to be modeled to understand the heat flow near the
heater.

2.5 Ångström’s method for measuring the thermal diffusion coefficient. Ångström
(1861) derived a “remarkably simple” result for the thermal diffusion constant
that led to far more accurate measurements of D. Distributed heat losses to the
environment modify the diffusion equation to be ∂tT (x, t) = D∂xxT − μT . Unfor-
tunately, μ is difficult to measure and reflects all the details of the geometry of
the experiment. Ångström found an expression for D that was independent of μ.

a. Show that the transfer function between two points on the rod that are sep-
arated by a distance Δ� is given by G(s) = exp

[
−√μ + s (Δ�/D1/2)

]
. The

temperature is the “input” at a point �1 and the “output” at point �2 = �1+Δ�.
b. Derive Ångström’s result:

[
ln |G(iω)|] θ(ω) = (Δ�)2ω

2D , which is indeed indepen-
dent of μ. Hints: G = |G| eiθ =⇒ ln G = ln |G| + iθ. Then look at
(ln G)2.



Problems 9

Thus, you simply oscillate one end of your material at ω and measure the log of
the ratio of temperature-oscillation amplitudes at two different points and their
phase difference. Ångström varied the temperature by alternating cold water and
steam using a valve. He used the method to measure the thermal diffusivity of
copper (expressed as a conductivity). His result of 382 W/m/K is 5% below the
modern value of 401 W/m/K (Haynes, 2014). The best previous measurement,
80 W/m/K, was far too low because it did not account correctly for heat losses.
Ångström’s method became the standard one for measuring thermal diffusivity
and was the first use of thermal “diffusion waves” to probe material properties
(Mandelis, 2000).

Solution.

a. Transfer function between two points. From

∂tT (x, t) = D∂xxT − μT ,

we Laplace transform the time variable to find

sT (x, s) = D∂xxT (x, s) − μT (x, s)

(s + μ)T (x, s) = D∂xxT (x, s)

T (x, s) =����
Ae
√

s+μ
D x + Be−

√
s+μ
D x .

Then

G(s) =
output
input

=
T (�2, s)
T (�1, s)

=
B e−

√
s+μ
D �2

B e−
√

s+μ
D �1

= e−
√

s+μ
D Δ� .

b. Eliminating μ. As suggested, the easy way to do this is to write

(ln G)2 =
(Δ�)2

D
(μ + iω) .

But

(ln G)2 = (ln |G| + iθ)2 = (real terms . . .) + 2 i(ln |G|)θ .
Equating the imaginary parts then gives

2 ln |G|θ = (Δ�)2 ω

D
.

The naive way of proceeding, by calculating explicit expressions for ln |G| and
θ, is much harder.

2.6 From lumped-element circuits to infinite objects. A physical object, such as the
one-dimensional conductor considered in Problem 2.4, can show three qualita-
tively different types of behavior depending on ω, the signal frequency (Frick
et al., 2018).

a. Derive the transfer function for thermal conduction of a one-dimensional
material of finite length L, with insulating boundary conditions at x = L and
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a probe at x = l0. Following Problem 2.4 and scaling L to one, show that
G(s, �) = cosh

√
s(1−�)√

s sinh
√

s
.

b. Simplify the transfer function at low frequencies (s → 0) and high frequen-
cies (s → ∞). Be precise about what sets the scale that defines low and
high frequencies. For each limit, express your result in dimensional as well
as dimensionless units, and interpret. (Hint: for dimensional units, use
D = λ/(ρCp).)

c. Reproduce the Bode plot at left of the exact solution and its two limits, which
is plotted for � = l0/L = 0.5. Explore other values of �.

Solution.

a. From Eq. (2.38), the equation of motion is

∂tT = D ∂xxT ,

with boundary conditions

−λ ∂xT (x = L, t) = 0 ,

−λ ∂xT |(x=0,t) = P(t)/a

T (x, 0) = T0 ,

As before, we scale x → x/L, t → t/ (L2/D), l0 → �, T → (T − T0)/T0, and
define u = PL/(λaT0), with a the heater area, which gives

∂tT = ∂xxT , y = T (�, t) ,

∂xT |(x=1,t) = 0 , −∂xT |(x=0,t) = u(t)

T (x, 0) = 0 ,

We Laplace transform in time:

sT = ∂xxT =⇒ T (s, x) = A e
√

sx +B e−
√

sx .

Imposing the boundary condition at x = 1 gives

∂xT |(x=1,t)
√

s
(
A e

√
s −B e−

√
s
)
= 0 =⇒ B = A e2

√
s .

Imposing the boundary condition at x = 0 gives

−∂xT |(x=0,t)
√

s(A − B) = u(s) =⇒ A
√

s
(
e2
√

s −1
)
= u(s) .

The transfer function from x = 0 to the point x = � is then

G(s) =
y(s)
u(s)

=
T (�, s)

u(s)
=

e
√

s� + e2
√

s e−
√

s�

√
s
(
e2
√

s −1
)

=
cosh

√
s(1 − �)√

s sinh
√

s
.

Note that, in our scaling, � < 1.



Problems 11

b. Low- and high-frequency limits.
i. In the low-frequency limit, cosh

√
s(1 − �) → 1 and sinh

√
s → √

s, so that

G(s) → 1
s
,

which is a pure integrator. Putting back in dimensional units and recalling
that D = λ/(ρCp) gives

G(s) → D
L2

LT0

λaT0

1
s
=

1
LaρCp

1
s
=

1
CpM

1
s
.

where M = ρ(aL) is the mass of the object and Ctot = CpM its total heat
capacity. Going back to the time domain, this is equivalent to

Ctot
dT
dt
= P ,

which is one of the elementary equations describing thermal circuits where
the heat capacity of the object plays the role of a capacitor.

ii. In the high-frequency limit, cosh x → 1
2 ex and sinh x → 1

2 ex, so that

G(s) → e
√

s(1−�)
√

s e
√

s
=

e−
√

s�

√
s
.

The difference from our previous result comes because we chose our scaling
there to make � = 1.

To be in the high-frequency regime requires

e−
√

s(1−�) � e
√

s(1−�) =⇒ e−2
√

s(1−�) � 1 =⇒ 2
√

s(1 − �) � 1 .

In dimensional units, this implies

4ω
L2

D

(
1 − �

L

)2

� 1 =⇒ ω � D
4L2

1(
1 − �

L

)2
→ D

4L2
.

The latter limit requires � � L, but it is interesting to see that the probe can
be anywhere, as long as the first (more restrictive) frequency limit applies. An
interesting numerical limit occurs for � = L/2 (probe in the middle of the rod),
where we require ω � D

L2 .
In the low-frequency regime, simply change � to �.

c. The numerics consist in simply plotting the magnitude and phase response.
Note that many pre-packaged “Bode Plot” routines will not work with non-
rational arguments such as

√
s. But it is easy to plot the magnitude and

phase of an arbitrary complex function. The graph in the text is for �/L = 0.5.
For lower values of �, there is a pronounced peak in the phase response, as
illustrated below for �/L = 0.2. Higher values of � are similar to �/L = 0.5.
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(   )

Qualitatively, we can interpret the three regimes as a comparison between the
time it takes heat to diffuse across the object, L2

D , to the period of heater oscilla-
tions, ∼ ω−1. In the lumped-element regime, heat diffuses across the element so
quickly that the temperature of the object rigidly follows the heater. In the infi-
nite limit, temperature fluctuations produced at the boundary damp out before
they reach the other side, so that the two boundaries do not influence each other.
The mathematics is simple in the two extreme limits and messier in the interme-
diate, finite case. While this problem deals with thermal conduction, analogous
results hold in all parts of physics. For example, the familiar resistors, capaci-
tors, and inductors of elementary circuit theory behave as lumped elements with
respect to Maxwell’s equations. In this case, one compares the period ∼ ω−1 to
the time it takes light to cross the object, L

c .
As an aside, engineering texts1 often define a dimensionless Biot number, Bi

≡ hL/λ. The coefficient h is known as the heat transfer coefficient and has units of
W/(m2K). In general, it can include contributions from thermal convection and
radiation. In a simple situation, we can model it crudely as coming a conduction-
like term h = J/ΔT = P/(aΔT ), which is the heat flux divided by the temperature
at the heater relative to the temperature of the surrounding environment. In this
language, Bi � 1 implies that the lumped-element approximation is valid. In the

1 See, for example, T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, Wiley, 7th
ed., 2011, Sections 5.1 and 5.2.
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language developed in this problem, the lumped-element approximation is valid
for |G(s)| ≈ 1. In our scaling, this means that

ΔT
T0︸︷︷︸
y

λaT0

PL︸︷︷︸
u−1

=
ΔTaλ

PL
=

λ

hL
= Bi−1 � 1 ,

which is equivalent to the engineering criterion. For more discussion, see also
Frick et al. (2018).

2.7 Example 2.6. Give the steps in the calculations.

Solution.
We first find the eigenvalues of A =

( 0 1−1 0
)
. The condition det (λI − A) = 0

gives

det (λI − A) =

∣∣∣∣∣∣λ −1
1 λ

∣∣∣∣∣∣ = λ2 + 1 = 0 , =⇒ λ = ± i .

The eigenvalue for λ = +i is given by(
i −1
1 i

) (
v1

v2

)
=

(
0
0

)
=⇒

(
v1

v2

)
=

1√
2

(
1
i

)
,

where the 1/
√

2 normalizes the eigenvector to be a unit vector. A similar calcu-
lation for λ = − i gives 1√

2

( 1− i

)
for the other eigenvector. Putting them together

gives

R =
1√
2

(
1 1
i − i

)
=⇒ R−1 = R† =

1√
2

(
1 − i
1 i

)
.

Thus,

A = RDR† =
1√
2

(
1 1
i − i

) (
i 0
0 − i

)
1√
2

(
1 − i
1 i

)
and

eAt = R
(
eDt

)
R† =

1√
2

(
1 1
i − i

) (
eit 0
0 e− it

)
1√
2

(
1 − i
1 i

)
=

(
cos t sin t
− sin t cos t

)
.

Once we understand how to do such calculations, it is usually easier to do them
numerically or symbolically by computer.

2.8 Example 2.7. Check the matrix calculations.

Solution.
We first investigate

G(s) =
(
1 0

)
︸�︷︷�︸

C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣s

(
1 0
0 1

)
︸�︷︷�︸
I

−
(

0 1
−1 −2ζ

)
︸�������︷︷�������︸

A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1 (

0
1

)
︸︷︷︸

B

.
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The middle matrix is(
s −1
1 s + 2ζ

)−1

=
1

s2 + 2ζs + 1

(
s + 2ζ 1
−1 s

)

and, thus,

G(s) =
1

s2 + 2ζs + 1

(
1 0

) (s + 2ζ 1
−1 s

) (
0
1

)
=

1
s2 + 2ζs + 1

.

Similarly, if we observe both position and velocity,

G(s) =
1

s2 + 2ζs + 1

(
1 0
0 1

) (
s + 2ζ 1
−1 s

) (
0
1

)

=
1

s2 + 2ζs + 1

(
s + 2ζ 1
−1 s

) (
0
1

)

=
1

s2 + 2ζs + 1

(
1
s

)
.

2.9 Critically damped harmonic oscillator. Confirm Eq. (2.68)b that the response of
a critically damped harmonic oscillator to a unit-velocity “kick” at time t = 0
is y(t) = t e−t. Hint: Write the dynamical matrix A =

( 0 1−1 −2

)
as (−1)

[( 1 0
0 1

)
+( −1 −1

1 1
)]

and exponentiate directly. See Problem 13.4a for a more sophisticated
approach.

Solution.
Decompose A = (−1) (I + J), where I is the 2 × 2 identity matrix and

J =
(−1 −1

1 1

)
=⇒ J2 =

(
0 0
0 0

)
.

Thus,

eAt = e(−t)(I+J) =

∞∑
n=0

(−t)n

n!
(I + J)n =

∞∑
n=0

(−t)n

n!
(I + nJ)

= e−t
I +

∞∑
n=1

(−t)n

(n − 1)!︸��������︷︷��������︸
−t e−t

J

= e−t(I − tJ)

= e−t

(
1 + t t
−t 1 − t

)
.

The position response to a unit kick is then given by

y(t) =
(
1 0

)
e−t

(
1 + t t
−t 1 − t

) (
0
1

)
= t e−t .
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2.10 Converting transfer functions to canonical state-space form. Show:

a. State-space equations in control-canonical form, Eq. (2.59) correspond to the
strictly proper transfer function, Eq. (2.57).

b. A “merely proper” transfer function can still be written in control-canonical
form.

G(s) =
b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
−→

(
A B
C D

)
,

Solution.

a. The claim is that

G(s) =
b0sk + b1sk−1 + · · · + bk

sn + a1sn−1 + · · · + an
≡ b(s)

a(s)
.

is equivalent to

ẋ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−an −an−1 −an−2 · · · −a2 −a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸������������������������������������������������︷︷������������������������������������������������︸
A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn−1

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸︷︷︸
B

u

y =
(
bk bk−1 · · · b1 b0 0 · · · 0

)
︸��������������������������������������������︷︷��������������������������������������������︸

C

x .

We have ẋ1 = x2, ẍ1 = x3, x(3)
1 = x4, and x(n−1)

1 = xn and

dnx
dtn
= −anx1 − an−2

dx1

dt
− · · · − a1

dn−1x1

dtn−1
+ u(t) .

Then, taking the Laplace transform gives,(
sn + a1sn−1 + a2sn−2 + · · · + an−1s + an

)
x1(s) = u(s) .

Conversely, taking the Laplace transform of

y(t) = bk x1(t) + bk−1x2 + · · · b0xk+1 (k < n)

= bk x + bk−1 ẋ + · · · b0x(k)

leads to

y(s) =
(
bk + bzk − 1s + · · · + b0sk

)
x(s) .

Solving for x(s) and substituting gives the original expression for G(s).
b. We show that the “merely proper” transfer function

G(s) =
b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
−→

(
A B
C D

)
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can still be written in control-canonical ABCD state-space form,⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 0 1 0
−an −an−1 −an−2 · · · −a2 −a1 1

bn − anb0 bn−1 − an−1b0 bn−2 − an−2b0 · · · b2 − a2b0 b1 − a1b0 b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To see this, write the transfer function as the sum of a constant term (repre-
senting the feedthrough) and a strictly proper transfer function, so that the
rules given in Section 2.4.1 apply. Thus,

G(s) =
b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an

=
b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an

+ b0

(
sn

sn + a1sn−1 + · · · + an
+ 1 − sn + a1sn−1 + · · · + an

sn + a1sn−1 + · · · + an

)

=
b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
+ b0

(
1 − a1sn−1 + · · · + an

sn + a1sn−1 + · · · + an

)

=
(b1 − a1b0)sn−1 + · · · + (bn − anb0)

sn + a1sn−1 + · · · + an
+ b0 .

We can then convert the biproper transfer function to a state-space representa-
tion using the results from (a). The feedthrough “matrix” D is just the scalar
b0. (For a MIMO system, it could be a matrix.)

Notice that setting b0 = 0 gives back the result in (a), which is also Eq. (2.59).

2.11 Feedthrough as unmodeled dynamics. Consider highly overdamped motion, with
a small term multiplying the highest derivative (singular perturbation): εẍ+ ẋ+x =
u and y = ẋ, where u(t) is the input, the output y(t) is the velocity, and the mass
ε � 1.

a. Transform to a two-dimensional state-space form with x =
(
x1 x2

)T. Find
the two poles, to lowest order in ε. One mode should be slow, the other
fast.

b. Solve for x2(t) in the quasistatic limit, εẋ2 ≈ 0, and show that the reduced, one-
dimensional state-space equations have an output with feedthrough D = 1.

Solution.

a. In standard state-space form, the equations are

ẋ1 = x2

ẋ2 = −x1 − x2 + u , y = x2 .
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From the characteristic equation, εs2 + s + 1 = 0, the two modes have poles
at s ≈ −1 and s ≈ ε−1, to lowest order in ε. The former is the slow mode, the
latter the fast mode, since its decay rate ε−1 � 1.

b. In the quasistatic limit εx2 ≈ 0, which implies

x2 ≈ −x1 + u .

Substituting gives a reduced equation in the one-dimensional space of x1(t).
Explicitly, we have

ẋ1 ≈ −x1 + u , y ≈ −x1 + u .

The state-space “matrices” are all constants: {A, B,C,D} = {−1,+1,−1,+1}.
We see that a feedthrough term, D = 1, has arisen as a result of transforming
the output. To understand this more physically, we note that the output is the
fast mode. In the quasistatic limit, we take it to be infinitely rapid. Then it
makes sense that the input u(t) appears directly in the output y(t), as the signal
propagates infinitely rapidly through the “dynamical” system. Note that had
we added, as would be likely, a second output for x1, it would not have been
affected. It is only the fast modes that contribute to the feedthrough.

We thus see how a finite feedthrough matrix D can represent fast modes that
have been adiabatically eliminated via the quasistatic approximation. Notice
that if we observed only the position and not the velocity, we would have a
state-space model that is fully proper.

2.12 Invariance of the transfer function.

a. Show that the transfer function is invariant under coordinate transformation:

G(s) = C (sI − A)−1 B = C′ (sI − A′)−1 B′ .

b. Consider the second-order system A =
( 0 1−1 −2ζ

)
, B =

( 0
1

)
, C =

(
1 0

)
, and

transformation T = 1√
2

( 1 −1
1 1

)
. Physically, T corresponds to a 45◦ rotation in

the x1-x2 plane. Find new matrices {A′, B′, and C′} and show that the corre-
sponding transfer function calculated is the same as that calculated using {A,
B, and C}.

Solution.

a. Proving invariance:

G = C (sI − A)−1 B

= C ′T
(
sT−1T − T−1 A′T

)−1
T−1B′

= C ′T
(
T−1 (

sI − A′) T
)−1

T−1B′

= C ′TT−1 (
sI − A′)−1 TT−1B′

= C ′ (sI − A′)−1 B′
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b. 2nd-order example: This is a good problem to use a computer algebra
program such as Mathematica. Using that program, I get

A′ =
( −ζ ζ + 1
ζ − 1 −ζ

)
, B′ =

1√
2

(−1
1

)
, C ′ =

1√
2

(
1 1

)
.

Both sets of matrices give G(s) = C (sI − A)−1 B = C ′ (sI − A′)−1 B′ = 1
1+2ζs+s2 .

2.13 First-order systems, step and impulse response. Derive the step and impulse
response from Section 2.4.4 for the first-order system G(s) = (1 + s)−1. Do it
directly in the time domain and also by Laplace transforms. For responses, the
system is in equilibrium at x = 0 for t < 0. For the step response, see Eq. (2.66)
or Footnote 22.

Solution.

a. Step response, time domain. We solve ẏ + y = θ(t), with initial condition
y(0) = 0, to find

y(t) = 1 − e−t , t > 0 .

b. Impulse response, time domain. We have to be careful in how we specify the
initial conditions. The equation of motion is

ẏ + y = δ (t) , y(0) = 0 .

We integrate this equation from t = −ε to t = +ε. The integral over y(t) gives
zero, but the integral over the derivative gives

lim
ε→0

∫ ε

−ε
dt (ẏ + y) = lim

ε→0

∫ ε

−ε
dt δ (t) = 1

lim
ε→0

[
y(ε) −���y(−ε)] = 1 ,

In other words, there is a discontinuity in y(t) at t = 0, and, for t ≥ 0, we solve
ẏ + y = 0, with y(0+) = 1 as our initial condition. The solution is then

y(t) = e−t θ(t) .

Note that, in this calculation, we wrote

lim
ε→0

∫ ε

−ε
dt y = 0 .

The general justification is that, in general,
∫ ε

−ε dt y ≈ y(0)(2ε) → 0 when ε →
0. You might worry whether the finite discontinuity in y(t) at 0 changes this
result. It does not: you can divide the integral into (−ε, 0) and (0, ε) portions
and argue that on each of these sub-intervals, the integral vanished (when
ε → 0), so that the argument holds for finite jump discontinuities.
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c. Impulse response, via Laplace: We have

G(s) = C(s − A)−1B = (1)
1

1 + s
(1) =

1
1 + s

,

which corresponds to G(t) = e−t.
d. Step response, via Laplace: We have

y(s) = G(s)
1
s
=

1
s(s + 1)

=
1
s
− 1

s + 1
,

which corresponds to y(t) = 1 − e−t.

2.14 Lyapunov function for linear dynamics, 1. Let ẋ = Ax, with all the eigenvalues
of A having a negative real part, and let Q be an arbitrary n × n positive definite
matrix.

a. Show V(x) = xT Px is a Lyapunov function, where P =
∫ ∞

0
dt eATt Q eAt and P

satisfies the Lyapunov equation, AT P + PA = −Q.
b. If we can choose Q, then Lyapunov functions are not unique. For one-

dimensional dynamics ẋ = −x and arbitrary Q > 0, construct P, show that it
obeys the Lyapunov equation, and find V. Why does an arbitrary, positive Q
work?

Solution.

a. As suggested, we first show that if P =
∫ ∞

0
dt eATt Q eAt for stable dynamics,

then it satisfies the Lyapunov Equation, AT P + PA = −Q:

AT P + PA =
∫ ∞

0
dt

(
AT eATt Q eAt +eATt Q eAt A

)
=

∫ ∞

0
dt

d
dt

(
eATt Q eAt

)
= eATt Q eAt

∣∣∣∣∞
0

= −Q ,

where the term at t = ∞ goes to zero since “stable dynamics” implies that all
the eigenvalues of A have negative real part.
Then we show that V is indeed a Lyapunov function:

dV
dt
=

d
dt

(
xT Px

)
= xT AT Px + xT PAx = xT(AT P + PA)x = −xTQx ≤ 0 .

The last step follows because Q is positive definite. Since the derivative equals
zero only when x = 0, the solution x = 0 is globally stable.

b. For the one-dimensional problem, we have

P =
∫ ∞

0
dt e−t Q e−t = Q

∫ ∞

0
dt e−2t =

Q
2
.
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Then V = Px2 = 1
2 Qx2 and

dV
dt
=

d
dt

(
1
2

Qx2

)
= Qxẋ = −Qx2 .

Clearly, this works for any Q > 0.

2.15 Lyapunov function for linear dynamics, 2. Consider two-dimensional linear
dynamics, with ẋ = Ax and Lyapunov equation AT P + PA = −Q, with
A =

( a11 a12
a21 a22

)
, Q =

( q1 0
0 q2

)
, P =

( pa pb
pb pc

)
. Solve the linear matrix equation with

a trick:

a. Define the vector pT =
(
pa pb pc

)
. Then write down and solve the

corresponding 3 × 3 matrix version of the Lyapunov equation for p.
b. Write V(x) explicitly in terms of the elements of A and Q for a12 =

a21 = 0.

Solution.

a. By direct inspection (or via a computer-algebra program), we can find an
equation of the form M p = v, with⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a11 2a21 0
a12 a11 + a22 a21

0 2a12 2a22

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸��������������������������︷︷��������������������������︸
M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pa

pb

pc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸︷︷︸
p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−q1

0
−q2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸︷︷︸
q

.

The results in Problem 2.14 then guarantee that we can invert to find p =
M−1 v, as long as q1, q2 > 0 and the eigenvalues of A have negative real part.
The solution is

p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
pa

pb

pc

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1
2Tr det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a12 a21 q1 − a22 (Tr) q1 − a2

21 q2

a12 a22 q1 + a11 a21 q2

a12 a21 q2 − a11 (Tr) q2 − a2
12 q1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where Tr = a11 + a22 = λ1 + λ2 < 0 and det = a11 a22 − a12 a21 = λ1 λ2 > 0.
For completeness, we rewrite the solution in terms of the original matrix P:

P =
1

2Tr det

⎛⎜⎜⎜⎜⎜⎝a12 a21 q1 − a22 (Tr) q1 − a2
21 q2 a12 a22 q1 + a11 a21 q2

a12 a22 q1 + a11 a21 q2 a12 a21 q2 − a11 (Tr) q2 − a2
12 q1

⎞⎟⎟⎟⎟⎟⎠ .
b. The Lyapunov function is V(x) = xT Px = pax2

1 + 2pbx1x2 + pcx2
2.

This is a bit messy in general but simplifies nicely for diagonal A:

A =
(
a11 0
0 a22

)
=⇒ V =

1
2

⎛⎜⎜⎜⎜⎝q1
x2

1

−a11
+ q2

x2
2

−a22

⎞⎟⎟⎟⎟⎠ .
We see that we need stable dynamics (a11 < 0 and a22 < 0) for V to be a
Lyapunov function – i.e., for V(x) to be positive definite. This makes sense,
since the Lyapunov function is used to prove stability! As in Problem 2.14,
we see that any positive definite Q will work.
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2.16 Lyapunov and the damped pendulum. Some Lyapunov functions are more use-
ful than others. Consider a damped pendulum whose angle θ(t) obeys θ̈ + θ̇ +
sin θ = 0.

a. Show that the total energy V1 is a negative semidefinite Lyapunov function.
b. Use the Krasovskii–LaSalle Invariance Principle to conclude from the analy-

sis of V1 that the down position is locally asymptotically stable.
c. Show that another Lyapunov function V2 =

1
2 θ̇

2 + 1
2

(
θ̇ + θ

)2
+ 2(1 −

cos θ) is locally negative definite. Discuss the local stability of the down
equilibrium.

Solution.

a. The energy E ≡ V1 is given by

V1 =
1
2
θ̇2 + (1 − cos θ) .

Then

V̇1 = θ̇ θ̈ + sin θ θ̇ = θ̇
(
θ̈ + sin θ

)
= −θ̇2 ≤ 0 .

Note that V̇1 = 0 for x � 0. Physically, V̇ is the power dissipated by the
moving pendulum.

b. At the turning points of each swing of a pendulum, θ̇ = 0 and θ � 0. Thus,
at these moments, V̇ = 0. Notice that the linearized damped pendulum
(second-order system) will have the same features. Thus, the same reason-
ing as given in Example 2.10 shows that the origin is asymptotically stable. It
is not globally asymptotically stable, as there are multiple equilibria (θ = 0
or π).

c. The alternate choice, which has no obvious physical motivation, is

V2 =
1
2
θ̇2 +

1
2

(
θ̇ + θ

)2
+ 2(1 − cos θ) .

It is clearly positive definite: V ≥ 0, except for θ = θ̇ = 0, where V = 0.
Differentiating gives

V̇2 = θ̇ θ̈ + (θ̇ + θ) (θ̈ + θ̇) + 2(sin θ) θ̇

= 2θ̇ θ̈ + 2(sin θ) θ̇ + θ(θ̈ + θ̇) + θ̇2

= 2θ̇ (θ̈ + sin θ) + θ(θ̈ + θ̇) + θ̇2

= 2θ̇(−θ̇) + θ(− sin θ) + θ̇2

= −θ̇2 − θ sin θ

= −(θ̇2 + θ sin θ) ≤ 0 ,

where we have substituted the original equation of motion in two places. In
contrast to our previous choice of Lyapunov function, we see here that the
only way to get V̇2 = 0 is to have θ̇ = 0 (motionless) and to have θ = 0, π,
etc. Thus, V2 is a Lyapunov function for the down equilibrium of the damped
pendulum.
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We saw previously that the energy V1 never increases. Consider, then, any
perturbation to the solution θ = θ̇ = 0 with energy E ≤ 2. Such a perturbation
will kick the down equilibrium and make the pendulum swing, but not so
much that the amplitude reaches π. In this region of state space, V̇2 < 0
unless θ = θ̇ = 0, and we have a true Lyapunov function and, hence, local
stability of the origin.

This exercise shows that we can define different Lyapunov functions. V1 is the
total energy and thus has a physical meaning. Because V̇ ≤ 0 is only negative
semidefinite, we have to do some extra work and invoke Krasovskii-LaSalle to
infer asymptotic stability of the origin. V2 has no obvious physical motivation,
but it satisfies V̇2 < 0, which allows us to immediately conclude that the origin is
asymptotically stable, just using the basic Lyapunov theorem.

This exercise is partly based on material from Slotine and Li (1991).
2.17 Krasovskii’s method for Lyapunov functions. Although there are no general meth-

ods for finding Lyapunov functions, there are tricks. Here is one: let ẋ = f (x)
be an n-dimensional nonlinear dynamical system with A = ∂ f

∂x its n × n Jacobean
matrix.

a. Show that if A+ AT is negative definite, then V = fT f is a Lyapunov function.
b. Show that the origin is globally stable for ẋ1 = −2x1 + x2 , ẋ2 = x1 − 2x2 − x3

2.

Solution.

a. Consider V = fT f . Note that

ḟ =
∂ f
∂x

ẋ = A f .

Then, differentiating V gives

V̇ = fT ḟ + ḟ
T

f

= fT A f + (A f )T f

= fT A f + fT AT f

= fT
(
A + AT

)
f .

Since F ≡ A+ AT is symmetric and negative definite, we can diagonalize it via
F = RDRT, where the diagonal matrix D has real eigenvalues −λ2

1, −λ2
2, etc.

We then use the rotation matrix R to define new coordinates h = RT f . Then,

V̇ = fTRDRT f

= hT Dg

= −λ2
1g2

1 − λ2
2g2

2 − . . . ≤ 0 .

b. The dynamical system is

ẋ1 = −2x1 + x2

ẋ2 = x1 − 2x2 − x3
2 .
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Thus,

A =
(−2 1

1 −2 − 3x2
2

)
=⇒ F =

(−4 2
2 −4 − 6x2

2

)
.

We have to show that F is negative definite (both eigenvalues have real part
< 0) for all values of x2. We could solve explicitly for the eigenvalues λ1 and
λ2, but it is easier to make use of the fact that for a 2d matrix, the determinant
det = λ1 λ2 and the trace Tr = λ1 + λ2. Thus, to be negative definite requires
det > 0 and Tr < 0. Here, we have

det = 16 + 24x2
2 − 4 = 12(1 + 2x2

2) > 0 , Tr = −8 − 6x2
2 < 0 .

Thus, the conditions are satisfied. Below are graphs and phase-plane plots
for a typical initial condition, x1(0) = 1, x2(0) = 0, which confirm (in one
instance) the stability of the origin. Dashed line in parametric plot is x1 = x2.
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Problems

3.1 Bandwidth of integral control. For the first-order system with integral control
discussed in Section 3.3.1, derive the feedback bandwidth for arbitrary Ki. Find
simpler expressions for the limits Ki � 1 and Ki � 1. Also, rescale the
closed-loop transfer function of Eq. (3.36) to find the damping coefficient ζ as a
function of Ki.

Solution.

a. Bandwidth. With G(s) = 1
1+s and K(s) = Ki

s , we have the closed-loop transfer
function is

T (s) =
1

1 + (KG)−1
=

Ki

s2 + s + Ki
,

with poles satisfying

s2 + s + Ki = 0 , =⇒ s = − 1
2 ±

√
1
4 − Ki .

The closed-loop feedback bandwidth is defined as the lowest frequency for
which |T (ωc)| = 1√

2
|T (0)|. Here, this implies

Ki√
(Ki − ω2)2 + ω2

=
1√
2
,

or

2K2
i = K2

i − 2Kiω
2 + ω4 + ω2

so that

ω4 − 2(Ki − 1
2 )ω2 − K2

i = 0 .

The solution is

ω2
c = (Ki − 1

2 ) ±
√

(Ki − 1
2 )2 + K2

i ,

24
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where we take the positive solution, to make sure that ω is real.
In the limit Ki � 1, we have

ω2
c ≈ − 1

2 +

√
1
4 + K2

i ≈ 1
2

(
−1 +

√
1 + 1

4 K2
i

)
≈ 1

2

(
−1 + 1 + 2K2

i

)
≈ K2

i ,

so that ωc ≈ Ki.
In the limit Ki � 1, we have

ω2
c ≈ Ki +

√
K2

i + K2
i ,

so that

ωc ≈
(√

1 +
√

2

) √
Ki ≈ 1.55

√
Ki .

b. Damping. Starting from

s2 + s + Ki = 0

s2

Ki
+

s
Ki
+ 1 = 0

(s′)2 +
1√
Ki

s′ + 1 = 0 ,

where s′ = s /
√

Ki. Thus,

ζ =
1

2
√

Ki
.

Thus, for small gains, the system behaves as an overdamped oscillator. Criti-
cal damping occurs at Ki =

1
4 , and it becomes more and more underdamped

as Ki is further increased.

3.2 Rejecting disturbances in undamped oscillators. Let G(s) = 1
1+s2 and consider how

an input disturbance d modifies the block diagram in Figure 3.1.

a. Response functions. Show that the disturbance response of the output y(s) is
given by y(s) = G

1+KG d(s). Show that the controller output is u(s) = −KG
1+KG d(s).

b. Proportional (P) control. Find and plot the y(t) and u(t) disturbance impulse
responses for the P-control algorithm, K(s) = Kp. What is wrong with P-
control?

c. Derivative (D) control. Find and plot the y(t) and u(t) disturbance impulse
responses for D control, K(s) = Kds. Find the critical value of K∗

d where the
response changes from oscillatory to damped. Using the final-value theorem,
show that the initial control input is u(t → 0+) = −Kd. What is wrong with D
control?

d. Proportional-derivative (PD) control. Consider the PD algorithm, K = Kp +

Kds. With Kp as a free parameter, find K∗
d for critical damping. Find and plot

the y and u disturbance impulse responses for this choice of Kd. Find u(0+),
and discuss the penalty for PD control relative to D control.
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e. Proportional-integral-derivative (PID) control. For a step disturbance, d(t) =
θ(t), show that PD control (d) results in a steady-state offset. Add integral
control to make a full PID controller, K = Kp + Ki/s + Kds. By matching
coefficients of {1, s, s2, s3} of the denominator polynomial (pole placement),
show that choosing Kp = 3a2 − 1, Ki = a3, and Kd = 3a leads to closed-
loop dynamics with three degenerate poles at s = −a. Plot step and impulse
responses for y and u, for a = 2.

Solution.

a. Response functions. From the block diagram, an input disturbance d implies
that y = G(u + d). For a zero reference, u = Ke = K(�r − y) = −Ky. Thus,

y = G(u + d) = G(−Ky + d) =⇒ y =
G

1 + KG
d = G S d ,

and, thus,

u = −Ky = − KG
1 + KG

d = −T d .

Here, the sensitivity function S ≡ 1
1+KG and its complement T ≡ 1− S = KG

1+KG .
b. Proportional control. Using G(s)−1 = 1 + s2, the load sensitivity function is

S G =
G

1 + KG
=

1
K +G−1

=
1

(Kp + 1) + s2
,

which describes an undamped oscillator with natural frequency
√

Kp + 1. To
obtain explicit time-domain solutions, we should be careful and keep initial
conditions in the Laplace transforms. Here, it is easiest just to work directly
in the time domain. To handle the delta function disturbance d(t) = δ (t),
we integrate the equation of motion from t = 0− to t = 0+. After an input
disturbance impulse, y(t) is continuous but ẏ(t) can have a jump discontinuity.
Thus, we write,∫ 0+

0−
dt (ÿ + y) ≈ ẏ(0+) − ẏ(0−) =

∫ 0+

0−
dt δ (t) = 1 .

Since the initial conditions are y = ẏ = 0 for t = 0, we conclude that the
impulse response is the same as free response for initial conditions y(0+) = 0
and ẏ(0+) = 1. The solution satisfying these initial conditions is, for t > 0,

y(t) =
1√

Kp + 1
sin

(√
Kp + 1 t

)
,

u(t) = −Kpy(t) = −
⎛⎜⎜⎜⎜⎜⎝ Kp√

Kp + 1

⎞⎟⎟⎟⎟⎟⎠ sin
(√

Kp + 1 t
)
.

At low gains Kp � 1, and S G ≈ G, the open-loop response: proportional feed-
back has little effect, and the response oscillates with ω ≈ 1 and amplitude
≈ 1.
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At high gains, Kp � 1, the amplitude is reduced (≈ 1/
√

Kp), and the fre-
quency increases to ω ≈ √

Kp. The control signal is also sinusoidal, with
amplitude u ∼ √

Kp.

Although reducing the amplitude of the response and speeding up its dynam-
ics can be good features, this is nonetheless not a satisfactory response:
because the dynamics are not damped, the system never “forgets” the past.
Thus, the past controls the present, whereas the goal of a controller for dis-
turbances is typically to make the behavior of a system independent of its
long-time history. In addition, the control effort, defined as u2(t), never dies
away. Thus, each disturbance requires the controller to act on the system
forever after!

The intrinsic damping of a system modifies these conclusions only slightly.
The past does decay, on a dimensionless time scale ζ−1 for the generic scaled
oscillator, G(s) = 1

1+2ζs+s2 . But in this case, proportional control does not alter
the decay rate. If it is too slow for your purposes, you are out of luck.

c. Derivative control. Pure derivative control, K(s) = Kds leads to

S =
1

1 + KG
=

1
1 + Kds + s2

.

We see that derivative control adds damping but does not alter the natu-
ral frequency. The gain Kd = 2 corresponds to critical damping, which is
a reasonable goal. Lower gain implies underdamped behavior; higher gain
overdamped.

To calculate the maximum control signal required, we use the results
in Part (a):

−T = − KG
1 + KG

= − 1
1 + (KG)−1

= − 1

1 + 1+s2

Kd s

=
−Kds

1 + Kds + s2
.

The initial value theorem then says that

u(0+) = lim
s→∞ s[−T (s)] = −Kd .
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Note that a critically damped oscillator has the fastest decay envelope for
fixed oscillator frequency, we conclude that we can use derivative control to
damp on a time scale of the oscillator period, but not faster.

To summarize:

• P control decreases the amplitude of disturbances and makes the response
faster but does not add damping.

• D control adds damping but does not alter the time scales or amplitudes.

We use Mathematica to solve for explicit time responses. As before, the
impulse response is equivalent to free response with y(0) = 0 and ẏ = 1, for
t > 0. Using u = Kdẏ and for Kd = 1 and ω =

√
3/2, they are

Kd = 1 : y(t) =
2√
3

e−t/2 sinωt , u(t) = − e−t/2

(
cosωt − 1√

3
sinωt

)
Kd = 2 : y(t) = t e−t , u(t) = −2(1 − t) e−t .

The output y and input u responses to an impulse are shown below.

d. Proportional-derivative control. Here, K(s) = Kp + Kds. Then,

y
d
=

G
1 + KG

=
1

K +G−1
=

1
Kp + Kds + (1 + s2)

=
1

(1 + Kp) + Kds + s2
,

which corresponds to an oscillator with damping coefficient Kd/2 and fre-
quency

√
1 + Kp. For critical damping, K∗

d = 2
√

1 + Kp, and

y
d
=

1( √
1 + Kp + s

)2
=

1(
1
2 K∗

d + s
)2
.

With this choice of K∗
d in terms of Kp, we transform the undamped poles of

the system at p = ±i to two stable, degenerate real poles at p = − 1
2 K∗

d, whose
position can be chosen, as shown below.
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For the control signal,

u = − 1
1 + (KG)−1

= − 1

1 + 1+s2

Kp+Kd s

= − Kp + Kds

(1 + Kp) + Kds + s2

= − Kp + 2
√

1 + Kps( √
1 + Kp + s

)2
.

where the last step chooses critical damping (Kd = 2
√

K2
p + 1). Just as with

pure derivative control, the initial controller amplitude is u(0+) = −Kd. But

if we choose Kd = 2
√

K2
p + 1 in order to maintain critical damping, we will

use a larger derivative gain in the PD case. Thus, the improved control again
comes at a cost of larger amplitude.

For critical damping, the explicit time-domain solutions are

y(t) = t e−
√

Kp+1t , u(t) = −
(
2
√

Kp + 1 − (Kp + 2)t
)

e−
√

Kp+1t .

You might wonder about the total time-integrated control effort, defined, for
example, as E ≡ 1

2

∫ ∞
0

dt u(t)2. It, too, does not greatly exceed that of D con-
trol, showing that the main limitation is the largest limiting value of u, here
occurring at t = 0+.
The time responses are given below.

e. Proportional-integral-derivative (PID) control. There are several ways to see
that a step disturbance, d(t) = θ(t), will lead to an offset for a PD con-
troller with Kd = 2

√
1 + Kp. We can use the transfer function and final-value

theorem:

y(t = ∞) = lim
s→0

(s)(S G)(s−1) = S (0) G(0) =
1

(1 + Kp) + Kds + s2

∣∣∣∣∣∣
s→0

=
1

1 + Kp
.

Alternatively, using Mathematica, the explicit time-dependent step response
is

y(t) =
1

1 + Kp

[
1 −

(
1 +

√
1 + Kp

)
e−
√

1+Kpt
]
−−−→
t→∞

1
1 + Kp

,

which is plotted below for Kp = 1. The step disturbance results in a constant
offset, whose value decreases as the proportional gain Kp is increased.
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In order to get rid of the long-time offset to a step disturbance, we consider
the full PID algorithm: For K = Kp +Ki/s+Kds, we match the coefficients of
1, s, and s2 in the denominator of the desired response polynomial:

(s + a)3 = s3 + 3as2 + 3a2s + a3

= s3 + Kds2 + (Kp + 1)s + Ki .

This is equivalent to pole placement (Section 3.7.2). By inspection, we choose

Kp = 3a2 − 1 , Ki = a3 , Kd = 3a .

Having made this choice, the transfer function from d to y is (using Mathe-
matica)

S G =
G

1 + KG
=

s
(s + a)3

,

which implies impulse and step responses

yimpulse(t) = t
(
1 − a

2
t
)

e−at θ(t)

ystep(t) =
1
2

t2 e−at θ(t) .

Similarly, the response from d to u is

−T = − KG
1 + KG

= −3as2 + (3a2 − 1)s + a3

(s + a)3
,

which implies impulse and step responses

uimpulse(t) = −1
2

(
(a3 + a)t2 − 2(1 + 3a2)t + 6a

)
e−at θ(t)

ustep(t) = −1
2

(
−(a2 + 1)t2 + 4a

)
e−at −1 θ(t) .

Plots for a = 2 are shown below. By using the full flexibility of PID con-
trol, we have arrived at a controller that can compensate for step and impulse
disturbances at the input to the system.
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In further problems, we will consider the command response using feedfor-
ward and also strategies that limit u(t) to some maximum value. We see that the
control signal u(t) typically “spikes” negative in response to a disturbance. Later,
we will see that a smaller response, applied for a longer time, is another option.
Finally, we will also consider what happens when the frequency of the physical
oscillator differs from what we think it is.

3.3 Feedforward control for an undamped oscillator. In Problem 3.2, we discussed
how a PID controller can damp impulse and step disturbances. Now let’s make
an undamped oscillator reject disturbances and track commands. Recall the
system, G(s) = 1

1+s2 , and the PID controller, K(s) = Kp + Ki/s + Kds, with Kp =

3a2 − 1, Ki = a3, and Kd = 3a, chosen to make the closed-loop denominator
(1 + KG) ∼ (1 + s/a)3.

a. Find r → {y, u} transfer functions and analytic time-domain formulas for the
command step response, for Kp = 3a2 − 1, Ki = a3, and Kd = 3a. Plot for
a = 2.

b. Since the above PID controller worked well for disturbances, we would like
to keep it and add feedforward instead. Modify the command signal r(s)
by an element F(s). The simple strategy F ∼ T−1, for T = KG

1+KG , does not

lead to proper response. Try F(s) = T−1(s)
(1+s/a)2 , which is proper. Find r →

{y, u} transfer functions and analytic formulas for the step response. Plot for
a = 2. Compare the output and control time responses with and without
feedforward.

Solution.

a. The PID controller from Problem 3.2 is

K(s) = (3a2 − 1) +
a3

s
+ 3as = 11 +

8
s
+ 6s ,

with a = 2. It leads to a r → y transfer function T (s) given by

T (s) =
KG

1 + KG
=

8 + 11s + 6s2

(2 + s)3
,

and an r → u transfer function

S K(s) =
K

1 + KG
=

(1 + s2)(8 + 11s + 6s2)
(2 + s)3

.
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From Mathematica calculations, the analytic solutions for the step responses,
r(t) = θ(t), for t > 0,

y(t) = 1 + 1
2 [t (8 − 5t) − 2] e−2t

u(t) = 6δ (t) + 1 −
(
1 + 2t(t + 1) e−2t

)
.

The delta function at t = 0 comes from the action of derivative feedback,
u ∼ Kdṙ on the command signal and would be smoothed in a more realistic
analysis. See below for plots of the response curves.

b. The r → y transfer function T (s) F(s) for a = 2 is given by

T (s) F(s) =
KGF

1 + KG
=

4
(2 + s)2

,

and the r → u transfer function

S KF(s) =
KF

1 + KG
=

4(1 + s2)
(2 + s)2

.

From Mathematica calculations, the analytic solutions for the step responses,
r(t) = θ(t), for t > 0,

y(t) = 1 − (2t + 1) e−2t

u(t) = 1 + (3 − 10t) e−2t .

The y(t) and u(t) response curves for r(t) = θ(t) are illustrated below for the
naive (no feedforward) and feedforward cases. Notice how the feedforward
has eliminated the overshoot in the control signal and reduced the control
requirements, too. In particular, the delta function at t = 0 in (a) has been
softened to a simple jump discontinuity at t = 0. You might think that it
should to be possible to design a control where u(t) does not exceed 1, and,
in Section 9.1.1, we shall see how to do this. See also the direct digital design
techniques discussed in Section 5.4.2.

3.4 Stabilizing an unstable oscillator. Consider an unstable oscillator G(s) = 1
s2−1 ,

subject to an impulse input disturbance, d(t) = δ (t).

a. Proportional (P) control. For K(s) = Kp, show that Kp > 1 stabilizes the
closed-loop disturbance response G

1+KG . Describe the response and its prob-
lems. What is the minimum proportional gain if the oscillator has natural
frequency ω?
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b. Proportional-Derivative (PD) control. For K(s) = Kp + Kds, use pole place-
ment (matching denominator polynomials) to show that choosing Kd = K∗

d ≡
2
√

Kp − 1 and Kp > 1 gives the desirable critical-damping response. Choose
a to give two poles at s = −a. For a = 1, plot the response for y and u.

c. Filtered Proportional-Derivative (PD) control. Limit the derivative control by
filtering: For K(s) = Kp +

K∗
d s

1+s/ωd
, find the d → {y, u} transfer functions and

also the explicit time-domain differential equations for y(t) and u(t).
d. Matching denominators, choose Kp, Kd, and ωd to get a disturbance response

with three poles at s = −a. For a = 1, plot the disturbance response y(t) and
u(t).

Solution.

a. Proportional (P) control. For a PD controller with K(s) = Kp, the closed-loop
response to an input disturbance is

S G =
G

1 + KG
=

1
K +G−1

=
1

Kp + s2 − 1
=

1
s2 + (Kp − 1)

.

For Kp > 1, this gives undamped oscillation at frequency
√

Kp − 1. It prevents
instability but does not bring the system back to its equilibrium. (If there is
system damping, it will bring it back at the normal damping rate, which can
be slow.)
For G = 1

s2−ω2 , the same arguments leads to Kp > ω2. Let’s quickly show this
in the time domain:

ÿ + ω2y(t) = u(t) + d(t) ,

where y(t) is the oscillator state, u(t) the control input, and d(t) the disturbance.
Choosing u(t) = −Kpy(t) gives

ÿ + (Kp − ω2)y(t) = d(t) ,

which has oscillatory response for Kp > ω
2.

b. Proportional-Derivative (PD) control. To have a critically damped response,
the denominator D(s) = s2 + Kds + Kp − 1 should have degenerate roots.
Matching coefficients to the desired denominator (s + a)2, we have

s2 + Kds + (Kp − 1)

= s2 + 2as + a2 ,

so that,

a2 = Kp − 1 and Kd = 2a = 2
√

Kp − 1 .

Note that to achieve stabilization, we need to take the positive root for a,
implying Kd > 0. For a = −1, we have Kp = Kd = 2, which gives the response
shown below.
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c. Proportional-Derivative (PD) control. The controller is

K(s) = Kp +
Kd s

1+s/ωd
.

The d → y transfer function is

G
1 + KG

=
s + ωd

s3 + ωds2 + (Kp − 1 + Kdωd)s + (Kp − 1)ωd
.

The d → u transfer function is

−KG
1 + KG

= − Kpωd + (Kp + Kdωd)s

s3 + ωds2 + (Kp − 1 + Kdωd)s + (Kp − 1)ωd
.

These are probably more easily understood in the time domain. Multiply-
ing through by 1 + s/ωd and going back to the time domain gives (with all
quantities functions of t), two coupled equations for y(t) and u(t):

ÿ − y = u + d ,

(
1
ωd

)
u̇ + u = −Kpy −

(
Kp

ωd
+ Kd

)
ẏ ,

y(0) = 0 , ẏ(0) = 0 , u(0) = 0 .

Notice that taking ωd → ∞ gives us back the simpler equations for straight
PD control.

d. Matching

(s + a)3 = s3 + 3as2 + 3a2s + a3

= s3 + ωds2 + (Kp − 1 + Kdωd)s + (Kp − 1)ωd

gives

Kp = 1 +
a2

3
, Kd =

8
9

a , ωd = 3a .

For numerics, we take a = 1, or Kp = 4/3, Kd = 8/9, and ωd = 3. Notice that
the derivative term is cut off a factor of 3/(8/9) = 3.375 times higher than the
cutoff frequency.
For the above choice of controller coefficients, the transfer functions become
as follows: The d → y transfer function is

d → y :
G

1 + KG
=

3 + s
(1 + s)3
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d → u : − KG
1 + KG

= − 4
(1 + s)2

.

Then, solving these (or the time-domain equations) gives, for t > 0,

y(t) = t(t + 1) e−t , u(t) = −4t e−t .

These are plotted below. Comparing with the PD controller above, we see
that the disturbance response is worse, increasing from 1/e ≈ 0.37 to ≈ 0.84.
However, the maximum controller response has improved, from −2 to −4/e ≈
−1.47. In addition, the noise sensitivity – the degradation that occurs when
we allow for measurement noise – will be better in the filtered design. We will
investigate such issues in Chapter 8. Notice that filtering the derivative term –
adding ωd – makes u(t) change at a finite rate. By contrast, the controller
signal had a jump discontinuity for pure PD control.

The above solution describes some of the issues involved in the linear control
of an unstable pendulum. Problem 11.17 discusses how to stabilize the full non-
linear dynamics, assuming that the applied torque is strong enough to be able to
overcome directly the gravitational torque.

3.5 Integral-control instability. Using Eq. (3.47), we studied an instability in integral
control for G = 1

(1+s)2 and K = Ki
s . Please verify that

a. At the onset of instability, Ki = 2, the stable root is at −2.
b. For Ki = 0, there is a double pole at −1 and a single pole at 0. Show that one

of the −1 poles collides with the 0 pole at Ki =
4
27 . Find the location of that

collision (and that of the other pole while you’re at it).
c. Verify that the gain margin is 2/Ki.
d. Plot the phase margin as a function of Ki over the parameter range 0 < Ki < 2.

Evaluate the phase margin for Ki = 1 numerically.

Solution.

a. Stable root at onset: In the text, we showed that the onset of instability occurs
at K∗

i = 2 and that it is a Hopf bifurcation, with ω∗ = 1. For G = 1
(1+s)2 and

K = Ki
s , the denominator of T (s) = 1

1+(KG)−1 =
Ki

Ki+(1+s)2 s . Substituting Ki = 2,
we have

s(s + 1)2 + 2 = s3 + 2s2 + s + 2 ,
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which factors into (s + i)(s − i)(s + p), where p is the value of the 3rd root. To
verify that the third root is at −2, we check that

(s2 + 1)(s + 2) = s3 + 2s2 + s + 2 .

b. Double real roots. We want to find the condition for a double real root. Thus,
we want

s(s + 1)2 + Ki = (s − p)2 (s − q)

where p and q should be negative to give stable roots. Expanding out, we have

��s3 + 2s2 + s + Ki = ��s3 − (2p + q)s2 + (p2 + 2pq)s − p2q

Matching powers of s (constant, linear, quadratic), gives two solutions. One
is the trivial one mentioned in the problem (Ki = 0, p = −1, q = 0). The other
is the desired roots: Ki =

4
27 , p = − 1

3 , and q = − 4
3 .

Alternatively, you can simply factor

s(s + 1)2 + 4
27 =

(
s + 1

3

)2 (
s + 4

3

)
.

c. Gain margin. The gain margin is the inverse of |L(iω)|, evaluated at the fre-
quency ω∗ such that the phase of L(iω∗) = −180◦. In this case ω∗ = 1
and

|L(i)| =
∣∣∣∣∣ 1
(1 + i)2

∣∣∣∣∣
∣∣∣∣∣Ki

i

∣∣∣∣∣ = Ki

2
,

implying a gain margin of 2/Ki.
d. Phase margin. The phase margin is π + ϕ, where ϕ is the phase of L(iω),

evaluated at a gain where |L| = 1. Here, the magnitude condition leads to

1√
(1 − ω2)2 + 4ω2

(Ki

ω

)
= 1 ,

which is a cubic equation that one can solve for ω = ω0. Then, the phase
angle ϕ is given by

tanϕ = −1 − ω2
0

2ω0
,

which gives 21.4◦ for Ki = 1. See plot below, too.

2
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3.6 Analog circuits for PID control. Although less flexible than digital controllers,
analog circuits can nonetheless be the easiest, cheapest solution. Simple algo-
rithms such as PID control can be implemented with a single operational
amplifier costing just a few cents, with bandwidths easily reaching 100 kHz.

a. Show how the circuit in Section 3.2.2 could be used as a proportional con-
troller. If the controller output u(t) is related to the error e(t) = r(t) − y(t) by
u(t) = Kpe(t), what is Kp? It is important to get the signs correct. How is Vin(t)
related to e(t)?

b. The op-amp circuit at right implements a PID controller of the form u(t) =
[Kp +

Ki
s + Kds] e(t). Find Kp, Ki, and Kd.

c. Draw circuits for PI, PD, and I control.

Solution.

a. Analog P control. Kp =
R2
R1

. e = −Vin.

b. Analog PID control. Kp =
R2
R1
+ C2

C1
, Ki = R1C1, Kd = R2C2.

c. Circuit diagrams for PI, PD, and I control.

3.7 Eliminating derivative kick. If the basic PID algorithm is tuned to regulate
against disturbances, it will tend to perform poorly when tracking a step com-
mand. A simple improvement is to apply the derivative term not to the error
e = (r − y) but to −y directly. (The error still enters other terms, as usual.) This
modification eliminates the output “kick” when changing the reference signal.

a. Derive this algorithm in the Laplace domain, and explain in simple terms why
it works. Show that the corresponding block diagram has a new feedforward
term.

b. The system G(s) = 1
(1+s)3 has a “sluggish” response. Explore PIDF control

(Eq. 3.41), with and without derivative kick. For Kp = 1, Ki = 0.5, Kd = 0.5,
and ωd = 10, reproduce the plots at right. The dashed line (ordinary PIDF)
shows a large spike in the signal u(t) sent to the system. The solid line shows
that applying the DF part of the algorithm to y eliminates the spike, with only
minor deterioration of the step response.

Solution.

a. The block diagram is as follows:
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The controller is

K(s) = Kp +
Ki

s
+

Kds
1 + s/ωd

≡ Kpi(s) + Kd(s) .

In the block diagram, we subtract off the Kd(s) contribution so that the net
direct path signal is K −Kd = Kpi(s). Thus, the block diagram is equivalent to
the transfer function

y
r
=

KpiG

1 + KG
,

u
r
=

Kpi

1 + KG
.

Notice that the disturbance response remains, for a disturbance d that enters
at the input to G,

y
d
=

G
1 + KG

.

b. See book website for Mathematica file.

3.8 Decoupling feedforward from feedback. Naive implementations of feedforward
(e.g., Problem 3.3) lead to schemes where the feedforward filter F depends on
the controller K. Figure 3.5 presented a scheme for combining feedforward and
feedback that decouples the two transfer functions F and K.

a. Solve the block diagram in Figure 3.5 for y. Show that when the model is
perfect (G0 = G) that y = FG r +

( G
1+KG

)
d. Thus, F acts only on r, and K only

on d.
b. Plot command step and disturbance impulse response for the undamped oscil-

lator G = 1
s2+1 (see left). Use a PD controller with Kp = 1 and Kd = 2

√
2 and

a feedforward controller F = G−1/(1 + s)2.

Solution.

a. For convenience, the Figure 3.5 block diagram is reproduced here:

From the block diagram,

y = G(u + d) uff = Fr

u = uff + ufb ufb = Ke

= Fr + K(FG0r − y) e = FG0r − y .

Then

y = G[Fr + K(FG0r − y) + d]

= FGr + FGKG0r − KGy +Gd

= FG

(
1 + KG0

1 + KG

)
r +

( G
1 + KG

)
d .
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If the model is perfect, G0 = G and

y = FG r +
( G
1 + KG

)
d .

What if the model is not perfect? At frequencies where KG and KG0 � 1,

y ≈ FG
(KG0

KG

)
r +

( G
1 + KG

)
d

= FG0 r +

( G
1 + KG

)
d .

Thus, even when the model is imperfect, F and K decouple at frequencies for
which the feedback controller gain is large. You design F using the model G0

and use high feedback gains to compensate for model inaccuracies.
Finally, it is useful to have a explicit expression for u(s) as a function of the
command r and disturbance d inputs. For a perfect model (G0 = G),

u = Fr + K(FGr − y) = Fr −
( KG
1 + KG

)
d .

b. Substitute K(s) = 1 + 2
√

2s and F(s) = 1+s2

(1+s)2 into

y = FG r +
( G
1 + KG

)
d

u = Fr + K(FGr − y) = Fr −
( KG
1 + KG

)
d ,

for r a step at t = 1 and d an impulse at t = 12 and plot the result.

3.9 Proportional temperature control of an extended rod. In Section 2.3.2, we showed
that the transfer function between a heater at x = 0 and a temperature probe at
x = � was G(s) = 1√

s
e−

√
s, with lengths scaled by � and times by �2

D . Here, D is the
thermal diffusion constant. Find the maximum proportional gain K∗

p that can
be applied without oscillation. Derive the frequency of oscillations at instability
onset, ω∗.

Solution.

a. Onset oscillation frequency ω. To calculate the frequency of oscillations at
onset, we look at the phase of G(s). (Multiplying by a constant gain Kp does
not alter the phase lag.) We have

G(iω) =
e−

√
ω/2

√
ω/2

(
cos

√
ω

2
− isin

√
ω

2

)
(1 − i)

To shortcut the calculation, we note that a phase lag of π implies tan φ = 0
implies that Im G(iω) = 0. Thus, we extract from our expression for G(iω)
the condition

cos

√
ω

2
+ sin

√
ω

2
= 0 ,
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which implies tan
√
ω
2 = −1, so that the phase delay is 3π/4. Thus,

ω∗ =
9
8
π2 ≈ 11.1 → 11.1

D
�2
.

b. Critical gain K∗
p . The loop gain is

L = KG = Kp
e−

√
s

√
s
= Kp

e−
√

iω

√
iω
= Kp

e−
√
ω/2(1 + i)√

iω
.

The magnitude |L| is then

|L|2 = K2
p

ω
e−
√

ω
2 (1 + i) e−

√
ω
2 (1 − i) =

K2
p

ω
e−

√
2ω = 1 ,

with solution

K∗
p =

√
ω∗ exp

⎧⎪⎪⎨⎪⎪⎩
√
ω∗

2

⎫⎪⎪⎬⎪⎪⎭ = √
2

(
3
4
π

)
exp

{(
3
4π

)}
≈ 35.2 → 35.2

λ

�
.

3.10 Instability with a long delay. Consider the unstable system ẋ = ax + u, with
u(t) = −Kpx(t − τ). Show that a < Kp < τ−1 for stability. Thus, when τ > a−1

no value of Kp can make all roots of s have a negative real part. Hint: When s
is real, expand the exponential. Consider a possible Hopf bifurcation (s = ± iω),
too.

Solution. For

ẋ(t) = ax(t) + u(t) , u(t) = −Kpx(t − τ) ,

with a > 0, the Laplace transform is(
s − a + Kp e−sτ

)
x(s) = 0 .

The basic strategy will be to look at the roots of the transcendental equation for s
in the vicinity of the instability bifurcation point, where the solution with largest
real part is zero. There are two cases: s is real and s = 0 at the instability, or s is
complex and equals ± iω at the instability. The latter signals a Hopf bifurcation
with an oscillatory instability that is oscillating at an angular frequency ω at
onset.

• s real. Since s = 0 at the bifurcation, we expand e−sτ to second order near the
bifurcation. This implies

s − a + Kp[1 − (sτ) + 1
2 (sτ)2 + · · · ] = 0 .

Rearranging gives a quadratic equation for s:

1
2 Kpτ

2s2 + (1 − Kpτ)s + (Kp − a) = 0

s2 −
⎛⎜⎜⎜⎜⎝Kpτ − 1

1
2 Kpτ2

⎞⎟⎟⎟⎟⎠ s +

⎛⎜⎜⎜⎜⎝Kp − a
1
2 Kpτ2

⎞⎟⎟⎟⎟⎠ = 0 .



Problems 41

The product of the two (real) roots of s is ∼ (Kp − a) > 0, since the delay-free
equation already tells us Kp > 0. Thus, both roots must be negative (and their
product positive). We also know that the sum of the roots must be
∼ (Kpτ − 1) < 0. This implies that a < Kp < τ

−1, or τ < K−1
p < a−1.

• s complex. Now s = ± iω at the bifurcation, and we substitute into the tran-
scendental equation: iω − a + Kp e− iωτ = 0. Separating real and imaginary
parts gives

−a + Kp cosωτ = 0 , ω − Kp sinωτ = 0 .

Solving for cosωτ and sinωτ and using cos2 + sin2 = 1 gives⎛⎜⎜⎜⎜⎝ a

K2
p

⎞⎟⎟⎟⎟⎠2

+

⎛⎜⎜⎜⎜⎝ ω
K2

p

⎞⎟⎟⎟⎟⎠2

= 1 , =⇒ a2 + ω2 = K2
p .

Similarly, dividing the two equations gives

tanωτ = ω/a ,

which has a solution ω � 0 only when τ < a−1. Otherwise, ω = 0 is the only
solution, and we are back in the first case. In conclusion, we need τ < a−1 to
be able to find a gain Kp > a that ensures stability (all roots s have Re s < 0).

3.11 Op amp allpass. Consider the op-amp circuit shown at right. Derive the transfer
function between Vin and Vout and show that it is all pass, with a zero in the RHP.
You should find that the transfer function is independent of Rx.

Solution.
From the current path through the Rx resistors, we see that

Vin − V−
Rx

=
V−Vout

Rx
,

which implies

V− =
1
2

(Vin + Vout) .

For the lower path through C and R, we use the op-amp rule V+ = V− to write

Vin − 1
2 (Vin + Vout)

1/(iωC)
=

1
2 (Vin + Vout)

R
,

which leads to

Vout = −
(

1 − iωRC
1 + iωRC

)
Vin = −

(
1 − sRC
1 + sRC

)
Vin .

Thus, the transfer function G(s) = Vout/Vin is all pass, with a zero at s = +(RC)−1,
in the RHP.

3.12 Inverse response. NMP zeros can lead to inverse response: the initial response
to a step input is in the opposite direction to the step. We saw such behavior
in Example 3.3. Here, we explore this behavior analytically for that example, as
well as for a slightly more general transfer function, G0(s) = 1−s/z

(1+s/p)(1+s/p∗) .
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a. Show that the initial value of the derivative of the response y(t) to a step
function θ(t) is, for a general transfer function G(s), given by ẏ(t → 0) =
lims→∞ s G(s). Hint: see the discussion of the initial-value theorem in
Appendix A.4.3.

b. Then show that the transfer function GNMP in Ex. 3.3 has an inverse response.
c. Show that G0 has an inverse response when there is an NMP zero.

Solution.

a. Initial value of derivative. Recall the Laplace transform,

ÿ(s) = s2 y(s) − s�����0
y(t = 0) − ẏ(t = 0) .

Directly evaluating

lim
s→∞ ÿ(s) = lim

s→∞

∫ ∞

0
dt ÿ(t) e−st = 0 ,

we solve for ẏ(t = 0):

dy
dt

∣∣∣∣∣
t=0
= lim

s→∞ s2y(s) = lim
s→∞ s2 G(s)

1
s
= lim

s→∞ s G(s) .

b. Inverse response for zero at z = 1. For GNMP,

dy
dt

∣∣∣∣∣
t=0
= lim

s→∞ s
1

(1 + s)

(
1 − s/2
1 + s/2

)
= −1 ,

c. Inverse response for RHP zero. For G0,

dy
dt

∣∣∣∣∣
0
= lim

s→∞
−s2/z

(s/p)(s/p∗)
= − pp∗

z ,

showing that the sign of ẏ(t = 0) is opposite that of z: if z is an RHP zero, the
system initially goes the “wrong way.” Notice that the initial response does
not depend on whether the pole is stable or not (only |p|2 enters). Thus, an
unstable system with z < 0 would still show normal response.

3.13 Response of a non-minimum phase (NMP) system. In Section 3.6.2, we ana-
lyzed the system GNMP(s) = 1

1+s

( 1−s/2
1+s/2

)
, which has a zero in the right-hand

plane (RHP). Reproduce the pole-zero plot at left and describe its main features
analytically.

Solution.
The closed-loop transfer function for proportional gain K is

T =
K(s − 2)

s2 + (3 − K)s + 2(1 + K)
.

The structure of the root-locus plot can be understood by solving for the pole
positions of T (s) as a function of gain K:

s = 1
2

(
K − 3 ±

√
K2 − 14K + 1

)
.
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There are two degenerate roots when K2 − 14K + 1 = 0, which happens at K =
7± 4

√
3, which corresponds to s = 2(1± √3). The instability is calculated for Re

s = 0, which occurs when K = 3.

To show that the shape of the locus is a circle centered on s = 2, we note that
the equation of such a circle is of the form (Re s−2)2+ Im s2 = R2, where R is the
unknown radius of the circle. Using Re s = 1

2 (K−3) and Im s2 = −(K2−14K+1)
gives R =

√
12.

Thus, the following “narrative” describes the root-locus plot, as K is increased
from 0: The two poles first move towards each other, colliding at s = −2(

√
3 −

1) ≈ −1.46 for K = 7 − 4
√

3 ≈ 0.072. The roots then turn into a complex-
conjugate pair that travel in a circle in the s-plane of radius 2

√
3 ≈ 3.46. The

system becomes unstable for K∗ = 3, where ω∗ =
√

8 ≈ 2.82. If one further
increases the gain, the circle closes back and the two complex-conjugate pairs
meet at s = 2(1 +

√
3) ≈ 5.46, where K = 7 + 4

√
3 ≈ 13.93. Thereafter, the poles

become real. One of them approaches the RHP zero at s = 2, and the other goes
off to infinity.

3.14 Balancing a stick by moving your hand. In Problem 2.1, we showed, neglecting
any mass associated with the hand or arm, that ẍ + 1

2

(
θ̈ cos θ − θ̇2 sin θ

)
= u and

θ̈ + sin θ + 3
2 ẍ cos θ = 0, where θ increases counterclockwise, from the bottom,

and x is the horizontal displacement of the stick bottom, relative to a reference
position.

a. Linearize the equations of motion about the vertical equilibrium θ = π.
b. Show that the transfer function from u to the fixation point y = x + �0 sin θ is

G(s) =
[(

1 − 3
2�0

)
s2 − 1

]
/
[
s2( 1

4 s2 − 1
)]

.
c. From Problems 3.16 and 3.17, show that one cannot balance a stick if
�0 ≤ 1

2 .

Solution.

a. Linearizing about the unstable vertical equilibrium θ = π gives

ẍ − 1
2 θ̈ = u ,

θ̈ − θ − 3
2 ẍ = 0

y = x − �0θ .

b. Take the Laplace transform and write the first two equations in matrix form:(
s2 − 1

2 s2

− 3
2 s2 s2 − 1

) (
x
θ

)
=

(
u
0

)

Solve for x(s) and θ(s) in terms of u(s):(
x
θ

)
=

1

s2
(

1
4 s2 − 1

) (
s2 − 1

3
2 s2

)
u .
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Writing y = x − �0θ then gives the transfer function

G(s) =
y(s)
u(s)

=

(
1 − 3

2�0

)
s2 − 1

s2
(

1
4 s2 − 1

) .

c. From the transfer function, the poles are at p = 0, ±2. The +2 pole is asso-
ciated with the unstable motion. The relevant zero is at z = +1/

√
1 − (3/2)�0.

From Problem 3.17, the sensitivity function has a maximum of magnitude

max S =
p + z
|p − z| ,

which diverges for p → z. For the relevant pole-zero combination, this condi-
tion occurs at �0 = 1/2. More carefully, Problem 3.16 shows that the feedback
bandwidth ωc > p. But ωc < z for an unstable zero. We can satisfy both con-
straints when z > p but not when z < p. Combining all these arguments, we
conclude that one must look at a point �0 > 1/2 (more than halfway up the
stick from the hand).

3.15 Balancing a stick, with delay in applying feedback.

a. For small deviations of a stick from the vertical, show that the equation of
motion with delayed PD feedback is θ̈(t)− (6g/�)θ(t) = −Kpθ(t−τ)−Kdθ̇(t−τ).
As in Problem 3.14, neglect the mass of the hand in your calculation.

b. Inserting θ(t) ∼ est, show that no choice of Kp and Kd stabilizes the stick
for τ >

√
�/(3g). Thus, there is instability for � < 3gτ2. Hint: Write s = iω;

separate into real and complex equations; expand cosωτ; and look forω roots
in 0 < ωτ < π

2 . A careful argument about the roots is subtle (Stepan, 2009).
c. Whatever the controller, disturbances grow uncorrected over the delay time τ.

Use this idea to argue that � � gτ2 implies instability. Experiments by Milton
et al. (2016) suggest that, in humans, τ ≈ 0.23 s, while �min ≈ 0.32 m. Show
that these observations imply that uncontrolled disturbances grow by a factor
≈ 20. Humans thus seem to use memory and an internal model to predict
motion.

Solution.

a. In terms of the scaling from Problem 3.14, the transfer function between u
and θ is

θ(s) =
3/2

s2/4 − 1
u(s) , =⇒ θ̈ − 4θ = 6u .

That problem scaled time by ω0 =
3
2 g/�, which implies

θ̈ − 4

(
3
2

g
�

)
= 6

(
3
2

g
�

)
u

θ̈(t) −
(

6g
�

)
θ(t) = −Kpθ(t − τ) − Kdθ̇(t − τ) ,

where the PD gains Kp and Kd absorb all needed constants.



Problems 45

b. It is convenient to scale time by the slightly different scaling t → √
6g/� t. In

this scaling, θ̈−θ = −Kpθ(t−τ)−Kdθ̇(t−τ), with Kd redefined, too. Substituting
θ(t) = θ0 est into the equation of motion leads to the characteristic equation

s2 − 1 + Kp e−sτ +Kds e−sτ = 0 .

At the threshold of instability s = 0 (real root) or s = ± iω (Hopf bifurcation).
For the former case Kp = 1. For the latter, we set s = iω:

−ω2 − 1 + Kp e− iωτ +Kds e− iωτ = 0 .

Separating the imaginary and real parts of the ω equation then gives

−Kp sinωτ + ωKd cosωτ = 0

−(1 + ω2) + ωKd sinωτ + Kp cosωτ = 0 .

In matrix form, this is(−Kp ωKd

ωKd Kp

) (
sinωτ
cosωτ

)
=

(
0

1 + ω2

)

=⇒
(
sinωτ
cosωτ

)
=

1

K2
p + ω

2K2
d

(−Kp ωKd

ωKd Kp

) (
0

1 + ω2

)

=
1

K2
p + ω

2K2
d

(
ωKd

Kp

)
(1 + ω2) =

(
ωKd

Kp

)
(1 + ω2)−1 ,

using the relation established by the identity sin2 ωτ + cos2 ωτ = 1,

K2
p + ω

2K2
d = (1 + ω2)2 .

We are interested in the roots of the cosine equation,

Kp = (1 + ω2) cosωτ ,

for Kp = 1, its smaller possible value. Numerically, there is a positive root
ω that approaches 0 for τ ≈ 1.4. Exploring the characteristic equation for s
numerically, it is easy to see that this root corresponds to a Hopf bifurcation
and that all other roots are stable. Thus, there is critical delay τc and near that
delay ωτ � 1. This suggesting expanding the cosine:

Kp ≈ (1 + ω2)
(
1 − 1

2ω
2τ2 + 1

24ω
4τ4 + · · ·

)
= 1 +

(
1 − 1

2τ
2
)
ω2 + 1

24

(
τ4 − 12τ2

)
ω4 + · · · .

Recall for τ = 0 that Kp ≥ 1. Then, for τ >
√

2, there is no solution in the
range 0 < ωτ < 1

2π. In physical units,

τc =
√

2

√
�

6g
=

√
�

3g
.

Filling in the steps we justified by numerical exploration turns out to be
complicated. See Stepan (2009) and the references cited therein.
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c. A disturbance at time t − τ will not become known until time t. According to
the linear calculation, it will grow as

θ(t) = θ(t − τ) eτ
√

6g/� ,

where θ(t−τ) results from a disturbance a time τ in the past. What counts here
is the growth factor, which magnifies any initial disturbance by exp

{
[τ

√
6g/�]

}
before the feedback can kick in. Milton et al. (2016) find that the sensory
delay τ ≈ 0.23 s and that the shortest stick (for experts, who had to remain
seated) was � ≈ 0.32 m. Inserting these numbers gives

θ(t)
θ(t − τ)

≈ e0.23
√

6×9.8/0.32 ≈ 20 .

That is, for the shortest sticks that could be balanced, disturbances are ampli-
fied by a factor of about 20. Milton et al. (2016) take 20◦ as an indicator of
instability, suggesting that the relevant perturbations are roughly 1◦, which
seems plausible. They also emphasize that the observed lower stick limit
is well below what would be expected from the PD argument given in the
previous section, ruling out that kind of control model.

If the mass M of the hand (or arm) plays a role, as arguably it might, we add
Mẍ to the x-equation of motion and find a revised critical stick length of

�c =

( M + m
4M + m

)
3gτ2 ,

which, for M � m, approaches �c =
3
4 gτ2. The factor of four reduction brings

the numbers closer to the experimental results based on PD control (Milton
et al., 2016).

However, we should also note that Milton et al. (2016) consider a model that
in addition assumes a dead zone, which can range from ≈ 0.8◦ for a trained
expert stick balancer to 2–3◦ for a novice. In either case, we do not sense
small angular deviations below some threshold. Including a dead zone will
increase the minimum stick length. It is safest to conclude that the simple
model presented in this problem is a start and captures at least some of the
important physics, but “real stick balancing” likely requires a more detailed
model.

3.16 Control of NMP systems, 1. Non-minimum phase systems restrict the possible
feedback bandwidths. Consider an RHP zero and then an RHP pole (both real).
Apply the Bode gain-phase relation to the minimum-phase part of the system.
Decompose the loop transfer function L(s) = G(s) K(s) = Gmp(s) Gap(s) K(s),
where Gmp is minimum phase, Gap is all pass, and K(s) is the controller. Let n be
the slope of the gain curve at the crossover frequency ω∗, defined by |L(iω∗)| = 1.

a. Simple zero. For Gap =
z−s
z+s , show that we must choose ω∗ < z tan ϕ

2 , where z
is the position of the zero and where the phase lag ϕ ≡ π − ϕm + nπ

2 , with ϕm

being the desired phase margin. For ϕm = 90◦ = π/2, the bandwidth ω∗ < z.
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b. Simple pole. For Gap =
s+p
s−p , show that the minimum bandwidth to stabilize is

ω∗ > p/ tan ϕ
2 . For ϕm = 90◦, the bandwidth ω∗ > p. Intuitively, to stabilize

an unstable system, the feedback must correct a perturbation faster than it
grows.

Solution.

a. Simple zero. The loop transfer function is L(s) = Gmp(s) Gap(s) K(s), and
L(iω∗) = −1 at instability. Since we are considering fundamental limits, we
assume that the controller has zero phase shift at ω∗. Thus, we can write for
the phases

nπ
2 − ϕ − ϕm = −π ,

where nπ
2 represents the contribution of Gmp at the crossover (with n typi-

cally negative), −ϕ represents the contribution of Gap, −ϕm the desired phase
margin, and −π the instability condition. Thus,

ϕ = π + nπ
2 − ϕm .

The next step is to find the frequency delay ϕ due to the all-phase component
Gap.

Gap(iω) =
z − iω
z + iω

= −
(
z2 − ω2

)
− 2 izω

z2 + ω2
,

so that

tanϕ = +
2zω

z2 − ω2
→ 2ω

1 − ω2
,

where in the last step we scale ω → ω/z and we switch the sign because the
problem implies that we have defined the phase delay ϕ > 0. Then

ω2 + 2

(
1

tanϕ

)
ω − 1 = 0 ,

whose solution is

ω∗ = − 1
tanϕ

±
√(

1
tanϕ

)2

+ 1 = − 1
tanϕ

+
1

sinϕ
=
− cosϕ + 1

sinϕ
= tan

ϕ

2
,

where we take the positive root because ϕ ≥ 0 and ω∗ ≥ 0. Unscaling and
remembering that ϕ is the limiting frequency gives

ω∗ < z tan ϕ
2 .

b. Simple pole. The story is similar.

G =
s + p
s − p

→ s + 1
s − 1

→ iω + 1
iω − 1

= −1 − ω2 + 2 iω
ω2 + 1

,
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where we scale s → s/p. The phase is then

tanϕ = − 2ω
1 − ω2

=
2ω

ω2 − 1
,

which implies

ω2 − 2

(
1

tanϕ

)
ω − 1 = 0 ,

with solution

ω∗ =
1

tanϕ
±

√(
1

tanϕ

)2

+ 1 =
1

tanϕ
+

1
sinϕ

=
cosϕ + 1

sinϕ
=

1

tan ϕ
2

,

which implies

ω∗ > p
(

1
tan ϕ

2

)
,

where we unscale ω and where the inequality comes because the right-hand
side is decreasing with increasing frequency.

3.17 Control of NMP systems, 2. If pole and zero are both unstable, you are caught
between a rock and a hard place: the pole imposes minimum bandwidth require-
ments while the zero imposes maximum requirements. The sensitivity function
S ≡ 1

1+L then cannot be small at all frequencies. For L(s) = K
( z−s

s−p

)
and p, z > 0,

show that

a. the system is stable if p
z < K < 1 or 1 < K < p

z ;

b. the largest stability margin is sm =
|p−z|
p+z , for K = 2p

p+z (Hint: Look at the
Nyquist plot of the loop transfer function as a function of K.);

c. the maximum magnitude of S equals or exceeds |S | = p+z
|p−z| .

Thus, poles near zeros make control difficult. Recall that S gives the sensitivity
to disturbances, with |S | = 1 being open loop. If |S (iω)| > 1, then disturbances
at that frequency are amplified. An RHP zero and pole guarantees such a fre-
quency. And if they are close, you will do much worse (Åström and Murray,
2008).

Solution.

a. Stability conditions. The instability threshold is at L(s) = −1, which gives the
equation

K

(
z − s
s − p

)
= −1 =⇒ s =

Kz − p
K − 1

.

The root is real and stable (s < 0) for 1 < K < p/z or p/z < K < 1.
b. Largest stability margin. Let’s first consider z < p. Then, a quick plot of

the Nyquist diagram (or a proof. . . .) shows that the Nyquist plot is a circle
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whose center lies on the real axis of the s-domain. See below. The zero- and
infinite-frequency loop gains are

L(0) = −Kz
p

L(∞) = −K .

The stability margins are just the closest distance between the critical point
(−1) and the transfer function curve, in the s-plane. This distance is then the
minimum of (−K,−1) and (−1,−Kz/p) for z < p and similarly for the other
case. The largest stability margin will occur when the left and right margins
are equal (the bottom case in the plots at left). Thus,

−1 + K = −K
z
p
+ 1 , =⇒ K =

2p
p + z

.

The margin itself is given by sm = −1 + K = p−z
p+z . Doing the z > p case gives

sm = − p−z
p+z , giving the absolute value.

c. Sensitivity function. S = 1
1+L is maximized by minimizing the denominator.

But the stability margin is the point where L is closest to −1, meaning that
max S occurs at the frequency that gives sm, which means here that

max S =
1
sm
=

p + z
|p − z| .

3.18 Flexible string transfer function. A string supporting transverse waves ψ(x, t)
of unit velocity is driven at one end, ψ(0, t) = u(t) and free at x = 1.
Show that G(s) = ψ(x,s)

u(s) =
cosh s(1−x)

cosh s for an observation point 0 ≤ x ≤ 1.
Plot the magnitude of frequency response for x = {0, 1

2 ,
1
4 , 1}, and discuss its

structure.

Solution. The one-dimensional wave equation for transverse displacements of a
string is

∂xxψ = ∂ttψ , ψ(0, t) = u(t) , ∂xψ(1, t) = 0 .
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Because we are interested in steady-state response, we do not need to worry
about the initial condition. Let us first Laplace transform all the equations in
time:

∂xxψ = s2ψ , ψ(0, s) = u(s) , ∂xψ(1, s) = 0 .

Solving for ψ(x, s) gives

ψ(x, s) = a(s) esx +b(s) e−sx .

The boundary condition at x = 0 implies

ψ(0, s) = a(s) + b(s) = u(s) .

The boundary condition at x = 1 implies

∂xψ(1, s) = s a(s) es −s b(s) e−s = 0 , =⇒ b(s) = a(s) e2s

=⇒ a(s) =
u(s)

1 + e2s
.

Then

G(s) ≡ ψ(x, s)
u(s)

=
e−s

e−s + es
esx +

es

e−s + es
e−sx

=
e−s(1−x) + es(1−x)

e−s + es

=
cosh s(1 − x)

cosh s
.

The complex frequency response is

G(iω) =
cosω(1 − x)

cosω
.

Note that in physical units ω→ ωL/c, where L is the domain size and c the wave
propagation speed.

Now we consider this response for several observation points x. A first point
to note, in general, is that there is no x dependence in the denominator, only
the numerator. This means that the poles, which satisfy cosω = 0, or ω = jπ/2
( j = 1, 3, 5, . . .), are the same for all cases. But the position of zeros will depend
on the observation point x.

• x = 0. Then G(iω) = 1: the observation point is locked to the excitation and
follows it exactly, at all frequencies.

• x = 1. Then G(iω) = 1/ cosω. There are no zeros. The derivative dωG =
sinω/ cos2 ω vanishes at ω = nπ, with n an integer. At those values G(inπ) = 1.

• x = 1
2 . Then G(iω) = (cosω/2)/ cosω and dωG ∼ (3 sin π

2 ω+sin 3π
2 ω), implying

that the numerator vanishes at ω = jπ, with j = 1, 2, . . .. Unlike the x = 1,
though, there is a zero only when ω = π, 3π, 5π, . . .. At the even values of n,
the denominator also vanishes. L’Hôpital’s Rule then implies G = 1 at those
values.
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• x = 1
4 . Then G(iω) = (cos 3ω/4)/ cosω and dωG ∼ (7 sin π

4 ω + sin 7π
4 ω). When-

everω = 0, 4π, 8π, . . ., the derivative equation vanishes, leading to a minimum
with G = 1. On the other hand, the numerator vanishes when ω/π = 2

3 , 2,
8
3 ,

etc.

Below are magnitude response plots illustrating the above results, plotted
using linear frequency to emphasize the periodic nature of the poles at ω = jπ

2 ,
for j an odd integer.

ω / π

Finally, we note that if x is a rational fraction, then so is 1 − x. If 1 − x =
k/�, with k and � both integers, then there is a zero at ω/π = �/(2k). Again,
the actual response can be rather complex, for x not close to a “nice” fraction.
Physically, the zeros result from interference between direct and reflected waves.
Because they require a delicate cancellation, they are extremely sensitive to the
observation point x (and frequency ω).

3.19 Zero cancellation. To see why cancelling a zero is dangerous, consider G(s) =
s+z

(s+p1)(s+p2) . Find a controller K(s) such that T (s) = KG
1+KG =

1
(s+p1)(s+p2) is the

closed loop transfer function. What goes wrong?

Solution.

K(s) = G−1

(
1

T−1 − 1

)
=

(s + p1)(s + p2)
s + z

1
(s + p1)(s + p2) − 1

.
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If you have an RHP zero, you would be adding an unstable pole. If the cancel-
lation is not perfect – and it never is – then you will have unstable dynamics. You
may also have unbounded internal signals. See the discussion in Section 3.5.3.

3.20 Synthesizing a PID controller. Example 3.5 used pole placement to synthesize
a controller K(s) = 18+26s

9+s for the undamped oscillator G(s) = 1
s2+1 . Repeat the

controller synthesis using a PID form, K(s) = Ki+Kp s+Kd s2

s .

a. Find Kp, Ki, and Kd.
b. Plot the input disturbance response and controller input for the two con-

trollers.

Solution.

a. The three coefficients are Kp = 26, Ki = 27, Kd = 9.
b. Controller synthesis. Below, we plot the response y(t) to a delta-function input

disturbance and the corresponding controller signal for the original PD con-
troller (dotted lines) and the PID controller synthesized here (solid lines). We
see that the response is faster but requires more control effort.

3.21 Rejecting an output disturbance. For G = 1
1+s and d(t) a sinusoid of frequency ω:

a. Design a controller K(s) to reject d(t). Try choosing the controller to make
the output y(s) = Nd(s)

(s+ω)2 , where d(s) = Nd(s)
Dd(s) . Why is this a “nice” form for y(s)?

b. Calculate the time response of the output, y(t), to a sinusoidal input, d(t), of
the form described above. Plot y(t), d(t), and u(t), as shown at left for ω = 1.

c. Investigate the output when d(t) = sinωdt has the “wrong” frequency. For
ωd = ω(1 + ε), show that y(t) converges to ε cosωt +O(ε2).

Solution.

a. For an output disturbance,

y =
d

1 + KG
.
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From the discussion in the book, we choose a controller proportional to the
denominator of d(s). We include a factor of G−1 to “cancel” the dynamics,
too. This leads to

K(s) = K0(s)
G−1(s)
s2 + ω2

=
K0(s)(1 + s)

s2 + ω2
.

The output-disturbance sensitivity function S is

S (s) =
1

1 + KG
=

1

1 + K0(s)
s2+ω2

=
s2 + ω2

s2 + ω2 + K0(s)
.

The Laplace transform of a sinusoidal disturbance d(t) of unknown ampli-
tude and phase is

d(s) =
Nd(s)
Dd(s)

=
sd(0) + ḋ(0)

s2 + ω2
.

The closed-loop response to the disturbance is then

y(s) = S (s)d(s) =
sd(0) + ḋ(0)

s2 + ω2 + K0(s)
=

sd(0) + ḋ(0)
(s + ω)2

,

where the last form arises if we choose K0(s) = 2ωs. Notice that

y(t → ∞) = lim
s→0

s[sd(0) + ḋ(0)]
(s + ω)2

= 0

and

y(t → 0) = lim
s→∞

s[sd(0) + ḋ(0)]
(s + ω)2

= d0 .

The complete controller is then

K =
(1 + s)(2ωs)

s2 + ω2
,

which is biproper (K → 2ω as s → ∞).
b. The expected time response for d(t) = sinωt is y(t) = ωt e−ωt, which is

quite satisfactory. Solving for the control u(s) = −K(s)y(s) analytically (but
numerically would be ok, too), we find

u(t) = ω[1 − (ω − 1)t] e−ωt −ω cosωt − sinωt ,

which, after a transient, oscillates in order to cancel the disturbance, as
plotted in the text.

c. It is straightforward, using symbolic manipulation, to find the solution when
the controller is designed for a disturbance sinωt but the actual disturbance
has a different frequency, sinωdt. Ignoring the transient terms, we find a
steady-state periodic response

yss(t) =

⎛⎜⎜⎜⎜⎝ ω2 − ω2
d

(ω2 + ω2
d)2

⎞⎟⎟⎟⎟⎠ [(
ω2 − ω2

d

)
sin (ωdt) − 2ωωd cos (ωdt)

]
.
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For a disturbance of frequency ωd = ω(1 + ε), this reduces to

yss(t) = ε cosωt + O(ε2) .

This O(ε) sensitivity is typical of naively designed feedback (or feedforward)
compensation. In Chapter 9, we will see how to design controllers that
increase the response order to O(εn), making it more robust to any mismatch
between the designed and actual frequencies. (See, e.g., Figure Figure 9.2.)
Robustness will require more control effort – bigger u(t). Nothing comes for
free!

3.22 Autotuning a PI controller.

a. Argue that relay feedback, Eq. (3.80), leads to output oscillations of period
Tc, with critical gain Kc = 4ur/(πa). Here, ur is the amplitude of the relay
feedback and a the amplitude of the output oscillations. Hints: At instability,
the loop gain L(iωc) = −1. Why does only the first harmonic of the square-
wave matter?

b. Consider a second-order system with delay, G(s) = e−s

(10s+1)2 . Simulate the out-
put responses y(t) for both proportional control near the instability threshold
and relay feedback. Show that both lead to Kc ≈ 20 and Tc ≈ 14.

c. Implement the PI Ziegler-Nichols rule and evaluate the closed-loop response
for step command and for step input disturbance. Find PI parameters that
are better than ZN. Then explore the full PIDF architecture. Reproduce the
step commands at left and their associated u(t). Plot the response to input
step disturbances, too.

Solution.

a. In steady-state oscillation, the input u(t) is a square wave of amplitude ur and
frequency ωc, whose Fourier series is

u(t) = ur

(
4
π

) ∞∑
n=1,3,...

sin nωct
n

.

The response is essentially just a sine wave of frequencyωc, because the ampli-
tudes of higher harmonics are smaller at input (going as 1

3 ,
1
5 , . . .) and smaller

again at output (because the transfer function of physical systems becomes
small at high frequencies). We can thus think of our relay feedback as being
equivalent to a sine wave of frequency ωc and amplitude 4

πur. This kind of
approximation is sometimes called describing function analysis.

The second point is to argue that since the loop gain L(s) = KG(s) equals −1
at instability, the frequency ωc is the same as in proportional feedback. They
are both ways of getting an instability with L(iω) = −1.



Problems 55

The last point is to realize that since the input amplitude is 4
πur, we must have

4
πur = Kca in order to have |L(iω)| = 1. Thus,

Kc =
4ur

πa
.

b. For the “critical-gain” method using pure proportional feedback, I find Kc ≈
20.67 and Tc ≈ 14.2. The method is to compute solutions for different gains
and to look for the case where the oscillations neither grow nor decay. For
relay feedback, I find Kc ≈ 19.2 and Tc ≈ 14.9. Remember the factor of
4/π to convert the amplitude of the relay output to the amplitude of the first
harmonic.

You can also easily find the threshold for proportional feedback by solving
the threshold condition L(iω) = −1. Here, this implies

K e− iω

1 − 100ω2 + 20 iω
= −1 ,

or

K e− iω = 100ω2 − 1 − 20 iω .

Isolating real and imaginary parts then gives two equations,

K cosω = 100ω2 − 1 , K sinω = 20ω .

Solving these transcendental equations simultaneously (using a nonlinear
rootfinder routine) gives Kc ≈ 20.671 and Tc ≈ 14.17, consistent with the
values found by direct numerical investigation of the solutions for different
gains.

Arguably, though, finding the analytic threshold is not in the spirit of this
problem. The point is that you have an unknown system and want to estimate
Kc and Tc. We are comparing two different feedback algorithms (propor-
tional control and relay control) that both give estimates of the quantity. The
proportional feedback algorithm is accurate but slow, whereas relay feedback
is quick but approximate. Usually, approximate values are fine. (The estimate
of Kc was off by 7% in this case.)

c. Using Kc = 20 and Tc = 15, the Ziegler-Nichols parameters are Kp = 8 and
Ti = 11.2 (equivalently, Ki = 0.71).

Playing around, I found Kp = 1.86 and Ki = 0.08, much lower gains! Notice
the two time scales in the relaxation of the disturbance to equilibrium. One is
from the proportional response, the other from the integral. We would want
to increase the integral term to make disturbances recover more quickly, but
we cannot because the controller would have too much lag, destabilizing the
proportional part of the response. To do better, we need a controller with
more parameters and a more complex frequency response.



56 Frequency-Domain Control

For PIDF, I found Kp = 4, Ki = 0.2, Kd = 20, and tf = 1.2, where the form is

K(s) = Kp +
Ki

s
+

Kds
tfs + 1

.

We see how adding more parameters improves the results markedly, albeit at
the cost of increased control input magnitude. Note that the filtering term
is needed to make the input requirements more reasonable. If the command
is a step function, as here, then differentiating the response creates a delta
function spike in the required input. Filtering softens this. See the collected
plots for all the cases below.

3.23 Analysis of a two-sensor system. For the split-PI example of Section 3.8.1:

a. Derive the closed-loop transfer functions of Eqs. (3.81), (3.82), and (3.83).
b. Reproduce the step responses for all three cases.
c. For Kp = 5, why is there no instability in Case 1 for any Ki? For Cases 2 and 3,

find the instability threshold K∗
i and oscillation frequency ω∗ at onset, again

fixing Kp = 5. Do this part analytically or numerically.

Solution.

a. Transfer functions. The first two follow the simpler rule,

Transfer function =
Direct

1 + Loop
,

discussed previously. We need to derive the third relation, where

u = Kpir − Kp y1 − Ki

s
y2 ,

with Kpi = Kp + Ki/s. We write y1 = G1u and y2 = G2y1, so that

y2 = G1G2Kpir − KpG1G2y1 − Ki

s
G1G2y2 +G1G2d

=⇒ =

⎛⎜⎜⎜⎜⎜⎝ KpiG1G2

KpG1 +
Ki
s G1G2

⎞⎟⎟⎟⎟⎟⎠ r +

⎛⎜⎜⎜⎜⎜⎝ G1G2

KpG1 +
Ki
s G1G2

⎞⎟⎟⎟⎟⎟⎠ d ,

where we substitute G2y1 = y2 to put the first line entirely in terms of y2.
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b. Step responses. With proper software, you just need to input the transfer
functions and ask for the step response directly.

c. Instability thresholds. For Case 1, the system and controller are both first
order, so that the closed-loop system is second order. Since a second-order
system achieves a phase lag of −180◦ only at infinite frequency, it can never
be unstable.
Cases 2 and 3 are straightforward to solve in a symbolic-manipulation pro-
gram. Requiring the real and imaginary parts of the denominator to vanish,
we find
i. Case 2: K∗

i = 18 and ω∗ = 3
2 = 1.5.

ii. Case 3: K∗
i = 63 and ω∗ =

√
7
2 ≈ 1.87.

We can apply significantly higher gains in Case 3 before instability sets in.

3.24 Fixing the shower. Slightly altering the “shower” transfer function Gsh given
in Eq. (3.101) turns an impossible control problem into a straightforward one.
Consider G′

sh =
( 1/(1+s) 1/(2+s)

1/(2+s) 1/(1+s)

)
, which differs from the expression in Eq. (3.101)

in that the DC cross gains equal 1
2 rather than 1. The control goal is a good step

response (e.g., to step rapidly the outputs from 0 to y1 = 1 and y2 =
1
3 , using

inputs (u1, u2) ∈ (−10, 10)).

a. Make a singular value plot. Show that the condition number still diverges
at s → ∞ but not at s → 0. Why is a high-frequency divergence allow-
able but not a low-frequency one? Can your computer program compute
a step response in the time domain? Find a fix that leads asymptotically to
the correct DC outputs.

b. Try to improve the controller by canceling a pole or zero in the inverse.
Remember “tweaks” such as lag and lead.

At right are step responses for the modified-shower problem. Reference signals
r1 and r2 are given steps of (1, 1

3 ). Asymptotically, the outputs y1 → r1 and
y2 → r2.

Solution.

a. Singular value plot. The intention was to generate a graph, as shown at right.
It turns out that the singular values have a nice analytical form (as given by
Mathematica):

σ(ω) =

√
9 + 4ω2

4 + 5ω2 + ω4
, σ(ω) =

√
14 + 5ω2 + ω4

From the graph below and from the explicit algebraic expressions, we see
that the condition number γ = σ/σ diverges ∼ ω at high frequencies. A diver-
gence at high frequencies is acceptable, as any feedback system will have finite
closed-loop bandwidth. By contrast, a divergence of the condition number at
low frequencies can be disastrous, as we saw.
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b. Naive try. The inverse to Gsh is

G−1
sh =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(s+1)(s+2)2

2s+3 − (s+1)2(s+2)
2s+3

− (s+1)2(s+2)
2s+3

(s+1)(s+2)2

2s+3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,
whose elements ∼ ω2 at high frequencies. To be realizable, a controller must
not diverge. Thus, our controller must have a denominator of order at least 2
to be realizable. In other words,

K(s) =
Ki

s

(
1 0
0 1

)
G′

sh
−1(s)

does not work because Ki/s reduces the order by only one. Thus, we need to
add another power, for example Ki/s2 or we might try to cancel the common
factor of 2 + s. For example, we can try Ki/[s(s + 2)].
Remember that the above statements hold even though the whole loop
K(s)G(s) would be ok (since G cancels its inverse). But the controller needs
to generate the signal before “cancellation” can occur.

c. Best effort. My best result was using a lag compensator to tweak. The transfer
function

K(s) =

(
1 + s/2

1 + s/20

) (
3

s(s + 2)

) (
1 0
0 1

)
G−1

sh

gave the step response in the problem, above.
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Problems

4.1 Controllability of nearly identical systems. Consider two first-order systems with
relaxation rates λ1 = 1 and λ2 = 2 that are driven by identical inputs (Eq. 4.7).
Find an input u(t) that takes the system from an initial state x0 =

( 0
0
)

to a final
state xτ =

( 1
1
)
, for τ = 1. Plot your solution. Hint: Try a step function with two

parameters.

Solution.
We need to find a solution x1(1) = x2(1) for(

ẋ1

ẋ2

)
=

(−λ1 0
0 −λ2

) (
x1

x2

)
+

(
1
1

)
u(t) =⇒ ẋ1 = −λ1x1 + u

ẋ2 = −λ2x2 + u
,

with initial state (t = 0) and final states (τ = 1) given by

x0 =

(
x1(0)
x2(0)

)
=

(
0
0

)
, xτ =

(
x1(1)
x2(1)

)
=

(
1
1

)
.

There are an infinite number of ways to do this. A basic requirement is that
there be two free parameters, since we are trying to fix two conditions (x1 = x2

at τ = 1). One simple route is to use piecewise constant u(t) functions. Let us try
the simple form

u(t) =

⎧⎪⎪⎨⎪⎪⎩−u0 0 < t < τ0

+u0 τ0 < t < 1

We can explicitly integrate the x1 and x2 equations (they are the same, substitut-
ing 2 for 1, etc.) Denoting x1,2 by x(t) and λ1,2 by λ, we get

x(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−u0
λ

(
1 − e−λt

)
0 < t < τ0

u0
λ

(
1 − e−λτ0

)
e−λ(t−τ0) −(1 − e−λ(t−τ0)) τ0 < t < 1 .

After a certain amount of playing around, I found the solution illustrated at
right, where u0 = 3.8 and τ0 = 0.405 works for λ1 = 1 and λ2 = 2. Again,
we emphasize that we use the same u(t) for both x1(t) and x2(t). It is possible
to find explicit algebraic solutions for u0 and τ0 in terms of λ1,2, etc., but the
main point here is to understand intuitively how a solution works and why it

59
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is possible. Similarly, although I found my solution by an iteration of varying
coefficients and looking at the results, you could easily make such a procedure
more systematic by formulating it as a nonlinear system of equations and using
a general numerical solver to find its roots.

Finally, remember that you may not be able to generate the required values of
u(t). Any real input has saturation limits (cannot go outside a given range). This
is a kind of nonlinearity and puts us outside the framework of linear equations.

4.2 Prescribing a path in state space. A system may be controllable, but that does not
mean we can make it follow a desired trajectory x(t) in state space.

a. Show that you cannot prescribe a path for the system defined in Example 4.4.
b. Consider the undamped oscillator with torque control, ẍ + x = u. Following

Example 4.1, find and plot u(t) that leads to the desired trajectory xd(t) =
2(t/τ)2−[1−2(t/τ)2]θ[2(t/τ)−1], which is sketched at left. Verify by integrating
the differential equation numerically that your u(t) produces the desired xd(t).

c. Comment on the required control effort for τ→ 0, with fixed xτ and ω0.
d. Can you give any intuition about why the second case works but not the first?

Solution.

a. The dynamical system from Example 4.4 is(
ẋ1

ẋ2

)
=

(−λ1 0
0 −λ2

) (
x1

x2

)
+

(
1
1

)
u(t) =⇒ ẋ1 = −λ1x1 + u

ẋ2 = −λ2x2 + u
,

If did not care about x2(t), we could specify a desired x1(t) and invert to find
u(t) = ẋ1 + λ1x1. We could also do the same for a desired x2(t) if we did not
care about x1(t). Clearly, we cannot specify the two functions independently!
Again, keep in mind that the system is controllable and that Problem 4.1
showed that we could specify that the system reach an arbitrary point (x1, x2)T

at an arbitrary time τ. That is much less demanding than asking it
b. In other cases, we can indeed invert the dynamics. Here, the first derivative of

the prescribed path is

ẋd =

⎧⎪⎪⎨⎪⎪⎩
4t
τ2 0 < t < τ

2
4
τ

(
1 − t

τ

)
τ
2 < t < τ .

The second derivative is

ẍd =

⎧⎪⎪⎨⎪⎪⎩
4
τ2 0 < t < τ

2

− 4
τ2

τ
2 < t < τ .

Then, u = ẍd + xd =

u(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
τ2 + 2

(
t
τ

)2
0 < t < τ

2

− 4
τ2 +

[
1 − 2

(
1 − t

τ

)2
]

τ
2 < t < τ ,
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For xτ = τ = 1, we plot

u(t) =

⎧⎪⎪⎨⎪⎪⎩4 + 2t2 0 < t < 1
2

−3 − 2(1 − t)2 1
2 < t < 1 ,

Numerically integrating the second-order equations with the above u(t) as a
forcing term reproduces the solution exactly.

c. The amplitude of control required goes as 1/τ2, which diverges as τ → 0.
Because the range of u is always limited, we cannot ask for trajectories that
vary too rapidly.

d. An intuitive explanation is that in the first case, we have two first-order equa-
tions of the form ẋ = −λx + u(t) that have a single control. The two elements
of the state vector can be specified independently as x1(t) and x2(t), but we
have only one control function, u(t). In the second case, ẍ + x = u, we specify
x1(t) = x(t) but then we have no choice about the other component of the state
vector, x2(t) = ẋ(t) is determined once x1(t) is given. Thus, we really have only
one independent function x(t), which maps to a single function u(t).
There is a general theory, differential flatness, that examines conditions for
when the nonlinear system ẋ = f (x,u) and y = h(x,u) may be “inverted” to
give u as a set of simple derivatives. (Notice that we do not have to solve any
integrals in the harmonic-oscillator case.) For a very brief description, see
Åström and Murray (2008) and for a more mathematical explanation, draw-
ing on the differential-geometry formulation of Section 11.1.5, see Lévine
(2009).

4.3 Nonlocal control. If there are fewer control nodes than state variables – and there
usually are – then moving the system from an initial state x0 to a final state xτ
may require a finite-length trajectory, even when |xτ − x0| = ε, and ε → 0. To
illustrate this nonlocality of control trajectories, see the dynamics at right, which
depict a kind of shear “flow” that is directed down for x1 < 0 and up for x1 > 0.

a. At right, ẋ1 = u, ẋ2 = x1 + u. Write these equations in the form ẋ = Ax + Bu.
Calculate analytically eAt, eAt B, and the Gramian P(τ) ≡ ∫ τ

0
dt eAt B BT eATt.

b. Show, by substitution into the general solution, x(t) = eAt x0 +∫ t

0
dt′ eA(τ−t′) Bu(t′), that the control u(t) = BT eAT(τ−t) P−1(τ)Δx brings the ini-

tial state at t = 0, x0, to the final state at τ of xτ. Here, Δx ≡ xτ − eAτ x0. See
also Problem 7.9.

t

c. Show the above formula gives u(t) = 0.126(t − 5) and moves an initial state( 1
0
) → ( 1−ε

)
, with ε = 0.5 in a time τ = 10. Reproduce the plot at right.

This problem is adapted from Sun and Motter (2013).

Solution.

a. The vector form of the equations is(
ẋ1

ẋ2

)
=

(
0 0
1 0

) (
x1

x2

)
+

(
1
1

)
u(t) .
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Then

A2 =

(
0 0
1 0

) (
0 0
1 0

)
= 0 =⇒ eAt = I + At =

(
1 0
t 1

)
Thus,

eAt B =
(
1 0
t 1

) (
1
1

)
=

(
1

1 + t

)

The outer product eAt B BT eATt is then(
1

1 + t

) (
1 1 + t

)
=

(
1 1 + t

1 + t (1 + t)2

)
Integrating gives the Gramian:

P(τ) =
∫ τ

0
dt eAt B BT eATt =

(
τ τ + 1

2τ
2

τ + 1
2τ

2 τ + τ2 + 1
3τ

3

)
.

b. The solution x(t) is given by

x(t) = eAt x0 +

∫ t

0
dt′ eA(τ−t′) Bu(t′) .

Defining Δx ≡ xτ − eAτ x0, we have

Δx =
∫ τ

0
dt′ eA(τ−t′) Bu(t′) .

Then, with u(t) = BT eAT(τ−t) P−1(τ)Δx, we have

x(τ) = eAτ x0 +

∫ τ

0
dt′ eA(τ−t′) B BT eAT(τ−t′) P−1(τ)Δx︸��������������������︷︷��������������������︸

u(t′)

= eAτ x0 +

∫ τ

0
dt′ eA(τ−t′) B BT eAT(τ−t′)

(
P−1(τ)Δx

)
= eAτ x0 + P(τ)P−1(τ)Δx

= eAτ x0 + xτ − eAτ x0

= xτ .

Later, we will see that this choice of u(t) minimizes the control effort,

E ≡
∫ τ

0
dt u2(t) .

c. Evaluate numerically. Note that since ẋ1 = u, any trajectory with x1(τ) = x1(0)
satisfies

∫ τ

0
dt u(t) = 0.

4.4 Pole-zero cancellation. In Example 4.9, we explored how the different input-
output connections between two transfer functions can lead to different issues
(loss of controllability vs. loss of observability). Verify the following:

a. Check the state-space forms for G1 and G2.
b. Show that the 12 and 21 series connections lead to different 3d systems.
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c. Show that if you start from either the 12 or the 21 system, you derive the same
transfer function (= G1G2 or G2G1).

d. Write down the observability and controllability matrices for the 12 and 21
systems, and verify that 12 is uncontrollable and 21 unobservable.

Solution.

You should use a symbolic-manipulation program to do this problem!

a. Use the controller-canonical form, Eq. (2.59).
b. Straightforward.
c. Using G(s) = C(sI − A)−1B gives

G(s) =
1

(p − s)2
,

in both cases.
d. Controllability and Observability.

For the 12 connection:

Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 2p
1 2p 3p2

0 1 2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Wo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1
−α 1 α

−p2 − α2 2p α2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Det Wc = 0 and det Wo = (p − α)2.
For the 21 connection:

Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 α α2

0 0 1
0 1 2p + α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Wo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 −α 1
1 −p2 2p − α

2p −p2(2p − α) −p2 + 2p(2p − α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Det Wc = −1 and det Wo = 0.

4.5 Zeros with more actuators and sensors. In Section 4.1.3, we saw that if the state
vector is n dimensional and there are either n independent inputs or outputs, the
transfer function of the enlarged system cannot have a zero. Here, we verify this
in a simple example. Consider the transfer function G with a single RHP zero,

G(s) =
s − 2

(s − 1)2
⇐⇒ A =

(
0 1
−1 2

)
B =

(
0
1

)
C =

(
−2 1

)
.

Now consider a second input or output, by taking B′ =
( b 0

0 1
)

or C′ =
( −2 1

0 c

)
.

a. Keeping the original A and C, consider the new inputs B′ and show that the
1 × 2 transfer function matrix has no zeros. Recall that in a MIMO transfer
matrix, a zero is a value of s for which the transfer function matrix loses rank.

b. Repeat the calculation for the case where you keep A and B and use C′.
c. Why do the above conclusions become invalid if b or c = 0?
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Solution.

a. Adding an input changes the input coupling matrix and leads to a 2 × 1
transfer function matrix:

B′ =
(
b 0
0 1

)
, =⇒ G(s) =

(
b 3−2s

(s−1)2
s−2

(s−1)2

)
,

We see that, for b � 0, no value of s makes G lose rank (go from 1 to 0). This
contrasts with the situation with one input, where the zero at s = 2 makes the
single transfer function vanish (also rank 1 to 0).

b. Adding an output changes the output coupling matrix and leads to a 1 × 2
transfer function matrix:

C ′ =
(−2 1

0 c

)
, =⇒ G(s) =

⎛⎜⎜⎜⎜⎜⎜⎝
s−2

(s−1)2

c s
(s−1)2

⎞⎟⎟⎟⎟⎟⎟⎠ ,
We see that, for c � 0, no value of s makes G lose rank (go from 1 to 0). This
contrasts with the situation with one input, where there is a zero at s = 2
makes the single transfer function vanish (also rank 1 to 0).

c. When b is zero, one component of the transfer-function matrix is always zero,
which causes a MIMO zero when the other component vanishes at s = 2. The
argument is the same for c = 0.

4.6 Feedforward gain for constant output. For the SISO system ẋ = Ax + Bu, y = Cx,
show that choosing u = −Kx + krr leads to y = r if kr = −[C(A − BK)−1B]−1.

Solution.

ẋ = Ax + Bu , u = −Kx + krr , y = Cx

Substituting and looking at the steady-state solution, we have

0 = (A − BK)x + krr =⇒ x = −(A − BK)−1krr =⇒ y = −C(A − BK)−1krr

Then, to make y = r we set kr to

kr =
−1

C(A − BK)−1B
.

4.7 Noise-tracking tradeoffs for observers. If observer gains are too low, the observer
states will not track the state vector well. If the gains are too high, too much
measurement noise will be injected into the system. Here, we show this tradeoff
explicitly.

a. Add measurement noise ξ(t) to the observer equation for the dynamical
system:

ẋ = Ax + Bu, y = Cx
˙̂x = Ax̂ + Bu + L[y(t) + ξ(t) − ŷ(t)] .

Take the Laplace transform of the error dynamics (e = x − x̂), keeping the
initial value term to give e(s) as the sum of two terms, one proportional to
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e(t = 0) ≡ e0 and one proportional to ξ(s). Argue that large values of L make
the initial-value term decay quickly but will simultaneously keep the noise
term large.

b. Specialize to the first-order system ẋ = −x and y = x + ξ ≡ x + ξ0 sin t. The
sinusoidal “noise” is a simple stand-in for stochastic noise, which would be
the sum of sines of all frequencies and with random phases. Solve for the
Laplace transform of the observer error, e(s), in terms of the initial error e0

and ξ0.

The “best” value of observer gain � balances the convergence rate of estimator
errors against noise injection. One missing ingredient is the notion that distur-
bances continually inject new state-estimation errors, which the observer must
try to remove. Here, an initial error e0 will decay away for all values of � so
that an observer would not be necessary for long-time estimation. Continuously
injecting new disturbances into the dynamics highlights the role of � in balancing
the rate that the observer removes disturbances against noise injection. See the
Kalman filter in Chapter 8.

Solution.

a. Transfer function. The error dynamics for e = x − x̂ are given by

ė = (A − LC)e − Lξ(t) .

Now, we Laplace transform this equation, keeping the initial-value term:

e(s) = (sI − A + LC)−1e(t = 0) − (sI − A + LC)−1Lξ(s) .

Thus, if we choose L so that the eigenvalues of A − LC have large decay con-
stants, we will have large values for the matrix L, which will enhance the
right-hand term. (In one dimension, the factors of L would cancel out, but in
higher dimensions, the different terms are likely to generate a larger factor in
front of ξ(s).)

b. First-order example. In the example, A = −1, C = 1, and the observer
equation is

˙̂x = −x̂ + �(y − ŷ) = −x̂ + �(x + ξ0 sin t − x̂) .

The error dynamics for e(t) = x(t) − x̂(t) is then

ė = −e − �(e + ξ0 sin t)

se(s) − e0 = −(1 + �)e(s) − �ξ0

1 + s2

e(s) = − e0

s + 1 + �
− �ξ0

(1 + s2)(s + 1 + �)
.

Again, we see qualitatively that for small �, initial errors decay slowly, but larger
� increase the effects of measurement noise, making e → −ξ0.
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4.8 Observer-based feedback for the harmonic oscillator. In Example 4.13, we set up
a structure for an observer-based control of a harmonic oscillator.

a. Write down the coupled system plus observer. Include a feedforward gain to
make a step command go to the right value. Design the controller to have
poles (−2,−2) and the observer to have poles (−10,−10). Give numerical
values for the controller (K), observer (L), and feedforward (kr) gains.

b. Reproduce the numerical responses at left for an impulse disturbance and step
command. Use discordant initial conditions: x̂(0) =

( 1
0
)
, but x(0) =

( 0
0
)

Solution.

a. We reproduce the state-observer equations from Eq. (4.68) for the combined
state vector

( x
x̂
)
:

d
dt

(
x
x̂

)
=

(
A −BK

LC (A − BK − LC)

) (
x
x̂

)
+

(
Bkr

Bkr

)
r +

(
B
0

)
d , y =

(
C 0

) (x
x̂

)
.

In the present case, this gives the four-dimensional dynamics,

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x̂1

x̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−1 0 −k1 −k2

�1 0 −�1 1
�2 0 (−1 − k1 − �2) −k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x̂1

x̂2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
kr 1
0 0
kr 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
r
d

)
. (4.88)

with

C′ =
(
1 0 0 0

)
. (4.89)

For controller poles at (−2,−2), observer poles at (−10,−10), we find, using
the built-in Mathematica routines for pole placement,

K =
(
3 4

)
, L =

(
20
99

)
, kr = 100 .

b. The plots are for u =
( 0
δ(t)

)
and u =

( θ(t)
0

)
.

4.9 Stabilizing an inverted pendulum forced by a torque.

a. For small displacements about the vertical, show that the scaled equations of
motion have A =

( 0 1
1 0

)
and B =

( 0
1

)
.

b. Check that {A, B} is controllable.
c. Assuming a known state vector, design a feedback law u = −Kx to stabilize

the vertical fixed point with eigenvalues (−1,−1). Find the gains K1 and K2.
d. If you measure only the position, C =

(
1 0

)
. Show that {A,C} is observable.

e. Design an observer with dynamics (−2,−2).
f. Design a combined observer-controller that regulates the system about

( 0
0
)
.

This regulator is a four-dimensional system. Find the state-space matrices
{Aoc, Boc, Coc} using an input torque disturbance d(t) as input and the angle
θ(t) as output.
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g. Find the transfer function Kob(s) for output control (y → u).
h. Plot {θ, θ̂} and {θ̇, ˆ̇θ} for an impulse input disturbance [u(t) = δ(t)].

Solution.

a. Equations of motion for perturbations about vertical. In Ch. 2, we showed that
the scaled equations of motion are

θ̈ + sin θ = u(t) ,

Setting θ(t) = π + x1(t) and θ̇ = x2 and expanding sin θ about π, we have

d
dt

(
x1

x2

)
=

(
0 1
1 0

)
︸�︷︷�︸

A

+

(
0
1

)
︸︷︷︸

B

u(t) ,

b. Controllability.

Wc =
(
B AB

)
=

(
0 1
1 0

)
Since det Wc � 0, the matrix is full rank and thus {A, B} is controllable.

c. Full-state control. The matrix A − BK is given by(
0 1
1 0

)
−

(
0
1

) (
K1 K2

)
=

(
0 1

1 − K1 −K2

)
,

which has eigenvalues that are the roots of

s2 + K2s + K1 − 1 = 0 .

We want to choose K1 and K2 so that the eigenvalues are (−1,−1). Expanding
the desired characteristic equation of (s + 1)2 = 0, we have

s2 + 2s + 1 = 0 ,

and matching coefficients gives K1 = K2 = 2.
d. Observability.

W0 =

(
C

CA

)
=

(
1 0
0 1

)
,

which has det = 1 and thus is full rank. Hence, {A, C} is observable.
e. Observer. The matrix A − LC is given by(

0 1
1 0

)
−

(
�1

�2

) (
1 0

)
=

( −�1 1
1 − �2 0

)
,

which has eigenvalues that are the roots of

s2 + �1s + �2 − 1 = 0 .

We want observer roots (−2,−2) and thus to match

s2 + 4s + 4 = 0 ,

which gives �1 = 4 and �2 = 5.



68 Time-Domain Control

f. Observer-controller. We have

A =
(
0 1
1 0

)
, B =

(
0
1

)
, C =

(
1 0

)
, L =

(
4
5

)
, K =

(
2 2

)
.

From Eq. (4.68), the combined observer-controller has a 4 × 4 closed-loop
dynamical matrix given by

Aoc =

(
A −BK

LC (A − BK − LC)

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0
1 0 −2 −2
4 0 −4 1
5 0 −6 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Boc =

(
B
0

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , Coc =
(
C 0

)
=

(
1 0 0 0

)
.

g. Controller transfer function. From Eq. (4.69), the transfer function Kob(s) is
given by

Kob(s)(s) =
[
K (sI − A + BK + LC)−1 L

]
=

18(1 + s)
14 + 6s + s2

,

as found using a computer-algebra program. We would use this one in a
“real” controller, as it takes directly the output y and produces the input u to
be supplied to the physical system. (We would convert to the time domain, of
course.)

h. Impulse response. See below for the responses. The system responses are
the solid lines, and their estimates are denoted by dashed lines. (a) records
θ(t) and θ̂(t). (b) plots θ̇(t) and ˆ̇θ(t). We assume that the initial conditions
are identical for system and estimate (as they would be, approximately, if the
estimator had been running a while before the disturbance hits). Notice in
(a) that θ̂ initially lags the true θ. This makes sense: it takes a while for the
estimator to realize “where θ has gone, and then it revises the estimate to
track it. In (b), the initial disagreement is far worse. There is no way for the
estimator to realize, at first, that the velocity has instantaneously changed.
Again, it quickly “figures it out” and the estimate also converges to the true
angular velocity.

Normally, these calculations should be done numerically. This problem
turns out to be simple enough that there are reasonable analytic expressions.
Indeed, using a computer-algebra program, we find, for t > 0,

θ(t) = e−2t(6t + 14) + e−t(9t − 14) θ̂(t) = e−2t(5t + 14) + e−t(9t − 14)

θ̂(t) = e−2t(5t + 14) + e−t(9t − 14) ˆ̇θ(t) = e−2t(14t + 23) + e−t(9t − 23) ,
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and these are what we actually plot below.

4.10 Canceling a sinusoidal disturbance. Following Section 4.3.3, explore a sinu-
soidal disturbance that affects a first-order system. Calculate the displacement
x and the disturbance position xd and their estimates x̂ and x̂d. Remember that
Eq. (4.79) describes a 6 × 6 matrix. Reproduce the plot at right, using A = −1,
B = C = 1, Ad =

( 0 1−1 0
)
, Bd =

( 0
0
)
, Cd =

(
1 0

)
and K = 2, L = 4. Choose Ld so

that the poles of the disturbance observer are at (−4,−4). Initial conditions are
x(0) = −1, xd =

( 1
0
)
. The initial conditions for the estimators x̂ and x̂d are zero.

Solution.
Choosing Ld so that the poles of the disturbance observer are at (−4,−4) leads

to Ld =
( 8

15

)
. We can get this directly from standard pole-placement routines or

matching coefficients, but they are easy to find directly:

Ad − LdCd =

(
0 1
−1 0

)
−

(
�1

�2

) (
1 0

)
=

( −�1 1
−1 − �2 0

)
.

The characteristic equation is

(λ + �1)λ + (1 + �2) = λ2 + �1λ + �2 + 1 = 0 ,

which has roots

λ = −1
2

[
�1 ±

√
�2

1 − 4(�2 + 1)
]
.

For �1 = 8 and �2 = 15, the roots are at (−4,−4), as desired.

Abig =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A BCd −BK −BCd

0 Ad 0 0
LC 0 (A − BK − LC) 0
LdC 0 −LdC Ad

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 −2 −1 0
0 0 1 0 0 0
0 −1 0 0 0 0
4 0 0 −7 0 0
8 0 0 −8 0 1

15 0 0 −15 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The initial condition is x(0) = −1 and xd(0) = 1, with all others zero. In the big
state space, this is

x0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that there are no inputs: the initial condition x(0) is enough to generate
the non-trivial dynamics shown in the graph via x(t) = eAbigt x(0).

If the observer poles are moved too far over, the response can develop
undamped poles that prevent convergence of x̂(t) to x(t).
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Problems

5.1 Analog low-pass filters. Low-pass filters with faster fall-off than a first-order
system can remove high-frequency components of a signal before digitization.
Recall the form G(s) = (1 + 2 ζ s + s2)−1 of the scaled transfer function of an
arbitrary second-order system. Let us explore properties of different choices for
the damping ζ.

a. Butterworth filter. For a given filter order, the Butterworth filter has the
flattest magnitude response. Specifically, the nth-order Butterworth filter is
defined as

|G(iω)| = 1√
1 + ω2n

≈ 1 − 1
2ω

2n + O(ω4n) .

The lack of low-order terms leads to a flat response. Show that, for n = 2, the
Butterworth filter corresponds to ζ = 1

2

√
2 ≈ 0.71.

b. Bessel filter. For a given filter order, the Bessel filter has the closest approx-
imation to a linear phase response, ϕ = −τω, which corresponds to a delay
in the signal by τ. At order n, the best approximation is to have ϕ(ω) =
−τ∗ω + O(ω2n), with τ∗ the approximate delay. Show that the n = 2 Bessel
filter has τ∗ =

√
3 and ζ = 1

2

√
3 ≈ 0.87, which is slightly more damped than

the Butterworth filter.
c. Make Bode plots of the frequency response of the n = 2 Butterworth and

Bessel filters. Compare the response of a naive cascade of first-order elements,
Gnaive(s) = (1 + s)−2, corresponding to ζ = 1. For the Bessel filter, plot also
phase vs. frequency on a linear scale, to see how well it approximates a linear
phase response. Finally, plot the step response of all three filters. Why is Gnaive

not a great choice?

The Bessel filter has a “nicer” time response, the Butterworth a nicer frequency
response. The differences are more striking for higher-order filters. Software
packages can generate these, as well as variants such as elliptic and Chebyshev
filters (Smith, 1999). Some Bessel filters are defined using a frequency scale that
sets τ∗ = 1.

71
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Solution.

a. Butterworth:

|G(iω)| =
∣∣∣∣∣ 1
1 + 2 iζω − ω2

∣∣∣∣∣
=

[
1 − 2ω2 + ω4 + 4ζ2ω2

]−1/2

=
[
1 + (4ζ2 − 2)ω2 + ω4

]−1/2
,

which has the desired form G(s) = 1√
1+ω4

if 4ζ2 − 2 = 0. That is, if ζ = 1
2

√
2.

b. Bessel: We need the Taylor expansion for the arc tangent. Using

tanϕ =
Im G(iω)
Re G(iω)

=
−2ζω
1 − ω2

≡ x ,

we have

ϕ = tan−1(x) ≈ x − 1
3 x3 + O

(
x5

)
=
−2ζω
1 − ω2

− 1
3
−8ζ3ω3

(1 − ω2)3
+ O

(
ω5

)
= −2ζω − 2ζ

(
1 − 4

3
ζ2

)
ω3 + O

(
ω5

)
.

For ζ = 1
2

√
3, the third-order term vanishes, and the phase lag is

ϕ = −√3ω + O
(
ω5

)
.

c. Plots. Left: Bode plots for naive (cascade), Butterworth, and Bessel second-
order filters. The Bessel filter uses the dashed line. Right: corresponding step
responses. Bottom: Bessel phase response vs. linear approximation. Higher-
order Bessel filters would follow the linear phase lag up to higher frequencies.
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Notice how the Butterworth filter has the flattest frequency response and how
the Bessel filter has the closest approximation to a square-wave time response.
The differences are small for 2nd-order filters but become more important at
higher orders. The naive (cascade) filter has little to recommend it beyond sim-
plicity. The bandwidth is lower, the phase not linear, and the step response is
quadratic, rather than linear, at short times. Still, it is commonly used, as it can
be constructed from two independent first-order blocks.

5.2 Dithering details. Why are some choices for random dither ξ better than others?
Define 〈x〉 ≡ ∫ ∞

−∞ dξ p(ξ) Q(x0 + ξ) and σ ≡ √
Var, with Var =

∫ ∞
−∞ dξ p(ξ) [Q(x0 +

ξ) − 〈x〉]2. Here, p(ξ) is the probability density function of the added dither,
and Q(x) is the quantization nonlinearity, defined as rounding x to the nearest
integer.

a. Consider uniform noise, p(ξ) = 1 for (− 1
2 ,+

1
2 ), or . Show that 〈x〉 = x0, so

that there is no bias. Then show that Var = ( δx0)(1 − δx0), where δx0 is the
fractional part of x0. (That is, if x0 = 3.1, then δx0 = 0.1.)

b. For triangular noise, p(ξ) = 1 − |ξ|, for |ξ| < 1 (and 0 for |ξ| > 1), or ,
show that 〈x〉 = x0 and Var = 1

4 . There is again no bias, and σ = 1
2 is

independent of x0.
c. Investigate a Gaussian dither of standard deviation σ0 numerically. Plot both

the bias of 〈x〉 (deviation from the mean) and its variance as a function of x0.
Investigate for σ0 = 0.4, 0.5, and 0.6. Is there an optimal value for σ0?

d. Subtractive dithering. Let x ≡ Q(x0 + ξ) − ξ. Show that 〈x〉 = x0 and Var = 1
12

for this new x. Thus, with uniform noise, the standard deviation is not only
independent of x0, it is

√
3 lower than using triangular noise. Why doesn’t

everyone use subtractive dithering? The catch is the need to subtract the exact
analog noise value added to the analog signal. Usually, this value is hard to
know.

Solution.

This problem involves several simple but “annoying” integrals. We do the first
and then turn to computer algebra programs for the remainder.

a. Uniform dither. Let Q(x) be the rounding (quantization) function and p(ξ) is
a uniform distribution from (− 1

2 ,+
1
2 ). Then the mean value is

〈x〉 =
∫ ∞

−∞
dξ p(ξ) Q(x0 + ξ) =

∫ 1/2

−1/2

dξ Q(x0 + ξ) ,

Let x0 = �x0� + δx0, where �x0� is the floor function (integer part of x0, trun-
cated) and δx0 is the fractional part. Then, by inspection, for 0 < δx0 <

1
2 , we

have

Q(x0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�x0� − 1

2 < ξ <
(

1
2 − δx0

)
�x0� + 1

(
1
2 − δx0

)
< ξ < 1

2 .
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and ∫ 1/2

−1/2

dξ Q(x0 + ξ) =�x0�(1 − δx0) + (�x0� + 1)δx0

=�x0� −����δx0�x0� +����δx0�x0� + δx0 = x0 .

The case 1
2 < δx0 < 1 is similar.

For the variance,

Var =
〈
(x − x0)2

〉
=

∫ ∞

−∞
dξ p(ξ) [Q(x0 + ξ) − x0]2 =

∫ 1/2

−1/2

dξ [Q(x0 + ξ) − x0]2 ,

Using a similar notation as for the mean and also doing the case 0 < δx0 <
1
2 ,

we have

=

∫ 1/2−δx0

−1/2

dξ (�x0� − x0)2 +

∫ 1/2

1/2−δx0

dξ (�x0� + 1 − x0)2

= ( δx0)2 (1 − δx0) + (1 − δx0)2 ( δx0)

= ( δx0) (1 − δx0)

The other case is similar.

b. Triangular dither. This is very similar to the uniform-noise case, but the math
is uglier. See the Mathematica code, which uses the Round function.

c. Numerical simulations of Gaussian dither. See graphs at left. We see that as
the standard deviation of the Gaussian dither σ0 increases, the bias decreases,
and the variance increases. Choosing σ0 = 0.5 seems a reasonable compro-
mise, but for a particular application, one might favor a higher or lower σ0.
Note that with σ0 = 0.5, the variance is about 0.33, compared to 0.25 with
triangular noise. In addition, there is a slight dependence of both bias and
variance on x0 for Gaussian dither, whereas the bias is zero and the variance
independent of x0 for triangular dither. The latter is thus a better choice, but
the practical consequences of the difference is slight, and Gaussian noise is
often present “for free” in your measuring system.... (Manufacturers of some
data-acquisition boards design the noise level with this issue in mind.) Thus,
in practice, the most commonly encountered dithering scheme is with Gaus-
sian noise, with a standard deviation equal to roughly half a quantization
level.

d. Subtractive dither. This is again similar to triangular dither but with even
more complications. The Mathematica code is straightforward and verifies
the claimed results.

5.3 Compressed sensing and the counterfeit coin.

a. For the seven-coin / one-fake problem with the three measurements given, ver-
ify explicitly that each possibility leads to a unique pattern of measurements.
To guide our intuition, change “coordinates” in the manner suggested in the
text, so that each genuine mass has fi = 0, while the fake coin has mass f j = 1.
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b. Now assume that there are one or two (identical) fakes. Find an explicit
counterexample where inferring which masses are fakes is impossible.

Solution.

a. We consider explicitly the predicted measurements for each case. We define
Case 1 to be the case where the “mass deviation” vector f 1 is given by

f 1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similar definitions apply to the other six cases.
Recall from Eq. (5.10) that

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
f5
f6
f7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
y1

y2

y3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The measurement vectors yi for each case are then given by the columns of
Φ. Since, by inspection, each column has a distinct pattern, all we have to do
is match the measurement vector y to one of the columns to identify the fake
mass. (More generally, the measurement vector is proportional to the mass
difference times the corresponding column.) Since each column is different
in the chosen Φ, a unique reconstruction is possible.

b. Now consider the case where f has exactly two non-zero elements (both
equalling one, for simplicity). With two non-zero elements, y is the sum of
the two corresponding columns. We then see that

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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both lead to

y = Φ f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
It is then impossible to infer from y which f is responsible. Reconstruc-
tion thus fails for this particular Φ. We note that there are 7C1 +7 C2 =

7 + 21 = 28 possibilities for the 1-or-2-fakes scenario, suggesting the need
for 5 measurements to guarantee success (25 = 32 > 21).

Notice, in this problem, that the a priori knowledge of the number of fakes
(e.g., one in part (a)) is translated to a sparsity condition and allows the improve-
ment over an algorithm where nothing was known about the number of fake
coins.

5.4 Phase transition in compressed sensing. Consider the N-coin / 1-fake problem.
Generate the M × N-dimensional measurement matrix Φ numerically by letting
each element be 0 or 1 with 50% probability. Then write a code to do the recon-
struction numerically. Use a brute-force algorithm that examines each of the N
possibilities explicitly, predicts the outcome y based on the choice of f , and cal-
culates the �2 norm of the error, ||y − y0||2. Then select the f that minimizes this
error. For a given m, repeat enough times to estimate the probability P of iden-
tifying the correct nonzero element of f . Then vary M to estimate P(M). You
should find something resembling the graph at left. Add measurement noise,
with y0 = Φ f + ξ, where ξ ∼ N(0, σ2I). Confirm that the reconstruction
algorithm is robust against moderate noise levels.

s

Surprisingly, the probability for successful reconstruction rises sharply at
M∗ ≈ ln N: there is a phase transition in reconstruction probability, controlled by
the relative measurement number M/N and sparseness S/N, with a qualitative
difference between a low-data “phase” where reconstruction is impossible and
a high-data “phase” where it succeeds almost always. This phase transition is
universal: many choices forΦ give the same reconstruction thresholds, or phase
boundaries. See Donoho and Tanner (2009) and Krzakala et al. (2012).

Solution.
The program is relatively straightforward. The algorithm consists of the

following steps:

• Pick the “true” (sparse) vector f . N − 1 elements equal zero; the remaining
one equals 1.

• Pick a measurement matrix of random 1’s and 0’s. (Use sign of a random
number that is symmetrically distributed about 0.)

• Each component of f picks out a column of Φ. Thus, make an M × N matrix
by repeating the M-dimensional measurement vector y N times.

• Calculate the �2 norm of each column.
• Select the minimum. Because of the measurement noise, there will be no ties.
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• Repeat many times to get an average success rate.
• Repeat for different measurement numbers M.

Note that an essentially identical curve is seen in the noiseless case (σ = 0).
5.5 Final Value Theorem for Z-transform. Show that limk→∞ fk = limz→1[(z − 1) f (z)].

Hint: Take Z( fk+1 − fk), and write the infinite sum as a limit k → ∞ of a finite
sum.

Solution.
Following the hint,

Z[ fk+1 − fk] =
∞∑

n=0

( fn+1 − fn) z−n

= lim
k→∞

k∑
n=0

( fn+1 − fn) z−n

= lim
k→∞

[
( f1 − f0) + ( f2 − f1)z−1 + ( f3 − f2)z−2 + · · · + ( fk+1 − fk)z−k

]
= lim

k→∞
[
− f0 + (1 − z−1) f1 + (1 − z−1)z−1 f2 + · · · + (1 − z−1)z−k+1 fk + fk+1

]
.

We then take the limit z → 1. Assuming that limk→∞ fk exists, then the
Z-transform converges, and we can interchange the limits. First, we set z → 1
and then k → ∞:

lim
z→1

Z[ fk+1 − fk] = − f0 + lim
k→∞

fk+1 .

Alternatively, we can use the shift theorem:

Z[ fk+1 − fk] = [z f (z) − f0] − f (z) = (z − 1) f (z) − z f0 .

Taking the z → 1 limit gives

lim
z→1

Z[ fk+1 − fk] = lim
z→1

[(z − 1) f (z) − z f0] = lim
z→1

[(z − 1) f (z)] − f0 .

Finally, equating the two expressions, we have the final value theorem:

lim
z→1

[(z − 1) f (z)] = lim
k→∞

fk+1 = lim
k→∞

fk .

We did not ask for the proof of the initial value theorem, but it is simple:

lim
z→∞ f (z) = lim

z→∞

∞∑
k=0

fkz−k = lim
z→∞

(
f0 + f1z−1 + f2z−2 + · · ·

)
= f0 .

5.6 IIR vs. FIR low-pass filter. In Example 5.2, we claimed that the IIR filter

yk = ayk−1 + (1 − a)uk−1 , 0 < a < 1

is equivalent to the IIR filter

yk = A(uk + auk−1 + a2uk−2 + · · · + anuk−n) ,
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where A is a normalization constant chosen to make the DC gain equal to 1. For
large n, the two transfer functions become very similar. To see this:

a. By Z-transformation, derive the form of the transfer function for both filters.
b. Show that the IIR and FIR transfer functions are identical for n → ∞.
c. Show that the corner frequency of the equivalent continuous system is ω0 =

1−a√
a

.
d. Reproduce the step and frequency response graphs shown at left.

Solution.

a. For the IIR filter, we take the Z-transform:

y = az−1y + (1 − a)z−1u ,

which implies

y
u
=

(1 − a)z−1

1 − a/z
=

1 − a
z − a

.

For the FIR filter, the Z-transform gives

y
u
= A

[
1 + (a/z) + (a/z)2 + · · · + (a/z)n

]
.

At ω = 0 (or z = 1), we have

A(1 + a + a2 + · · · + an) = A

(
1 − an+1

1 − a

)
= 1 ,

which implies

A =

(
1 − a

1 − an+1

)
.

b. In the n → ∞ limit, A → 1 − a. For |a| < 1, we can also rewrite

[
1 + (a/z) + (a/z)2 + · · · + (a/z)n

]
=

1 −
(

a
z

)n+1

1 −
(

a
z

) → 1
1 − a

z

.

When n → ∞, we have A → 1 − a and, thus,

y
u
=

1 − a

1 −
(

a
z

) .
The two filters then have the same transfer function up to a delay of one unit.

c. From (a), the Power density for the IIR filter P(ω) is

P(ω) =
∣∣∣∣∣1 − a
z − a

∣∣∣∣∣2
z=eiω

=
(1 − a)2

(eiω −a)(e− iω −a)
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=
(1 − a)2

1 + a2 − 2a cosω

=
(1 − a)2

(1 − a)2 + 2a(1 − cosω)
.

Taylor expanding gives 1 − cosω ≈ 1
2ω

2 and, hence,

P(ω) =
(1 − a)2

(1 − a)2 + aω2

=
1

1 +
(
ω
ωc

)2
,

with

ωc =

(
1 − a√

a

)
1
Ts
.

The sampling frequency, 1/Ts, appears if we redo the problem in dimensional
units, substituting z = eiωTs , rather than z = eiω.

d. See the book website for code. To go from the transfer function to the fre-
quency response, we substitute z = eiωTs and then take the magnitude squared
and phase of y(z)/u(z).

5.7 FIR filter with linear phase response. For n = 2N + 1 odd, consider the FIR filter

yk = B0uk + B1uk−1 + · · · + Bn−1uk−n+1 ,

a. Show that if Bm = Bn−1−m, then the complex frequency response y(ω) has a
linear phase. That is, show that y(ω) = ỹ(ω) e− iωτ, where ỹ(ω) and τ are real.

b. An ideal low-pass filter would have a frequency response that is 1 for ω < ωc

and 0 for ωc < ω < ( π/Ts). Show we can realize the filter via FIR coefficients

(Bm)acausal =

(
ωc

π

) (
sin mωcTs

mωcTs

)
, −∞ < m < ∞ ,

where m is integer. For negative m, the ideal low-pass filter is acausal and
cannot be implemented in real time, since it needs future information.

c. To make a realizable filter, truncate to n = 2N + 1 terms and then delay each
component to make it causal. The resulting filter has

Bm =

(
ωc

π

) (
sin(m − N)ωcTs

(m − N)ωcTs

)
, 0 < m < 2N ,

Verify that this filter is linear phase and plot the magnitude of the frequency
response for n = 101 and 1001. Note and explain the Gibb’s phenomenon.

d. Discuss the effects of multiplying the FIR coefficients by a Hamming window,

Bm → Bm ×
[
0.54 − 0.46 cos

(
πm
N

)]
, 0 < m < 2N .
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Solution.

a. Recall that the frequency response of yk is given by Eqs. (5.35) and (5.35).
That is, we take the Z-transform

y = B0 + B1z−1 + · · · + Bn−2z−n+2 + Bn−1z−n+1 .

Assume Bm = Bn−1−m. Then

y = B0(1 + z−n+1) + B1(z−1 + z−n+2) + · · · + BNz−n+N+1

= B0(1 + z−2N) + B1(z−1 + z−2N+1) + · · · + BNz−N

= z−N
[
B0(zN + z−N) + B1(zN−1 + z−N+1) + · · · + BN

]
= 2 e− iNωTs {B0 cos NωTs + B1 cos[(N − 1)ωTs] · · · + BN} ,

where we substitute z = eiωTs to calculate the frequency response. Thus, the
frequency response has a linear phase lag (τ = NTs). The real function ỹ(ω) is
given by

ỹ(ω) = 2 {B0 cos NωTs + B1 cos[(N − 1)ωTs] + · · · + BN}
b. We recall the calculation of the time response of a function that passes fre-

quencies in the range −ωc < ω < +ωc. We need the negative as well as positive
frequencies. By the inverse Fourier transform, we have

B(t) =
1

2π

∫ ωc

−ωc

dω eiωt =
1

2π

eiωt

it

∣∣∣∣∣∣
ωc

−ωc

=
ωc

π

(
sinωct
ωct

)
.

Then evaluating at times mTs gives Bm = B(mTs):

Bm =
ωc

π

(
sinωcmTs

ωcmTs

)
.

As discussed, we need to consider all integer values of m, including negative
values, to have an ideal filter.

c. We truncate to 2N + 1 terms and delay the filter by NTs by setting m → m− N.
The coefficients are then, as claimed,

Bm =

(
ωc

π

) (
sin(m − N)ωcTs

(m − N)ωcTs

)
, 0 < m < 2N ,

Such a filter has linear phase, since evaluating Bn−1−m = B2N−m amounts to
letting (m − N) → [(2N − m) − N] = −(m − N). That is, we multiply the
numerator and denominator by −1, which leaves the coefficients unchanged.
We thus verify that B2N−m = Bm. See the plots below, which show the step and
frequency response of an FIR low-pass filter. (a) Step response for 101 (gray
line) and 1001 (black line) coefficients of a truncated sinc(·) FIR filter. (b)
Corresponding frequency response. The Gibbs phenomenon results because
the jump discontinuity needs all frequencies to represent accurately. (It’s a
longer story, but this is enough for now!)
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d. Windowing smooths the jump discontinuity caused by the truncation of filter
coefficients, at the cost of distorting their values somewhat. Below, we graph-
ically show that the frequency response becomes much flatter when using a
Hamming window. On the other hand, the step response still shows ringing.
More sophisticated techniques can minimize this ringing.

ω

ω

5.8 Discrete Parseval’s theorem.

a. Using the definitions of the discrete time Fourier transform (DTFT) given in
Section 5.2.3, derive Parseval’s Theorem, Eq. (5.37).

b. By integrating around the unit circle, derive an alternate form of the theorem,
∞∑

k=0

f 2
k =

1
2π i

∮
dz
z

f (z) f (z−1) .

c. Show that Parseval’s Theorem works explicitly for the transform pair fk =
akθk, with |a| < 1 and f (z) = z

z−a , with z = eiω. Here, θk = 1 for n ≥ 0 and 0
otherwise.

Solution.

a. Recall from Eq. (5.36) that the DFT transform pair is

f (ω) ≡
∞∑

k=−∞
fk e− iωk ⇐⇒ fk =

∫ π

−π

dω
2π

f (eiω) eiωk .

Then
∞∑

k=0

f 2
k =

∞∑
k=0

∫ π

−π

dω
2π

[
f (ω) eiωk

]
fk

=

∫ π

−π

dω
2π

f (ω)

⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=0

fk eiωk

⎞⎟⎟⎟⎟⎟⎠
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=

∫ π

−π

dω
2π

[
f (ω) f (ω)∗

]
=

∫ π

−π

dω
2π

| f (ω)|2 .

b. The proof just parallels the one for the DFT. Recall from Eq. (5.32) that the
inverse Z-transform is

fk = Z−1[ f (z)] =
1

2πi

∮
C

dz f (z) zk−1 .

Then
∞∑

k=0

f 2
k =

∞∑
k=0

1
2πi

∮
C

dz
[
f (z) zk−1

]
fk

=
1

2πi

∮
C

dz
z

f (z)

⎛⎜⎜⎜⎜⎜⎝ ∞∑
k=0

fk zk

⎞⎟⎟⎟⎟⎟⎠
=

1
2πi

∮
C

dz
z

f (z) f (z−1) ,

where we substitute the forward Z-transform,

f (z) =
∞∑

k=0

fk z−k .

c. We check an explicit calculation. First, for k ≥ 0, we have fk = ak, and
∞∑

k=0

f 2
k =

∑
(a2)k =

1
1 − a2

,

for |a| < 1. To calculate this in the Z-domain, we write

1
2πi

∮
dz
z

( z
z − a

) (
1/z

1/z − a

)

=
1

2πi

∮
dz

(z − a)(1 − az)

=
��2πi

��2πi
1

1 − a2
,

using the residue theorem and evaluating the simple pole at z = a, which is
inside the unit circle since |a| < 1.

5.9 Discretization of a zero-order hold. To find the discrete matrices Ad and Bd from
Eq. (5.40) in one step and without inverting A, show that exp

[
Ts

( A B
0 0

)]
=

( Ad Bd
0 I

)
.

Solution.
By direct calculation, (

A B
0 0

)n

=

(
An An−1B
0 0

)
.
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Thus,

exp

[
Ts

(
A B
0 0

)]
=

(
I 0
0 I

)
+ Ts

(
A B
0 0

)

+
T 2

s

2!

(
A2 AB
0 0

)
+ · · · + T n

s

n!

(
An An−1B
0 0

)
+ · · ·

=

⎛⎜⎜⎜⎜⎝eATs A−1
(
eATs −I

)
B

0 I

⎞⎟⎟⎟⎟⎠
=

(
Ad Bd

0 I

)
.

Note that even if A is not invertible, we can still directly evaluate the matrix
exponential and identify Bd as the upper right block.

5.10 ZOH discretization. For a continuous function u(t), its zero-order-hold staircase
function uk(t) is defined in Eq. (5.38). Show that

a. The Laplace transform of the zero-order hold is given by L[uZOH] =( 1−e−sTs

s

)Z[u], where Z[u] is the Z-transform of the sequence uk = u(kTs).
b. The ZOH discrete transfer function Gd(z) = (1 − z−1)Z{L−1[G(s)

s ]
}
, with G(s)

a continuous system transfer function and Z{L−1[·]} the Z-transform of the
time domain signal from the inverse Laplace transform, sampled at times kTs.

c. The 1st-order system G(s) = 1
1+s implies that Gd(z) = 1−e−Ts

z−e−Ts (cf. Eq. 5.42).

d. The 2nd-order system G(s) = 1
1+s2 implies that Gd(z) = (1−cos Ts)(z+1)

(z−eiTs )(z−e− iTs ) . The
sampling zero at z = −1 arises solely from the sampling process; G(s) has no
zero.

Solution.

a.

L[uZOH] = u(0)
∫ Ts

0
dt e−st +u(Ts)

∫ 2Ts

Ts

dt e−st + . . .

= u(0)
1
s

(
1 − e−sTs

)
+ u(Ts)

1
s

(
e−sTs − e−2sTs

)
+ . . .

=

(
1 − e−sTs

s

) [
u(0) + u(Ts) e−sTs + . . .

]

=

(
1 − z−1

s

) [
u0 + u1 z−1 + . . .

]

=

(
1 − z−1

s

)
Z[u] .

It is good to understand the meaning of this formula more intuitively. The
Laplace transform of a step function θ(t) is just 1

s . If the response is delayed
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by Ts it is e−sTs
( 1

s

)
. Thus, a pulse of duration Ts in the time domain has a

Laplace-domain representation of(
1 − e−sTs

s

)
.

b. Here is an informal derivation, which should be made more rigorous!

y(t) = G(t) ∗ uk(t) ,

with uk(t) the staircase time function constructed from the sequence uk.
Laplace transforming and using “operator overload” notation y(s) forL[y](s),
etc., we have

y(s) = G(s) ∗ uk(s)

= G(s)

(
1 − z−1

s

)
u(z)

=

(
G(s)

s

) (
1 − z−1

)
u(z) .

We then inverse-Laplace transform to return to the time domain:

y(t) = L−1

(
G(s)

s

) (
1 − z−1

)
u(z) ,

where we can “leave” the z terms because they are not written in terms of s.
(This step is not rigorous!) Then Z-transforming gives

y(z) = Z
[
L−1

(
G(s)

s

)] (
1 − z−1

)
u(z) ,

which implies a ZOH-discretized transfer function of

Gd(z) =
y(z)
u(z)
=

(
1 − z−1

)
Z

[
L−1

(
G(s)

s

)]
.

c. We apply these ideas to a first-order system:

G(s)
s
=

1
s(s + 1)

=
1
s
− 1

s + 1
.

Then

L−1

(
G(s)

s

)
= θ(t) − e−t θ(t) = 1 − e−kTs ,

using the discretization at times t > 0. Taking the Z-transform then gives

z
z − 1

− z
z − e−Ts

=
z(1 − e−Ts )

(z − 1)(z − e−Ts )
.

Finally, noting that 1 − z−1 = z−1
z , we have

Gd(z) =

(
z − 1

z

)
z(1 − e−Ts )

(z − 1)(z − e−Ts )
=

1 − e−Ts

z − e−Ts
.
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d. For the second-order system (undamped oscillator) given by G(s) = 1
1+s2 , the

zero-hold discretization is

Gd(z) =
(
1 − z−1

)
Z

{
L−1

[
G(s)

s

]}

=

(
z − 1

z

)
Z

{
L−1

[
1

s(s2 + 1)

]}

=

(
z − 1

z

)
Z

{
L−1

[
1
s
− s

s2 + 1

]}

=

(
z − 1

z

)
Z{θ(t) − cos t}t→kTs

=

(
z − 1

z

)
Z{1 − cos kTs}

=

(
z − 1

z

) [
z

z − 1
− z(z − cos Ts)

z2 − 2(cos Ts)z + 1

]

= 1 − (z − 1)(z − cos Ts)
z2 − 2(cos Ts)z + 1

=
(1 − cos Ts)(z + 1)
z2 − 2(cos Ts)z + 1

=
(1 − cos Ts)(z + 1)
(z − eiTs )(z − e− iTs )

.

Note that the poles of Gd(z) are on the unit circle, at p± = e± iTs and that there
is a sampling zero at z = −1.
In the last two sections, we include so much detail to show explicitly how
the calculations work. Normally, one can simply use control software with
built-in functions that give directly the desired discretization, especially for
numerical calculations (with a numerical value of Ts).

5.11 Mapping s to z. Show the following:

a. The change of variable z = esTs maps Re s < 0 to |z| < 1 (see right).
b. The same mapping is valid for the Tustin transformation: s = 2

Ts

z−1
z+1 . Thus, if

the continuous system is stable, so too is its Tustin discretization.
c. The backward Euler rule for s → z gives the Euler approximation to an

integral, while the Tustin transformation gives the trapezoidal algorithm.

Solution.

a. Let s = s′ + is′′. Then z = esTs = es′Ts eis′′Ts =⇒ |z| = es′Ts , and

|z| < 1 =⇒ s′ = Re s < 0 .
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b. This one is more intuitive in the reverse direction. Let z = r eiθ be a point
inside the unit disk (i.e., r < 1). Then, from Eq. (5.48)

s =
2
Ts

(
1 − z−1

1 + z−1

)
∼

(
1 − z−1

1 + z−1

)
=

(
z − 1
z + 1

)

=

(
r eiθ −1
r eiθ +1

) (
r e− iθ +1
r e− iθ +1

)

=

(
r2 − 1 + 2ir sin θ
r2 + 1 + 2r cos θ

)

and, thus,

Re s = −
(

1 − r2

r2 + 1 + 2r cos θ

)
.

For 0 < r < 1, the numerator of the fraction is positive. The denominator
is, too: over the range 0 < θ < 2π, the denominator is in the positive range
(1 − r)2 to (1 + r)2. Thus

0 < r < 1 ↔ Re s < 0 .

In other words, the mapping s ↔ z also maps the left-hand part of the s-plane
to the interior of the unit disk.
The mapping, of course, is a different mapping from z = exp(sTs).

c. Consider an integral in the Laplace domain:

I(t) =
∫

dt′ e(t′) → I(s) =

(
1
s

)
e(s) .

We can view converting s → z as approximating the continuous integral with
a discrete one, going back from z to the discrete time domain via z−1 equalling
“delay by Ts:

Euler:
1
s
=

Ts

1 − z−1
=⇒ Ik = Ik−1 + Tsek .

Tustin:
1
s
=

Ts

2
z + 1
z − 1

=⇒ Ik+1 = Ik +
Ts

2
(ek + ek+1) .

5.12 Tustin transformation and frequency warping.

a. Show that that the Tustin transformation, s → 2
Ts

z−1
z+1 distorts frequencies

so that a frequency ω in the continuous system maps to a frequency ω′ =
2
Ts

tan(ωTs/2).
b. Find a value λ to rescale, or “prewarp,” the Tustin transformation (s → s′ =

λs), so that its frequency response matches the continuous system at ω = ω′.
c. Plot |G(s)| = ∣∣∣ 1

1+2ζs+s2

∣∣∣ with ζ = 0.1, its discrete Tustin approximation
|GTustin(z)| for Ts = 2, and its prewarped version, matched at ω = ω′ = 1.
At left, the dashed line represents the prewarped approximation.

ω
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Solution.

a. The frequency response of a continuous system is given by G(s = iω). Let
GTustin(z) be the corresponding discrete transfer function resulting from the
Tustin transformation

s →
(

2
Ts

) (
z − 1
z + 1

)
.

Then its frequency response is given by z → eiωTs , so that(
z − 1
z + 1

)∣∣∣∣∣∣
z=eiωTs

=

(
eiωTs −1
eiωTs +1

)
=

(
eiωTs/2 − e− iωTs/2

eiωTs/2 + e− iωTs/2

)
= itan(ωTs/2) .

Thus, we have that

s = iω→ s = i
2
Ts

tan(ωTs/2) ≡ iω′

and

ω′ =
2
Ts

tan(ωTs/2) .

The fact that ω � ω′ reflects the distorted frequency response. The frequency-
scale distortion vanishes (ω′ ≈ ω) for low frequencies � T−1

s . For Ts = 2,
ω′ = tanω (see below). The Taylor expansion about ω = 0 is

ω′ = ω + 1
3ω

3 + O(ω5) .

ω

ω

ω

b. Now let consider a rescaled Tustin transformation, which is stretched along
the frequency axis so that the frequency response of the discrete filter
matches the frequency response of the corresponding continuous filter at one
particular frequency ω′. Let

s′ = λ
(

z − 1
z + 1

)
.

Then evaluating at z = exp(iωTs) leads to

s′ = λ itan(ωTs/2) .

The two response functions are then matched (s = s′ = iω′) for the frequency
ω = ω′ when we choose

λ =
ω′

tan(ω′Ts/2)
.



88 Discrete-Time Systems

The technique is known in the literature as “prewarping.” I do not like the
name very much, as it suggests a nonlinear correction. The correction is
linear. Of course, this transformation works only at the one frequency ω′,
and the frequency response remains distorted at other frequencies. Still, many
filters have just one characteristic frequency, and if you need that frequency
to be a substantial fraction of Ts and to be accurate, then this technique can
be useful.

c. The continuous system, an underdamped oscillator when ζ = 0.1, has a
transfer function

G(s) =
1

1 + 2ζs + s2
.

For the normal Tustin discretization with Ts = 2, we have s → ( z−1
z+1

)
and then

GTustin(z) =
1

1 + 2ζs + s2
=

1( z−1
z+1

)2
+ 2ζ

( z−1
z+1

)
+ 1

=
(z + 1)2

2[z2 + 1 + ζ(z2 − 1)]
,

which is then evaluated for z = exp[− iωTs].

For the prewarped Tustin discretization with Ts = 2 and matched at ω′ = 1,
we have s′ = ω′

tan(ω′)

(
z−1
z+1

)
= 1

tan 1

(
z−1
z+1

)
and then

Gprewarp(z) =
1

1
(tan 1)2

( z−1
z+1

)2
+ 2ζ 1

tan 1

( z−1
z+1

)
+ 1

.

Note that (tan 1)−1 ≈ 0.642093 and (tan 1)−2 ≈ 0.412283. See the book website
for code to produce the magnitude response plots. The plots are reproduced
below, for convenience. We emphasize that the large differences between the
normal Tustin response and the continuous (and prewarped) versions results
from the fact that the sampling time Ts is such a large fraction of the period
of the oscillator. Indeed, the ratio is 2/(2π) ≈ 0.3.

ω

5.13 PID discretization: simpler can be better. Sometimes, the simple backward Euler
discretization works best. Consider PI control of the continuous system G(s) =

1
1+s , with K(s) = 1 + 1

s . For Ts = 0.1, find the ZOH discretization Gd(z).
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a. Discretize the PI controller using backward Euler, s → 1−z−1

Ts
, and Tustin,

s → 2
Ts

1−z−1

1+z−1 . Plot the step response for all three closed-loop systems.
b. Now add derivative control, K(s) → 1 + 1

s + 0.1s. Show that the backward-
Euler controller is little changed, but something goes wrong for the Tustin
controller.

Solution.

a. For G(s) = 1
1+s and K(s) = 1+ 1

s =
1+s

s , the complementary sensitivity function
giving the transfer function from reference to output is given by

T (s) =
GK

1 +GK
=

1
1 + (KG)−1

=
1

1 + s
,

which is just the same as G(s). (So why bother with control? The closed-
loop system rejects disturbances, but the open-loop system without K(s) does
not.) The graphs below (left) show exponential rise expected for the step
response and that both the backward-Euler and Tustin methods give close
approximations when sampled at Ts = 0.1.

b. For PID control K(s) → 1 + 1
s + 0.1s, the backward-Euler continues to

track the continuous system well, but we see an oscillatory instability for the
Tustin discretization of the controller. Since the derivative term is improper
(∼ s), Tustin gives a controller pole at zp = −1, which is marginal and wildly
oscillatory. Then the closed-loop system perturbs this to an unstable pole at
zp = −1.2, outside the unit disk.

Conclusion: stick to backward Euler for PID.

5.14 Controllability of a discrete system. Section 4.1.1 for continuous systems mostly
carries over to discrete systems. But let us distinguish the reachable set of states
Rk that may be reached from x0 in k steps from the controllable set of states Ck,
the xk that maybe brought to 0 in k steps. A system is reachable if Rk = R

n for all
k ≥ n.

a. Prove that a discrete SISO system is reachable if Wc =
(

B AB A2 B ··· An−1 B
)

is
invertible. As part of the proof, show that reachability requires n time steps
(deadbeat control). Hint: look explicitly at a sequence of iterates of x0.

b. Show that controllability is equivalent to reachability if A−1 exists. Thus,
not all reachable discrete systems are controllable. Contrast with continuous
systems.
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c. For the undamped oscillator A =
( 0 1−1 0

)
, B =

( 0
1

)
, show that the continuous

system and its ZOH are controllable, except at Ts = mπ, for positive integer m.
Why does controllability fail at these values of Ts? Why is it harder to control
the oscillator when Ts = 2π, 4π, . . . than when Ts = π, 3π, . . .?

Solution.

a. For a discrete, linear, time-invariant system with dynamical matrix A and
input coupling B, we can iterate explicitly from the initial condition x0, given
inputs Uk ≡ {u0,u1, . . . ,uk−1}:

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1 = A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2 = A3x0 + A2Bu0 + ABu1 + Bu2

xk = Ak x0 + Ak−1Bu0 + Ak−2Bu1 + · · · + Buk−1

= Ak x0 +

k−1∑
i=0

Ak−i−1Bui

= Ak x0 +WkUk ,

where

Wk =
(
Ak−1B Ak−2B · · · AB B

)
.

If we first specialize to the case x0 = 0 and choose k = n, we see that an
arbitrary state xn can be reached if Wn is invertible. Indeed, the explicit n-
dimensional input sequence required is just

Un =W−1
n xn .

If we iterate for k > n, then we can use the Cayley-Hamilton theorem to
express all higher powers Ak as linear combinations of powers of A that are
≤ n. Thus, the matrix Wk is a k × n matrix that has full rank (rank = n) for
n > k, assuming that Wn is invertible. We are just adding further columns that
are linear combinations. Adding these columns cannot reduce the rank and,
since the new columns are linear combinations of the old, cannot extend it,
either. Thus, rank Wk = n for all k ≥ n. As a consequence, we can speak of
the reachability matrix Wn ≡ Wr.

Of course, for k < n, the rank cannot exceed k and is < n. This is a distinction
from continuous systems and implies that full reachability (and controllabil-
ity) requires n time steps. A control that achieves this in the minimum number
of steps n is called deadbeat control.

Our proof implicitly assumed a SISO system with scalar uk, even though
we wrote it in vector notation, uk. To extend to a MIMO system, we note
that the condition of invertibility will simply be replaced by the condition
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to have full rank (n). This extension parallels the previous discussion of
continuous systems.

Finally, we extend our proof to non-zero initial conditions x0. Assume that
the system is reachable from x0 = 0. Then, for non-zero initial condition, we
can still invert the expression for xn:

Un =W−1
n (xn − Anx0) .

Thus, the same reachability condition applies.
b. To see why controllability and reachability are not quite the same concepts

for discrete systems, we note that if the target state is xn = 0, then we write

−Anx0 =WrUn .

If we assume reachability, then Wr is invertible. But what if A is not invertible?
Then there exist non-zero initial conditions x0 such that Ax0 = 0. For those
initial conditions, we need to solve

WrUn = 0 .

Because Wr is invertible, the only solution has zero inputs, Un = 0, which
obviously will not make a non-zero x0 (in the null space of A) reach the origin
after n time steps. Of course, if A is invertible, then we can solve, as before,
for the needed non-zero input.

Why doesn’t the non-invertability of A destroy reachability? In the discussion
of reachability from non-zero initial conditions, a non-invertible A would also
mean that there are non-zero initial conditions for which Ax0 = 0. However,
we also implicitly assumed that the target state xn was not the origin. In that
case, the equation Un = W−1

n xn � 0. The problem arises only when A is not
invertible and the target state is the origin.

Does this distinction carry over to the continuous case? The difference there
is that an initial condition is propagated using eAt, which always has an
inverse, e−At. Thus, this distinction between reachability and controllability
does not arise in the continuous case. In Chapter 4, we applied the term
“controllability” to both situations.

c. For the undamped harmonic oscillator,

A =
(

0 1
−1 0

)
, B =

(
0
1

)
=⇒ Wc =

(
0 1
1 0

)
,

which is invertible. The system is controllable.

For the zero-order hold discretization,

Ad =

(
cos Ts sin Ts

− sin Ts cos Ts

)
, Bd =

(
2 sin2(Ts/2)

sin Ts

)
,



92 Discrete-Time Systems

which leads to a controllability matrix,

Wc =

(
1 − cos Ts sin Ts

cos Ts − cos 2Ts (2 cos Ts − 1) sin Ts

)
.

To analyze the controllability, we first compute the determinant of the
controllability matrix:

det Wc = −4 sin2(Ts/2) sin Ts .

Let’s plot this as a function of sampling time:

π

Notice that for almost all Ts, the determinant is non-zero, indicating generic
controllability. However it equals zero for Ts = m π, for m a positive integer.
(We start at time zero, although this can be dropped.) The zeros for odd m
are first order: the function crosses zero with finite derivative. It is easy to
Taylor expand the determinant to see that, in the vicinity of an odd integer
m = 1, 3, . . ., that

det Wc = 4(Ts − mπ) + O(Ts − mπ)3 .

Near even integers m = 2, 4, . . ., the expansion is, by contrast,

det Wc = −(Ts − mπ)3 + O(Ts − mπ)5 .

For odd m the input coupling vector is given by

Bd =

(
2 sin2(Ts/2)

sin Ts

)
=

(
2
0

)
,

while for even m,

Bd =

(
0
0

)
.

For even m, the coupling thus completely vanishes, making the system obvi-
ously uncontrollable. Physically, we inject energy at the resonance frequency,
meaning that we always add energy and, thus, that we cannot force the system
to an arbitrary state (remember, there is no damping).

For odd m, we look at the dynamical matrix, which is Ad = −I for such sam-
pling times. Thus, the input coupling affects only the position and cannot
control the velocity of the oscillator. At this frequency, we are forcing an
even multiple of times per period.

As the dynamical matrix Ad is just a rotation matrix, it is never singular.



Problems 93

5.15 Prediction observers. For the prediction observer:

a. Let the estimation error e−k ≡ xk − x̂−k . Show that e−k+1 = (A − LC) e−k .
b. Show that the dynamics of the observer error and the physical system

decouple (separation principle), in analogy with Eq. (4.65).

Solution.

a.

e−k+1 = xk+1 − x̂−k+1

= (Axk +���Buk) − [Ax̂−k +��Buk + L(yk − Cx̂−k )]

= Ae−k + LC x̂−k︸︷︷︸
xk−e−k

−Lyk

=⇒ = (A − LC) e−k + L Cxk︸︷︷︸
yk

−Lyk

= (A − LC) e−k

b. The dynamics is

xk+1 = Axk + Buk ,

with feedback uk = −Kx̂−k = −K(xk − e−k ). This gives coupled equations

xk+1 = Axk + B(Kek − Kxk) = (A − BK)xk + BKe−k .

Using the result from part (a) then gives,

xk+1 = (A − BK)xk + BKe−k
e−k+1 = (A − LC) e−k .

Putting the two equations into a single matrix notation gives(
x
e−

)
k+1

=

(
A − BK BK

0 A − LC

) (
x
e−

)
k

.

As in the discussion in Chapter 4, the characteristic equation is given by

det (sI − A + BK) det (sI − A + LC) = 0 ,

which means that the individual determinants should each vanish separately.
The first term represents feedback for the system dynamics, the second
the observer dynamics. We see here that they can be designed separately
(independent choice of K and L).

5.16 Current vs. prediction observers. The prediction observer state vector, x̂−k+1, is
based on observations up to time k (Eq. (4.65)). Here, we construct an estimator
that is based on observations up to time k + 1. First: Given the old estimate
x̂k, we predict the next state: x̂−k+1 = Ax̂k + Buk. Then we correct the estimate
using the difference between the new observation yk+1 and its predicted value,
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ŷk+1 = Cx̂−k+1. Thus, x̂k+1 = x̂−k+1 + L(yk+1 − ŷk+1), with L the observer gain. For
the current observer,

a. Show that
(
x
x̂

)
k+1

=

(
A 0

LCA A − LCA

)(
x
x̂

)
k

+

(
B
B

)
uk.

b. Define the error ek ≡ xk − x̂k, and show that ek+1 = (A − LCA) ek.
c. Reproduce the margin plots for yk and ŷk in Section 5.4.2 using the parame-

ters given in the caption. Plot ŷk for both current and prediction observers.
Explore the output behavior for different estimator gains L. Why are there
more problems with large gains for the prediction observer than for the
current observer?

Solution.

a. The dynamical equation for the state vector is

xk+1 = Axk + Buk .

Then

x̂k+1 = x̂−k+1 + L(yk+1 − Cx̂−k+1)

= (I − LC)x̂−k+1 + Lyk+1

= (I − LC)(Ax̂k + Buk) + LCxk+1

= (A − LCA)x̂k + (B −����LCB)uk + LC(Axk +��Buk)

= (A − LCA)x̂k + Buk + LCAxk .

Putting these two equations together in matrix form gives(
x
x̂

)
k+1

=

(
A 0

LCA A − LCA

) (
x
x̂

)
k

+

(
B
B

)
uk .

b.

ek+1 = xk+1 − x̂k+1

= (Axk +���Buk) − [Ax̂l +��Buk + L(yk+1 − C x̂−k+1)︸︷︷︸
Ax̂k+Buk

]

= Aek + LC(A x̂k︸︷︷︸
xk−ek

+Buk) − Lyk+1

=⇒ = (A − LCA) ek + L C(Axk + Buk)︸�����������︷︷�����������︸
yk+1

−Lyk+1

= (A − LCA) ek

Because this is the same formula that we derived for the prediction observer
in Problem 5.15, we find in this case, too, that the separation principle holds.
We can decouple the design of the controller from that of the observer:

xk+1 = (A − BK)xk + BKek

ek+1 = (A − LC) ek .
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Putting the two equations into a single matrix notation gives(
x
e

)
k+1

=

(
A − BK BK

0 A − LC

) (
x
e

)
k

,

so that the state dynamics are influenced by K and estimator convergence
by L.

c. The prediction observer has a delay, which leads to instability at high gains.

5.17 Fractional delays. For a linear system, fractional delays affect two neighboring
time points. For example, consider ẋ = −x(t) + u(t − τ), with 0 < τ < Ts. Let the
input uk−τ(t) be a staircase ZOH signal delayed by τ with respect to the state xk.

a. Draw a timing diagram for x(t) and u(t). Indicate xk and uk−τ.
b. Show that the discrete dynamics have the form xk+1 = Axk + B1uk−1 + B0uk.

Find A, B1, and B0. Check the limits τ → 0 and τ → Ts. Hint: Split the
integral.

c. Redo (b) assuming Ts < τ < 2Ts. (Hint: the coefficients are almost the same.)

Other delays can be treated similarly (e.g., a delay between two subsystems
can be analyzed as a delayed input to the second subsystem). Finally, another
approach uses the modified Z-transform, F(z,m) ≡ ∑∞

k=0 f [(k + m − 1)Ts]z−k, with
0 < m < 1.

Solution.

a. In the diagram below, we see that the forces during the interval from kTs to
(k + 1)Ts are uk−1 for the first part and uk for the second.

b. We integrate ẋ = −x(t) + u(t − τ) from kTs to (k + 1)Ts:

xk+1 = e(−1)Ts xk +

∫ (k+1)Ts

kTs

dt e−[(k+1)Ts−t] u(t − τ) ,

so that A = e−Ts . To find the discrete input, we write the second term as

=

∫ kTs+τ

kTs

dt e−[(k+1)Ts−t] uk−1 +

∫ (k+1)Ts

kTs+τ

dt e−[(k+1)Ts−t] uk ,

= e−Ts

∫ τ

0
dt et uk−1 + e−(Ts−τ)

∫ Ts−τ

0
dt et uk

= e−Ts (eτ −1) uk−1 + (1 − e−(Ts−τ)) uk .
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Thus, B1 = e−Ts (eτ −1) and B0 = (1 − e−(Ts−τ)). Then,
• Taking the limit τ→ 0, we have B1 = 0 and B0 = 1 − e−Ts .
• Taking the limit τ→ Ts, we have B1 = 1 − e−Ts and B0 = 0.

c. For Ts < τ < 2Ts, we write τ = Ts + τ
′, with 0 < τ′ < Ts. Then we do the same

calculation to find ∫ (k+1)Ts

kTs

dt e−[(k+1)Ts−t] u(t − Ts − τ′)

= B1 uk−2 + B0 uk−1 ,

as before, with B1 = e−Ts (eτ
′ −1) and B0 = (1 − e−(Ts−τ′)). We get the same

fractional contributions from the old and the new. We just have to displace
the inputs to the appropriate integer delays (here 2 and 1 instead of 1 and 0).

5.18 Delays and predictive feedback.

a. For xk+1 = axk + uk, with uk = −Kpxk, find the range of Kp that stabilizes x = 0.
b. For delayed proportional feedback uk = −Kpxk−1, show that a > 2 implies that

no value of Kp can stabilize x = 0.
c. Show that uk = −Kpxpred

k , with xpred
k = axk−1 + uk−1, can stabilize x = 0 for all a.

Solution.

a. The closed-loop dynamics are

xk+1 = axk + uk = (a − Kp)xk ,

and the range of stability is

−1 < (a − Kp) < +1 , =⇒ (a − 1) < Kp < (a + 1) .

b. The closed-loop, delayed-feedback dynamics are

xk+1 = axk + uk = axk − Kpxk−1 ,

Taking the Z-transform gives, for x(z),

zx = ax − Kpz−1x , =⇒ z2 − az + Kp = 0 .

Solving the quadratic equation, we find roots at

z± = 1
2

(
a ±

√
a2 − 4Kp

)
.

The condition for stability for this discrete system is |z| < 1. If a2 − 4Kp > 0,
then there are two real roots, one greater than 1

2 a and one less than this value.
So for a > 2, one of the z roots must have magnitude greater than 1.

If a2−4Kp < 0, then the roots are a complex-conjugate pair, with real part 1
2 a.

Again, a < 2, and no value of Kp stabilizes x = 0 when a > 2.
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c. We now have to solve two coupled difference equations:

xk+1 = axk + uk , uk+1 = −Kp(axk + uk︸���︷︷���︸
xpred

k+1

) .

Taking the Z-transform gives, for x(z) and u(z),

zx = ax + u , zu = −Kp (ax + u) .

Let’s put these together in matrix form:(
z − a −1
Kpa z + Kp

) (
x
u

)
=

(
0
0

)
The determinant of the matrix then must be zero:

(z − a)(z + Kp) + Kpa = z2 −
(
a − Kp

)
z −��Kpa +��Kpa = 0 ,

which implies

z = 0,
(
a − Kp

)
.

The latter is just the condition that we had for a system without delay, imply-
ing that, for any a > 1, we can choose a − 1 < Kp < a + 1. Note that,
in comparing to the continuous system, choosing a for fixed discrete delay
Ts is equivalent to having a growth exponent scaled to 1 and varying the
continuous delay τ.

5.19 Deadbeat control of an undamped oscillator. Derive the deadbeat controller Kd(z)
described in Section 5.4.2 and Example 5.10. Reproduce the graphs in the exam-
ple. Hint: for a step, r(z) = z

z−1 . Use the final value theorem for yk (or inverse
transform).

Solution.

a. We begin by deriving the deadbeat controller for an nth-order, SISO linear
system. We proceed in three steps:
i. For y(z) = Td(z) r(z), let us assume that the complementary sensitivity

function is of the form Td(z) = f (z)
zn . Then, for a step command,

y(z) = Td(z) r(z) =
f (z)
zn

z
z − 1

=
f (z)

(z − 1)zn−1
.

The final value theorem then gives

lim
k→∞

yk = lim
z→1

(z − 1)y(z) = lim
z→1

f (z)
zn−1

= f (1) .

We can also look at the initial value theorem:

y0 = lim
z→∞ y(z) = lim

z→∞
f (z)
zn

.

Because our initial condition is y0 = 0, we can infer that if f (z) is a
polynomial, its order cannot be higher than n − 1.
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ii. Next, we look at the input uk that is generated by the reference command.
From the usual block-diagram manipulations, [direct / (1+loop)], we have

u(z) =
Kd

1 + KdGd
r(z) = TdG−1

d r(z) .

Now we apply this to deadbeat control, with r a step command:

u(z) = TdG−1
d r(z) =

f (z)
zn

D(z)
N(z)

z
z − 1

.

As suggested in the text, we choose f (z) = N(z)/N(1). The normalization
N(1)−1 is needed to make f (1) = 1. In this case,

u(z) =
1

z − 1
D(z)

N(1)zn−1
.

The final value theorem then implies that

lim
k→∞

uk =
D(1)
N(1)

=
1

Gd(1)
,

which is just what we expect: at zero frequency, the steady-state output to
a constant input u = 1/Gd(1) generates the output

y = Gd(1) u = Gd(1)
1

Gd(1)
= 1 .

iii. Finally, we derive the controller. From Td =
KdGd

1+KdGd
, we have

Kd(z) =
G−1

d

T−1
d − 1

=
D(z)
N(z)

1
znN(1)
N(z) − 1

=
D(z)

znN(1) − N(z)
.

b. From Problem 5.10, the ZOH of the second-order system G(s) = 1
s2+1 is

Gd(z) =
(1 − cos Ts)(z + 1)
(z − eiTs )(z − e− iTs )

.

For Ts = 0.2, we have

Gd(z) ≈ 0.0199
z + 1

z2 − 1.960z + 1
,

with poles at p± = cos Ts ± isin Ts ≈ 0.980 ± 0.199i, on the unit circle. In the
notation of the previous section,

N(z) = (1 − cos Ts)(z + 1) and N(1) = 2(1 − cos Ts) ,

and the denominator is D(z) = z2−2 cos Tsz+1. The discrete transfer function
leads to a controller

Kd(z) =
D(z)

z2N(1) − N(z)
=

(
1

1 − cos Ts

)
z2 − 2 cos Tsz + 1

(2z + 1)(z − 1)
.

We use this controller, with Ts = 0.2, to calculate the response in Exam-
ple 5.10.
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5.20 Feedforward gain. For a steady-state output y = r, you can add an offset krr
to the input u. Show that kr = [C(I − A + BK)−1B]−1 for a discrete system. Cf.
Eq. 4.47.

Solution.

xk+1 = (A − BK)xk + Bkrrk

Then, at steady state xk+1 = xk ≡ x, and

x(I − A + BK) = Bkrrk ,

and

x = (I − A + BK)−1Bkrrk .

Finally,

yk = Cx = C(I − A + BK)−1Bkrrk = rk ,

=⇒ kr =
+1

C(I − A + BK)−1B
.

5.21 Feedforward control of an oscillator. For the feedforward filter in Figure 5.13,

a. Implement numerically the feedforward control and reproduce the nine
graphs. Design a feedforward filter by inverting the denominator and adding
poles at zero. Produce the continuum response using the hybrid procedure
of Section 5.4.3. For Ts =

π
2 and 1

2 , find Gd(z), the parameter λ, and the
feedforward F(z).

b. The zn in the denominator of a feedforward filter means that we can write it
as an FIR filter with delay: F(z) = F0 + F1z−1 + F2z−2 · · · . In the time domain,
this is uk = F0rk + F1rk−1 + F2rk−2 · · · . Put the transfer functions from (a)
in this form, and show that they transform the reference rk into the desired
“shaped-input” uk.

c. Show that the input amplitude ∼ [4 sin2(ωTs/2)]−1, where ω = 1 is the angu-
lar frequency of the oscillator. The factor is ∼ (ωTs)−2 as Ts → 0. The
ω−2 dependence mirrors the high-frequency response of the original transfer
function.

d. Investigate numerically the impact of oscillator damping. Plot the shaped
inputs and both discrete and continuous outputs for a reference step, for ζ =
{0, 0.4, 1}.

Solution.

a. From Problem 5.10, the ZOH discretization of G(s) = 1
s2+1 is

Gd(z) =
(1 − cos Ts)(z + 1)
z2 − 2(cos Ts)z + 1
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For Ts =
π
2 , we have

Gd(z) =
z + 1
z2 + 1

, λ = 2 , F(z) =
z2 + 1

2z2
.

For Ts =
1
2 , we have (to two decimal places)

Gd(z) =
0.12 (z + 1)

z2 − 1.76 z + 1
, λ = 0.24 , F(z) =

z2 − 1.76 z + 1
0.24 z2

.

Notice that in going from Ts = π/2 = 1.57 to 0.5, the scale factor in the
feedforward filter increased a factor 2/0.24 ≈ 8.2.
See Mathematica notebook for more details.

b. FIR forms. From part (a), we read off, for Ts = π/2,

uk = 0.5rk + 0.5rk−2

and, for Ts = 0.5,

uk = 4.1rk − 7.2rk−1 + 4.1rk−2

We verify that these produce the desired uk in Figure 5.13 and that these
system inputs lead to the correct outputs yk.

c. Amplitude-speed tradeoff. Going back from scaled units, we have Ts → ωTs

and

Gd(z) = (1 − z−1)

(
1
ω2

)
Z (1 − cosωkTs)

= (1 − z−1)

(
1
ω2

) [
1

(1 − z−1)
− 1 − z−1 cosωTs

1 − 2z−1 cosωTs + z−2

]

=

(
1
ω2

)
(1 − cosωTs)(1 + z)
1 + z2 − 2z cos(ωTs)

.

In constructing a feedforward filter, our rule is to extract the denominator of
den(z) = Gd(z) and evaluate λ = den(z = 1). The scale factor is the inverse of
λ. Here, this gives us

λ−1 =
[
1 + z2 − 2z cos(ωTs)

]
z=1
= 2[1 − cos(ωTs)] = 4 sin2

(
ωTs

2

)
≈ (ωTs)

2 .

Thus, the required scaling amplitude diverges as ωTs → 0. This increase in
amplitude is the price we pay for making our system go faster than it “wants
to.” (The easiest frequency, of course, is the natural frequency of the system,
ω = 2π f .)

d. Damping. It is easy to add damping (numerically). We simply go through the
above procedure with G(s) = 1

1+2ζs+s2 . Qualitatively, damping increases the
needed amplitudes and breaks the symmetry of the pulse waveforms that you
may have observed in part (a).
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The three damping cases for r(t) = θ(t − Ts), with Ts = π/2, are shown below.

5.22 Deadbeat control of an undamped oscillator in one time step? Try to make a one-
step deadbeat controller for G(s) = 1

s2+1 by enforcing Td(z) = 1
z .

a. Show that the required controller has the form Kd(z) = 1
1−cos Ts

z2−2 cos Tsz+1
(z+1)(z−1) .

b. Reproduce the margin figure in Section 5.4.3.
c. The oscillatory step response arises because a controller pole cancels the sam-

pling zero at −1. To see the problem in a simpler context, compare transfer
functions G1(z) = 1 and G2(z) = z−a

z−a . Compute the output yk given an initial
condition y0.

Solution.

a. We recall again the ZOH discretization of the oscillator:

Gd(z) =
(1 − cos Ts)(z + 1)
z2 − 2(cos Ts)z + 1

With Td(z) = 1
z , the discrete controller is

Kd(z) =
G−1

d

T−1
d − 1

=
z2 − 2(cos Ts)z + 1
(1 − cos Ts)(z + 1)

(
1

z − 1

)
=

(
1

1 − cos Ts

)
z2 − 2 cos Tsz + 1

z2 − 1
.

The system has poles on the unit circle (cf. Problem 5.10d) that the controller
tries to “cancel out.”

b. The controller leads to the dynamics sketched in the problem, for Ts = 0.2.
See code on book website.

c. In the time domain, G1(z) = 1 converts to the time-domain equation yk = uk

(for no input). For G2(z) = z−a
z−a , we have

yk+1 − ayk = uk+1 − uk .

The dynamics in case 1 is simply yk = y0 + uk. But for the nominally identical
case 2, it is

yk = ak y0 + uk .
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For |a| < 1, the term due to the initial value y0 decays to zero, and the two
dynamics are the same. For |a| = 1 (applied to the one step deadbeat control,
where the pole-zero combination is at −1), the initial condition will be pre-
served in amplitude (and oscillate with period two when = −1). For |a| > 1,
the output will diverge.
The conclusion is that one should avoid controllers that add poles to cancel
system zeros, especially when they are on or outside the unit circle. Notice
that both the deadbeat controller attempt given here and the “true” one
given earlier introduce a pole at z = +1. This leads to problems for input
disturbances at ω = 1/Ts, which are then not damped.
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Problems

6.1 Timing jitter. Fluctuations in sampling a signal lead to low-pass filtering
and distort the apparent transfer function. The phenomenon is similar to
the Debye-Waller factor for X-ray scattering from crystal lattices at finite tem-
peratures. To see this, we follow Souders et al. (1990) and consider timing
fluctuations τk ∼ p(τ) at time step k, as illustrated at right. Define the jitter
signal f j(t) ≡ 〈 f (t + τ)〉, where the angle brackets denote an ensemble average
over p(τ), which we assume to be even in τ.

a. Show that jitter acts as a convolution and hence that the continuous-time
Fourier transform f j(ω) = f (ω)ϕτ(ω), where f (ω) is the Fourier transform of
the original signal and ϕτ(ω) is the characteristic function (Fourier transform)
of p(τ).

b. Consider a measurement with sampling at nominal times kTs. Because of
jitter, the actual measurement times are at kTs + αkTs, where αk ∼ N(0, α2).
Show that timing jitter limits the bandwidth to ωb = ωs/(

√
2πα), with ωs =

2π/Ts.

Solution.

a. The jitter function f j(t) is defined to be

f j(t) =
∫ ∞

−∞
dτ f (t + τ) p(τ)

=

∫ −∞

∞
d(−τ) f (t − τ) p(−τ) , substituting τ→ −τ

=

∫ ∞

−∞
dτ f (t − τ) p(τ) , since p(τ) = p(−τ)

= [ f ∗ ϕτ](t) .

Thus, the expected effect of jitter is to act as a convolution on the original
function f (t). Then, the convolution theorem for Fourier transforms gives

f j(ω) = f (ω)ϕτ(ω) .

103
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b. For Gaussian jitter with standard deviation τ = αTs, the characteristic
function of the normal distribution N(0, τ2) is given by

1√
2πτ2

∫ ∞

−∞
dτk exp

(
− τ2

k

2τ2

)
eiωτk = exp

{(
− 1

2τ
2ω2

)}
= exp

{(
− 1

2α
2T 2

s ω
2
)}

= exp

{(
−α

22π2ω2

ω2
s

)}
.

The values of the sampled spectrum with no jitter are then multiplied by the

number exp
{(
−α22π2ω2

ω2
s

)}
, which reduces the amplitude at a given frequency

and thereby restricts the bandwidth to roughly ωb = ωs/
(√

2πα
)
≈ ωs/(4.4α).

As hinted in the problem statement, timing jitter is a kind of one-dimensional
version of the problem of X-ray scattering from crystal lattices. The result gives
a useful perspective on the common interpretation of the Debye-Waller factor
as implying that thermal motion of atoms broadens diffraction peaks in X-ray
scattering. It doesn’t. Rather, we see here that the proper statement is that the
amplitude of the peaks is lowered, while the width remains unchanged. This is
the low-pass filtering due to the “jitter” of atomic motion.

6.2 Crest factor. The crest factor Cr[u(t)] measures the maximum amplitude of a
signal for a given RMS power. For a waveform of period τ, it is defined as

Cr[u] =
umax

urms
, umax = max

0≤t≤τ
|u(t)| urms =

√
1
τ

∫ τ

0
dt u2(t) .

A good input signal should have a small crest factor, to inject power into a sys-
tem while keeping the maximum amplitude low enough to avoid a nonlinear
response.

a. Elementary cases: Show that a square wave has Cr = 1, a single sine has Cr
=
√

2, and a Dirac delta function has Cr = ∞.
b. Multisine signals. Consider periodic signals uN(t) of period T that are

the sum of N harmonics. With ωn = 2πn f0 = 2πn/τ, we have uN(t) =∑N
n=1 An cos(ωnt + ϕn). Show that u2

rms =
1
2

∑N
n=1 A2

n, independent of the value
of the phases ϕn. Set An = 1/

√
N, so that urms = 1/

√
2, and the crest function

depends only on umax. Set also ϕ1 = 0 by overall translational invariance and
f0 = τ = 1 for convenience.

c. Fast numerical calculations. Show that you can vastly speed up the explicit
sum for uN(t) by defining the signal in the Fourier domain and taking the
inverse Fourier transform. Choose Ns, the total number of points in a period
of the waveform, to be a power of 2. Why is the Fourier-method much
faster than the time-domain sum? Write a program to calculate the waveform
using the two methods. The two waveforms should agree to within machine
precision. For Ns = 1024 and N = 255, show that the speed-up is ≈ 100-fold.
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d. N cosines, done wrong. For N cosines, the worst choice is to set ϕn = 0. Plot
the N = 2, 3, 4 cases and show that Cr =

√
2N.

e. Small number of harmonics. We can use brute-force numerics to find the
optimum phases. Search an N − 1 dimensional grid for all possible phase
values. Obviously, the time to solve the problem grows exponentially, but
small problems can be solved easily on a laptop. Your solutions for N ≤
4 should resemble the graphs at right. Note how, for N ≥ 2, the optimal
Cr decreases with N. Give the phases of the waves and state Cr with more
precision.

f. Random phases: In the limit of a large number of harmonics, N → ∞, one
idea is to choose phases randomly from a uniform distribution between 0 and
2π. In this part, we investigate the properties of the average crest factor. In
particular, we will see that 〈Cr〉 ≈ √

2 ln(2N), a number that is 3–4 for typical
values N (say 100 to 1000) and varies little with N in this range.

i. The N = 1 case corresponds to a single cosine. Clearly, for N = 1 and
A1 = 1, we have umax = 1 for all choices of ϕ1. But if we choose ϕ1 ran-
domly and look at a random time t, what is the probability density p1(u)?
Argue that this is equivalent to picking a random angle θ from (0, 2π). Use
the change-of-variables formalism for probability distributions to show
p1(u) = 1

π
1

1−u2 . Verify that 〈u〉 = 0 and 〈u2〉 = 1
2 , consistent with the result

in Figure 6.3b.
ii. For N harmonics of amplitude 1/

√
N, use the Central Limit Theorem

(Appendix A.7.3) to show that limN→∞ pN(u) ∼ N(0, 1
2 ) (Figure 6.3b).

iii. Extreme Value Statistics. If we draw M times from a probability distri-
bution p(u), what is the typical value for umax? Let F(u) =

∫ u

−∞ du′ p(u′)
be the cumulative distribution for p(u). The probability to draw a value
greater than u from p(u) is 1−F(u). Argue that the typical largest absolute
value umax in M draws from p(u) is given by the solution to the equation
2M[1 − F(umax)] = 1. Derive the transcendental equation for M (involves
erfc). What value to take for M? Since uN(t) has frequencies up to N f0,
we must sample several times the fastest period in order to see the maxi-
mum (16 samples per period determines the maximum to better than 1%).
But if we sample too often, the maximum value will saturate, meaning
that not all draws are independent. Empirically, the maximum number of
effectively independent draws is about M = 5N.

iv. Confirm via simulation the results of these calculations shown below. In
Figure 6.3d, we simulate, using 10 000 runs, a histogram of the distribu-
tion of crest factors (for N = 255 and Ns = 4096). The histogram follows
a Gumbel distribution, as expected for the maximum of M draws from a
parent distribution that decays exponentially or faster. The theorem is
very much analogous to the Central Limit Theorem. The black curve in
Figure 6.3d is calculated given the normal distribution from this problem
(Gumbel, 1958).
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g. Not-so-random phases. Do random phases produce the lowest crest factor
for large N? No! Figure 6.4c shows a deterministic choice that gives a crest
factor of ≈ 1.66 but works only when all harmonics up to a maximum value
are selected. Here is a simple way to lower the crest factor that works for
any choice of harmonics: Generate Ntrials random-phase multisine waveforms
and select the one with the lowest crest factor. For 100 harmonics and 1000
points per fundamental period, your plot should resemble the one at left.
Crest factors � 2.5 are readily obtained by this method. Using numerical
optimization techniques to adjust systematically the phases can further lower
the crest factor to ≈ 1.4 (Schoukens et al., 2012).

Solution.

a. Square wave. Let the square wave values be ±A. Then clearly umax = A. Since
u(t)2 = A2, we have urms = A and Cr = 1.
Sine wave. Let u = A cos 2πt. Then umax = A and u2

rms = A2
∫ 1

0
dt cos2 2πt =

A2/2, so that Cr =
√

2.
Delta function. Let u(t) = limA→∞ A for 0 < t < 1/A, which goes to a unit-
amplitude delta function as A → ∞. Then umax = A and urms =

√
A if we take

the period of the waveform to be unity. Thus, Cr =
√

A, which diverges.
b. We write

u2
N =

⎛⎜⎜⎜⎜⎜⎝ N∑
n=1

An cos(ωnt + ϕn)

⎞⎟⎟⎟⎟⎟⎠
2

=

N∑
n=1

A2
n cos2(ωnt + ϕn) +

∑
m�n

AmAn cos(ωmt + ϕm) cos(ωnt + ϕn) .

When we average u2
N over the period τ, the direct terms give

1
τ

∫ τ

0
dt cos2(ωnt + ϕn) =

1
τ

∫ τ

0
dt cos2(ωnt) =

1
ωn

ωn

2π

∫ 2π

0
dθ cos2 θ =

1
2
,

whose sum gives us the required identity. On the other hand, the cross terms
can be rewritten as

cos(ωmt + ϕm) cos(ωnt + ϕn)

= 1
2

{
cos

[
(ωm + ωn)t + ϕm + ϕn

]
+ cos

[
(ωm − ωn)t + ϕm − ϕn

]}
.

Because ωm ± ωn = ωm±n, the sums and differences in the cross terms are
themselves sines and cosines with harmonic frequencies (integer multiples of
f0). These terms then average to zero when integrated over a full period τ.

c. Speed up for different cases:

N Ns speedup
28 − 1 = 255 211 = 1024 100

210 − 1 = 1023 212 = 4096 520
212 − 1 = 4095 214 = 16 384 2100
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d. For ϕn = 0, the graphs tend to a delta function as N → ∞. The maximum
amplitude is at t = 0, 1, . . .. We have u(0) = 1√

N

∑N
n=1(1) =

√
N, so that Cr

=
√

N/(1/
√

2) =
√

2N.
e. For plots, here are N = 2, 3, 4:

N Cr Phase
1

√
2 —

2 1.76 1.58
3 1.62 2.85, 2.16
4 1.48 0, π, 0

f. We have

i. We change variables to u = cosϕ:

p(u) =
1

2π

∑ 1
du/dϕ

=
1

2π
(2)

1√
1 − u2

,

where the factor of 2 comes from the ±u roots. The sum of N random
variables of mean 0 and variance 1

2N then tends towards a Gaussian of
mean 0 and variance N × 1

2N =
1
2 . Note that the variance with A = 1/

√
N

is 1/2N.
ii. From the previous part, we have the sum of N random variables of mean

0 and variance 1
2 . Summing N of these with an amplitude 1/

√
N (vari-

ance 1/N), by the CLT approaches a Gaussian of mean 0 and variance
N(1/2)(1/N) = 1

2 .
iii. The probability that one point drawn at random from uN(t) exceeds the

value u is 1−Φ(u). If we pick M independent points in uN(t), the probability
that all of them are less than u is

{1 − [1 − Φ(u)]}M ≈ e−M[1−Φ(u)] ,

The scale value is e−1. Taking logarithms, we have

M[1 − Φ(u)] ≈ 1 .

In this problem, either tail (±u) is ok, so [1 − Φ(u)] → 2[1 − Φ(u)]. Thus,

2M[1 − Φ(u)] = 1 ,

which gives the condition to determine umax.



108 System Identification

Since uN ∼ N(0, 1
2 ), we have

p(uN) =
1√

2πσ2
e−u2

N/2σ
2
=

1√
π

e−u2
N

and

1 − Φ(uN) = 1
2 erfc(uN/

√
2σ2) = 1

2 erfc(uN) ,

with erfc the complementary error function. We then determine umax

numerically by solving the transcendental equation

erfc(umax) =
1
M

for umax(M).

Note that it is tempting to think that, since M � 1, we can try an
asymptotic expansion for erfc. The large-u expansion is

erfc(u) ∼
⎛⎜⎜⎜⎜⎝ e−u2

u
√

π

⎞⎟⎟⎟⎟⎠ (
1 + O(u−2)

)
.

Dropping any higher-order terms leads to another relation for u(M):

e−u2

u
√

π
=

1
M
.

The temptation is to take logs, ignore the denominator terms, and
conclude that

umax ∼
√

ln M ,

a simple, elegant, but not terribly accurate result. For example, even with
M = 106, the equation erfc(u) = 1/M gives u ≈ 3.45, while u ≈ √

ln M gives
3.72. Empirically, setting M = 2N (with N the number of frequencies) in
the approximation gives a value for umax and Cr that is accurate to better
than 1% for N > 100. This leads to the expression Cr =

√
2 ln(2N) in the

figure caption in the problem.
iv. See the book for the graphical results.

g. See graph in book.

6.3 Frequency chirp. As illustrated at left, a frequency chirp consists of a sinusoid
of continuously varying frequency. It “runs together” the individual sinusoids
of the frequency-domain method. We retain the advantage of probing (almost)
frequency by frequency but set aside the need to wait for the transients to die
away. We also easily control the amplitude of each frequency, boosting in regions
where the output is weak, if needed.

a. Find an analytic form for a chirp that sweeps from a frequency f1 to f2 in a
time τ.
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b. One disadvantage is that the power spectrum differs from the ideal “brick-
wall” of a multisine. Plot the power spectrum numerically for a chirp that
goes from 1 to 2 Hz over a time τ = 10, 100, and 1000 s.

c. Compute the fraction of power that falls outside the 1–2 Hz range, as a
function of τ. How does the error decrease with τ?

Solution.

a. Analytic form for a chirp:

u(t) = u0 cos

(
dϕ
dt

)
, ϕ(t) = f0t +

t2

2τ
( f1 − f0) .

Taking the derivative of ϕ(t) gives a time-dependent frequency of

dϕ
dt

≡ f (t) = f0 +
t
τ

( f1 − f0) .

b. Power spectrum. See left plots.
c. The error decreases as τ−1/2, which is quite slow.

6.4 Discrete random binary sequence (DRBS). Binary signals have a crest factor of
1 (see Problem 6.2) and thus inject the most power for a given input range. To
define a DRBS, at every time interval kTs, choose ±u0, with equal probability for
+u0 and −u0, as shown at right. Here, we explore a number of properties of these
signals.

a. Show – perhaps handwaving is good enough – that the autocorrelation
function Ruu(τ) = 1 − τ

Ts
for |τ| < Ts and that it vanishes for larger |τ|.

b. From the autocorrelation function, find the power spectrum.
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c. Write a program to input a DRBS to a harmonic oscillator. Extract the trans-
fer function and compare to the expected form. Be careful about aliasing.
Show that oversampling – sampling the input and output at rates that are
integer multiples of the original sampling frequency – helps.

Another binary signal variant is the pseudo-random binary sequence (PRBS),
a deterministic sequence generated by a combination of shift registers and XOR
logical operations. Its spectrum again is close to white. Its chief advantages are (i)
because it is deterministic, its autocorrelation function may be calculated exactly,
with no extra statistical uncertainty due to finite lengths of records. (ii) You can
measure the signal repeatedly and average the output, reducing the effects of
measurement noise. (iii) Because the sequence is periodic, the amount of power
that “leaks” outside the desired band is much less than a DRBS signal.

Finally, because they probe just two values, binary sequences do not help to
detect nonlinearity. It is then better to use an input that explores all levels.

Solution.

a. For τ = 0, the statement is fairly obvious. The product u(t) u(t+τ) = u(t)2 = u2
0.

Then

Ruu(τ = 0) = lim
T→∞

1
2T

∫ T

−T
dt u2

0 = u2
0 .

For |τ| < Ts, we note that a linear fraction, 1 − |τ|/Ts is “coherent” in this
way, whereas the rest is incoherent and averages to zero, in an infinite sample.
Similarly, for |τ| > Ts, every point is incoherent and thus averages to zero.
Putting all this together gives the desired identity.

b. Power spectrum From the Wiener-Khintchine relation, the power spectrum
is

S uu(ω) = τ sinc2
(
ωτ

2

)
.

c. Notes on program. Maybe add some typical output?

6.5 Noise and Fourier transforms. Consider a sampled time series of observation
noise ξk that is white, with 〈ξk〉 = 0 and 〈ξk ξk′ 〉 = ξ2δ kk′ and with 0 ≤ k ≤ N − 1.

a. Show that the discrete Fourier transform ξ(�) satisfies 〈ξ(�)〉 = 0 and
〈ξ(�) ξ(�′)∗〉 = Nξ2δ ��′ . Here, 0 ≤ {�, �′} ≤ N − 1.

b. Why is each Fourier component statistically independent, even though it is
built up from the entire time series?

c. The time series has N components, but the DFT has 2N components, since
ξ(�) is complex. Further, the real and imaginary parts of ξ(�) are statistically
independent. How can N independent noise components lead to 2N Fourier
components?

d. Show that Parseval’s theorem is satisfied and explain the physical significance:

N−1∑
k=0

〈
ξ2

k

〉
=

1
N

N−1∑
�=0

〈
|ξ(�)2|

〉
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Note: For colored time-domain noise, ξk =
∑

n hk−n en, for white noise
en ∼ N(0, 1). Then a similar argument to (a) gives 〈ξ(�) ξ(�′)∗〉 =
N|H(

e−2π i�/N)|2 δ ��′ , where H(·) is the Z-transform of hk. The Fourier compo-
nents remain independent complex, zero-mean Gaussian variables, but with
frequency-dependent variances.

Solution.

a. Noting that the times series coefficients ξk are real, we have

〈
ξ(�) ξ(�′)∗

〉
=

N−1∑
k,k′=0

〈
ξk e

−2π ik�
N ξk′ e

2π ik′�′
N

〉

=

N−1∑
k,k′=0

〈ξk ξk′ 〉 e
−2π ik�

N e
2π ik′�′

N

= ξ2
N−1∑

k,k′=0

δ k,k′ e
−2π ik�

N e
2π ik′�′

N

= ξ2
N−1∑
k=0

e
−2π ik(�−�′ )

N

= Nξ2δ ��′ .

b. Even though each Fourier component is built up of all the time series ele-
ments, they are all orthogonal by construction and thus are independent
variables. It is as if we take a certain amount of randomness and apportion it
to different basis vectors.

c. The 2N Fourier variables are not all independent. Because ξk are real, the
DFT components satisfy ξ(N − �) = ξ(�)∗, giving N independent components.

d. Mathematically, Parseval’s theorem is a simple consequence of part (a). Set-
ting � = �′, we have 〈|ξ(�)|2〉 = Nξ2, so that 〈ξ2

k 〉 = (1/N)〈|ξ(�)|2〉 = ξ2.
Physically, the noise power is the same, whether summed up in the time
domain or in the frequency domain.

6.6 Aliasing, two ways. We can calculate the power spectrum of a sampled signal
via the sampling theorem (Chapter 5) or directly from the discrete dynamics
(Chapter 6). In a simple case, the two approaches give the same answer: Con-
sider noise-free observations of a 1d Brownian particle, where γẋ(t) = ξF(t).
The noise 〈ξF(t) ξF(t′)〉 = √

2D γ δ (t − t′), and the power spectral density is
〈|x|2〉(ω) = 2D/ω2. Now sample x(t) at intervals Ts, giving xk. Calculate its power
spectrum two ways:

a. Discretize the continuous equations by integrating over Ts. Take the Z-
transform and calculate the magnitude.

b. Use the sampling theorem, Eq. (5.3), and
∑∞

n=−∞
1

(ω−nωs)2 =
π2

ω2
s

csc( πω/ωs)
2.

Derive the required identity by applying Parseval’s Theorem to f (t) = eiωt,
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assuming the function to be periodic with period Ts and to have jump
discontinuities (Stone and Goldbart, 2009, Section 2.2.3).

Verify that as ω → 0, your discrete power spectrum approaches the continuous
one.

Solution.
The goal is to show that, for a signal sampled at intervals Ts, the power

spectrum is 〈
|x|2

〉
(ω) =

DT 2
s

1 − cosωTs
.

Before starting, note the units: DT 2
s has units of �2 · t. Evaluating the inte-

gral
∫

dω
〈
|x|2

〉
(ω) over a range of frequencies thus gives a length squared, as

it should.

a. Discretization and the Z-transform: We discretize exactly by integrating over
an interval Ts, giving the discrete dynamical system,

xk+1 = xk + ξk , 〈ξn〉 = 0 , 〈ξk ξ�〉 = 2DTs δ k� .

Taking the Z-transform gives

(z − 1) x(z) = ξ(z) =⇒ |x|2(z) =
|ξ|2

|z − 1|2 .

We then evaluate at z = eiωTs , which implies that

|z − 1|2 =
(
eiωTs −1

) (
e− iωTs −1

)
= (1 − 2 cosωTs + 1) = 2(1 − cosωTs) .

Using the relation 〈|ξ|2〉 = (2DTs) Ts, we then find〈
|x|2

〉
(ω) =

DT 2
s

1 − cosωTs
.

b. Alternatively, we recall from the sampling theorem, Eq. (5.3), that we can
write the Fourier transform of the continuous signal x(t) as

xs(ω) =
1
Ts

∞∑
n=−∞

x(ω − nωs) .

From x(ω) = − iξv(ω)/ω, we have

xs(ω) =
− i
Ts

∞∑
n=−∞

ξv(ω − nωs)
ω − nωs

.

Since ξv(ω) represents white noise, the ensemble average is

〈ξv(ω) ξv(ω′)〉 = 2DT 2
s δ (ω − ω′)

and, hence, 〈
|xs|2

〉
(ω) = 2D

∞∑
n=−∞

1
(ω − nωs)2

,
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where ωs = 2π/Ts. We then use the identity
∞∑

n=−∞

1
(ω − nωs)2

=
π2

ω2
s

csc

(
πω

ωs

)2

=
T 2

s

4
1

sin
(
ωTs

2

)2
=

T 2
s

2
1

1 − cosωTs

to conclude that 〈
|xs|2

〉
(ω) =

DT 2
s

1 − cosωTs
.

Here, the Fourier transform of the sampled-signal is denoted xs(ω), to
distinguish it from the Fourier transform of the continuous signal, x(ω).

To establish the identity
∞∑

n=−∞

1
(ω − nωs)2

=
π2

ω2
s

csc

(
πω

ωs

)2

,

Fourier expand f (t) = eiωt, assuming f (t) to be periodic, with period Ts:

f (t) = eiωt =

∞∑
n=−∞

cn einωst .

The Fourier series coefficients cn are given by

cn =
1
Ts

∫ Ts

0
dt f (t) e− inωst

=
ωs

2π

∫ Ts

0
dt ei(ω−nωs)t

=

(
ωs

2π

) 2 sin π
ωs

(ω − nωs)

ω − nωs

=

(
ωs

π

) sin πω
ωs

ω − nωs
,

where the last identity uses sin
(
θ − nπ

)
= sin θ. Finally, Parseval’s theorem

equates || f (t)||2 = (1/Ts)
∫ Ts

0
dt f (t) f ∗(t) =

∑
n |cn|2. Since || f (t)||2 = 1, we have

1 =
(
ωs

π

)2
sin2

(
πω

ωs

)2 ∞∑
n=−∞

1
(ω − nωs)2

.

Rearranging gives the desired identity. More general cases can be treated via
the Poisson summation formula. See Problem A.4.2.

Finally, for small ω, the sampled-signal power spectrum is〈
|x|2

〉
(ω) ≈ DT 2

s

1 −
[
1 − 1

2 (ωTs)2
] = 2D

ω2
,

which completes the “loop” back from the sampled signal power spectrum to
that of the original continuous signal.
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6.7 Bias of transfer function estimates. The simple estimate of a transfer function as
the ratio of two noisy DFT variables is biased. That is, 〈G〉 =

〈 y+ξy

u+ξu

〉
� y

u , where
we drop the frequency dependence on all quantities. Assuming that 〈ξy ξ

∗
u〉 = 0,

the bias arises entirely from the fluctuations in the input, ξu. Thus, we simplify
by setting ξy = 0. Scaling by y/u and setting z = ξu/u, we can study the bias
by comparing 〈b(z)〉 ≡

〈
1

1+z

〉
to 1. Here, z = x + iy, with x, y ∼ N(0, σ2/2) and

σ = 1/SNRu.

a. Taylor expand to show that 〈|b(z)|2〉 = 1 + σ2 + O(σ4). Intuitively, negative
fluctuations increase |b|2 more than positive fluctuations decrease it. Indeed,
if z can take the value ≈ −1, the corresponding fluctuation in b will be very
large.

b. Since z is complex, its statistics are tricky. Show that 〈z2〉 = 0.
c. Expand 〈b(z)〉 =

〈
1

1+z

〉
in a full Taylor series and use the result from the pre-

vious part to conclude, incorrectly, that 〈b(z)〉 = 1. Where is the flaw in the
argument?

d. Calculate the bias directly, by integrating b(z) over the probability distribu-
tion for z. By evaluating the integral first in terms of the real and imaginary
components (x and y) and then converting to polar coordinates, show that
〈b(z)〉 = 1 − e−1/〈|z|2〉.

Solution.

a. We have

〈|b|2〉 =
〈∣∣∣∣∣ 1

1 + z

∣∣∣∣∣2
〉

=

〈
1

(1 + x)2 + y2

〉

≈
〈
1 − 2x − x2 − y2 + 4x2 + · · ·

〉
= 1 − 0 − σ2

2
− σ2

2
+ 4

σ2

2
+ · · ·

= 1 + σ2 + O(σ4) .

b. We have 〈z2〉 = 〈(x + iy)2〉 = 〈x2 − y2 + 2 ixy〉 = σ2

2 − σ2

2 + 2i(0) = 0.
c. Since 〈z〉 = 〈z2〉 = 0, the higher-order moments are also zero. This can be seen

by noting that the moment-generating function is M(k) = e〈z〉k+
1
2 〈z2〉k2

= e0 = 1
and that the mth moment is given by the mth derivative of M(k), evaluated at
k = 1.
You might then conclude that 〈b(z)〉 = 1 − 〈z〉 + 〈z2〉 − 〈z3〉 + · · · = 1. The
conclusion is false, however, because in order for the Taylor series to be valid,
z must be in the region of convergence in the complex plane (|z| < 1). But
fluctuations in z are unbounded, and a Taylor series is not allowed.
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d. We have

〈b(z)〉 =
∫

dz
1

1 + z
p(z)

=

∫
dz

1
1 + z

(
1

2π(σ2/2)
e
−|z|2
σ2

)

=
1

πσ2

�
R2

dx dy
1 + x −���

0

iy
(1 + x)2 + y2

e−
x2+y2

σ2

=
1

πσ2

�
R2

dx dy
1 + x

(1 + x)2 + y2
e−

x2+y2

σ2

=
2
σ2

∫ ∞

0
dr r e−

r2

σ2

[
1

2π

∫ 2π

0
dθ

1 + r cos θ
1 + r2 + 2r cos θ

]

=
2
σ2

∫ ∞

0
dr r e−

r2

σ2

⎧⎪⎪⎨⎪⎪⎩1 0 < r < 1

0 r > 1

=
2
σ2

∫ 1

0
dr r e−

r2

σ2

=

∫ 1/σ2

0
du e−u

= 1 − e−1/σ2
.

In the third line, the y numerator-term in the integral vanishes because the
integrand is an odd function of y that is integrated over −∞ < y < ∞. Notice
how the result shows an essential singularity for σ→ 0. The result is “beyond
all orders” of perturbation theory in σ2.

6.8 Variance of transfer function estimate. For high SNR, Problem 6.9 shows that
fluctuations about the mean value of a complex number are approximately Gaus-
sian. Using this idea and the result in Problem 6.7b, Taylor expand the transfer
function estimate δG = (y0 + δy)/(u0 + δu) −G0 to derive Eq. (6.10). First derive
the result in terms of the unknown true values u0 and σ2

u = 〈|δu|2〉, etc. and then
express in terms of the estimated means and variances given by Eqs. (6.7) and
(6.8), for M periods of the input function u = u0+δu. All quantities are functions
of the frequency ω�.

Solution.
For one measurement block, we have

δG =

(
y0 + δy
u0 + δu

)
−

(
y0

u0

)

=
y0

u0

(
1 + δy/y0

1 + δu/u0
− 1

)

≈ G0

(
δy
y0
− δu

u0

)
,
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where we expand to first order. The variance is then

σ2
|G| ≡

〈
|δG|2

〉
= |G0|2

〈(
δy
y0
− δu

u0

) (
δy
y0
− δu

u0

)∗〉

= |G0|2
⎡⎢⎢⎢⎢⎢⎣ σ2

y

|y0|2 +
σ2

u

|u0|2 − 2 Re

⎛⎜⎜⎜⎜⎜⎝ σ2
yu

y0 u∗0

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ .

Note that we neglect terms such as 〈( δu/u0)2〉, following the result from
Problem 6.7b.

If we then measure M periods of the input, we can replace all quantities by
their estimates. The variance of the estimate is also reduced by a factor of M,
since we have M realizations of the single period estimates. This gives, finally,

σ̂2
|G| ≈

( |Ĝ|2
M

) ⎡⎢⎢⎢⎢⎢⎣ σ̂2
y

|ŷ|2 +
σ̂2

u

|û|2 − 2 Re

⎛⎜⎜⎜⎜⎜⎝ σ̂2
yu

ŷ û∗

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ .

The approximation is threefold:

a. Replacing exact quantities by the estimates (e.g., y0 → ŷ);
b. ignoring the corrections to Gaussian distributions discussed in Problem 6.7;
c. neglecting correlations between the noise in one input block and its effect on

the output of the next block.

6.9 Amplitude and phase noise. Complex Gaussian random variables z = x + iy
with non-zero mean result from taking a discrete Fourier transform of a finite-
amplitude signal. Let x ∼ N(x0, σ

2) and y ∼ N(y0, σ
2) be independent Gaussian

random variables. Define fluctuations δx = x − x0 and δy = y − y0, and define
magnitude and phase variables r = r0 + δr and θ = θ0 + δθ. Define the signal-to-
noise ratio as SNRx = x0/σ and SNRy = y0/σ.1

a. For high SNR (� 1), find δr and δθ to first order. Calculate the mean and
variance of each and show that 〈 δr δθ〉 = 0. Interpret the result geometrically.

b. Describe the zero SNR case (r0 = 0). Derive (or guess) the radial and angular
distributions for this case. Then describe how the low SNR case (δx and δy
comparable to r0) interpolates between the high-SNR and zero-SNR cases.
Illustrate three cases (high, low, and zero SNR) by Monte Carlo simulations.
For each case, plot p(r, θ) and the marginal plots p(r) and p(θ).

c. One subtlety is that the mean of the magnitude is biased. An exact calculation

gives 〈r〉 =
√

r2
0 + σ

2. Interpret this result physically. Derive it approximately
by continuing the Gaussian expansion for r to second order in the noise.

This problem asks you to think physically about the distributions p(r) and p(θ),
but they are straightforward to investigate analytically, as well (Goodman, 2007).

1 Physicists often define signal-to-noise ratios in terms of amplitudes, engineers in terms of power.
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For reference, if r0 = (r0 cos θ0, r0 sin θ0) and r = (r cos θ, r sin θ), then

p(r) =
1

2πσ2
exp

{[
− 1

2σ2
|r − r0|2

]}

p(r, θ) =
r

2πσ2
exp

{{
− 1

2σ2

[
r2 + r2

0 − 2rr0 cos(θ − θ0)
]}}

.

• Integrating out θ leads to p(r) =
∫ 2π

0
dθ p(r, θ) = r

σ2 exp
{(−(r2+r2

0)
2σ2

)}
I0

(
r r0

σ2

)
(Rice

distribution), with I0(·) a modified Bessel function of the first kind of order zero.
• Integrating out r by p(θ) =

∫ ∞
0

dr p(r, θ) gives, with r̄ = r0/σ,

p(θ) =
1

2π
exp

{(
− 1

2 r̄2
)} [

1 +

(
r̄ cos θ√

2

)
exp

{(
1
2 r̄2 cos2 θ

)} ∫ r̄ cos θ

−∞
dr′ exp

{(
− 1

2 r′2
)}]
.

Solution.

a. Expanding r2 − r2
0 and tan θ − tan θ0, we have

δr =
x0δx + y0δy

r0
, δθ =

x0δy − y0δx

r2
0

.

Since 〈 δx〉 = 〈 δy〉 = 0, we have 〈 δr〉 = 〈 δθ〉 = 0. For the second moments
and variances, we use 〈 δx2〉 = 〈 δy2〉 = σ2 and 〈 δx δy〉 = 0 to show

〈 δr2〉 = x2
0σ

2 + y2
0σ

2

r2
0

= σ2

〈 δθ2〉 = x2
0σ

2 + y2
0σ

2

r4
0

=
σ2

r2
0

〈 δr δθ〉 = (x0δx + y0δy) (x0δy − y0δx)

r3
0

=
−x0y0σ

2 + y0x0σ
2

r3
0

= 0 .

In polar coordinates, the radial and azimuthal unit vectors (r̂ and θ̂) are
perpendicular. So the vanishing is essentially for geometrical reasons.

b. For high SNR ratios r0/σ, the radial and azimuthal coordinates are indepen-
dent Gaussian random variables. As the signal-to-noise ratio decreases, the
angles spread out, reaching the uniform distribution p(θ) = 1/(2π) for SNR
= 0. (With pure noise, all phase angles are equally probable.) We illustrate
these qualitative ideas for SNRx = 10, 2, and 0, below. One can derive explicit
distributions, but for practical purposes, we want to always be in the high-
SNR limit. For example, it is easy to show that for SNR=0, the magnitude
distribution for r is the Rayleigh distribution

p(r) =
r
σ2

exp

{(−r2

2σ2

)}
.

The more general Rice distribution given in the text interpolates between the
Rayleigh distribution for r0/σ → 0 and the Gaussian for r0/σ → ∞. In



118 System Identification

the same limits, the angular distribution p(θ) interpolates between a uniform
distribution and a Gaussian.

c. The mean of the magnitude is biased: 〈r〉 =
√

r2
0 + σ

2. Physically, the noise
power adds to the magnitude. We also see this in the second order expansion
of r, whose terms are

r0 +
σ2

2r0
,

which matches the expansion of the square root to lowest order.

6.10 Transfer function bias and multiple noise sources. Consider a system G0 = y0/u0

that is probed by noisy signals. In particular, let the input be given by u =
u0 + νu + ξu, where νu represents input noise (e.g., from a power amplifier) to
the system and ξu the input measurement noise (see the block diagram at left).
Let the output be given by y = y0 + νy + ξy, where νy represents output noise
(e.g., thermal fluctuations) and ξy the output measurement noise. Assume that
the four noise sources are independent. All quantities are frequency-dependent,
complex Fourier coefficients.

a. Show that the measured transfer function G = y/u = G0/[1 +
ξu

u0+νu
] + νy+ξy

u0+νu+ξu
.

b. Why is G biased? Which noise source is responsible?
c. Explain why increasing input noise can reduce bias.
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Solution.

a. The main point is that input noise propagates through the system and con-
tributes G0νu to the output signal. Thus, y0 = G0 (u0 + νu), and G is given
by

G =
y
u

=
y0 + νy + ξy

u0 + νu + ξu

=
G0 (u0 + νu) + νy + ξy

u0 + νu + ξu

=
G0 (u0 + νu)
u0 + νu + ξu

+
νy + ξy

u0 + νu + ξu

= G0

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 + ξu

u0+νu

⎞⎟⎟⎟⎟⎟⎟⎠ + νy + ξy

u0 + νu + ξu
.

b. The bias is due to the input measurement noise ξu. To see this, we let all other
noise sources be zero. Then

G = G0

⎛⎜⎜⎜⎜⎜⎜⎝ 1

1 + ξu

u0

⎞⎟⎟⎟⎟⎟⎟⎠ ,
which is the case studied in Problem 6.7. Because the output noise sources
are all independent, averaging over them shows that they cannot contribute
to the bias.

c. The role of input noise is interesting. From the above formulas, we see that
increasing νu reduces the bias, since G → G0. To understand this, we first note
that when νu is the only noise source, there is no bias:

G =

[
G0(u0 + νu)

u0 + νu

]
= G0 .

Intuitively, the input noise cancels out even though we do not know it explic-
itly. Of course, the cancellation assumes linear dynamics. Increasing νu in the
presence of other noise sources drives the system to this limit.

6.11 Do not average the magnitude of a Fourier Transform. Averaging the magnitude
of multiple Fourier transforms is a poor strategy for reducing noise:

a. Write a program to generate a multifrequency sine wave of period 1 s, sampled
1000 times per period, and repeated for 1000 periods. Let the multifrequency
sine wave have harmonics with amplitude ∝ 1/ f 2, with f the frequency, and
choose the phases randomly. Calculate the magnitude of the power spectrum
three ways: (i) Average each period in the time domain and then compute the
DFT magnitude of the time-averaged waveform. (ii) Compute the DFT of
each waveform, average the complex waves, and then find the magnitude. (iii)
Take the DFT of each waveform, compute the magnitude, and then average.
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Plot all three magnitudes on one graph. Why is averaging the magnitude
spectra wrong?

b. A less obvious issue is that when the input is noise dominated, the magnitude
estimate is biased. To see this, consider an input x ∼ N(0, 1) and a transfer
function =1. That is, show, both by Monte Carlo simulation and by analytic
calculation, that the output has

√〈x2〉 = 1 while 〈|x|〉 = √
2/π ≈ 0.80.

Solution.

a. We plot the averaged magnitude (filled markers) and the magnitude of the
temporal average (or, equivalently, the FFT average) (hollow markers). The
plots of the time-averaged and complex-DFT averaged waveforms are identi-
cal. The noise floor of the magnitude average is higher because, in averaging
the magnitudes, we lose their phase information. Thus, their power adds inco-
herently. On the other hand, when averaging in the time or complex Fourier
domain, we can average out the noise and lower the noise floor.

b. For the bias, we note that if x ∼ N(0, 1), then 〈x2〉 = 1 =
√〈x2〉, but

〈|x|〉 = 1√
2π

∫ ∞

−∞
dx |x| e−x2/2

=
2√
2π

∫ ∞

0
dx x e−x2/2

=

√
2
π

∫ ∞

0
du e−u , (u = x2/2)

=

√
2
π
.

This is easily verified by MC simulation. Use 106 points to get agreement to
3 decimal places.

6.12 Noisy resistor measurements. Noisy measurements can bias estimates even
without dynamics. Let us estimate a resistance by applying a series of noisy cur-
rents Ik and measuring noisy voltages Vk (Pintelon and Schoukens, 2012). Let
Ik = 1 + δIk and Vk = 1 + δVk, with δIk and δVk ∼ N(0, 1) (resistance R = 1).
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Consider three estimators R̂ for the resistance, each minimizing a different cost
function J.

a. J1(R) ≡ 1
2

∑N
k=1(Rk − R)2, where Rk = Vk/Ik. Show that the value of R that

minimizes J1 is given by R̂1 =
1
N

∑
k Rk ≡ Rk, which is biased (Problem 6.7).

b. J2(R) ≡ 1
2

∑
k(Vk−RIk)2. Show that choosing R̂2 = Vk Ik/I2

k minimizes J2. Show
that 〈R̂2〉 = 1/(1 + σ2

I ), which implies that estimator is biased.

c. J3(R, I,V) ≡ 1
2

∑
k

(Vk−V)2

σ2
V
+

(Ik−I)2

σ2
I

, with the constraint that V = RI. Here, V

and I are unknown “true values.” Show that choosing R̂3 = Vk/Ik minimizes
J3. Hint: use the constraint to eliminate V; then differentiate with respect to
both R and I.

d. Write a simulation for σI = σV = 1 and N = 500. Repeat for 104 trials and
plot histograms of the values R̂1, R̂2, and R̂3. Explain why R̂1 is pathological
here but not R̂3. How large a value of N is needed for R̂3 to be ok?

The first estimator is sometimes used in elementary physics laboratory courses,
the second in intermediate courses, and the third (hopefully) in more advanced
courses. The second is the common, unweighted least squares, assuming no error
in the “input” variable (current). The third is the weighted least-squares estimate,
taking into account errors in both variables.

Solution.

a.

J1(R) =
1
2

N∑
k=1

(Rk − R)2 =⇒ dJ1

dR
=

2
2

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

(Rk) − RN

⎤⎥⎥⎥⎥⎥⎦ (−1) = 0 ,

so that R̂1 = Rk, as claimed.
b.

J2(R) =
1
2

N∑
k=1

(Vk − RIk)2 =⇒ dJ2

dR
=

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

(Vk) − RIk

⎤⎥⎥⎥⎥⎥⎦ (−Ik) = 0 ,

so that

R̂2 = Vk Ik/I2
k .

Next, we calculate the bias:

〈R̂2〉 = lim
N→∞

∑
k(1 + δVk)(1 + δIk)∑

k(1 + 2δIk + δI2
k )

→ N(1 + 0)

N(1 + σ2
I )
=

1

1 + σ2
I

,

which shows that the bias is directly linked to input noise in the current (and
not to the output, or voltage noise).

c.

J3(R, I,V) =
1
2

N∑
k=1

(Vk − V)2

σ2
V

+
(Ik − I)2

σ2
I

,
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subject to the constraint V = IR. Putting in the constraint gives

J3(R, I) =
1
2

N∑
k=1

(Vk − IR)2

σ2
V

+
(Ik − I)2

σ2
I

.

Differentiating with respect to R and I then gives

∂J3

∂R
=

1

σ2
V

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

(Vk) − RIN

⎤⎥⎥⎥⎥⎥⎦ (−I) = 0 =⇒ Vk = IR

∂J3

∂I
=

1

σ2
V ���������0⎡⎢⎢⎢⎢⎢⎣ N∑

k=1

(Vk) − RIN

⎤⎥⎥⎥⎥⎥⎦(−R) +
1

σ2
I

⎡⎢⎢⎢⎢⎢⎣ N∑
k=1

(Ik) − IN

⎤⎥⎥⎥⎥⎥⎦ (−1) = 0 =⇒ Ik = I .

Putting the two results together then gives

R̂3 =
Vk

Ik

.

d. The estimator R̂1 is pathological because the noise is strong enough that the
denominator is nearly zero often. Those trials lead to Rk values that are very
large. In the limit of large noise, we have the situation discussed in connection
with Eq. (6.9), where the variance diverges. The situation is avoided for R̂3

because the denominator is now an average whose variance decreases as N−1.
For large N, there is negligible chance that the denominator will vanish.
The simulations lead to the histograms below. Note the huge spread in R̂1

with its unphysical negative values, and notice the bias in R̂2.

6.13 Measuring a closed-loop transfer function.

a. For the block diagram at left, show that Gm ≡ ym

u =
KGr+ξ
K(r−ξ) .

b. Simulate an unstable discrete first-order system that is stabilized by propor-
tional feedback. The dynamics are given by (ym)k = yk + ξk and uk =

−K[rk − (ym)k], with yk+1 = (1 + Ts)yk + Tsuk, where the observational noise
ξk ∼ N(0, ξ2) and Ts is the sampling time. Use K = 2, ξ2 = 1, Ts = 0.05 s,
and scan frequencies from 0.01 to 10 Hz. Try three different reference sig-
nals: rk = 0 (no reference), rk ∼ N(0, 1) (white noise), and rk a random-phase
multisine of RMS amplitude = 1. Run the simulations for 10 periods of 100
s. Discard the first response to eliminate large transients. Your plot should
resemble the figure at left, where the solid line is the transfer function of the
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noiseless discrete system (uk to yk), the triangles the no-reference case, the
filled markers the random-phase case, and the white markers the multisine
case. Explain the results.

Solution.

a. From ym = Gu + ξ and u = K(r − ym), we find

ym =
KGr + ξ
1 + KG

and u =
K(r − ξ)
1 + KG

,

whose ratio gives Gm.
b. First, we calculate the magnitude of the noiseless transfer function. We have

yk+1 = (1 + Ts)yk + Ts uk .

We take the Z-transform:

(z − 1 − Ts)y = Ts u .

Then, ∣∣∣∣∣ yu
∣∣∣∣∣ = Ts

|z − 1 − Ts| ,

where z = eiωTs . Putting in the values of the constants gives the solid line in
the figure. The upturn is due to aliasing: the upper frequency limit slightly
exceeds the Nyquist frequency.

• No reference: The triangles correspond to the case of no reference. As
discussed in the text, the measured transfer function reduces to −1/K in
this limit. Thus, for the magnitude, we have |y/u| = 1/K = 0.5.

• White noise: When we use reference signals drawn from N(0, 1), there is
a great deal of bias at all but the lowest frequencies. We can understand
this because we are effectively treating the reference as an unknown ran-
dom signal. Averaging it is a silly idea. The result is barely passable at
low frequencies because G is largest there and Gm ≈ G (with noise). At
least at these frequencies, we begin to dominate over the observation noise.
Increasing the proportional gain would help, but using a multisine is much
better.

• Multisine: With a periodic multisine that has exactly the same power
(RMS=1) as the white-noise reference, the results are much better. Here,
because we know the reference and because it is periodic, it does not con-
tribute any statistical error, which diminishes with increasing numbers of
measured periods. (With larger gain K, we could get better results with
fewer periods.)

6.14 Resonance frequency of a thin plate We fill in some details of Example 6.6. For a
careful approach, see Landau et al. (1986) and also Rossing and Russell (1990).
Here, in the spirit of making rough approximations, feel free to use handwaving
arguments. Consider just one transverse dimension, for simplicity.
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a. Let ψ(x, t) be a component of the elastic displacement in a material. Argue
that the local kinetic energy per volume is T = 1

2ρ(ψt)2 and that the local
elastic potential energy per volume is U = 1

2 E(ψx)2. Here, ρ is the density and
E the Young’s modulus. The partial derivatives are ψt = ∂tψ and ψx = ∂xψ.

b. From the Lagrangian L = T −U and the Euler-Lagrange equations for a field,
derive a wave equation for ψ. Find the dispersion relation, and show that the
expected (longitudinal) sound speed is cL =

√
E/ρ. For an object of size �,

the expected lowest resonance frequency is f ≈ cL/�.
c. Anisotropic objects such as plates can bend with a radius that is much greater

than the plate thickness h, leading to lower resonance frequencies. Argue that
the bending energy per unit area is of order Ubend ∼ Eh3(ψxx)2, where h is the
plate thickness. Hint: As shown at left, a bent plate of thickness h has one
surface under tension and the other under compression. You can also use
symmetry, or even a ball-and-spring model to derive the energy.

d. Use the higher-order version of the Lagrangian argument above to show that
the resonance is lowered to f ≈ cL/(�a), where the aspect ratio a = �/h.

Solution.

a. The kinetic energy is 1
2 mv2, where m is the local mass and v the rate of change

of the displacement. Per volume, this is indeed 1
2ρ(ψt)2, where ψt = ∂tψ. For

the potential energy, ψx gives the local strain. Notice that if ψ were constant,
this would correspond to translating the entire object, which produces zero
strain. For a Hooke’s law material, we expect U = 1

2 E(ψx)2.
b. The Lagrangian is then

L = T − U =
1
2
ρ

(
∂ψ

∂t

)2

− 1
2

E

(
∂ψ

∂x

)2

.

The Euler-Lagrange equations for a field over x and t are

∂

∂t
∂L
∂ψt
+
∂

∂x
∂L
∂ψx

− ∂L
∂x
= 0 .

Noting that ∂xL = 0, we have the wave equation,

ρ
∂2ψ

∂t2
= E

∂2ψ

∂x2
,

The dispersion relation is ω = cLk, with longitudinal sound speed cL =
√

E/ρ.
c. The kinetic energy per area is∫ h/2

−h/2
dz

1
2
ρ (ψt)

2 = 1
2ρh(ψt)

2 .

For the potential energy per area, we observe that about the midplane z = 0,
the strain is zero and it is positive on one side (z > 0 for instance) and negative
on the other. Taylor expanding then gives

Ubend =

∫ h/2

−h/2
dz

1
2

E(ψx)2
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=
1
2

E
∫ h/2

−h/2
dz

(
����0
ψx|z=00 + zψxx|z=0 + · · ·

)2

=
1

24
Eh3(ψxx)2 .

In a more hand-waving argument, we would approximate the integral dimen-
sionally and lose the factor of 1/12. Note that the above argument neglects the
coupling between extension in one direction and compression in the perpen-
dicular directions, which is captured by Poisson’s ratio, ν, which is typically
≈ 0.3. There is then an additional factor of 1 − ν2 in the denominator.

d. Since there are second derivatives in the Lagrangian, we integrate by parts
one more time in the derivation of the Euler-Lagrange equation and find

∂

∂t
∂L
∂ψt

− ∂2

∂x2

∂L
∂ψxx

− ∂L
∂x
= 0 .

We then get the equation of motion,

ρh
∂2ψ

∂t2
= −

(
Eh3

12

)
∂4ψ

∂x4

∂2ψ

∂t2
= −

(
Eh2

12ρ

)
∂4ψ

∂x4
,

with dispersion relation ω = cLhk2. Notice that these bending waves are
strongly dispersive (phase velocity ω/k = cLhk). Using k ∼ 1/� and dropping
numerical constants, we have

f =
cLh
�2
=

cL

�a
,

where the aspect ratio a = �/h.

6.15 Measuring a transfer function with noisy inputs. We explore the implications of
input noise on transfer function measurements. The noisy input at frequency ω�
is u = u0 + ν, where ν ∼ N(0, σ2

u) and where u0 is the (unobservable) true value of
the input. Similarly, the noisy output is y = y0 + ξ, where ξ ∼ N(0, σ2

y). From M
input periods, we can use Eq. (6.7) to estimate the averages û and ŷ and Eq. (6.8)
to estimate the (co)-variances σ̂2

u, σ̂2
y , and σ̂2

yu. Note that we have simplified the
notation by dropping the ω� dependence from all quantities.

a. Estimating G via y = Gu is equivalent to fitting data to a straight-line relation
between u and y with errors in both variables. Generalizing the Bayesian
derivation of the χ2 statistic in Appendix, Eq. (A.210), define z =

(
ŷ−y0
û−u0

)
and Σ =

(
σ̂2

y σ̂2
yu

σ̂2
yu σ̂2

u

)
and show that the best estimate of the transfer function

is given by minimizing the errors-in-variables cost function χ2 =
∑N
�=1 z† Σ−1 z.

If input-output correlations can be neglected, show that the general χ2 simpli-
fies to χ2 =

∑N
�=1

( |ŷ−y0 |2
σ̂2

y
+
|û−u0 |2
σ̂2

u

)
. In both cases, we minimize χ2 with respect to

the unknown true input and output values u0 and y0, subject to the constraint
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(at each frequency ω�) that y0 = G u0. Recall that the transfer function model
G = G(iω, θ), with θ the fit parameters.

b. We can minimize the above χ2 with respect to the transfer function param-
eters θ and the nuisance parameters u0 and y0 using Lagrange multipliers to
enforce the constraints. Here, in a Bayesian approach that confirms that all
distributions are Gaussian, we marginalize (integrate out) u0 and y0, again
limiting ourselves to the σ̂2

yu = 0 case for simplicity. To carry this out,
assume a uniform prior on the u0 and y0 and impose the constraint y0 = G u0.
Integrate the probability density p(G|u0, y0) over the u0 to show that the
maximum-likelihood solution minimizes χ2 =

∑N
�=1

|ŷ−Gû|2
σ̂2

y+|G|2σ̂2
u

with respect to

the parameters θ in G(iω�, θ). Interpret intuitively the denominator in this
expression. The required u0 integral is a messy version of the identity in Prob-
lem A.7.1. You can use a computer-algebra program or try the real case,
which has a similar but simpler structure.

Solution.

a. We assume that the fluctuations at each point are independent (as are input
and output fluctuations). Here, we write the contribution of a single point, to
simplify the notation.

p(G|û, ŷ) ∝ p(û, ŷ|G) p(G)︸︷︷︸
uniform

=

∞�
−∞

du0 dy0 p(û, ŷ|u0, y0) (u0, y0|G)

=

∞�
−∞

du0 dy0 p(û, ŷ|u0, y0) p(u0) p(y0|u0,G)

=

∞�
−∞

du0 dy0 p(û, ŷ|u0, y0) p(u0)︸︷︷︸
uniform in u0

δ (y0 −G u0)

∝
∞�
−∞

du0 dy0 exp
(
− 1

2 z† Σ−1 z
)

δ (y0 −G u0) ,

→
∞�
−∞

du0 dy0 exp

⎛⎜⎜⎜⎜⎝−|ŷ − y0|2
2σ̂2

y

⎞⎟⎟⎟⎟⎠ exp

(
−|û − u0|2

2σ̂2
u

)
δ (y0 −G u0) ,

where the conditional probability p(y0|u0) = δ (y0 − G u0) expresses the con-
straint between u0 and y0. The last line is the simplification that results when
the covariance σ̂2

yu = 0. In this case,

z† Σ−1 z =
(
(ŷ − y0)∗ (û − u0)∗

) ((σ̂2
y)−1 0
0 (σ̂2

u)−1

) (
ŷ − y0

û − u0

)

=
|ŷ − y0|2
σ̂2

y
+
|û − u0|2
σ̂2

u
,
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and the multivariate Gaussian factors into the product of two independent
Gaussian distributions.
In Part (b), we will see that p(G|û, ŷ) remains Gaussian. Then, instead of
averaging over the unknown u0 and y0 (subject to the constraint y0 = G u0),
we can also recognize that a uniform prior will lead simply to picking the
values of u0 and y0 = G u0 that maximize the likelihood. To maximize the
likelihood, we thus minimize

χ2 =

N∑
�=1

z† Σ−1 z or χ2 =

N∑
�=1

⎛⎜⎜⎜⎜⎝ |ŷ − y0|2
σ̂2

y
+
|û − u0|2
σ̂2

u

⎞⎟⎟⎟⎟⎠ ,
with respect to the u0 and y0, subject to the constraint that y0 = G u0.

b. Instead of picking u0 and y0 = G u0 to minimize the χ2, we can average over
the u0 explicitly, assuming a uniform prior. Substituting y0 = G u0, we have

p(G|û, ŷ) ∝
∫ ∞

−∞
du0 exp

⎛⎜⎜⎜⎜⎝−|ŷ −Gu0|2
2σ̂2

y

⎞⎟⎟⎟⎟⎠ exp

(
−|û − u0|2

2σ̂2
u

)
.

The integral over u0 is really a double integral over Re(u0) and Im(u0). To sim-
plify the calculation and see its basic structure, we assume that all variables
are real. Then the product of the exponents has the form exp[− 1

2 (au2
0+bu0+c)],

where

a =
1
σ̂2

u
+

G2

σ̂2
y
, b =

û
σ̂2

u
+

Gŷ
σ̂2

y
, c =

û2

σ̂2
u
+

ŷ2

σ̂2
y
.

We then use the identify (see Problem A.7.1) that∫ ∞

−∞
du0 exp

[
−1

2

(
au2

0 + bu0 + c
)]
=

√
2π

a
exp

(
b2

2a
− c

2

)
.

Thus, the distribution remains Gaussian after integrating out the nuisance
parameters. Even in this simplified case, the algebra is tedious.

The full calculation is even more tedious and is perhaps better left to a
computer algebra program, which confirms

p(G|û, ŷ) ∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝− |ŷ −Gû|2
2
(
σ̂2

y + |G|2σ̂2
u

)
⎞⎟⎟⎟⎟⎟⎟⎠ .

Intuitively, the altered denominator reflects two sources of uncertainty: the
usual one for y, which is σ̂y and the effect of a shift in u of order σ̂u that then
further shifts y by the local slope G.
Another way of writing the χ2 statistic that is also more intuitive is

χ2 =
|ŷ −G û|2
|δŷ −G δû|2 ,
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where

|δŷ −G δû|2 = σ̂2
y + |G|2σ̂2

u − 2Re
(
σ̂2

yuG∗) .
Here, the variation δŷ leads to |δŷ|2 = σ̂2

y , etc. See Problem 6.9, as well.

6.16 Time-domain identification. We go through the example presented in Sec-
tion 6.3.2. Consider the first-order system yk+1 = ayk + buk + νk, with 〈νk ν�〉 =
ν2 δ k�.

a. Starting from the Bayesian and maximum-likelihood ideas formulated in Sec-
tion A.8.2, show that the best estimate for a and b is the one that minimizes
χ2 = 1

ν2

∑
k(yk+1 + ayk − buk)2.

b. Minimize χ2 to show that the best estimates for a and b are given by Eq. (6.18).
c. To show that the parameter estimates are biased but consistent, plot the rela-

tive bias |â − a|/a, against the number of data pairs N . Confirm that the bias
scales as N−1, rather than the N−1/2 scaling that is characteristic of stochastic
errors.

Solution.

a. Although Eq. (6.17) resembles the structure of an ordinary linear least-
squares problem (Section A.8.2), the values yk+1 are determined not simply by
uk+1, as they would ordinarily, but by yk and uk. Some software routines for
least-squares fits can handle such an equation by using a vector-matrix form
for χ2 and by fitting “all at once” rather than “point by point.” Here, we can
easily solve for the best estimates of a and b directly. The arguments closely
follow the standard least-squares arguments discussed in Section A.8.2. To
make the notation more intuitive, we use y for the set of {yk}, etc. From Bayes’
theorem, we have

p(a, b|u, y) =
∫

dν p(a, b|u, y, ν)p(ν)

∝
∫

dν p(y|a, b, u, ν)���p(a, b) p(ν)

=

(
1√

2πν2

)N N∏
k=1

∫
dνk δ (yk+1 + ayk − buk − νk) exp

(
−ν2

k/2ν
2
)

=
1

(2πν2)N/2
exp

(
− 1

2χ
2
)
,

with

χ2 =
1
ν2

N∑
k=1

(yk+1 + ayk − buk)2 .

b. Taking ∂aχ
2 = ∂bχ

2 = 0 gives the desired equations. For example,

∂χ2

∂a
=

2
ν2

N∑
k=1

(yk+1 + ayk − buk) yk = 0 ,
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so that ∑
k

yk+1 yk + a
∑

k

y2
k − b

∑
k

uk yk = 0 .

We then assemble the two equations into a single matrix equation for the
parameter vector estimate (â b̂)T.

c. We find the graph below, where the dotted line has slope −1.

6.17 AIC and cross-validation. Consider N measurements of y = θ∗x+η, with indepen-
dent scalar variable x, observed variable y, and parameter θ∗. The measurement
noise η ∼ N(0, σ2), and the log likelihood is L(θ) = − 1

2σ2

∑N
j=1(y j − θx j)2.

a. Show that the maximum-likelihood (ML) estimate is θ̂ =
∑N

j=1(x j y j)/
∑N

j=1(x2
j ).

b. Now consider the same data set, but without point i. Show that, to O(1/N),
the ML estimate of θ is θ̂−i, where θ̂−i = θ̂ − xi∑

x2
j
(yi − θ̂xi).

c. In one-point cross-validation, we calculate the likelihood of a missing point
using θ̂−i and then average over all points. Define A ≡ − 1

2σ2

∑N
i=1(yi − θ̂−i xi)2 as

an assessment value and show that A = L(θ̂) − 1 + O(1/N).

The case with K parameters proceeds similarly and leads to A = L(θ̂)−K+O(1/N).

Solution.

a. We have

∂L
∂θ
= +

1
σ2

∑
j

(
y j − θx j

)
x j = 0 .

Thus, ∑
j

(
x jy j

)
− θ

∑
j

(
x2

j

)
= 0 .

Solving for θ = θ̂ gives the desired expression.
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b. If we eliminate the point i, the ML estimate is

θ̂−i =

∑N
j=1 x j y j − xi yi∑N

j=1 x2
j − x2

i

=

θ̂ − xi yi∑
x2

j

1 − x2
i∑
x2

j

≈ θ̂ + θ̂x2
i − xi yi∑

x2
j

= θ̂ − xi∑
x2

j

(
yi − θ̂xi

)
.

c. We first note that the correction to θ̂ in the expression for θ̂−i is O(1/N) and
that subsequent terms increase in order by 1/N. As a result, the assessment
score A,

A = − 1
2σ2

N∑
i=1

(
yi − θ̂−i xi

)2

= − 1
2σ2

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣(yi − θ̂xi) +
x2

i∑
x2

j

(yi − θ̂xi)

⎤⎥⎥⎥⎥⎥⎦
2

≈ − 1
2σ2

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣(yi − θ̂xi)
2 +

2x2
i∑
x2

j

(yi − θ̂xi)
2 + O(1/N)

⎤⎥⎥⎥⎥⎥⎦
= − 1

2σ2

N∑
i=1

(yi − θ̂xi)
2 − 1

σ2

N∑
i=1

(yi − θ̂xi)2x2
i∑

x2
j

+ O(1/N)

→ L(θ̂) − 1
σ2

∑
i η

2
i x2

i∑
j x2

j

+ O(1/N)

→ L(θ̂) − 1
σ2

Nσ2〈x2〉
N〈x2〉 + O(1/N)

= L(θ̂) − 1 + O(1/N) .

Note that as N → ∞, θ̂ → θ∗, so that (yi − θ̂xi) → (yi − θ∗xi) = ηi. In this step,
we assume that the model structure, θx, includes the true model, θ∗x. We can
then write

∑
i η

2
i x2

i → Nσ2〈x2〉, as well as
∑

x2
j → N〈x2〉. The angle brackets

〈·〉 are averages over the distribution of x, which can be arbitrary.

6.18 〈χ2〉 for an orthonormal basis and model mismatch. Consider a model function
with an orthonormal basis set {ek}, with y∗ =

∑∞
k=1(y∗ · ek) ek and ek · e� ≡

1
N

∑N
i=1 ek(xi) e�(xi) = δ k�. For N points and K parameters, let y = y∗ + ξ, with

〈ξ2〉 = σ2, and show that 〈χ2〉 = 〈 N
σ2 ||y− ŷ||2〉 = (N−K)+ N

σ2

∑∞
�=K+1(y∗ ·e�) e� .Hint:

Subtract and add the true vector y∗. The N in the definition of χ2 is traditional.
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Solution.
Following the hint, we write

χ2 =
N
σ2
||y − y∗ + y∗ − ŷ||2

=
N
σ2

[
||y − y∗||2 + 2(y − y∗) · (y∗ − ŷ) + ||y∗ − ŷ||2

]
=

N
σ2

[
||ξ||2 + 2ξ · (y∗ − ŷ) + ||y∗ − ŷ||2

]
.

The deviation between the true values y∗ and the estimate ŷ is

y∗ − ŷ =
∞∑

k=1

(y∗ · ek) ek −
K∑

k=1

[(y∗ + ξ) · ek]ek

=

∞∑
�=K+1

(y∗ · e�) e� −
K∑

k=1

(ξ · ek) ek ,

so that

N||y∗ − ŷ|| =
∞∑

�=K+1

(y∗ · e�)2 +

K∑
k=1

(ξ · ek)2 .

The mean value of χ2 is given by

〈
χ2

〉
=

N
σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣σ2 + 2
����������0〈
ξ ·

∞∑
�=K+1

(y∗ · e�) e�

〉
− 2

〈
ξ ·

K∑
k=1

(ξ · ek) ek

〉

+

∞∑
�=K+1

(y∗ · e�)2 +

〈 K∑
k=1

(ξ · ek)2

〉⎤⎥⎥⎥⎥⎥⎦ .
=

N
σ2

⎡⎢⎢⎢⎢⎢⎣σ2 + 0 − 2
N

Kσ2 +

∞∑
�=K+1

(y∗ · e�)2 +
K
N
σ2

⎤⎥⎥⎥⎥⎥⎦
= (N − K) +

N
σ2

∞∑
�=K+1

(y∗ · e�)2 .

We found the first term when we fit to a correct model (Section A.8.5). We term
it a “stochastic” contribution since it is the average of a random variable. The
second term is due to model mismatch and is deterministic. We have also used

ξ · ek =
1
N

N∑
i=1

ξi ek(xi) ,

so that 〈
ξ ·

K∑
k=1

(ξ · ek) ek

〉
=

〈 K∑
k=1

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑
i=1

ξiek(xi)

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ 1

N

N∑
j=1

ξ jek(x j)

⎞⎟⎟⎟⎟⎟⎟⎠
〉

=
1

N2

K∑
k=1

N∑
i, j=1

ek(xi) ek(x j)〈ξi ξ j〉
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=
σ2

N2

K∑
k=1

N∑
i, j=1

ek(xi) ek(x j)δ i j

=
σ2

N2

K∑
k=1

N∑
i=1

[ek(xi)]
2

=
σ2

N

K∑
k=1

(1)

=
K
N
σ2 .

This solution is thanks to Antoine Baker.

6.19 AIC vs. BIC example. We work through the details of Example 6.8.

a. Write code to reproduce the plots in Example 6.8. First, simulate the data set
itself from the true function f (t) = π2

8 (1 − 2t), 0 < t < 1, adding Gaussian
noise of σ = 0.01. Then calculate the first 500 Fourier coefficients and the
corresponding χ2, AIC, and BIC statistics for each order.

b. Calculate the signal-to-noise ratio (SNR) of Example 6.8. Show that for large
K, we have p(SNR) = 1√

2πSNR
e−SNR/2, where SNR = θ2

j/(σ
2/2N). The extra

factor of 2 comes from the normalization of the basis vectors.
c. By approximating a sum by an integral, show that an asymptotic, large N,

analytic approximation for the model-mismatch term, accurate enough for
N > 2, is given by χ2

mm =
1

96σ2(K+1)3 . Add the result to the stochastic contri-
bution, 1 − K/N, to generate the solid curves in the bottom three plots in the
example.

Solution.

a. See the margin plots in Example 6.8.
b. The projections of noise onto noise are Gaussian random variables y ∼
N(0, 1). The SNR then is distributed as y2. From Example A.17, we indeed
have

p(s) =
1√
2πs

e−s/2 s > 0 .

We can verify that
∫ ∞

0
ds p(s) =

∫ ∞
0

ds s p(s) = 1 and
∫ ∞

0
ds s2 p(s) = 3. The

variance is then 〈s2〉 − 〈s〉2 = 3 − 1 = 2, implying a standard deviation of√
2. The wide spread of the values seen in the bottom plot in the margin

figure of Example 6.8d for Fourier coefficients of order greater than 100 (say)
is compatible with this law, as a comparison of the normalized coefficient
histogram with the pdf readily shows.
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c. To get the analytic approximation, we note that

∞∑
j=K+1

1
(2 j − 1)4

≈
∫ ∞

K+1

dx
(2x)4

=
1

24 3(K + 1)3

=
1

48(K + 1)3
.

Then there is an extra factor of 1
2 because basis elements are not unit

amplitude:
∫ 1

−1
dt cos2 jπt = 1

2 .

6.20 Balanced coordinates. Show that, for a system G = {A, B,C}, that we can choose
a coordinate transformation T, with x = Tx′ such that P′ = Q′ = Σ. Here, the
Gramians are over t = (0,∞) and Σ is the diagonal matrix of Hankel singular
values.

a. For the coordinate transformation x = Tx′, show that A′ = T−1 AT, B′ =
T−1B, C′ = CT. Then show that P′ = T−1(PT−1)T and Q′ = TTQT.

b. Decompose P = RRT using Cholesky decomposition (Section A.1.5), and
write RTQR = UΣ2UT, and T = RUΣ−1/2 . Show that P′ = Q′ = Σ.

c. Consider the example from Figure 6.7: A =
( −1 0

0 −2

)
, B =

(
1
1

)
, and C = ( 1 2 ).

i. Find the infinite-time Gramians P, Q. Construct a balanced representa-
tion.

ii. Find symbolically or numerically R, U, T, Σ and also A′, B′, and C′. You
will want to use a computer-algebra program for this part and the next.

iii. In the new coordinate system, verify that P′ = Q′ = Σ, with the diagonal
elements of Σ being σ± = 1

2 ±
√

2
3 . (If you do not have access to symbolic-

manipulation software, do this part numerically.)

Solution.

a. Substituting gives

Tx′ = ATx′ + Bu

x′ = T−1 AT︸��︷︷��︸
A′

x + T−1B︸︷︷︸
B′

u ,

so that A′ = T−1 AT, B′ = T−1B, and C′ = CT.
To find out how the controllability Gramian P ≡ P(∞) transforms, we write

P′ =
∫ ∞

0
dt eA′t B′B′T eATt

= T−1
∫ ∞

0
dt eAt TT−1BBT(T−1)TTT eAt(T−1)T dt

= T−1
∫ ∞

0
dt eAt BBT eAt (T−1)T

= T−1(PT−1)T .
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Similarly, for the observability matrix,

Q′ =
∫ ∞

0
dt eA′Tt C′TC′ eA′t

=

∫ ∞

0
dt TT eATt(T−1)TTTCTCTT−1 eAt T

= TT
∫ ∞

0
dt eATt CTC eAt T

= TTQT .

b. First, we write

T−1 = Σ1/2U−1R−1 TT = Σ−1/2UT RT (T−1)T = (R−1)T(U−1)TΣ1/2 .

For the controllability Gramian, we write

P′ = T−1(PT−1)T

= (Σ1/2U−1R−1)(RRT)[(R−1)T(U−1)TΣ1/2]

= Σ ,

noting that U is unitary, so that U−1 = UT. For the observability Gramian
Q = R−T UΣ2UTR−1, we write

Q′ = TTQT

= (Σ−1/2UT RT )((R−1)TUΣ2UTR−1)(RUΣ−1/2)

= Σ ,

c. i. The Gramians are easily evaluated exactly:

P =

⎛⎜⎜⎜⎜⎜⎝ 1
2

1
3

1
3

1
4

⎞⎟⎟⎟⎟⎟⎠ Q =

⎛⎜⎜⎜⎜⎜⎝ 1
2

2
3

2
3 1

⎞⎟⎟⎟⎟⎟⎠ .
ii. With Mathematica, the rest of the matrices are

R =

⎛⎜⎜⎜⎜⎜⎜⎝
1√
2

0
√

2
3

1
6

⎞⎟⎟⎟⎟⎟⎟⎠ ≈
(
0.707 0
0.471 0.167

)
RTQR =

⎛⎜⎜⎜⎜⎜⎜⎝ 11
12

√
2

9√
2

9
1

36

⎞⎟⎟⎟⎟⎟⎟⎠ ≈
(
0.917 0.157
0.157 0.028

)
.

The singular value decomposition of RTQR is, with σ2± =
17
36 ±

√
2

3 ,

RTQR =
(√

σ+ −√σ−√
σ−

√
σ+

) (
σ2
+ 0

0 σ2−

) ( √
σ+

√
σ−

−√σ− √
σ+

)

=

(
0.986 −0.169
0.169 0.986

)
︸����������������︷︷����������������︸

U

(
0.944 0

0 0.00082

)
︸�����������������︷︷�����������������︸

Σ2

(
0.986 0.169
−0.169 0.986

)
︸����������������︷︷����������������︸

UT

The transformation matrix T is then

T = 1
2

(√
2 −√2

1 1

)
≈

(
0.707 −0.707
0.5 0.5

)
.
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In balanced coordinates, the system matrices are

A′ =
⎛⎜⎜⎜⎜⎜⎝−3

2
−1
2

−1
2

−3
2

⎞⎟⎟⎟⎟⎟⎠ , B′ =

⎛⎜⎜⎜⎜⎜⎜⎝1 +
1√
2

1 − 1√
2

⎞⎟⎟⎟⎟⎟⎟⎠ , C′ =
(
1 + 1√

2
1 − 1√

2

)
.

Note that the eigenvalues of A′ remain (−1, −2), as all we have done is
make a similarity transformation.

iii. Finally, it is straightforward, either symbolically or numerically, to show
that in the new system {A, B,C}, we have

P′ = Q′ = Σ =
⎛⎜⎜⎜⎜⎜⎝ 1

2 +
√

2
3 0

0 1
2 −

√
2

3

⎞⎟⎟⎟⎟⎟⎠ ≈
(
0.971 0

0 0.029

)
.
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Problems

7.1 One-dimensional optimization, without shortcuts. Redo the example in Sec-
tion 7.1 without assuming that u(t) = −Kx(t). Substitute the equation of motion
u = ẋ+ ax into L = 1

2 (x2 +Ru2), and find x(t) directly. Confirm the assumed form
of u(t).

Solution. The cost function is

J = 1
2

∫ ∞

0
dt

(
x2(t) + Ru2(t)

)
= 1

2

∫ ∞

0
dt

(
x2(t) + R(ẋ + ax)2(t)

)
≡

∫ ∞

0
dt L(x, ẋ) .

The Euler-Lagrange equation

d
dt

(
∂L
∂ẋ

)
=
∂L
∂x

.

is then

R(ẍ +		aẋ) = x + R(�̇x + ax)(a) ,

which gives

ẍ =
(
a2 + 1

R

)
x .

Since we want x(t) finite as t → ∞, we take only the stable solution. Thus, using
the linearity of the equations of motion to scale the initial condition x(0) = x0 to
one, we find

x(t) = e
−

√
a2+

1
R t
,

which implies

u(t) = ẋ + ax

= −
√

a2 + 1
R e

−
√

a2+
1
R t
+a e

−
√

a2+
1
R t

137
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= −
(√

a2 + 1
R − a

)
x(t)

≡ −K∗ x(t) .

Thus, we recover both the form of the feedback law (negative proportional
control) and the value K∗ that optimizes the control. Compare Eq. (7.3).

7.2 Unstable system. Repeat the example in Sec. 7.1 for an unstable system, ẋ =
+ax + u, with a > 0. Compare with the stable case. Discuss the cheap (R → 0)
and expensive (R → ∞) control limits. Show that expensive control leads to a
gain that replaces the unstable eigenvalue a with its stable “mirror image” at −a.
This is a general result.

Solution.
The problem is the same as the example in Sec. 7.1, except that a → −a. Thus,

K∗ =
√

a2 + 1/R + a .

As with the original example, the equation for K∗ clearly has two regimes,
depending on R:

• Ra2 � 1, cheap control: Then K ∼ 1/
√

R, independent of the sign of a. This
makes sense: when control is cheap, we apply so much gain that it does not
matter what the original dynamics looks like. Differences are “washed out.”

• Ra2 � 1, expensive control: Then K → 2a and u = −2a x. The open-loop
system ẋ = +ax is thus replaced by the closed-loop system ẋ = −ax. This
clearly stabilizes the system. Because control “effort” ∼ u2(t), we can see that
K = 2a is also the minimum-control-effort solution, in the sense that K(R) >
2a for finite R. Intuitively, even though a K in the range (a, 2a) also stabilizes
the system and with less gain, the resulting excursions are large enough that
the net penalty in J resulting from larger values of u is greater than with the
optimal gain K = 2a.
Contrast this result with that of the stable case, where K → 0 and u → 0. That
is, when R → ∞, the gain K → 0. If control is too costly, do nothing. But this
strategy works only when the underlying system is stable and can relax on its
own. If not, we need to apply a minimum gain, no matter how much control
costs.
The conclusion that the minimum-control-effort solution amounts to a con-
trol that replaces poles in the right-hand s-plane with their “mirror images”
in the left-hand plane turns out to be a general one for linear systems. (More
precisely, the recipe is to replace a pole p′ + ip′′ with −p′ + ip′′, for each pole
with p′ = Re p > 0.)

7.3 One-dimensional control, with initial and final state conditions. Solve the cou-
pled linear equations for x(t) and λ(t) in Example 7.1. Show, in particular,
that x(t) = xτ

( sinh
√

2t
sinh

√
2τ

)
and λ(t) = −(

1 +
√

2 coth
√

2t
)

x(t), implying that
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u(t) = −λ(t) = +K(t) x(t) can be expressed as a positive feedback with
time-dependent gain. Explain the behavior of λ and K for τ→ 0 and τ→ ∞.

Solution.
The equations of motion are

ẋ = −x + u , λ̇ = +λ − x , u = −λ .
with boundary conditions x(0) = 0 and x(τ) = xτ. The systematic way to solve
such an equation is to eliminate u in favor of λ and express the two coupled
equations in vector-matrix form:

d
dt

(
x
λ

)
=

(−1 −1
−1 1

)
︸������︷︷������︸

A

(
x
λ

)
,

where the matrix A has eigenvalues ±√2 and eigenvectors
(

1−√2
1

)
for +

√
2 and(

1+
√

2
1

)
for −√2. Thus, the solution for x(t) is of the form

x(t) = α
(
1 − √

2
)

e
√

2t +β
(
1 +

√
2
)

e−
√

2t ,

where the constants α and β are fixed by the boundary conditions at t = 0 and
t = τ:

x(0) = 0 = α
(
1 − √

2
)
+ β

(
1 +

√
2
)
=⇒ β = α

⎛⎜⎜⎜⎜⎝
√

2 − 1√
2 + 1

⎞⎟⎟⎟⎟⎠ ,
so that

x(t) = α
[(

1 − √
2
)

e
√

2t +
(√

2 − 1
)

e−
√

2t
]

= α
(
1 − √

2
)

2 sinh
√

2t .

Thus,

x(τ) = xτ = α
(
1 − √

2
)

2 sinh
√

2τ =⇒ α =
xτ(

1 − √
2
)

2 sinh
√

2τ
.

Finally,

x(t) = xτ

⎛⎜⎜⎜⎜⎝ sinh
√

2t

sinh
√

2τ

⎞⎟⎟⎟⎟⎠ .
To find the adjoint, we use the other part of the matrix solution:

λ(t) = α e
√

2t +β e−
√

2t

= α

⎛⎜⎜⎜⎜⎝e√2t +

⎛⎜⎜⎜⎜⎝
√

2 − 1√
2 + 1

⎞⎟⎟⎟⎟⎠ e−
√

2t

⎞⎟⎟⎟⎟⎠
=

(
α√

2 + 1

) [(√
2 + 1

)
e
√

2t +
(√

2 − 1
)

e−
√

2t
]
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=

(
α√

2 + 1

) (
2
√

2 cosh
√

2t + 2 sinh
√

2t
)

= −xτ

⎛⎜⎜⎜⎜⎝
√

2 cosh
√

2t + sinh
√

2t

sinh
√

2τ

⎞⎟⎟⎟⎟⎠
= −x(t)

⎛⎜⎜⎜⎜⎝
√

2 cosh
√

2t + sinh
√

2t

sinh
√

2t

⎞⎟⎟⎟⎟⎠
= −x(t)

(
1 +

√
2 coth

√
2t

)
.

Since u = −λ, this has the form of a positive feedback term, with gain

K(t) =
(
1 +

√
2 coth

√
2t

)
,

which tends to 1 +
√

2 for large t (and large τ). The gain diverges at short times
t → 0, which makes sense: we need a high gain to “get the system started.”

For τ → 0, λ(t) ∼ xτ/τ, which diverges. This makes sense: moving x from 0 to
xτ over a shorter cycle should require more “work.”

7.4 Move a harmonic oscillator. For an undamped, simple harmonic oscillator, let
the goal be to move from rest states x = 0 to x = 1 using the least control effort:

ẍ + x = u , x(0) = ẋ(0) = 0 , x(τ) = 1 , ẋ(τ) = 0 , J =
∫ τ

0
dt

(
1
2 u2(t)

)
.

a. Solve the problem analytically, and find expressions for x(t) and u(t). Find
also J(τ) and show that Jshort(τ) ∼ 12/τ3 and Jlong(τ) ∼ 2/τ.

b. Plot x(t) and u(t) for τ = 1, 2, π, 2π, 3π, and 10π and discuss. A sample plot
for τ = π is shown at left along with the energy E(t) = 1

2 (x2 + ẋ2). What if
τ < π?

c. Plot J(τ), with its short- and long-protocol limits, and discuss.

Solution.

a. This is a modified LQR problem, with variable boundary conditions. Let us
put the problem in LQR form. The two-dimensional state vector is

x =
(
x1

x2

)
≡

(
x
ẋ

)
.

From Eq. (7.13), the equations of motion of this SISO system are

d
dt

(
x1

x2

)
=

(
0 1
−1 0

)
︸���︷︷���︸

A

(
x1

x2

)
+

(
0
1

)
︸︷︷︸

B

u , y =
(
1 0

)
︸�︷︷�︸

C

(
x1

x2

)
,

with boundary conditions(
x1

x2

)
t=0

=

(
0
0

)
,

(
x1

x2

)
t=τ

=

(
1
0

)
.
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The adjoint equations are

d
dt

(
λ1

λ2

)
=

(
0 1
−1 0

)
︸���︷︷���︸

−AT

(
λ1

λ2

)
.

As in Problem 7.3, there are no boundary conditions on λ, since they are
imposed on x at the beginning and end of the protocol. The equation for the
control u is,

u = −
(
0 1

)
︸�︷︷�︸

BT

(
λ1

λ2

)
= −λ2

To solve these equations, we can immediately see that λ(t) = a cos t + b sin t.
We could then substitute this equation into the equation for x(t) and solve
the forced harmonic oscillator equation. The forcing is resonant, leading to
secular terms of the form t cos t and t sin t. The final step would be to impose
the four boundary conditions on x(t) and ẋ(t) at t = 0 and τ. The lazier way
is to use Mathematica. We find

x(t) =
2[t cos t(sin τ + τ cos τ) − sin t(−tτ sin τ + sin τ + τ cos τ)]

2τ2 − 1 + cos 2τ

u(t) =
4[τ cos τ sin t + sin τ(sin t − τ cos t)]

2τ2 − 1 + cos 2τ
.

b. Here are the plots for x and u:

A few observations: For small τ, the movement is direct. For larger τ, the
optimal movement (to reduce the cost J) is to use smaller movements and
resonance, to gradually pump energy into the oscillator. Of course, unlike the
pendulum example studied elsewhere, a non-zero u = 1 would be required
to maintain the oscillator position at x = 1 for t > τ. Another interesting
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observation is that the energy, for τ < π, goes above the value associated with
the final state (0.5). For longer protocols, the energy monotonically increases,
approaching a linear ramp for τ→ ∞.

c. The integrated cost is given by

J(τ) =
2(2τ + sin 2τ)

2τ2 − 1 + cos 2τ
.

By taking limits for small and large τ, it is easy to find the advertised power
laws. Note that the denominator for small τ is 2

3τ
4 + O(τ6).

J

τ

J

τ

2/π

1/π

π

τ

2π

The log-log plot shows well the two asymptotic limits. The linear plot shows
well how for τ ≈ π, the system has stationary points for τn = nπ, where
J′[τn] = 0. At those special values (half-integral numbers of the natural
oscillation period), the cost is J(τn) = 2/(nπ).

7.5 Pendulum swing up. Fill in the missing steps from Example 7.2. In particular:

a. Identify x, u, and λ, along with the functions L and f .
b. Compute the various derivative terms: ∂xL, ∂uL and ∂x f , ∂u f .
c. Write the Euler-Lagrange equations as two sets of equations for the two-

vectors x and λ. Then rewrite as two coupled second-order equations for
θ(t) and λ(t).

d. Derive a single fourth-order, nonlinear differential equation for θ(t).
e. In Figure 7.2, why is u(τ) < 0? Hint: relate the pendulum energy E to u.

Solution.

a. We have

x =
(
x1

x2

)
=

(
θ

θ̇

)
, λ =

(
λ1

λ2

)
=

(
λ

λ̇

)
, u = u(t) ,

f (x,u) =

(
f1
f2

)
=

(
x2

− sin x1 + u

)
, L = 1

2 u2(t) .

b. We have

∂xL =
(
0 0

)
, ∂uL = u , ∂x f =

(
0 1

− cos x1 0

)
, ∂u f =

(
0
1

)
,
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c. The “official” version of the equations of motion are given by applying the
Euler-Lagrange equations, (7.8) to the above quantities. We have,

d
dt

(
x1

x2

)
=

(
x2

− sin x1 + u

)
,

d
dt

(
λ1 λ2

)
= −

(
λ1 λ2

) ( 0 1
− cos x1 0

)
=

(
λ2 cos x1 −λ1

)
.

The adjoint equation can also be written as its transpose,

d
dt

(
λ1

λ2

)
=

(
λ2 cos x1

−λ1

)
.

and has boundary conditions at the final time t = τ,(
λ1(τ)
λ2(τ)

)
=

((
x1(τ) − π

)
x2(τ)

)
.

Finally, the algebraic equation for u(t) is

0 =
(
λ1 λ2

) (0
1

)
+ u ,

u(t) = −λ2(t) .

Substituting x1 = θ, x2 = θ̇, λ2 = λ, λ1 = −λ̇ then leads directly to Eq. (7.11).
d. Differentiating twice θ̈ + sin θ = u gives,

θ(iv) + cos θ θ̈ − sin θ θ̇2 = ü .

Substituting u into the adjoint equation for λ gives ü + u cos θ = 0, so that

θ(iv) + cos θ θ̈ − sin θ θ̇2 = −u cos θ ,

and

θ(iv) + cos θ (2θ̈ + sin θ) − sin θ θ̇2 = 0 .

The boundary conditions at t = 0 are

θ(0) = θ̇(0) = 0 , θ(τ) = π , θ̇(τ) = 0 .

Thus, θ(t) obeys a single nonlinear fourth-order equation, with two boundary
conditions at t = 0 and two at t = τ. It is easy to verify that the numerical
solutions of this single equation are equivalent to those found in the system
of state-adjoint equations given in the first part of this problem.

e. In all the protocols explored, u(t) is negative at the end. To understand why,
let us consider the pendulum energy,

E = 1
2 θ̇

2 + (1 − cos θ) .

Differentiating with respect to time gives

Ė = θ̇θ̈ + sin θ θ̇ = θ̇(θ̈ + sin θ) = θ̇ u .
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Assume that θ̇ > 0 and that the pendulum is approaching the upright position
θ = π in the counterclockwise direction. This is the situation shown in all
three cases of Figure 7.2. Then u > 0 implies that Ė > 0.

The second part of the argument is to note that the upright stationary posi-
tion corresponds to E = 2 whereas the initial down state has E = 0. Thus, E
needs to increase to swing up the pendulum. One possibility would be to set
u = 0 once the pendulum energy has increased to E = 2 and let the pendulum
“coast” to the top. But such a protocol would need an infinite amount of time
for the pendulum to reach θ = π and θ̇ = 0, whereas the boundary condition
requires a finite time τ. Thus, the protocol needs to first give the pendulum
E > 2 and then reverse to actively break as the pendulum approaches θ = π.
This requires u < 0 at the end.

We could also swing the pendulum up the other way, so that θ̇ < 0 as it
approaches π in a clockwise direction. This would reverse the signs of u in
the above argument.

7.6 Discrete, one-dimensional dynamics. Consider applying a controllable force
to a free, overdamped particle. The forward Euler method for the continu-
ous dynamics ẋ = u gives xk+1 = xk + Tsuk. Let the cost function be J =
1
2

∑N
k=0

(
x2

k + Ru2
k

)
.

a. Form the one-dimensional augmented cost function J′ that respects the
constraint that xk and uk must obey the equations of motion.

b. Optimizing J′ directly, show that KN−1 =
Ts

R+T 2
s

. Show, too, that this expression
agrees with the result derived from general formula, Eq. (7.23).

c. Show that, in steady state, S = 1
2 +

√
1
4 +

R
T 2

s
and K = S Ts

R+S T 2
s

.

d. For Ts = 1 and R = 2, plot S k and Kk (see left).
e. For finite Ts, take the limit R → 0. Why must R > 0 in the continuous case?

Solution.

a. The augmented cost function is formed by adding the constraint and its
associated set of Lagrange multipliers. From Eq. (7.19), we have

J′ = 1
2

N∑
k=0

(
x2

k + Ru2
k

)
+ λk+1 (−xk+1 + xk + Tsuk) .

b.

xk+1 = xk + Tsuk , and J = 1
2

N∑
k=0

(
x2

k + Ru2
k

)
,

where we choose for cost function the discrete analog of Eq. (7.1). A direct
way to solve the optimization problem is to note that if we start at time step
N − 1, then

J(N−1)→N =
1
2

[
x2

N−1 + Ru2
N−1 + x2

N

]
= 1

2

[
x2

N−1 + Ru2
N−1 + (xN−1 + TsuN−1)2

]
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We set uN = 0 because it affects only xN+1, which is not part of J. Then we
pick uN−1 to minimize J(N−1)→N :

∂J(N−1)→N

∂uN−1
= RuN−1 + (xN−1 + TsuN−1)(Ts) = 0 ,

and

uN−1 = − Ts

R + T 2
s

xN−1 , ⇒ KN−1 =
Ts

R + T 2
s
. (7.756)

c. The steady-state discrete algebraic Riccati equation is

S = AT
[
S − SB(R + BTSB)−1BTS

]
A + Q ,

which, for A = Q = 1 and B = Ts, gives

S = (1)

(
S − S 2T 2

s

R + S T 2
s

)
(1) + 1 =⇒ S 2T 2

s

R + S T 2
s
= 1 ,

which implies

S 2 − S − R

T 2
s
= 0 =⇒ S =

1
2
+

√
1
4
+

R

T 2
s
.

Then,

K = (R + BTSB)−1BTSA =⇒ TsS

R + T 2
s S

d. See computer program.
e. The limit R → 0 gives S = 1 and K = 1

Ts
. Substituting into the equation of

motion, we have

xk+1 = xk + Tsuk , uk = − 1
Ts

xk

= xk − Ts

(
1
Ts

xk

)
= 0 .

This optimal controller is just the deadbeat control algorithm that we saw in
Section 5.4.2. Notice that if Ts → 0, then K → ∞. Thus, from a mathematical
point of view, we cannot set R = 0 for a continuous controller because the
feedback gain becomes infinite. Physically, this result just restates the obser-
vation we made in Chapter 5: that deadbeat control really reflects a limitation
of discrete control, in that no matter how much control effort is available, the
sampling time Ts sets an upper limit to the gain. If you go beyond that gain,
then you have oscillatory behavior (with a higher cost function). By contrast,
in the continuous case, there is no mathematical limit to the maximum gain.
Of course, an infinite feedback gain implies an infinite control signal, which
is physically impossible.
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7.7 Discounted LQR. The cost function J = 1
2

∫ ∞
0

dt e−2αt
(
xTQx + uTRu

)
is partic-

ularly popular in economics. The parameter α > 0 discounts, or reduces the
influence of future costs exponentially, on a time scale (2α)−1. This type of cost
function has a steady-state solution, even though it is effectively a finite-horizon
control problem.

a. By defining new variables x̃ = e−αt x and ũ = e−αt u, show that the prob-
lem reduces to solving a time-independent LQR problem with modified
dynamics Ã.

b. Show that the optimal control of the discounted problem has the form u =
−K̃x, and find K̃ in terms of the solution to a steady-state Riccati equation.

c. Find K̃(α) for the one-dimensional problem of Section 7.1. You should get
the plot at left, for a = R = 1. Intuitively, why does K̃ decrease with α?

Solution.

a. Defining x̃ = e−αt x and ũ = e−αt u, the new cost function is

J̃ = 1
2

∫ ∞

0
dt

(
x̃TQx̃ + ũTRũ

)
,

which is time invariant in terms of the new states and controls. We need to
work out the dynamics of the new state:

˙̃x = −α e−αt x + e−αt ˙̃x

= −αx̂ + e−αt (Ax + Bu)

= −αx̂ + Ax̃ + Bũ

= (A − αI) x̂ + Bũ .

Thus, if we define Ã ≡ A − αI, we have completely reduced our problem to a
stationary LQR problem in terms of x̃, ũ, and Ã.

b. The solution to the standard LQR stationary problem is derived in the main
text. In terms of our transformed variables, it is

ũ = −R−1BTS̃ x̃ ≡ −K̃x̃ .

where

˙̃S = −Q − Ã
T
S̃ − S̃ Ã + S̃BR−1BTS̃ .

Now transform back to the original state and control variables:

u = −R−1BTS̃ x ≡ −K̃x .

Thus, the solution is time-independent, with K̃ expressed in terms of S̃, which
differs from the original problem in using the modified dynamics Ã. Notice,
of course, that when α → 0, we recover the original LQR steady-state
solution.
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c. Let us apply the general solution to the one-dimensional problem,

J = 1
2

∫ ∞

0
dt e−2αt

(
x2(t) + Ru2(t)

)
,

ẋ = −ax + u(t) , x(0) = x0 , a > 0 .

The transformed dynamics have a → ã = (a+ α), so that the Riccati equation
becomes

˙̃S = 0 = −1 + 2ãS̃ +
S̃ 2

R
,

with solution

S̃ = −ãR ±
√

ã2R2 + R

and feedback gain

K̃(α) = R−1(1)S̃ = −(a + α) +
√

(a + α)2 + 1/R .

The optimal gain K̃ decreases with α because the discounting implies dynam-
ics equivalent to a stationary problem that is more stable than the original
dynamics (increase of α in the decay rate). Thus, less feedback is needed to
stabilize the equivalent dynamics. In the numerical example with a = R = 1,
the optimal gain of the undiscounted problem is K̃(0) =

√
2 − 1 ≈ 0.41.

If the initial system were unstable, the reduced gain might not be enough to
stabilize the closed-loop dynamics. This makes sense: if you truly care only
about the finite-time behavior [out to a time (2α)−1], then you can accept a
possibly unstable solution. Still, you probably would want to limit your value
of α so that such instability does not occur.

7.8 Optimal control of an undamped harmonic oscillator. In Chapter 4, we studied
the PD strategy for regulating a harmonic oscillator against input disturbances.
In Example 4.10, we found that for G = 1

1+s2 that the PD controller K = k1 + k2s
gave good results for k1 = 3 and k2 = 4. Here, design a similar controller using
optimal control. Fix the weights Q to be the 2 × 2 identity matrix and vary R.

a. Find, numerically or algebraically the “LQR” gains k1(R) and k2(R).
b. By plotting the system output y(t) and controlled input u(t), show that R ≈

0.08 gives a response similar to the PD controller. (Plot should resemble one
at right.)

c. Show that the only value of R giving critical damping is R = 1/8.
d. Why is the LQR controller, in general, not critically damped?

Solution.
See the Mathematica file on the book website.

a. To solve the LQR gains for K =
(
k1 k2

)
, we can use built-in routines in

control software such as Mathematica or Matlab. These programs will, how-
ever, typically give only numerical solutions, for a specified value of R. To
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solve symbolically, we use Mathematica to derive (and solve explicitly) the
algebraic Riccati equation,

Q = −ATS − SA + SBR−1BTS ,

for the 2 × 2 matrix S. Here,

A =
(
0 −1
1 0

)
, B =

(
0
1

)
, Q =

(
1 0
0 1

)
, and R = (1) .

The solution for S is complicated. As discussed in the text, there are multi-
ple solutions, but only for one is S positive definite. Selecting that one and
calculating K = R−1BTS, we find

K =
(
k1 k2

)
, k1 = −1 +

√
1 +

1
R
, k2 =

√
R − 2R2 + 2

√
R3(1 + R)

R
..

These k-dependent gains are plotted here below.

b. At R = 0.08, we have k1 ≈ 2.7 and k2 ≈ 4.2, which are close to, but different
from the (3,4) solution used for the PD controller giving critical damping
(pole at s = −2).

c. To have critical damping of the closed-loop response, the transfer function
should be of the form T (s) = 1

(s+a)2 =
1

s2+2as+a2 . On the other hand, a controller
K =

(
k1 k2

)
leads to a closed-loop transfer function with denominator

s2 + k2s + (1 + k1) ↔ s2 + 2as + a2 .

Matching terms leads to k2
2/4 = 1 + k1. Inserting the expressions for R given

above leads to a single solution, R = 1/8, which corresponds to a decay rate
a =

√
3.

d. Why is the LQR controller not critically damped (except at R = 1/8)? Well,
why should it be? The point is that critical damping for a closed-loop response
can come from a cost function that seeks to minimize the decay time of the
response-amplitude envelope. The LQR controller discussed here minimizes
a different cost. Two different cost functions in general will lead to two differ-
ent controllers. As discussed in several places in this chapter, there is nothing
inherently “good” about optimal control. Rather, you replace a direct design
of the controller with an indirect one that translates the cost function into a
controller.
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7.9 Minimum-effort control. Consider our canonical SISO linear system, ẋ = Ax +
Bu. Assume that we want to move the state x(0) = 0 to x(τ) = xτ. We do not care
what the intermediate path x(t) is; rather, our goal is to choose the function u(t)
so as to minimize the required control effort E ≡ ∫ τ

0
dt u2(t) (often an energy-like

quantity).

a. Show that the optimal input is given by u = BT eAT(τ−t) P−1(τ) xτ, where the
n × n dimensional controllability Gramian matrix is P(τ) =

∫ τ

0
dt eAt B BT eATt.

Hint: This problem is just LQR with a boundary condition on x(τ).
b. Deduce the normalized minimum control effort, En =

xT
τ P(τ)−1 xτ

xT
τxτ

= n̂T P(τ)−1 n̂,
assuming that the target xτ = n̂ is a vector on the unit n-sphere.

c. Show that if x(0) = x0 � 0, then xτ → Δx ≡ xτ − eAτ x0. Please interpret.
d. For ẋ = −x + u, with x(0) = 0 and x(τ) = xτ, find the input u(t) with min-

imum effort and the corresponding state x(t). Show that the corresponding
normalized minimum effort is En = 2(1 − e−2τ)−1. Physically, the system cor-
responds to moving a Brownian particle in a harmonic potential, and we ask
for the minimum effort to push a particle “up the potential.” Discuss the
limits τ→ ∞ and τ→ 0.

Solution.

a. In the general solution, we have Q = 0 and R = 1. Also, we have to impose
the boundary condition on x at both t = 0 and t = τ. As a result, we do not
impose a boundary condition on λ at t = τ. Thus, from Eq. (7.13), we have

λ̇ = −ATλ , =⇒ λ(t) = eAT(τ−t) λτ ,

where the integration constant is such that λ(τ) ≡ λτ. Then,

u = −BTλ = −BT eAT(τ−t) λτ .

Inserting into the solution for x(t) gives

xτ =
∫ τ

0
dt eA(τ−t) B u(t)

= −
∫ τ

0
dt eA(τ−t) B BT eAT(τ−t) λτ ≡ −P(τ)λτ ,

where we note that∫ τ

0
dt eA(τ−t) B BT eAT(τ−t) =

∫ τ

0
ds eAs B BT eAT s = P(τ) ,

as can be seen by substituting s = τ − t. Thus, λτ = −P−1(τ)xτ, and

u = BT eAT(τ−t) P−1(τ) xτ ,

as claimed.
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b. Since P is symmetric by construction, we can write the expression for the
control effort as

E =
∫ τ

0
dt u2(t)

= xT
τP−1(τ)

∫ τ

0
dt eA(τ−t) B BT eAT(τ−t)

︸���������������������������︷︷���������������������������︸
P(τ)

P−1(τ) xτ

= xT
τ P−1(τ) xτ .

Since the minimum control effort clearly scales with the initial condition |xτ|2,
it often makes sense to normalize by this factor and define En = E/|xτ|2.

c. For the case where x(0) = x0 � 0, we recall that the solution for xτ that takes
account for the transient produced by the initial condition:

xτ = eAτ x0 +

∫ τ

0
dt eA(τ−t) B u(t) .

Rewrite this equation as

Δx ≡ xτ − eAτ x0 =

∫ τ

0
dt eA(τ−t) B u(t) ,

with Δx the difference between the final state under control, xτ, and the final
state of the system in the absence of control, eAτ x0, as illustrated at left.
Then λτ = −P−1(τ)Δx, where

Δx ≡ xτ − eAτ x0 ,

and the optimal control is

u = BT eAT(τ−t) P−1(τ)Δx , E = ΔxT P−1(τ)Δx ,

which makes sense: it is moving the system from its “natural,” uncontrolled
state that requires control effort. Similarly, the normalized control effort is

En =
ΔxT P−1(τ)Δx
ΔxT Δx

.

d. With A = −1 and B = 1, we have

P(τ) =
∫ τ

0
dt e−t(1)(1) e−t =

∫ τ

0
dt e−2t = 1

2

(
1 − e−2τ

)
.

Then,

u(t) = (1) e−(τ−t)

(
2

1 − e−2τ

)
xτ =

2 e−τ

1 − e−2τ
xτ et = xτ

(
2

eτ − e−τ

)
et .
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We find the state x(t) for 0 < t < τ by

x(t) =
∫ t

0
dt′ e−(t−t′)(1) xτ

(
2

eτ − e−τ

)
et′

︸��������������︷︷��������������︸
u(t′)

= xτ

(
2

eτ − e−τ

)
e−t

∫ t

0
dt′ e2t′

= xτ

(
�2

eτ − e−τ

)
e−t

(
e2t −1

�2

)

= xτ

(
et − e−t

eτ − e−τ

)
.

The normalized control effort is then

En =
1
x2
τ

∫ τ

0
dt u2(t) =

1
x2
τ

[
4

(eτ − e−τ)2

]
x2
τ

∫ τ

0
dt (et)2

=
2
(
e2τ −1

)
(eτ − e−τ)2

=
2

1 − e−2τ
.

In the limit τ � 1, we have En → 2. For τ � 1, we have En → τ−1. The
divergence in τ is expected: moving quickly requires a lot of control effort.

7.10 Minimum-energy control. In Problem 7.9, we discussed the minimum-effort con-
trol; however, the relation of “effort” to thermodynamic work is not entirely
obvious. In this problem, we explore operations that minimize the heat dis-
sipated into the surrounding fluid bath. Consider an overdamped particle in
a harmonic potential, with equations of motion ẋ = −x + u, with x(0) = 0
and x(τ) = xτ. For simplicity, ignore thermal fluctuations, which would add
a stochastic term.

a. Define the heat dissipated into the bath as Q = − ∫ τ

0
dt ẋ2, where the neg-

ative sign denotes that energy is lost by the particle and reappears as heat
in the bath. Generalize the cost function in Eq. (7.12) to allow for a cross
term proportional to u(t) x(t); deduce the trajectory x(t) and control u(t) that
minimizes Q.

b. Calculate Qmin for this minimum-dissipation trajectory. Discuss the limits of
large and small τ (assuming xτ to be fixed and finite).

c. The work done on the particle is W =
∫ τ

0
dt u(t) ẋ(t), where u(t) is interpreted

as the applied “force.” Calculate Wmin, and interpret for large and small τ.
d. Verify that the first law of thermodynamics holds, in the form of ΔU = W +Q.
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Solution.

a. We quickly repeat the optimal-control derivation. The absolute value of the
heat functional Q[u(t)] is given by

|Q| = +
∫ τ

0
dt ẋ2 =

∫ τ

0
dt (−x + u)2 =

∫ τ

0
dt

(
x2 − 2xu + u2

)
.

We then define an “augmented cost function” that adds the equation of
motion as a constraint:

J = 1
2

∫ τ

0
dt

(
x2 − 2xu + u2

)
+ λ(−ẋ − x + u) dt ≡

∫ τ

0
dt L(t) ,

where the factor of 1
2 amounts to a redefinition of λ that is done to conform

to the notation in the text. We then apply the variational equations.

d
dt
∂L
∂ẋ
= −λ̇ = ∂L

∂x
= x − u + λ =⇒ λ̇ = λ − x + u

∂L
∂u
= −x + u + λ = 0 =⇒ λ = x − u .

Putting these equations together then gives λ̇ = 0, or λ = λ0. From the
equation of motion, ẋ = −x + u = −λ0, so that x(t) = −λ0t. Imposing the
boundary condition x(τ) = xτ then gives

x(t) =
xτ
τ

t , ẋ =
xτ
τ
, u(t) = ẋ + x =

xτ
τ

(1 + t) .

b. The minimum heat dissipation is

Qmin = −
∫ τ

0
dt ẋ2 =

( xτ
τ

)2
τ = − x2

τ

τ
.

We note that Qmin → 0 as τ → ∞. If the movement is done adiabati-
cally (infinitely slowly), the dissipated heat goes to 0. For τ → 0, the heat
dissipation diverges, as expected.

c. The minimum work done is

Wmin =

∫ τ

0
dt ux =

( xτ
τ

)2
∫ τ

0
dt (1 + t)t ,=

( xτ
τ

)2 (
τ + 1

2τ
2
)
= 1

2 x2
τ +

x2
τ

τ
.

For τ → ∞, we have Wmin =
1
2 x2

τ, which is just the change in potential energy.
For τ→ 0, the work diverges.

d. We verify that W + Q = 1
2 x2

τ = ΔU.

7.11 Soft end-time constraints. Consider one-dimensional motion of a Newtonian
particle with ẍ = u and x(0) = ẋ(0) = 0. The goal is to move the particle close to
x(τ) = xτ, while minimizing the fuel cost. We impose no constraint on the veloc-
ity at t = τ, and the dynamics-constrained cost functional is given by Eq. (7.6).
The soft end-time constraint leads to the usual Euler–Lagrange equations (7.8),
which hold for t ∈ (0, τ]; however, the boundary condition at time τ becomes
∂x ϕ + ∂ẋ L = 0. If ẋ enters only in the constraint on the dynamical equation, the
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boundary condition becomes λT(τ) = ∂xϕ(τ). We choose L = 1
2 u2 (no x depen-

dence) and ϕ = 1
2 S (x̄ − 1)2. Scaling x by xτ, t by τ, and defining x̄ = x(τ), we

have,

J′ = 1
2 S (x̄ − 1)2 + 1

2

∫ 1

0
dt u2(t) +

∫ 1

0
dt λT(−ẋ + Ax + Bu) .

where (x̄ − 1) = x(τ) − xτ in unscaled units. The parameter S balances accuracy
of the end state against control effort (“fuel consumption”).

a. Write the equations of motion in the standard form ẋ = Ax + Bu.
b. Write the adjoint equations for λ(t), with boundary conditions at t = {0, 1}.
c. Find x1(t), x2(t), λ1(t), λ2(t), and u(t), as well as a relation between x̄ and S

and an expression for J∗(S ). Show that u(t) = 3S
S+3 (1 − t).

d. Discuss the limits S → ∞ and S → 0.
e. For S = 1 and S = ∞, plot u, x, and ẋ over the interval t = (0, 1).

Solution.

a. The equations of motion are x1 = x, ẋ1 = x2, ẋ2 = u, which, in matrix form,
give

d
dt

(
x1

x2

)
=

(
0 1
0 0

)
︸�︷︷�︸

A

(
x1

x2

)
︸︷︷︸

x

+

(
0
1

)
︸︷︷︸

B

u .

b. The Euler-Lagrange equations are

λ̇ = −Qx − ATλ ,

with Q = 0, giving

d
dt

(
λ1

λ2

)
= −

(
0 0
1 0

) (
λ1

λ2

)
=⇒ λ̇1 = 0 , λ̇2 = −λ1 .

The second equation, from minimizing with respect to u is u = −R−1BTλ.
With R = 1, we have

u = −(1)−1
(
0 1

) (λ1

λ2

)
= −λ2 .

The boundary condition at t = 0 is on the state equation: x(t = 0) = x0 =
( 0

0
)
,

since the particle is specified as being at the origin (x1 = 0) and stationary
(x2 = 0) at t = 0.
The boundary condition at t = 1 is, with ϕ(x) = 1

2 S (x̄ − 1)2 and x̄ = x1(t = 1).
Taking the transpose (so that we write column vectors, instead of row vectors),
we have (

λ1(1)
λ2(1)

)
=

(
S (x̄ − 1)

0

)
.



154 Optimal Control

c. Collecting the equations and boundary conditions, we have five equations for
the five unknown quantities x1, x2, λ1, λ2, and u. The equations and boundary
conditions are

ẋ1 = x2 x1(0) = 0

ẋ2 = u x2(0) = 0

λ̇1 = 0 λ1(1) = S (x̄ − 1)

λ̇2 = −λ1 λ2(1) = 0

u = −λ2 .

To solve this system of equations, we start by noting

λ1(t) = S (x̄ − 1) .

Then

λ2(t) = S (x̄ − 1) (1 − t) ,

u(t) = S (1 − x̄) (1 − t) ,

Then, we can determine the state equations:

x2(t) = S (1 − x̄)
(
t − 1

2 t2
)

x1(t) = S (1 − x̄)
(

1
2 t2 − 1

6 t3
)
.

We still need to determine x̄. Imposing x1(t = 1) = x̄, we have

x̄ =
S

S + 3
.

The final solution then is

x1(t) =

(
3S

S + 3

) (
1
2 t2 − 1

6 t3
)

x2(t) =

(
3S

S + 3

) (
t − 1

2 t2
)

x̄ =
S

S + 3

λ1(t) = −
(

3S
S + 3

)
λ2(t) = −

(
3S

S + 3

)
(1 − t) u(t) =

(
3S

S + 3

)
(1 − t) .

The optimal cost is

J∗ =
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣S
(

9
(S + 3)2

)
+

9S 2

(S + 3)2

∫ 1

0
dt (1 − t)2

︸�����������︷︷�����������︸
1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
1
2

(
3S

S + 3

)
.

d. The key quantity is x̄. We have

S = 0 x̄ = 0 J∗ = 0

S = 1 x̄ =
3
4

J∗ =
3
8

S → ∞ x̄ → 1 J∗ =
3
2
.
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The limits are easy to understand. For large S , the solution tends to the target
value. For small S , the best thing is to stay put and not do anything. For finite
S , the best thing is to always fall short relative to the target (x̄ < 1) by a precise
amount.
In the S → ∞ limit, J∗ does not go to ∞. All we are doing in this limit is
imposing the constraint that we must hit the target. While this requires more
fuel than falling short, it does not require an infinite amount, and thus, J∗ is
finite.

e. For the control, velocity, and position, we have

7.12 Sequential optimization and the Bellman equation. The “magic” of the Bellman
equation arises because the optimization over N variables has a special “sequen-
tially coupled” form. Consider optimizing L(x1, x2, x3) = f0(x0, x1) + f1(x1, x2) +
f2(x2, x3), where x0 is given (the “initial condition” for a dynamical problem).
Although one could solve the three coupled equations ∂x1 L = ∂x2 L = ∂x3 L = 0,
the special “intertwined” structure of the problem suggests a simpler, sequential
solution.

a. Solve the equations sequentially, starting from ∂x3 f2 = 0.
b. For f0 = 1

2 (x0− x1)2− x1, f1 = 1
2 (x1− x2)2− x2, f2 = 1

2 (x2− x3)2− x3,
find the minimizing set {x∗1, x∗2, x∗3} by naive “global” optimization and by the
easier “sequential” optimization. [See Rawlings et al. (2017), Section 1.3.2.]

Solution.

a. We first minimize f2(x2, x3) over x3:

x∗∗3 = arg min
x3

∂ f2
∂x3
= 0 , and f ∗2 (x2) ≡ f2(x2, x

∗∗
3 ) .

We then minimize f1(x1, x2) + f ∗2 (x2) over x2:

x∗∗2 = arg min
x2

∂( f1 + f ∗2 )

∂x2
= 0 , and f ∗1 (x1) ≡ f1(x1, x

∗∗
2 ) + f ∗2 (x∗∗2 ) .

Last, we minimize f0(x0, x1) + f ∗1 (x1) over x1:

x∗∗1 = arg min
x1

∂( f0 + f ∗1 )

∂x1
= 0 ,

We have converted the solution of a set of three equations in three unknowns
into three sequential optimization problems, each involving a single variable.
With such a structure, we can clearly extend to N time steps, as we do in
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the main text in the Bellman equation. We use the x∗∗2 notation because this
intermediate minimizer is a function of x1.

As an aside, the kind of simplification we see here is analogous to the distinc-
tion between general matrix inversion and the much-easier tridiagonal matrix
inversion of linear algebra.

The next step is to generate explicit minimizers x∗1, x∗2, x∗3 by forward iteration:

x∗1 = x∗∗1
x∗2 = x∗∗2 (x∗1)

x∗3 = x∗∗3 (x∗2) .

The first equation will be trivial because x∗∗1 only depends on x0, which is
considered known. Then we can propagate forward, substituting the optimal
values as we go along. This will be clearer in the next section, in an explicit
example.
Lastly, we can write the value of the overall function L = f0 + f1 + f2:

L = f0(x0, x
∗
1) + f1(x∗1, x

∗
2) + f2(x∗2, x

∗
3) .

b. We consider the example

L(x1, x2, x3) = 1
2 (x0 − x1)2 − x1︸��������������︷︷��������������︸

f0

+ 1
2 (x1 − x2)2 − x2︸��������������︷︷��������������︸

f1

+ 1
2 (x2 − x3)2 − x3︸��������������︷︷��������������︸

f2

.

The global optimization leads to a set of three coupled equations,

∂L
∂x1
=
∂L
∂x2
=
∂L
∂x3
= 0 ,

which leads to the matrix equations⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 −1 0
−1 2 −1
0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�������������︷︷�������������︸
A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0 + 1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

which implies that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x∗1
x∗2
x∗3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1
1 2 2
1 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�������︷︷�������︸
A−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0 + 1

1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x0 + 3
x0 + 5
x0 + 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

We can do this problem as a sequence of single-variable optimizations if we
take advantage of its intertwined structure of variables. We first solve

x∗∗3 = arg min
x3

∂ f2
∂x3
= 0

= x2 + 1 =⇒ f ∗2 (x2) = f2(x2, x
∗∗
3 ) = −x2 − 1

2 .
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We then solve

x∗∗2 = arg min
x2

∂( f1 + f ∗2 )

∂x2
= 0

= x1 + 2 ,

which implies that

f ∗1 (x1) = f1(x1, x
∗∗
2 ) + f ∗2 (x∗∗2 ) = −2x1 − 5

2 .

For the last stage, we solve

x∗∗1 = arg min
x1

∂( f0 + f ∗1 )

∂x1
= 0

= x0 + 3 =⇒ f ∗0 (x0) = f0(x0, x
∗∗
1 ) + f ∗1 (x∗∗1 ) = −3x0 − 7 .

We note that f ∗0 (x0) = L(x∗1, x
∗
2, x

∗
3).

Notice that we now have a forward recursion relation for the x∗i :

x∗1 = x∗∗1 (x0) = x0 + 3

x∗2 = x∗∗2 (x∗1) = x∗1 + 2 = x0 + 5

x∗3 = x∗∗3 (x∗2) = x∗2 + 1 = x0 + 6 ,

which reproduces the global solution found above. In the above discussion,
we have distinguished between x∗∗2 , the optimal value for an arbitrary x1 from
x∗2, the optimal value given the optimal x1. We start at x1 because, different
from the other equations, we assume that we know x0 as an initial condition
for the problem. Thus, the recursion relation goes back from the final stage
in a first pass and then forward from the initial condition in a second stage.

7.13 HJB for LQR. Using Example 7.4 and the ansatz J∗ = 1
2 xTSx, derive the steady-

state Linear Quadratic Regulator (Eq. 7.17) by starting from the Hamilton–
Jacobi–Bellman equation (Eq. 7.31). The running cost is L = 1

2 (xTQx +
uTRu).

Solution.
The time-independent HJB equation is

inf
u

[
L(x,u) + (∂xJ∗) f (x,u)

]
= 0 .

From the equations of motion are ẋ = Ax + Bu, we have f (x,u) = Ax + Bu, so
that

inf
u

[
1
2 (xTQx + uTRu) + (∂xJ∗) (Ax + Bu)

]
= 0 .

The suggested ansatz J∗ = 1
2 xTSx implies first of all that S is symmetric, since

any antisymmetric component will contribute 0 to J∗. Thus,

(∂xJ∗) = xTS .
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Hence,

inf
u

[
1
2 (xTQx + uTRu) +

(
xTS

)
(Ax + Bu)

]
= 0 .

Because u is unbounded, the “inf” is found by taking ∂u and setting to zero:

uTR + xTS B = 0T .

Taking a transpose and remembering that R and S are symmmetric gives,

u = −(R−1BTS)x ,

which is Equation (7.14). We then substitute u back into the HJB equation:

1
2

[
xTQx + (xTSBR−1)R(R−1BTSx)

]
+

(
xTS

) [
Ax − B(R−1BTS)x

]
= 0

xT
[

1
2

(
Q + SBR−1BTS

)
+ 1

2

(
SA + ATS

)
− SBR−1BTS

]
x = 0 ,

which implies that

Q + SA + ATS − SBR−1BT = 0 ,

which is Eq. (7.17). Note the decomposition SA → 1
2 (SA + ATS). This follows

because the condition xT[· · · ]x = 0 implies that the symmetric part of the brack-
eted terms [· · · ] = 0. The linear combination isolates the symmetric part of SA.
There is no constraint placed on antisymmetric terms.

7.14 Anti-windup control. In Section 7.5.1, we showed that we could improve a PI
controller’s performance by ensuring that the integrator does not update if the
controller value would exceed its physical limits. Here, the goal is to reproduce
Figure 7.5.

a. Start with parts (a) and (b). Although you could use the step response
function of standard control packages, write a simple forward Euler rou-
tine to integrate the equations, ẋ = u, u(t) = K0

(
e +

∫ t

0
dt′ e(t′)

)
directly.

Here, e(t) = xr − x(t), xr = 5, and K0 = 1. Recall that for forward Euler,
ẋ ≈ 1

Ts
(xk+1 − xk), with Ts the time step. Find a time step Ts that is small

enough that numerical accuracy is good.
b. To reproduce (c), impose saturation, |u| ≤ 1. In your code, distinguish the

signal v(t) that the controller would send to the system from u(t), the signal
actually sent.

c. To reproduce (d), add anti-windup control: whenever |v(t)| > 1, freeze the
integral value by disabling the update.

Solution.
Code using the standard numerical ODE routine of Mathematica,

NDSolveValue, which allows constraints, is given on the book website. Figure 7.5
was actually produced with simpler code based on a first-order Euler discretiza-
tion. The latter is closer to a digital implementation of a PID loop. With a
short-enough time step, there is little difference between the two solutions.
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7.15 One-dimensional constrained optimization. Finish the analysis in Example 7.5.

a. Show that the Pontrayagin minimum principle implies that u(t) = −sat[λ(t)],
where the saturation function sat limits λ(t) to ±1 (see right).

b. By minimizing the Hamiltonian H(x, λ, u), show that the the crossover
between constrained and unconstrained dynamics occurs at τ = ln[(1+x0)/(2+√

2)]. Or, make a less-rigorous argument by assuming that u(t) is continuous
at t = τ.

c. Generate the plot shown in the example, with x0 = 5 and τ ≈ 0.56.

Solution.

a. The control Hamiltonian is H = 1
2 (x2 + u2) + λ(−x + u). The PMP asks us

to choose, at each instant in time, u(t) to minimize H(x, λ, u), while respecting
the constraint |u| ≤ 1. There are two cases:
• The constraint is not active. Then we can take ∂uH = u + λ = 0, which

implies u(t) = −λ(t).
• The constraint is active. Then u = ±1. Since u2 = +1, the term plays no role

in deciding which u to choose. Rather, we minimize the term +λu, which
implies taking u = − sign(λ).

Putting these conditions together, we have

u(t) = −sat[λ(t)] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1, λ ≥ 1

−λ, 0 < λ < 1

+1, λ ≤ −1 .

b. First, the less-rigorous argument: The two solutions are easy to calculate. For
t < τ, we expect the constrained solution, where u = −1. Then ẋ = −x − 1,
with x(0) = x0 implies that x(t) = −1 + (x0 + 1) e−t and, hence at the crossover,
x(τ) = −1 + (x0 + 1) e−τ.
The other solution has u = −K∗x, with K∗ =

√
2 − 1. This goes from t = τ,

where x = x(τ) (given above). Using the results from Section 7.1 implies
x(t) = xτ e−

√
2(t−τ) and u(τ) = −K∗x(τ).

At the crossover, we can equate the two expressions for u(τ), giving

u(τ) = −1 = −K∗x(τ) = −
(√

2 − 1
) [−1 + (x0 + 1) e−τ

]
.

Solving for τ gives the requested crossover time.

The above argument assumed a lot about the structure of the solution. A
more fundamental way to approach the problem is to evaluate the Hamilto-
nian along the solution. We know that it is constant. For the unconstrained
solution, as t → ∞, the functions x, λ, and u all tend to zero, implying that
H = 1

2 (x2 + u2) + λ(−x + u) → 0, too. Thus, our task is equivalent to evaluat-
ing the Hamiltonian for the first part of the solution. Using Mathematica to
evaluate λ(t) and then H, we find that

H = 1 −
(
2 − √

2
)

(1 + x0) e−τ +
(

3
2 −

√
2
)

(1 + x0)2 e−2τ .
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Substituting the expression for the crossover time or solving the quadratic
equation for (1 + x0) e−τ gives,

e−τ =
2 +

√
2

1 + x0
, =⇒ H = 1 − 2 +

(
3
2 −

√
2
) (

2 +
√

2
)2︸�������������������︷︷�������������������︸

1

= 0 .

Thus, H has a minimum H = 0 for the crossover τ given above. Choosing this
value of τ gives H = 0 for the entire solution, as expected.

c. See book website for code.

7.16 Bang-bang control of a harmonic oscillator. Consider an undamped harmonic
oscillator, ẍ + x = u, where the piecewise-continuous forcing u(t) is restricted
to the range |u(t)| ≤ 1. Starting from initial conditions x(0) = ẋ(0) = 0, find
the piecewise-continuous control that maximizes x(τ). Encode this goal in J
by setting the penalty L(x, u, t) = 0 for 0 ≤ t < τ and the end-time penalty
ϕ[x(τ)] = −x(τ).

a. Solve for u∗(t) using the Hamilton–Jacobi–Bellman equation.
b. Solve again using the Pontryagin Minimum Principle.
c. Show that if τ = 2π, then x(τ) = 4. Plot u∗(t) and x∗(t) for 0 ≤ t ≤ 2π.
d. If you “knew” that u(t) switched from −1 to +1 at an unknown time τ0, then

you could compute J(τ0, τ) ≡ −x(τ) and minimize J directly. Do this ana-
lytically for this problem and confirm the result of part (c). [See Kappen
(2011).]

Solution.

a. We rewrite the equation of motion in vector form, defining x1(t) = x(t) and
x2(t) = ẋ(t):

ẋ =
(
ẋ1

ẋ2

)
= f (x, u) =

(
0 1
−1 0

) (
x1

x2

)
+

(
0
1

)
u =

(
x2

−x1 + u

)
Then the HJB equation, Eq. (7.31), for the value function J(x, u, t) is

∂t J + min
u∈[−1,1]

[
x2∂x1 J − x1∂x2 J + u∂x2 J

]
= 0 .

We have to minimize over u at each point in time. Because the HJB is linear
in u, the optimal u(t) is ±1 and is given by

u(t) = −sign
(
∂x2 J

)
.

Since |x| = sign(x) x, the HJB is now

∂t J + x2∂x1 J − x1∂x2 J − |∂x2 J| = 0 ,

with boundary condition J(τ) = −x1(τ). We can solve this partial differential
equation using the ansatz that J is linear in x:

J(x, t) = f0(t) + x1 f1(t) + x2 f2(t) .
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Substituting this form of J into the HJB gives ḟ1 = − f2, ḟ2 = f1, and ḟ0 = | f2|,
with boundary conditions f0(τ) = f2(τ) = 0 and f1(τ) = −1. The solution is

f1(t) = − cos(t − τ) , f2(t) = sin(t − τ) .

The optimal control is then

u∗(t) = −sign[sin(t − τ)]

Given this control, we can integrate the equations of motion forward from
time t = 0, to find x(t). There is no need to solve for f0(t), unless we want
to evaluate the cost-to-go itself. The solution for x(t) is complicated alge-
braically to express for general τ but simple once τ is fixed. We explore a
specific protocol duration below.

b. The control Hamiltonian H(x, λ, u) is given by

H = 0 + λ1x2 + λ2(−x1 + u) .

Minimizing over u at each t, we have

u∗ = −sign(λ2) .

Then Hamiltonian is then

H = λ1x2 − λ2x1 − |λ2| ,
and Hamilton’s equations give

ẋ1 = ∂λ1H = x2 , ẋ2 = ∂λ2H = −x1 − sign(λ2)

λ̇1 = −∂x1H = λ2 , λ̇2 = −∂x2H = −λ1 ,

with boundary conditions

x(0) =

(
0
0

)
, λ(τ) =

(
1
0

)
.

The solution for λ(t) is

λ1 = cos(t − τ) , λ2 = sin(t − τ) ,

and

u∗(t) = −sign(λ2) = −sign[sin(t − τ)] .

We thus find the same u∗(t) and hence same x∗(t) as before.
c. With τ = 2π, we can evaluate the control explicitly:

u∗(t) =

⎧⎪⎪⎨⎪⎪⎩−1 0 ≤ t < π

+1 π ≤ t < 2π
.

and, hence,

x(t) =

⎧⎪⎪⎨⎪⎪⎩−1 + cos(t) 0 < t ≤ π ,

1 + 3 cos(t) π < t ≤ 2π ,
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which is gives x(2π) = 4. This is the largest possible end-time amplitude at
τ = 2π, given that u(t) is restricted to be in the range of [−1, 1]. Intuitively, we
push down until the spring stretches to its maximum negative value, and then
we jerk up to get the biggest possible amplitude.

d. As discussed briefly in the main text, the Pontryagin minimum principle pre-
dicts that there should be n − 1 sign changes for an n-th order linear system,
which implies that there should be a single switch at some unknown time τ0

during our protocol. Intuitively, the first period should have u = −1 and the
second u = +1, so we can calculate directly the solutions using these values of
u. That is, we solve

ẍ + x = −1 x(0) = ẋ(0) = 0 , 0 < t < τ0

ẍ + x = +1 x = x(τ0) = ẋ = ẋ(τ0) , τ0 < t < τ ,

which leads to

x(t) =

⎧⎪⎪⎨⎪⎪⎩−1 + cos t 0 < t < τ0

1 + cos t − 2 cos(t − τ0) τ0 < t < τ .

In the spirit of simplicity (for this part of the problem), we just want to
maximize

x(τ = 2π) = 1 + cos 2π − 2 cos(2π − τ0)

= 2(1 − cos τ0) ,

by varying τ0. Clearly, this is maximized for τ0 = π, which makes x(2π) = 4.

7.17 Observer for van der Pol oscillator. Design an observer for the van der Pol
equation, ẋ1 = x2, ẋ2 = ε(1 − x2

1)x2 − x1, with output y = x1.

a. Derive a time-dependent, linear equation for the error e = x − x̂.
b. Find gains L that give critically damped observer dynamics.
c. Plot θ̇ and ˙̂θ, θ and θ̂ versus time and each other for ε = 1 and �1 = 2. See left.

Solution.

a. In state-space form, the van der Pol dynamics are

ẋ1 = x2

ẋ2 = ε(1 − x2
1)x2 − x1 .

The observer dynamics are

dx̂1

dt
= x̂2 + �1(x1 − x̂1)

dx̂1

dt
= ε(1 − x̂2

1)x̂2 − x̂1 + �2(x1 − x̂1) .
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The error e = x − x̂ then has dynamics e = Ae, with

A =
(

0 1
−1 − 2ε x̂1 x̂2 ε(1 − x̂2

1)

)
,

and A′ = A − LC is

A′ =
( −�1 1
−1 − 2ε x̂1 x̂2 − �2 ε(1 − x2

1)

)
.

Since x̂1 and x̂2 depend on time, so does A′.
b. The characteristic equation is

(λ + �1)
(
λ − ε(1 − x̂2

1)
)
+ 1 + �2 + 2ε x̂1 x̂2 = 0 .

With help from a computer-algebra program, we find the eigenvalues

λ =
1
2

(
1 − x̂2

1 − �1 ±
√
−3 + 2�1 + �

2
1 − 4�2 − 2x̂2

1 − 2�1 x̂2
1 + x̂4

1 − 8x̂1 x̂2

)
.

The condition for critical damping is that the square root vanish:

−3 + 2�1 + �
2
1 − 4�2 − 2x̂2

1 − 2�1 x̂2
1 + x̂4

1 − 8x̂1 x̂2 = 0 ,

which implies

�2 =
1
4

(
−3 + 2�1 + �

2
1 − 2x̂2

1 − 2�1 x̂2
1 + x̂4

1 − 8x̂1 x̂2

)
.

c. The plots are for ε = 1, x1 = 0, x2 = 1, and �1 = 2 and are given below. For
critical damping, the formula from part (b) implies

�2 =
1
4

(
5 − 6x̂2

1 + x̂4
1 − 8x̂1 x̂2

)
.

θ

θ

θ

θ

7.18 Pendulum swing up: numerics. A simple numerical method to solve the pendulum
swing-up boundary-value problem is to discretize time functions.

a. Rewrite the equations of motion given in Example 7.2 to eliminate u(t). Write
them as a four-component vector ż = θ, θ̇, λ, λ̇ obeying ż = h(z).

b. Use a standard numerical routine to solve the pendulum swing-up boundary-
value problem for a given value of τ. Confirm the plots shown in Figure 7.2.

c. Define n time intervals Δt = τ/n and denote zk the values of the four com-
ponents at time t = kΔt, with k ∈ {0, . . . , n}. From the trapezoidal rule of
integration,

zk+1 = zk +
1
2Δt (h(zk) + h(zk+1)) , k = 0 , . . . n − 1 ,
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and adding the four boundary conditions, write down a coupled set of
4(n+1) nonlinear algebraic equations for the 4(n+1) variables zk. Express your
equations in the form h(zk) = 0. For coding, write them out explicitly, too.

d. Solve these equations using a standard numerical root finder. You can try
Newton’s method, which requires calculating the Jacobian matrix for h(zk)
(tricky). The secant method, which approximates the Jacobian using finite
differences, is simpler and also works. Confirm Figures 7.8 and 7.2.

Solution.

a. The original equations for the pendulum state and adjoint are given by

θ̈(t) + sin θ(t) = u(t) , θ(0) = θ̇(0) = 0 , θ(τ) = π , θ̇(τ) = 0 .

and

λ̈(t) + λ(t) cos θ(t) = 0 , u(t) = −λ(t) .

If we eliminate u(t) in favor of θ(t) and λ(t) alone and convert to first-order
equations, the equations of motion are

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
θ

θ̇

λ

λ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ̇

− sin θ − λ
λ̇

−λ cos θ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , θ(0) = θ̇(0) = 0 , θ(τ) = π , θ̇(τ) = 0 .

With z =
(
θ, θ̇, λ, λ̇

)T, the four equations of motion can be written as ż = h(z).
b. See code on book website, based on Mathematica’s NDSolveValue.
c. Written explicitly, the 4(n + 1) equations are

θ0 = 0

θ̇0 = 0

...

θk+1 − θk − 1
2Δt (θ̇k + θ̇k+1) = 0

θ̇k+1 − θ̇k − 1
2Δt (− sin θk − sin θk+1 − λk − λk+1) = 0

λk+1 − λk − 1
2Δt (λ̇k + λ̇k+1) = 0

λ̇k+1 − λ̇k − 1
2Δt (−λk cos θk − λk+1 cos θk+1) = 0

...

θn − π = 0

θ̇n = 0 ,

where k ranges from 0 to n − 1.
d. The challenge in coding is to formulate the list of nonlinear equations for

an arbitrary number n + 1 grid points (or n intervals). One way to do this
is to define a band-diagonal matrix (plus a couple of odd elements for the



Problems 165

boundary conditions) that, when multiplying the vector zk gives the appro-
priate equations. Alternatively, Mathematica has built-in tools that make the
task even easier.

See the book website for code.

7.19 Pendulum swing up: adding feedback. Add linear feedback to the swing-up-and-
balance protocol. First, calculate the nominal optimal control uff(t) and θff(t)
(Problem 7.18). To find a linear feedback law for small deviations, assume a cost
function where the weight Q on each state deviation matches the weight R on
control effort.

a. Calculate the linear feedback K =
(
k1 k2

)
gains three ways:

i. Use the time-independent LQR gains for the upright, balanced state,
k1 = k2 = 1 +

√
2. Standard LQR routines will give this result numeri-

cally. Find it analytically by solving the algebraic Riccati equations. (Cf.
Problem 7.8.)

ii. Find k1[θff(t)] and k2[θff(t)] assuming the quasistationary approximation.
iii. Find the optimal k1(t) and k2(t) by solving the time-dependent Riccati

equation assuming the dynamical matrix A(t) = A[θff(t)].
Plot and discuss k1(t) and k2(t) for the three cases.

b. Add feedback to your numerical code and produce plots resembling those in
Example 7.7. Recall that a “kick” to θ̇(t) imposes a slope discontinuity on θ(t).
Show that all three feedback schemes give very nearly the same response.

Solution.

a. Here are three ways of computing the linear feedback gains K =
(
k1 k2

)
:

i. This is a standard steady-state LQR problem, with

A =
(

0 1
− cos θ 0

)
, B =

(
0
1

)
, Q =

(
Q 0
0 Q

)
, R = R ,

with θ = π and Q = R. (From rescaling J, it is clear that only the ratio Q/R
matters).

ii. To find the gains as a function of θ analytically, we formulate the steady-
state Riccati equations:

−Q − ATS − SA + SBR−1BTS = 0 , with S =
(
s11 s12

s12 s22

)
.

This leads to⎛⎜⎜⎜⎜⎜⎜⎝ Q − s2
12
R − 2s12 cos θ s11 − s12 s22

R − s22 cos θ

s11 − s12 s22
R − s22 cos θ Q + 2s12 − s2

22
R

⎞⎟⎟⎟⎟⎟⎟⎠ =
(
0 0
0 0

)
.
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Solving these algebraic equations then gives

s12 = −R cos θ +
√

QR + R2 cos2 θ

s22 =

√
QR − 2R2 cos θ + 2R

√
R(Q + R cos θ2) .

The gain is given by

K = R−1BTS =
(

s12
R

s22
R

)
=

(
− cos θ +

√
Q/R + cos2 θ

√
Q/R − 2 cos θ + 2

√
(Q/R + cos θ2)

)
→

(
− cos θ +

√
1 + cos2 θ

√
1 − 2 cos θ + 2

√
(1 + cos θ2)

)
.

As expected, the gains depend only on Q/R. The last line evaluates the
gains for Q/R = 1.

iii. For the fully time-dependent, the matrix A depends on time via its depen-
dence on the linearization of the nominal trajectory, i.e., via θff(t). We
proceed as in (ii) but now solve (numerically) the three coupled nonlin-
ear ODEs arising from the matrix Riccati equation. Notice that because
we integrate backwards from the end of the balance protocol, the values
(neglecting any final transient) are just the values found in (i). Here, they
serve as final conditions that start the integration at time t = τ. The
equations are integrated from τ to 0.

Plotting all three gains for Q/R = 1 vs. time gives the figure below.

The dotted line is 1+
√

2, the steady-state gain in (a). The solid lines show the
quasistationary solutions, while the dashed lines show the full LQR solutions.
The main observation is that the gain is smaller when the pendulum is down
than when it is up. This makes sense: we always need more gain to stabilize
an unstable system. We also see that there is more feedback gain on velocity
perturbations near θ = 0, while the penalties are larger on both (but equal)
near θ = π. This observation seems less intuitive.
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b. See website for code. The precise perturbation was left unspecified, as there
many types one can impose. If we take the time-dependent LQR in (iii) as
our reference, the constant-gain approximation in (i) differs by about 10%
whereas the approximation in (ii) differs by about 1%. We can see this in
the plots in (a): there is a factor of two for small times between (i) and (iii)
whereas (ii) and (iii) differ 20%. The differences are smaller at larger θ. On
the other hand, we likely care more about the behavior near θ ≈ π, where all
three schemes give nearly the same feedback gains.

In practice, even the simplest scheme in (i) would likely be good enough. An
issue with scheme (iii) is that if the feedforward is recomputed, we would also
have to recompute the feedback gains. In (ii), we would usually have to solve
the gains numerically, too.



8 Stochastic Systems

Problems

8.1 Kalman filter for prediction observer. In the text, we have formulated Kalman
filters in terms of the current observer, which uses observations up to yk+1 in
the estimate x̂k+1. The prediction observer uses only up to yk and is appro-
priate for cases where sensor and computational delays are on the order of Ts

(Section 5.4.2).

a. Redo the 1d-Kalman filter calculations for the prediction observer, defining

ek = xk − x̂k xk+1 = xk + νk yk = xk + ξk

Pk = 〈e2
k〉 x̂k+1 = x̂k + L(yk − ŷk) ŷk = x̂k .

Calculate the recurrence relations for the optimal L∗k and P∗k, as well as the
steady state P∗ and L∗. You should find that P∗ = L∗ξ2 + ν2 (cf. the previous
result, P∗ = L∗ξ2). Comment on L∗ and P∗ in the limits α � 1 and � 1, where
α ≡ ν2/ξ2.

b. Generalize to an n-dimensional MIMO system, by defining

ek = xk − x̂k xk+1 = Axk + Buk + νk yk = Cxk + ξk

Pk = 〈ekeT
k〉 x̂k+1 = Ax̂k + Buk + L(yk − ŷk) ŷk = Cx̂k ,

Show that the recurrence relations for the time-dependent Kalman filter
become

Py
k+1 = CPkCT + Qξ , Pxy

k+1 = PkCT , L∗k+1 = APxy
k+1

(
Py

k+1

)−1
,

P∗k+1 = AP∗k AT + Qν − L∗k+1 Py
k LT

k+1 .

Show that, in steady state, P∗ obeys an algebraic Riccati equation that maps
precisely onto Eq. (7.24) from the discussion on LQR optimal control in
Chapter 7. Comment on the different values of L∗ for the two forms of
Kalman filter.

Solution.

a. The calculations in the text are slightly modified. We have

ek+1 = xk+1 − [
x̂k + L(yk − ŷk)

]
= xk + νk − [x̂k + L(xk + ξk − x̂k)]

168
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= ek + νk − L(ek + ξk)

= (1 − L)ek + νk − Lξk .

This is the error at time k + 1 in terms of the error at time k and the noise and
observer gains. The variance is then

Pk+1 = 〈e2
k+1〉 = (1 − L)2 Pk + ν

2 + L2ξ2 ,

and

dPk+1

dL
= −2(1 − L)Pk + 2Lξ2 = 0

=⇒ L∗k+1 =
Pk

Pk + ξ2
.

Substituting L∗k+1 to find the optimal Pk+1, we have

P∗k+1 =
ξ4P∗k

(P∗k + ξ2)2
+

P∗2k ξ
2

(P∗k + ξ2)2
+ ν2

= ξ2L∗k+1 + ν
2 .

The steady-state equations are

L∗ =
P∗

P∗ + ξ2
, P∗ = Lξ2 + ν2 .

Eliminating P∗, we find that L∗ satisfies the same quadratic equation as before,

L∗2 + αL∗ − α = 0 , α ≡ ν2

ξ2
, =⇒ L∗ = −1

2

(
−α +

√
α2 + 4α

)
.

Thus, the Kalman observer gain remains the same, but the variance is larger
by ν2. This makes sense: if we base our estimate at time k + 1 on yk, then the
system is unobserved for a time Ts, and P∗ is accordingly larger.
Now let’s look at the limits α � 1 and � 1.

α � 1 : L∗ ≈ √
α P∗ ≈ ξν

α � 1 : L∗ ≈ 1 P∗ ≈ ξ2 + ν2 ≈ ν2

In the case of small observation noise, we find P∗ ≈ ν2 rather than the relation
P ≈ ξ2 that we found for the current observer. Again, the reason is that the
system increases its variance by ξ2 during the time interval between the last
measurement and the estimate. In this limit, this extra variance dominates
over the observation variance ξ2. But in the interesting limit, ν � ξ, we find
the same result as before, to lowest order.

b. The error in the estimate at time k + 1 is

ek+1 = xk+1 − x̂k+1

= [Axk +��Buk + νk] − [Ax̂k +��Buk + L(yk − ŷk)

= Aek + νk − Lεk .
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The variance Pk+1 = 〈ek+1 eT
k+1〉 is

Pk+1 = APk AT + Qν − APxy
k LT − L

(
Pxy

k

)T
AT + LPy

k LT ,

where Py
k+1 is the covariance of the innovations,

Py
k ≡

〈
εk ε

T
k

〉
=

〈(
Cxk + ξk − Cx̂k

) (
Cxk + ξk − Cx̂k

)T〉
=

〈(
Cek + ξk

) (
Cek + ξk

)T〉
= CPkCT + Qξ ,

and Pxy
k is the covariance between the predicted state and the predicted

observation,

Pxy
k ≡

〈
ek ε

T
k

〉
=

〈
ek

(
Cek + ξk

)T〉
= PkCT .

Differentiating Tr Pk+1 with respect to L gives

d
dL

(Tr Pk+1) = −2
(
Pxy

k

)T
AT + 2Py

k LT = 0 ,

so that

L∗k+1 = APxy
k

(
Py

k

)−1
.

Substituting L∗k+1 to find the minimum value of P∗k+1 gives

P∗k+1 = AP∗k AT + Qν − APxy
k

(
Py

k

)−1 (
Pxy

k

)T
AT

= AP∗k AT︸��︷︷��︸
dynamics

+ Qν︸︷︷︸
disturbances

− L∗k+1 Py
k+1L∗Tk+1︸�����������︷︷�����������︸

observations

,

which is the same expression derived for the current observer (Eq. 8.42)—with
a slightly lower optimal gain L∗k+1.
As before, the Hessian matrix (second derivative of Tr Pk+1 with respect to L)
is 2Py

k, which is positive definite. Thus, the optimal L∗ ensures that we have
minimized the covariances.
The steady-state equations are simply given by dropping the temporal indices.
For the covariance matrix, we have a discrete algebraic Riccati equation,

P = APAT + Qν − APCT (CPCT + Qξ)
−1CPAT .

Having solved for P∗, we can calculate the steady-state gain,

Py = CPCT + Qξ

Pxy = PCT

L∗ = APxy (Py)−1
= AP∗CT (CP∗CT + Qξ)

−1 .

Compared to the current-observer form of the Kalman filter, the expression
for L∗ has an extra factor of A in front. With stable discrete dynamics, apply-
ing A reduces the “size” of a state vector over a time step Ts, implying that
the gain of the prediction observer is lower than that of the current observer.



Problems 171

This makes sense: because it uses older information, the prediction observer
puts less weight on observations relative to predictions than does the current
observer.

For LQR optimal control, the state and costate decoupled via a matrix S,
which, in steady state, obeys

S = AT
[
S − SB(R + BTSB)−1BTS

]
A + Q

K = (R + BTSB)−1BTSA .

Comparing with our result for P, above, we see that we have

S → P , A → AT , B → CT , Q → Qν , R → Qξ .

Note that S, P, Q, Qν, Qξ, and R are all symmetric matrices.

8.2 Estimating unstable dynamics. Consider 1d deterministic dynamics with noisy
observations. Let xk+1 = axk, with yk = xk + ξk and x0 unknown. The noise
ξk ∼ N(0, ξ2). When a > 1, the dynamics are unstable. Using the prediction
observer from Problem 8.1, show that the steady-state variance of the optimal
estimate is P∗ = (a2 − 1)ξ2 for |a| > 1, and 0 otherwise. Interpret the two cases.

Solution.
From the steady-state discrete algebraic Riccati equation for the variance of

the prediction observer, we have

P = a2P − a2P2

P + ξ2
.

An immediate solution is P∗ = 0. For P∗ � 0, we can divide by P and find the
other root: P∗ = (a2 − 1)ξ2.

We can interpret these two solutions qualitatively, as follows:

a. |a| ≤ 1: In this case, the dynamics is stable and the actual state converges to
0, independent of the unknown initial condition or marginal, in which case
state is constant (but unknown). For the marginal (a = 1) case, we are just
estimating an unknown value on the basis of N measurements. If the initial
variance is σ2, then the variance after N measurements is σ2/N, which goes to
0 as N → ∞. Thus, in this case, we have that the steady-state variance P∗ = 0.
For |a| < 1, we can improve the estimate to be better than the marginal case,
because we know more and more about the position (it has to be closer and
closer to 0). Thus, we effectively average N variables with decreasing variance,
meaning that P∗ converges to 0 even faster.

b. |a| > 1: In this case, the steady-state variance is finite. The reason is that there
is a balance between the gain of information by having a new observation and
the loss of information that occurs because the value of xk is “blowing up” as
time goes on: Indeed, xk = ak x0. Notice that the two solutions are continuous
at |a| = 1. In Chapter 15, we will develop the theme that unstable dynamics
increase the uncertainty in the behavior of a dynamical system.
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8.3 Diffusion with continuous measurements. There are subtleties:

a. Start by formulating the steady-state Kalman–Bucy filter for one-
dimensional diffusion. The equations of motion are γẋ = νc, with
〈νc(t) νc(t′)〉 = 2Dγ2 δ (t − t′). The measurement relation is y = x + ξc, with
〈ξc(t) ξc(t′)〉 = ξ2

c δ (t − t′). Find the optimal Kalman gain, and show that the
variance is P =

√
2D ξc.

b. Contrast the above results with those found for the discrete case: for signal-
to-noise ratio α = ν2/ξ2 (for power), the limit α � 1 implies L → 1 and P ≈ ξ2.
By contrast, the limit α � 1 implies L → √

α and P ≈ νξ. Reconcile these
different behaviors. Hint: Connect the discrete quantities ν2 and ξ2 with our
continuous versions, ν2

c = 2D and ξ2
c . Notice that the units of νc and ξc are

different. Write α for the discrete case in terms of continuous quantities and
the time step Ts.

c. Laplace transform the equations of motion to show that the Kalman filter
acts as a first-order, low-pass filter between the observations, y(t), and the
estimate, x̂(t). What is the cutoff frequency? Argue (justify) that the filter
“trusts the measurements” y(t) at frequencies where the signal dominates over
the noise. At higher frequencies, noise is important, and the filter attenuates
the measurements.

d. Add negative feedback, u(t) = −K y(t), to stabilize the diffusing particle near
the origin. Show that 〈x2〉 = (K2ξ2

c + ν
2
c)/2K. See at left for ξc = νc = 1.

Interpret.

Solution.

a. For the continuous case, we have Ac = 0, Bc = C = 1. Then

Ṗ =	
		


0
A2

c P + ν2
c − P2/ξ2

c → P = νc ξc =
√

2Dξc

L = P/ξ2
c =

√
2D/ξc .

There is only one solution. (The negative solution is not physical, as the
variance must be positive.) Check the units: D has units �2/t, while ξ2

c has
units of �2/t. P thus has units of �2. L has units of 1/t, or frequency (see
below for an interpretation).

b. We write the discrete case in terms of continuous terms. Thus, A = eAcTs = 1,
Bc = 1 · Ts, C = 1, ν2 =

ν2
c

Ts
, ξ2 =

ξ2
c

Ts
. We then have, for the discrete Pd and Ld,

P′d = Pd + T 2
s

(
ν2

c

Ts

)
= Pd + ν

2
cTs

Ld =
P′d

P′d +
ξ2

c
Ts

=
Pd + ν

2
cTs

Pd + ν
2
cTs +

ξ2
c

Ts

=
Ld

ξ2
c

Ts
+ ν2

cTs

Ld
ξ2

c
Ts
+ ν2

cTs +
ν2

c
Ts

=
Ld + α

Ld + α + 1

α =
ν2

ξ2
=

ν2
cTs

ξ2
c/Ts

=
ν2

cT 2
s

ξ2
c

.
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Thus, when we take the limit Ts → 0, we automatically have α → 0. In this
limit, we showed that Ld → √

α and

Pd →
(
ξ2

c

Ts

)
Ld =

(
ξ2

c

Ts

) (
νcTs

ξc

)
= ξc νc ,

which is independent of Ts. Thus, as the measurements are made with shorter
and shorter Ts, the value of α approaches zero, and we are always in the
“useful” limit for a Kalman filter.

c. We have

dx̂
dt
=���0

Ac x̂ + L (y − x̂)

sX̂(s) = 0 + L[Y(s) − X̂(s)]

X̂(s) =
( L

s + L

)
Y(s) ,

so that the transfer function is the first-order low-pass filter

Gyx =

(
1

1 + s/L

)
,

with cutoff frequency ω0 = L =
√

2D/ξc.
d. The equation of motion is

ẋ = −Kx − Kξ + ν ,

where K has units of inverse time. One way to find the variance is to calcu-
late the autocorrelation function, 〈x(t) x(0)〉 and take t → 0. We drop the c

subscripts for convenience. Then,

x(t) = e−Kt
∫ t

−∞
dt′ e+Kt′[−Kξ(t′) + ν(t′)] ,

and

x(t) x(0) = e−Kt
∫ t

−∞
dt′

∫ 0

−∞
dt′′ e+K(t′+t′′)[−Kξ(t′) + ν(t′)] [−Kξ(t′′) + ν(t′′)] .

Taking the ensemble average and using the independence of the two noise
sources, we have

〈x(t) x(0)〉 = e−Kt
∫ t

−∞
dt′

∫ 0

−∞
dt′′ e+K(t′+t′′)

(
K2ξ2 + ν2

)
δ (t′ − t′′)

=
(
K2ξ2 + ν2

)
e−Kt

∫ 0

−∞
dt′′ e2Kt′′

=

(
K2ξ2 + ν2

2K

)
e−Kt .
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Taking t → 0 gives

〈x2〉 = K2ξ2 + ν2

2K

The ν2/2K term represents the benefits of feedback, which reduces the vari-
ance. Since the relaxation time is K−1, the variance from thermal fluctuations
is reduced by the same factor.

The Kξ2/2 term represents the degradation in performance because measure-
ment noise is injected. The raw injection increases the variance by K2, which
is partially compensated for by the speed up in dynamical response.

8.4 Discretizion of a continuous stochastic system. We discretize a harmonic
oscillator driven by thermal noise, following Nørrelykke and Flyvbjerg (2011).

a. Integrate the linear, time-invariant system ẋ = Ax + Bν, with 〈ν(t)〉 = 0 and
〈ν(t) ν(t′)T〉 = δ (t− t′) over a time Ts to find discrete dynamics xk+1 = Adxk+νk,
with Ad = eATs and νk =

∫ Ts

0
dt′ ν(t′) eA(Ts−t′) B a Gaussian random vector of

mean 0 and covariance 〈νk ν
T
�〉 = δ k�

∫ Ts

0
dt′ eA(Ts−t′) BBT eAT(Ts−t′).

b. For the noisy critically damped harmonic oscillator, ẍ + 2ẋ + x =
√

8D ν(t),
show that A =

(
0 1−1 −2

)
and Ad = e−Ts

(
1+Ts Ts−Ts 1−Ts

)
.

c. Show that the covariance matrix 〈νn ν
T
n〉 =

(
σ2

xx σ
2
xv

σ2
xv σ2

vv

)
, with σ2

xx = 2D
[
1−e−2Ts (1+

2Ts + 2T 2
s )

]
, σ2

xv = 4D e−2Ts T 2
s , and σ2

vv = 2D
[
1 − e−2Ts (1 − 2Ts + 2T 2

s )
]
.

Notice that although the original physical system has only a single noise source
(thermal fluctuations) that drives only the velocity, the sampled system is driven
by two uncorrelated noise sources. The sources then become correlated by the
input coupling, leading to a structure for the discrete equations that is quite
different from that of the original continuous system. In the limit Ts → 0, we
see that σ2

vv = 8DTs + O(T 2
s ), while σ2

xx and σ2
xv are higher order in Ts. We then

recover the continuum situation.

Solution.

a. The form for Ad was previously derived as our exact solution for the initial-
value problem (with xn being the initial condition). For the random variable,
the mean is zero because the integrals just multiply and add terms to an
underlying Gaussian variable of zero mean. The covariance is

〈νk ν
T
�〉 =

Ts�
0

dt′ dt′′ eA(Ts−t′) B 〈ν(t) νT(t′)〉 BT eAT(Ts−t′′) ,

which gives directly the desired covariance after integrating over the delta
function.

b. To evaluate the matrix exponential manually, we follow Example A.4 but take
into account that the eigenvalues (−1,−1) are degenerate. We have

eATs = α0I + α1 A =⇒ e−Ts = α0 − Tsα1 .
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The derivative with respect to the eigenvalue λ gives α1 = e−Ts , so that α0 =

e−Ts (1 + Ts). We then have

exp

{[(
0 1
−1 −2

)
Ts

]}
= e−Ts (1 + Ts)

(
1 0
0 1

)
+ Ts e−Ts

(
0 1
−1 −2

)

= e−Ts

(
1 + Ts Ts

−Ts 1 − Ts

)
.

c. For the covariance matrix, B =
(

0
1

)
and the random increments νn are given

by ⎛⎜⎜⎜⎜⎜⎜⎝νx

νv

⎞⎟⎟⎟⎟⎟⎟⎠
k

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫ Ts

0
dt eTs−t(Ts − t) η(t)∫ Ts

0
dt eTs−t(1 − Ts + t) η(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Including the

√
8D amplitude, the elements of the covariance matrix are

σ2
xx = 8D

∫ Ts

0
dt e−2(Ts−t)(Ts − t)2 = 2D

[
1 − e−2Ts (1 + 2Ts + 2T 2

s )
]

σ2
xv = 8D

∫ Ts

0
dt e−2(Ts−t)(1 − Ts + t)(Ts − t) = 4D e−2Ts T 2

s

σ2
vv = 8D

∫ Ts

0
dt e−2(Ts−t)(1 − Ts + t)2 = 2D

[
1 − e−2Ts (1 − 2Ts + 2T 2

s )
]
.

8.5 One-step LQG. Consider one-dimensional, deterministic dynamics x1 = x0 + u0,
with cost function Jdet =

1
2 (Qx2

1 + Ru2
0). Only a single control u0 is applied.

a. Find the optimal value of u0, and show it has the form u∗0 = −K∗x0, a linear
feedback. Show that K∗ = Q/(R + Q), and evaluate the optimal cost J∗det(K

∗).
b. Add a stochastic disturbance: x1 = x0 + u0 + ν0, with ν0 ∼ N(0, ν2). Show that

u∗0 is unaltered and 〈J∗〉 = J∗det +
1
2 Qν2 (certainty equivalence principle).

c. Consider a noisy observation y0 = x0 + ξ0. Why is the optimal control gain
still K∗ (separation principle)? Why is u0 = −Ky0 not optimal?

d. In formulating the cost function, you might have expected to see a total cost
J = 1

2

∑
k

(
Qx2

k + Ru2
k

)
, with k ∈ {0, 1}. Why ignore the x0 and u1 terms?

Solution.

a. Substituting for x1 gives a cost

J(u0) = 1
2 Q(x0 + u0)2 + 1

2 Ru2
0 .

Let us simplify the notation by dropping the 0 subscripts:

J(u) = 1
2 Q(x + u)2 + 1

2 Ru2 .

Setting ∂uJ = 0 to find the minimum of J(u) gives

∂uJ = Q(x + u) + Ru = 0 ,
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which implies,

u∗ = −
(

Q
R + Q

)
x ≡ −K∗x , J∗ ≡ J∗det =

1
2 x2

(
QR

R + Q

)
.

b. With noisy dynamics, the cost function becomes

J(u) = 1
2 Q (x + u + ν0)2 + 1

2 Ru2

= 1
2 Q (x + u)2 + 1

2 Ru2 + Q (x + u) ν0 +
1
2 Qν2

0

= Jdet(u) + Q (x + u) ν0 +
1
2 Qν2

0 .

Taking an expectation and remembering that 〈ν0〉 = 0 and 〈ν2
0〉 = ν2, we have

〈J〉(u) = Jdet(u) + 1
2 Qν2 ,

where Jdet is the cost function for the deterministic problem (part a). The
additional cost is independent of u, implying that the optimal control u∗

remains the same. This makes sense, because we do not know anything about
the stochastic disturbance to bias our choice of control (i.e., it can push the
system to greater or smaller values of x).

c. Now we consider noisy observations. The general strategy is to use a Kalman
filter to find the best estimate of the state at time k, which we denote x̂k. This
estimate includes the observation yk = xk+ξk and requires finding the Kalman
gain Lk. However, the first observation y leads to a correction in x̂1, not in
x̂ = x, which is taken as given in the problem. The control u continues to be
based on x only and will continue to have the same optimal (linear feedback)
form, with the same optimal gain K∗. This is the separation principle.

Notice that we should not use feedback based on the noisy observation,
u = −Ky, since the optimal gain, K∗∗ = Q/(R + Q + ξ2), is then lower than
K∗ = Q/(R + Q). Essentially, in the game of “trust the model” vs. “trust
the observation” the initial condition is to trust the model, since the obser-
vation can only be noisier. However, over time, both contributions become
important and the full structure of the Kalman filter is needed.

d. For this part, we restore the time-step subscripts. We ignore the 1
2 Qx2

0 cost
because the control cannot alter the initial state. We ignore the 1

2 Ru2
1 term

because its optimal value is trivially u1 = 0. There is no point in applying a
control at time step 1 because its costs are billed as part of J, but its benefits
are not realized (since the accounting stops at k = 1).

8.6 Variance of observer control for a 1d Brownian particle. Observer-based feedback
can lead to a minimum-variance control strategy (Section 8.2.1):

a. Find the variance 〈x2〉 and K∗ for feedback based on perfect state information,
naive observations, and observer. Find L∗ for the observer case.

b. Write code to simulate all three cases; check the results from (a).
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Solution.

a. We derive the three expressions for state variances.
i. If the observation is perfect, we use the actual state in the feedback and set

uk = −Kxk, which implies

xk+1 = (1 − K)xk + νk ,

〈x2
k+1〉 = (1 − K)2〈x2

k〉 + ν2 using 〈xkνk〉 = 0

〈x2〉 = (1 − K)2〈x2〉 + ν2 using 〈x2
k〉 = 〈x2

k+1〉 = 〈x2〉

〈x2〉 = ν2

1 − (1 − K)2
.

ii. If the observation is naive, We use the measurements and set uk = −Kyk =

−K(xk + ξk). To evaluate the variance, we write

xk+1 = (1 − K)xk − Kξk + νk ,

〈
x2

〉
=

K2ξ2 + ν2

1 − (1 − K)2
, (8.1)

where we have skipped steps that are analogous to the previous derivation.
iii. If we use an observer, the variance is

xk+1 = xk + uk + νk , uk = −Kx̂k , x̂k = xk − ek ,

= (1 − K)xk + Kek + νk .

where ek is the estimation error at time k. Then

〈x2
k+1〉 = (1 − K)2〈x2

k〉 + K2〈e2
k〉 + ν2 + 2K(1 − K)〈ek xk〉 ,

using the relations

〈xk νk〉 = 〈ek νk〉 = 〈xk ξk〉 = 0 .

From Eq. (8.21), the steady-state estimation error 〈e2〉 is given by

〈e2〉 = (1 − L)2ν2 + L2ξ2

1 − (1 − L)2
.

The complication is that 〈ek xk〉 � 0. To calculate this term, we recall from
Eqs. (8.11) and (8.9) that

ek = (1 − L)e−k − Lξk , e−k = ek−1 + νk−1

= (1 − L)ek−1 + (1 − L)νk−1 − Lξk .

Then,

〈ek xk〉 = (1 − L)〈ek−1xk〉 + (1 − L)〈νk−1xk〉 − L�����0〈xkξk〉 .
Noting that

〈νk−1xk〉 = 〈νk−1 (xk−1 + uk−1 + νk−1)〉 = ν2 ,
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and

〈ek−1xk〉 = 〈ek−1

(
xk−1 + uk−1 +����0νk−1

)
〉

= 〈ek−1xk−1〉 − K〈ek−1 x̂k−1〉
= 〈ek−1xk−1〉 − K〈ek−1(xk−1 − ek−1)〉
= (1 − K)〈ek−1xk−1〉 + K〈e2

k−1〉 ,

we have

〈ek xk〉 = (1 − L)(1 − K)〈ek−1xk−1〉 + (1 − L)K〈e2
k−1〉 + (1 − L)ν2 .

Thus, in steady state, we have the two relations (since 〈e2〉 is known),

〈x2〉 = (1 − K)2〈x2〉 + K2〈e2〉 + ν2 + 2K(1 − K)〈e x〉
〈e x〉 = (1 − L)(1 − K)〈e x〉 + (1 − L)

(
K〈e2〉 + ν2

)
.

We can solve first for 〈e x〉 and then for 〈x2〉, which gives a complicated
function of K and L, in terms of ν2 and ξ2. Then, either numerically or
using a symbolic-algebra program, we minimize with respect to K and L,
to find K∗ = 1 and L∗ = 1

2 (
√

5 − 1) ≈ 0.62. The minimum cost is just
J = 〈x2〉, since R = 0.

As a side note, one can repeat the calculation adding a control-effort cost,
R > 0. The cost function is then expressed as

J = 〈x2〉 + R〈u2〉
= 〈x2〉 + RK2〈x̂2〉
= 〈x2〉 + RK2(〈x2〉 + 〈e2〉 − 2〈e x〉)
= 1

2

(√
5 +

√
1 + 4R

)
.

In the explicit expression, ν2 = ξ2 = 1 and L = L∗ = 1
2 (
√

5 − 1). For R = 0,
the minimum average cost per time step is J = 1

2 (
√

5+1) ≈ 1.62. For R = 1,
it is J =

√
5 ≈ 2.24. For R � 1, we have the asymptotic scaling J ∼ √

R.
b. See code on the book website. Below is a representative plot, using 104 time

steps per simulation (i.e., per marker). You should find good agreement with
the predicted curves.
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8.7 LQG for undamped, noisy oscillator. Let ẍ + x = u(t) + ν(t), with y(t) = x(t) + ξ(t).

a. What is the state-space representation of the continuous system?
b. For sampling at Ts = 0.1, what is the ZOH discrete state-space representation?
c. Assuming that the standard deviations ν = ξ = 0.3 for the process and

measurement noise (when sampled at intervals Ts) and assuming state-space
weights of Q =

(
1 0
0 1

)
and input weighting r = 0.1, derive the LQG con-

troller. As a check, you should find an optimal observer (Kalman) gain of
LT ≈ (0.09, 0.03) and optimal control gain of K ≈ (1.7, 3.3). (Give some more
digits, please!)

d. Using the above observer and controller gains and adding process and mea-
surement noise, plot the disturbance response (right, top graph, for x(0) = 0,
ẋ(0) = 1).

e. Simulate the controller and plot the disturbance response (right, middle
graph). Show that the difference between the position and its optimal
(Kalman) estimate is the same for both the closed- and open-loop cases (dark
lines in the bottom plot at right). Their difference is nearly zero, as shown by
the gray trace.

f. Show that, after a transient, the standard deviation of both state and estimate
are well below that of the measurement errors.

Solution.

a. The undamped oscillator obeys ẍ+ x = u(t)+ν(t), with y(t) = x(t)+ ξ(t), which
corresponds to a two-input, one-output state-space system with

A =
(

0 1
−1 0

)
, B =

(
0 0
1 1

)
, C =

(
1 0

)
, D =

(
0
)
.

b. If we sample at Ts = 0.1, the ZOH discrete state-space representation is, to
three figures,

A =
(

0.995 0.0998
−0.0998 0.995

)
, B =

(
0.00500 0.00500
0.0998 0.0998

)
, C =

(
1 0

)
, D =

(
0
)
.

c. For process-noise covariance Q =
(

1 0
0 1

)
and input weighting r = 0.1, the LQG

controller has optimal feedback gain

K =
(
1.741 3.261

)
and optimal observer gain

L =
(
0.0905
0.0306

)

d. See plot in text. Note that we use the same noise realization for open and
closed loop, to facilitate comparison between the two cases.

e. See plot in text.
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f. The standard deviations of x and x̂ are, after transients have died away, given
by 0.11 and 0.08, respectively. Both are well below the standard deviation
of measurement errors, ξ = 0.3. Thus, using the averaging property of the
Kalman filter (accounting for the dynamics), we can have less error than the
naive measurement error.

8.8 Delayed choice. Fill in the details from Example 8.5. Reproduce the plots in the
example, using R = 2D = x0 = 1.

Solution.
To summarize the problem from Example 8.5, the equations of motion are

ẋ = u + ν , x(0) = 0 , x(τ) = ±1 ,

with control input u(t) and Gaussian white noise, 〈ν(t) ν(t′)〉 = 2D δ (t − t′). The
goal is to minimize control effort, with running cost L = 1

2 Ru2 and cost-to-go
J(x, u, t) =

∫ τ

t
dt′ L[u(t′)]. The HJB equation is then

∂t J
∗(x, t) + inf

u

[
1
2 Ru2 + (∂xJ∗) u + D∂xxJ∗

]
= 0 .

The first step is, at each time t, to minimize over u. Taking a derivative with
respect to u in the HJB equation and remembering that J∗(x, t) is independent of
u gives

Ru + (∂xJ∗) = 0 =⇒ u∗ = −R−1(∂xJ∗) .

Substituting u = u∗ into the HJB equation then leads to the nonlinear PDE

∂t J
∗(x, t) − 1

2 R−1 (∂xJ∗)2
+ D∂xxJ∗ = 0 .

To change variables, we set J∗(x, t) = −λ logψ(x, t). The derivatives are

∂xJ∗(x, t) = − λ
ψ
∂xψ , ∂t J

∗(x, t) = − λ
ψ
∂tψ ,

∂xxJ∗(x, t) =
λ

ψ2
(∂xψ)2 − λ

ψ
∂xxψ .

The HJB then becomes

− λ
ψ
∂tψ − 1

2R
λ2

ψ2
(∂xψ)2 + D

[
λ

ψ2
(∂xψ)2 − λ

ψ
∂xxψ

]
= 0 .

−∂tψ − λ

2R
1
ψ

(∂xψ)2 + D
1
ψ

(∂xψ)2 = D∂xxψ .

If we set the constant λ = Rν2, then the quadratic terms cancel, leaving

−∂tψ = D ∂xxψ ,

a diffusion equation in negative time.
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The condition at the final time τ is that the particle must be at x = ±x0. This
means that the cost should be infinite for x � ±x0. We can impose this condition
by setting ψ = 0 for x � ±x0 and non-zero at x = ±x0. Then,

ψ(x, τ) =
1
2

[δ (x − x0) + δ (x + x0)] .

We should not worry too much about the infinities produced by the delta func-
tions, in that we can relax the target size to an interval ±ε about +1 or −1 and
take the limit ε → 0. Note the normalization:

∫
x

dxψ(x, τ) = 1.
Delta-function initial conditions lead to the Green’s function solution of the

diffusion equation (going backwards in time, because of the −∂t term). With
t′ = τ − t, we have

ψ(x, t′) =
(

1

2
√

4πDt′

) [
exp

(
− (x − x0)2

4Dt′

)
+ exp

(
− (x + x0)2

4Dt′

)]

=

(
1

2
√

4πDt′

)
exp

⎛⎜⎜⎜⎜⎝− x2
0

4Dt′

⎞⎟⎟⎟⎟⎠ exp

(
− x2

4Dt′

) [
exp

(
2x x0

4Dt′

)
+ exp

(
−2x x0

4Dt′

)]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
exp

(
− x2

0
4Dt′

)
√

4πDt′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ exp

(
− x2

4Dt′

)
cosh

( x x0

2Dt′
)
.

Next, we transform back to J∗ = −Rν2 lnψ, giving

J∗(x, t′) = Rν2

[
x2

4Dt′
− ln cosh

( x x0

2Dt′
)]
+ f (t′) ,

with f (t′) = Rν2(
x2

0
4Dt′ +

1
2 ln 4πt′). The important point is that the optimal control

u∗ = −R−1∂xJ∗ is not affected by f (t′). Differentiating J∗ with respect to x gives

u∗(x, t′) =
( x0

t′
) (

tanh
x x0

2Dt′
− x

x0

)
.

Taking x0 = 1 gives the formulas in the main text. The symmetry-breaking
transition condition, in dimensional form, is

ν2t′ = x2
0 , =⇒ t′c =

x2
0

ν2
.

For numerical analysis, we set R = ν2 = 2D = 1 and drop f (τ). Thus,

J∗(x, t′) =
x2

2t′
− ln cosh

( x
t′
)

u∗(x, t′) =
(

1
t′

) (
tanh

x
t′
− x

)
.

Finally, numerical trajectories can be generated by discretizing:

xk+1 = xk + Δt u(xk, t
′
k) + νk ,

where 〈νk ν�〉 = δ k� (2DΔt).
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8.9 Toy model of state estimation, part 2. Redo the calculations of Section 8.3.1,
allowing for N noisy, independent measurements yi = x + ξi. Find the posterior
p(x|yN), where yN = {yi} for i = 1, . . . ,N. Show that x̂ = σ2

x

σ2
x+σ

2
ξ /N

ȳ, where ȳ =
1
N

∑
i yi is the average of the N measurements. Find the corresponding variance.

Solution.
Following the calculations in Eq. (8.66) and using the independence of each

measurements, we have

p(x|yN) ∝ p(yN |x) p(x)

=

⎛⎜⎜⎜⎜⎜⎝ N∏
i=1

p(yi|x)

⎞⎟⎟⎟⎟⎟⎠ p(x)

=

⎛⎜⎜⎜⎜⎜⎝ N∏
i=1

N(yi − x, σ2
ξ)

⎞⎟⎟⎟⎟⎟⎠ N(0, σ2
x)

∝
N∏

i=1

exp

⎡⎢⎢⎢⎢⎢⎣− (yi − x)2

2σ2
ξ

⎤⎥⎥⎥⎥⎥⎦ exp

[
− x2

2σ2
x

]
.

= exp

⎡⎢⎢⎢⎢⎢⎣− N∑
i=1

(yi − x)2

2σ2
ξ

⎤⎥⎥⎥⎥⎥⎦ exp

[
− x2

2σ2
x

]
.

∝ exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(
x − σ2

x

σ2
x+σ

2
ξ /N

ȳ
)2

2σ2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where ȳ is the arithmetic average

ȳ =
1
N

N∑
i=1

yi

and where the variance of the posterior is

1

σ2
0

=
N

σ2
ξ

+
1
σ2

x
.

One way of interpreting the result is to define an effective signal-to-noise ratio

SNR2
eff =

Nσ2
x

σ2
ξ

,

in terms of which

x̂ =

⎛⎜⎜⎜⎜⎝ SNR2
eff

SNR2
eff + 1

⎞⎟⎟⎟⎟⎠ ȳ

and

σ2
0 =

σ2
x

1 + SNR2
eff

.
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For large N � 1,

x̂ → ȳ , σ2
0 →

σ2
ξ

N
.

This is the usual formula for a measurement. We notice that it is independent
of the prior estimate for x (equal to 0) and of σ2

x. In other words, with enough
measurements, the prior is “overwhelmed” by the data.

8.10 From Bayes to Kalman, in 1d. Equations (8.76) and (8.77) describe one-
dimensional diffusion, xk+1 = xk + νk, with yk = xk + ξk, with i.i.d. Gaussian
random noise terms p(νk) = N(νk; 0, ν2) and p(ξk) = N(ξk; 0, ξ2).

a. Show that the PDF of p(xk+1|xk) is N(xk+1 − xk; 0, ν2) ≡ 1
ν
√

2π
exp

[
− (xk+1−xk)2

2ν2

]
.

b. Making the ansatz p(xk |yk) = N(xk; x̂k, Pk) and marginalizing over the proper
variable, show that p(xk+1|yk) = N(xk+1; x̂k, Pk + ν

2) ≡ N(xk+1; x̂−k+1, P
−
k+1).

c. The Bayesian update step, p(xk+1|yk+1) = p(yk+1 |xk+1) p(xk+1 |yk)
p(yk+1 |yk) requires three

probability distributions. We know one. Derive the other two:

p(yk+1|xk+1) = N(yk+1 − xk+1; 0, ξ2) , p(yk+1|yk) = N(yk+1; x̂k, Pk + ν
2 + ξ2) .

d. Finally, evaluate the update step using the three distributions to show that
the conditional distribution p(xk+1|yk+1) = N(xk+1; x̂k+1, Pk+1), where

x̂k+1 = x̂k + Lk+1(yk+1 − x̂k) Lk+1 =
Pk + ν

2

Pk + ν2 + ξ2

P−1
k+1 = (Pk + ν

2)−1 + (ξ2)−1 or Pk+1 = Lk+1 ξ
2 ,

Hint: Complete the square or use a computer-algebra program.

Solution.

a. We use Eq. (8.77a) to write

p(xk+1|xk) = N(xk+1 − xk; 0, ν2) ,

since p(νk) = N(νk; 0, ν2).
b.

p(xk+1|yk) =
∫

dxk p(xk+1|xk, y
k)p(xk |yk) marginalization

=

∫
dxk p(xk+1|xk)p(xk |yk) Markov

=

∫ ∞

−∞
dxk N(xk+1 − xk; 0, ν2)N(xk; x̂k, Pk) Eq. (8.77b)

= N(xk+1; x̂k, Pk + ν
2) sum of Gauss vars .

The last identity uses Eq. (A.166) for the sum of Gaussian random variables,
applied to the case (xk+1 − xk) + xk = xk+1. The means and variances thus add.
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c. From Eq. (8.77b), we have

p(yk+1|xk+1) = N[(yk+1 − xk+1); 0, ξ2] ,

using p(ξk+1) = N(ξk+1; 0, ξ2).
We then have

p(yk+1|yk) =
∫

dxk+1 p(yk+1, xk+1|yk) marginalization

=

∫
dxk+1 p(yk+1|xk+1, y

k) p(xk+1|yk) conditional prob.

=

∫
dxk+1 p(yk+1|xk+1) p(xk+1|yk) Markov

=

∫
dxk+1 N[(yk+1 − xk+1); 0, ξ2]N(xk+1; x̂k, Pk + ν

2) previous results

= N(yk+1; x̂k, Pk + ν
2 + ξ2) sum of Gaussian vars .

d. We have to show

p(xk+1|yk+1) =
p(yk+1|xk+1) p(xk+1|yk)

p(yk+1|yk)

=
N(yk+1; xk+1, ξ

2)N(xk+1; x̂k, Pk + ν
2)

N(yk+1; x̂k, Pk + ν2 + ξ2)

= N(xk+1; x̂k+1, Pk+1) ,

where

x̂k+1 = x̂−k+1 + Lk+1(yk+1 − x̂−k+1) Lk+1 =
Pk + ν

2

Pk + ν2 + ξ2

P−1
k+1 = (Pk + ν

2)−1 + (ξ2)−1 or Pk+1 = Lk+1 ξk+1 ,

The key step, in multiplying and dividing the Gaussians, is to show that

(yk+1 − xk+1)2

ξ2
+

(xk+1 − x̂k)2

Pk + ν2
− (yk+1 − x̂k)2

Pk + ν2 + ξ2
=

(xk+1 − x̂k+1)2

Pk+1
,

where x̂−k+1 = x̂k (since the dynamics are trivial) and P−k+1 = Pk + ν
2. The

algebra is tedious, and computer-algebra software is helpful.

8.11 Instability with a hard-spring potential. Consider an overdamped particle in a
hard-spring potential with input noise. If we ignore the nonlinear term, a quick
analysis shows that the system is stable. Now add a nonlinear term that, in
the absence of stochasticity, is stabilizing. Surprisingly, the state amplitude will
eventually diverge, no matter how weak the noise. As shown at left, along with
a normal quadratic potential (thin line), the hard-spring potential V(x) = 1

2 x2 +
1
4 x4, with force F(x) = −∂xV = −(x + x3). The spring is “hard” because the
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local stiffness dF/dx increases away from equilibrium. In a first-order numerical
integration, the system state evolves as xk+1 = f (xk) = xk − Ts(xk + x3

k) + νk, with
νk ∼ N(0, ν2).

a. Simulate the above equation. Generate various times series for xk for different
values of νk, using Ts = 0.5. What happens as you increase the input noise?

b. Show that the linearized system is stable for 0 < Ts < 2, for arbitrary ν.
c. Fix ν = 0.5, and modify your code to track the lifetime of the state, the typical

time before xk goes unstable. Run your code many times (≈ 1000), measuring
the lifetime in each case. Plot a histogram. What distribution does it follow,
and why? You should find that the average lifetime ≈ 700.

d. Show that the state dynamics go unstable for |xk | > x0 =
√

3. Hint: Look at
the conditions f (x) > x and f (x) < −x. Why do these lead to instability?

e. To estimate the average lifetime, assume xk ∼ N(0, ν2), which is only approxi-
mately true because of the x3

k term. Assume, too, that each time step brings an
independent perturbation, which implies that perturbations relax in one time
step. The probability of instability then reduces to the probability P(|x| > x0)
for a Gaussian distribution. If, in either tail of the distribution, a point
lies in the shaded area |x| > x0, then instability will likely result (see right).
(“Likely” because a fluctuation just larger than x0 might come back.) Then,
either numerically or by an asymptotic expansion of the erfc(·) function, esti-
mate the lifetime of the state x, in units of the time step k. You should find ≈
1000–2000, slightly > 700.

f. For the linearization xk+1 =
1
2 xk + νk, show that the variance of xk is

4
3ν

2. Compare to the numerically estimated variance for the full nonlinear
equation.

Solution.

a. Graphs should show instabilities after a finite time, depending on the level of
noise.

b. The linear equation is xk+1 = (1 − Ts)xk + νk. For the deterministic equation
xk+1 = (1 − Ts)xk, the fixed point is xk = 0. The linear stability is determined
by f ′(x = 0) = (1 − Ts) and must be between −1 and 1 (see, for example,
Figure 5.9), which implies 0 < Ts < 2. Because the equations are linear, it is
then stable to any amplitude of perturbation.

c. You should see an exponential distribution resembling the one below. For
n = 1000 runs, I get an average lifetime = 717. Since the distribution is expo-
nential, the standard deviation is similar (696 in my case). The standard error
of the mean then should be about 700/

√
1000 ≈ 22. An exponential distribu-

tion implies that the probability of instability at each time step is independent
of the previous time step. This independence leads to an exponential distribu-
tion for the interval, which characterizes a Poisson process (same argument
as radioactive decay).
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d. We have xk+1 = f (xk), for f (x) = 1
2 (x − x3). We have instability if f (x) > x or

f (x) < −x. The former leads to a directly growing instability, while the latter
to an oscillatory instability.
i. f (x) > x =⇒ 1

2 (x − x3) > x =⇒ −x3 > x =⇒ −x2 > 1,
which is impossible. So there is no instability in this case.

ii. f (x) < −x =⇒ 1
2 (x − x3) < −x =⇒ −x3 < −3x =⇒ x2 > 3.

In other words, there is an oscillatory instability if |x0| >
√

3.
Note that the condition we impose is related to, but different from, the condi-
tion for linear stability of a fixed point x∗. The latter is defined by x∗ = f (x∗)
and is linearly unstable if | f ′(x∗)| > 1. The condition in this problem holds for
nonlinear equations. The only fixed point in this problem is x∗ = 0 and it is
linearly stable, since f ′(0) = 1

2 .
e. Now that we know the typical size of the xk fluctuations, let us estimate the

probability of an xk fluctuation with |xk | ≥ x0. We assume xk ∼ N(0, ν2) and
estimate P ≡ P(|xk | > x0). Then the typical number of time steps to instability
will be simply Nx ≈ 1/P.
We thus need to evaluate the area in the two shaded tails in the figure. The
cumulative distribution function

F(x′0) =
2√
2π

∫ x′0

−∞
dx e−

x2

2 =
1
2

[
1 + erf

(
x′0√

2

)]
,

with x′0 ≡ x0/ν, gives the area from −∞ to x′0. The area under one tail is
thus 1 − F(x′0), and the area under both is 2(1 − F(x′0)) = 1 − erf(x′0/

√
2) ≡

erfc(x′0/
√

2). Since the asymptotic expansion of erfc(x) is erfc(x) ∼ exp(−x2)
x
√

π
,

the typical lifetime Nx will be, dropping O(1) numerical factors,

Nx = erfc
(

x′0√
2

)−1
∼ x′0 exp

(
x′0

2

2

)
.

The erfc function is more accurate, but the asymptotic expansion is useful
in driving home the point that the lifetime is a very sensitive function of x0/ν.
Using the erfc function for x′0 ≈

√
3/(0.5), I get about 1880. This is reasonably

close to the observed lifetime of 717, as the estimate is extremely sensitive to
the details. For example, substituting the observed variance of xk of 0.513
leads to Nx ≈ 1360. The slight non-Gaussian nature of the fluctuations
accounts for the rest of the discrepancy.
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f. Assuming that there is no instability and no nonlinearity, we calculate the
typical value of xk. We do so by writing

x2
k+1 =

1
4 x2

k + xk νk + ν
2
k .

Averaging this equation and defining σ2 = 〈x2
k〉 = 〈x2

k+1〉 (stationary stochastic
process), we have

σ2 = 1
4σ

2 + 0 + ν2 ,

since xk and νk are uncorrelated. Thus, σ2 = 4
3ν

2. With ν = 0.5, we have
σ ≈ 0.58. This is smaller than the observed fluctuations of 0.513, with the
difference due to the extra restoring force at high xk.

8.12 Conditioning matters! For the example in Figure 8.6, discuss and contrast

p(xk) , p(xk |yk) , p(xk |yk) , p(xk |yk−1) .

Solution.

a. p(xk). This is the distribution of states independent of any observations. In
the absence of other knowledge, we can solve the Fokker-Planck equation for
the continuum equivalent (which gives the same answer as for the discrete
case, as time plays no role), to find a Boltzmann distribution of the form

p(xk) ∝ e−V(xk)/ν2
, V(xk) = − 1

2 x2
k +

1
4 x4

k .

Another way to get such a distribution is to plot a long time series of states
xk and histogram them. The figure below represents 100 000 samples, and the
solid line plots the Boltzmann distribution on top. The distribution has two
maxima at ±1 and is larger in between than outside, as we expect.

b. p(xk |yk). This is the probability that a given observation yk was caused by a
state xk. In the absence of any other prior information concerning xk, Bayes’
Theorem implies that this probability is just p(yk |xk) = N(yk − xk; 0, ξ2), a
Gaussian with mean yk.

c. p(xk |yk). This is the optimal estimate that was the focus of our analysis. For
one particular set of observations, the set of probability distributions is thus
given in Figure 8.6. Qualitatively, the possibilities range from near certainty
that the particle is in one well to bewilderment, with an equal-sized peak
above each well.
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d. p(xk |yk−1). This is the prediction given the best estimate. With our poten-
tial, we see, again from Figure 8.6, that there is a local “flow” of probability
“downhill” towards the closest local minimum of the potential. The evolution
is somewhat like that of a (thick) liquid under gravity that oozes down to the
local hill gradient.

8.13 Extended Kalman filter (EKF). Code the EKF algorithm for one-dimensional
dynamics such as Examples 8.2 and 8.3. Explore in particular the double-well
potential. Show, for example, that the EKF fails for the parameters in Figure 8.4
but succeeds for smaller time steps (smaller a), even when the thermal noise ν is
increased. Explain, and confirm for a = 0.7, ν = 0.2, and ξ = 0.5.

Solution.
See book website for EKF code. The value a = 0.8 is close to the “critical”

value separating the regime where the EKF tracks the hops across the barrier.
At smaller values of a (e.g., 0.7), the EKF can track hops. To make sure there are
hops, we may need to increase ν. However, increasing ν too much leads to insta-
bility, as discussed in Problem 8.11. Thus, the parameters given are chosen with
some care. But the general point remains valid: discretizing a continuous non-
linear system with a faster sampling frequency will make the discrete dynamics
more linear and will improve the outcomes of the EKF.

8.14 Cubature Kalman filter (CKF). Code the CKF algorithm for one-dimensional
dynamics such as Examples 8.2 and 8.3. Explore in particular the double-well
potential.

a. Show that the n = 1 CKF algorithm matches the variance to [ 1
2 f ′′(0) +

2
3 f ′(0) f ′′′(0)].

b. Plot true and estimated states for the CKF (see text and left).
c. Show that pushing out the two cubature points by a factor a can improve the

CKF. In particular, find a value for a that works as well as the plot at right.
The true state is shown in gray and the CKF estimate in black.

Solution.

a. See Mathematica notebook. As an intermediate checkpoint, you should find
that the variance of the cubature-point approximation is

1
2

[
f (x + 1)2 + f (x − 1)2

]
−

[
1
2

[
f (x + 1) + f (x − 1)

]]2

=
[
f ′(0) + 1

6 f ′′′(0)
]2
+ · · · .

b. See book website for CKF code.
c. The plot in the book uses a =

√
2. The same noise realization is used.

8.15 Unscented transform (UT). An alternative to the cubature Kalman filter (CKF)
is the unscented Kalman filter (UKF), which is based on the “unscented” trans-
form. It resembles the CKF but with different weights and an extra element.
In particular, for a smooth function y = f (x), with x ∼ N(μ, σ2), there are
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three ensemble elements (sigma points), x0 = μ and x±1 = μ ± aσ and weights
w0 and w±1.

a. Show that a =
√

3, w0 =
2
3 , and w±1 =

1
6 matches the mean to fourth order.

b. Show that the variance is matched exactly to first order and partly to second
order.

c. Find the mean y and variance Py for y = x2 and for y = x4, assuming x ∼
N(0, 1).

Solution.

Let us Taylor expand f (x) about x = μ. With δ = x − μ and fn ≡ dn f
dxn

∣∣∣∣
x=μ

,

y = f (x) = f0 + f1 δ + 1
2 f2 δ

2 + 1
6 f3 δ

3 + 1
24 f4 δ

4 + O( f5) .

The moments are the same as for a standard Gaussian. The odd moments are
zero, and the even moments are〈

δ2
〉
= σ2 ,

〈
δ4

〉
= 3σ4 ,

〈
δ6

〉
= 15σ6 ,

〈
δ8

〉
= 105σ8 .

a. Using these moments, we can evaluate the estimate for the mean:

〈y〉 = f0 + 1
2 f2σ

2 + 1
8 f4σ

4 + O( f5σ
5) .

The unscented transform (UT) for the mean uses three sigma points:

x0 = μ , x±1 = μ ± aσ ,

and weights w0 and w±1. By symmetry, w1 = w−1. Thus,

y ≡
+1∑

i=−1

wi yi = w0 f0 + w1(y1 + y±1)

= w0 f0 + w1

[
2 f0 + f2(aσ)2 +

1
12

f4(aσ)4

]
.

Matching f0, f2, and f4 coefficients then gives

1 = w0 + 2w1︸����������︷︷����������︸
f0

,
1
2
= w1a2︸�����︷︷�����︸

f2

,
1
8
=

1
12

w1a4︸���������︷︷���������︸
f4

.

It is easy to verify that a2 = 3, w0 =
2
3 , and w1 =

1
6 solves these equations.

b. The corresponding variance equations are best calculated using a computer-
algebra program. Writing Py for the variance of y, we first calculate the
expectation values.

y2 = f 2
0 + 2 f0 f1δ + ( f 2

1 + f0 f2)δ2 + ( f1 f2 + 1
3 f0 f3)δ3 + ( 1

4 f 2
x +

1
3 f1 f3 + 1

12 f0 f4)δ4

+ 1
12 f1 f4δ

5 + ( 1
36 f 2

3 +
1

24 f2 f4)δ6 + 1
72 f3 f4δ

7 + 1
576 f 2

4 δ
8 .
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Taking expectations and using the moment formulas for 〈δn〉 gives〈
y2

〉
= f 2

0 + ( f 2
1 + f0 f2)σ2 + ( 3

4 f 2
2 + f1 f3 + 1

4 f0 f4)σ4 + ( 5
12 f 2

3 +
5
8 f2 f4)σ6 + 35

192 f 2
4σ

8

〈y〉2 = f 2
0 + f0 f2σ

2 +
1
4

( f 2
2 + f0 f4)σ4 + 1

8 f2 f4σ
6 + 1

64σ
8

Py =
〈
y2

〉
− 〈y〉2 = f 2

1σ
2 + ( 1

2 f 2
2 + f1 f3)σ4 + ( 5

12 f 2
3 +

1
2 f2 f4)σ6 + 1

6 f 2
4σ

8 .

The variance of the transformed sigma points is

Py = w0(y0 − y)2 + w1[(y1 − y)2 + (y−1 − y)2 .

Substituting for the weights and yavg then leads to(
Py − Py

)
= ( 1

6 f 2
3 +

1
4 f2 f4)σ6 + 13

96 f 2
4σ

8 ,

which shows that the terms through O(σ4) have been canceled using the same
choice of weights as used to optimize the mean estimate. But we should be
careful: we are not expanding in σ, which need not be small. Thus, the point
to notice is that there is still a term proportional to f2, which is the second
derivative of f (x) about x = μ. Thus, the sigma-point approach here leads to
an approximate representation that is significantly better for the mean than
for the variance.

c. For y = x2, the UT gives

y =
2
3

(0)2 + 2
1
6

(√
3
)2
= 1

Py =
2
3

(0 − 1)2 + 2
1
6

(3 − 1)2 = 2 ,

which matches the exact values 〈y〉 =
〈
x2

〉
= 1 and

〈
y2

〉
=

〈
x4

〉
= 3. (The latter

implies that Py =
〈
y2

〉
− 〈y〉2 = 3 − 1 = 2.)

For y = x4, the UT gives

y =
2
3

(0)4 + 2
1
6

(√
3
)4
= 3

Py =
2
3

(0 − 3)2 + 2
1
6

(9 − 3)2 = 18 .

The exact moments for the transformed distribution are 〈y〉 =
〈
x4

〉
= 3 and〈

y2
〉
=

〈
x8

〉
= 105, which implies Py = 105 − 9 = 96. Thus, the UT matches

the mean, as expected, but fails for the variance, again as expected.
In both these examples, it is worth noting that the EKF approach (local
linearization) gives 0 for mean and variance estimates, a far worse prediction.

8.16 Ensemble Kalman filter (EnKF). Show that the EnKF can track motion in the
double-well potential from Example 8.3. What is the effect of varying the num-
ber of elements nE in the ensemble? (Remember that you choose nE states and
an equal number of noise elements ν and ξ.)
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Solution.
See book website for code. Below shows how the EnKF works for the double-

well potential with a = 0.8, ν = 0.15, and ξ = 0.5. Indeed, we use the same noise
(by setting the seed for the random-number generator), although we find that
it always works. The figure below uses nE = 100. Decreasing nE increases the
estimation variance and the disagreement between the actual error and the state
variance. For example, when nE = 10, the empirical variance is 0.064 whereas
the average value of Pk is 0.041. But for nE = 100, the corresponding values
are 0.055 and 0.051. There is little change for nE = 1000, where the values are
0.051 and 0.053. Since the observational noise variance ξ2 = 0.25, the EnKF is a
noticeable improvement over the naive observations, as can be seen in the figure
below.

8.17 Grid method. We explore numerically the full Bayesian filtering solution for the
double-well potential for various noise strengths ν and ξ.

a. Code the grid method and reproduce the equivalent of Figure 8.6.
b. Fix the input noise at ν = 0.15 and study the state estimation problem as

the measurement noise ξ goes from 0 (no noise) to large values. Discuss
qualitatively.

c. Now fix the measurement noise ξ = 1 and vary the input noise from zero to
large values. Again, describe qualitatively the different regimes.

d. In our problem of free diffusion, we found that the behavior of the Kalman
filter depended only on the ratio α = ν2/ξ2 and not on the absolute values of
the two noise strengths. Why does that conclusion not hold in this problem?

Solution.

a. Should get something like the figures.
b. Qualitatively: we track better and better, but with an increasing delay as we

increase the measurement noise. This makes sense: we need more time to
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average over measurement readings to know whether a deviation is really or
noisy. The optimal Bayes estimate shows how to do this in the best possi-
ble way, given the observations and noise statistics. When the measurement
noise becomes larger than about 3, it becomes hard to distinguish between
a fluctuation and a movement between wells. At this point, the estimation
process becomes much more confused, with broad probability distributions
that make it difficult to “know” which well the particle is in.

c. Qualitatively: For low ν, transitions are very rare. Their frequency is
described by the Kramers relation, eEbν

2
, where Eb =

1
4 is the barrier height,

which sets a natural scale (see below). For noise strengths comparable to this
barrier scale, we lose the notion of hopping and have a continuous, modulated
occupation of the entire space.

d. In the linear diffusion problem, the linear dynamics did not provide a scale
to the state variable, the position x. Thus, a uniform rescaling does not
change the physics. Those statements do not hold for the nonlinear double-
well potential, where the barrier height is a natural energy scale, and we can
measure the noise strength in terms of the fluctuations relative to the barrier
position.

8.18 Sinusoidal nonlinearity in measurement function. The nonlinear measurement
relation y = sin x + ξ can occur in interferometry experiments (Section 3.2.1).
Note that a given y corresponds to an infinite number of possible x states. The
graph at left for P(x|y) was generated using ξ2 = 0.42 and y = 0.5. Why the
funny double bump? Explore the consequences of different noise strengths and
observations, and explain what is going on in the different cases. Explain, in
words, a strategy for dealing with the infinite number of possibilities. As usual,
ξ ∼ N(0, ξ2).

Solution.
To eliminate the infinity of possibilities, you need to first establish, indepen-

dently, which one is relevant. Then you need to have measurements that are
rapid enough that there is no chance for the system to displace by 2π between
updates. This is standard procedure for an interferometer, for example.

8.19 Fat tails. To understand how non-Gaussian noise can affect state estimation,
consider a somewhat artificial example where both system and observation noise
are drawn from Lorentz distributions whose “fat” tails (∼ 1/x2 for |x| → ∞)
imply that large fluctuations are vastly more probable than with a normal
distribution.

a. Show that x ∼ Lor(x0, ν) = 1
π

ν
(x−x0)2+ν2 is normalized, but the mean and vari-

ance diverge. Show that the median equals x0, Prob(x0 − ν, x0 + ν) = 1
2

(thus connecting ν with a notion of width), and the characteristic function
is ϕx(k) = eikx0−ν|k|.

b. Consider a toy state-estimation problem where we have a prediction x and
an observation y that are both unbiased estimates of the true state of the
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system. As with the Kalman filter, we seek the best linear combination x̂
of the two. Here, both prediction and observation are “Lévy-flights” that
obey x ∼ Lor(xt, ν) and y ∼ Lor(xt, ξ), with xt the true state value. Let x̂ =
(1 − K)x + Ky and match characteristic functions to show that x̂ ∼ Lor(xt, γ)
,with width γ = |1 − K|ν + |K|ξ.

c. Conclude that the “optimal” choice of Kalman gain K that minimizes γ is 0
if ν < ξ and 1 if ξ < ν. That is, unlike the ordinary Kalman filter, “blending”
the prediction x with the observation y does not improve the accuracy of esti-
mation. Because the fluctuations in x and y are so “wild,” the best action is to
select at each time step whichever variable has the smaller distribution width.
For fixed ν and ξ, this means ignoring all observations if ν < ξ. For ξ < ν, we
would use only the naive observation. In other words, the Kalman reduces to
a trivial course of action. Fat tails that go as |x|−(1+μ), with 1 < μ < 2 (so that
the mean but not the variance is defined), lead to a nontrivial gain K that min-
imizes the width γ. Sornette and Ide (2001) dub the result the Kalman-Lévy
filter.

Unfortunately, the “stable” property of the Lorentz distribution (sum of two
Lorentzians is also Lorentzian) holds for only a few distributions (extensively
studied by Paul Lévy). The more realistic case where the system dynamics has a
fat tail but observations are Gaussian does not lead to simple analytic results.

Solution.

a. Many of the requested identities can be derived by showing that∫ x2

x1

dx
1
π

[
ν

(x − x0)2 + ν2

]
=

1
π

[
tan−1

( x0 − x1

ν

)
− tan−1

( x0 − x2

ν

)]
Setting x1 = −∞ and x2 = +∞ proves normalization of the PDF. Setting
x1 = −∞ and x2 = 0 proves the statement about the median. Setting x1 = x0−ν
and x2 = x0 + ν proves the statement about the width. The mean diverges
because the integrand → (1/x) for large x and hence gives a logarithmic term.
The variance diverges more strongly.
The characteristic function is a standard Fourier transform (with a transla-
tion term of x0).
If you have never played with fat-tailed distributions, it is worth simulating
them to get an intuition. Many programs have built-in “Lorentz-noise” (or
“Cauchy-noise” ) functions. If not, from Problem A.6.4, we know that if x
and y are ∼ N(0, 1), then (y/x) ∼ Lor(0, 1). This gives a way to draw samples
from a Lorentzian distribution for Monte Carlo simulations.

b. The characteristic functions of x and y are ϕx = eikxt−ν|k| and ϕy = eikxt−ξ|k|,
respectively. (Recall that the latter is true because we assume that the posi-
tion was exactly known at the time of observation and thus the only error in
the observation is the observation noise. Obviously, the story will be more
complicated for the full dynamical Kalman filter.)
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Since ϕax = ϕx(ak), we have

ϕ(1−K)x = ei(1−K)xt−ν|(1−K)k| and ϕKy = eikxt−ν|Kk| .

Then, we recall that the distribution of the sum of two random variables is
given by the convolution of the respective probability distributions, implying
that the characteristic function of the sum is the product of the individual
characteristic functions. (See Example A.18.) Thus,

ϕ(1−K)x+Ky = ϕx[(1 − K)k]ϕy[Kk]

= eik[(1−K)xt+Kxt]−[(|1−K|ν+|K|ξ)]|k|

= eikxt−γ|k| ,

where the width of the new Lorentzian distribution is

γ = |1 − K|ν + |K|ξ .
c. This is minimized by picking K = 0 or 1. See plots of γ(K) for different

combinations of ν and ξ values.

1010
Kalman gain  (K)

10

8.20 Bayesian RTS smoothing. In the text, we give a naive algorithm for smooth-
ing that combines information from the forward and backwards dynamics to
improve the estimate of a current state, xk. Here, we explore a more efficient,
better-behaved smoother algorithm that does not need an explicit backwards
dynamics.

a. By introducing the state xk+1 and applying causality, show that

p(xk |yN) = p(xk |yk)
∫

dxk+1
p(xk+1|xk) p(xk+1|yN)

p(xk+1|yk)
,

which goes from p(xk+1|yN) to p(xk |yN). To apply it, first use forward Bayesian
filtering, Eqs. (8.76), to find the p(xk |yk) and their associated predictions
p(xk+1|yk).

b. Assuming linear dynamics and Gaussian probability distributions leads
to the Reich–Tung–Striebel (RTS) smoother equations. Let P(xk |yN) =
N [

(xs)k ,
(
Ps)

k
]

define the smoother state estimate xs and covariance matrix
Ps. Show that these quantities may be found via the backwards recurrence
relation

(Gs)k = Pk AT (
P−

)−1
k+1(

Ps)
k = Pk + (Gs)k

[(
Ps)

k+1 − P−k+1

]
(Gs)k

T

(
xs)

k = xk + (Gs)k

[(
xs)

k+1 − x−k+1

]
,
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where x, P, and P− are first calculated using the forward Kalman filter. The
recurrence relation starts at k = N, where xs = x and Ps = P (Särkkä, 2013).
Hint: Use Eq. (A.197) for conditional Gaussian distributions and computer
algebra.

c. Using the RTS smoother equations, verify that the steady-state smoother vari-
ance of the one-dimensional diffusing particle is given by Ps = ξ2α/

√
α2 + 4α,

in agreement with our previous result, Eq. (8.131).

Solution.

a. We introduce the state xk+1 (and will remove it later by marginalization).
Using the definition of conditional probability then gives

p(xk, xk+1|yN) = p(xk |xk+1, yN) p(xk+1|yN) .

Then,

p(xk |xk+1, yN) = p(xk |xk+1, yk) causality

=
p(xk, xk+1|yk)

p(xk+1|yk)
conditional probability

=
p(xk+1|xk,��y

k) p(xk |yk)
p(xk+1|yk)

Markov ,

where Markov dynamics implies that if we know xk, then our knowledge of
xk+1 is not improved by any of the observations in the set yk. Putting it all
together,

p(xk, xk+1|yN) =
p(xk |yk) p(xk+1|xk) p(xk+1|yN)

p(xk+1|yk)

Integrating both sides with respect to xk+1 then gives the identity.
b. See Särkkä (2013) for the solution.
c. From the Kalman analysis, the steady-state forward covariance is

P = ξ2

2 (
√
α2 + 4α − α)

and the steady-state predicted covariance is P− = ξ2

2 (
√
α2 + 4α + α). This

implies that the steady-state smoother gain is

Gs =
P
P−
=

√
α2 + 4α − α√
α2 + 4α + α

.

The steady-state smoother variance Ps obeys

Ps = P − (Gs)2(P− − Ps) .

Solving for Ps gives

Ps =
P

1 +Gs =
P P−

P− + P
= ξ2 α√

α2 + 4α
.
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8.21 The random rocket. In one dimension, a rocket with random forcing obeys ẍ =
ν(t). Assume that the measured positions are noisy: y(t) = x(t) + ξ(t).

a. Discretize the system exactly for a time step that is scaled to Ts = 1.
b. Write a numerical code for a Kalman filter and then a Kalman smoother.

Explore the case where the discrete-noise variances are ν2 = ξ2 = 1.
c. Scale all variances by ξ2 and define α = ν2/ξ2. Confirm that the ratio of filter

to smoother variances is given by the plot at left.
d. Plot time series of position, measurements, and both filter and smoother

estimates.

Hints: Ad =
(

1 1
0 1

)
. For α = 1 and steady state, P =

(
3/4 1/2
1/2 1

)
and Ps =

(
1/3 0
0 1/3

)
.

Solution.

a. The continuous matrices are

A =
(
0 1
0 0

)
B =

(
0
1

)
C =

(
1 0

)
.

We find the discrete matrices by exponentiation, noting that A2 = 0. Then,

Ad = eATs = I + Ts A =
(
1 0
0 1

)
+ Ts

(
0 1
0 0

)
=

(
1 Ts

0 1

)

Bd =

∫ Ts

0
dt eA(Ts−t) B =

∫ Ts

0
dt

(
1 Ts − t
0 1

) (
0
1

)
=

∫ Ts

0
dt

(
Ts − t

1

)
=

⎛⎜⎜⎜⎜⎜⎜⎝ T 2
s
2

Ts

⎞⎟⎟⎟⎟⎟⎟⎠ .
We scale the update time so that Ts = 1; thus,

Ad =

(
1 1
0 1

)
Bd =

(
1/2
1

)
Cd =

(
1 0

)
.

b. For α = 1, you should find, for the steady-state filter,

P− =
(
3 2
2 2

)
P =

(
3/4 1/2
1/2 1

)
L =

⎛⎜⎜⎜⎜⎜⎝3/41/2

⎞⎟⎟⎟⎟⎟⎠ ,
and for the steady-state smoother,

Ps =

(
1/3 0
0 1/3

)
.

c. For general α, the graph of the ratio of steady-state variances is given in the
problem’s margin. It is possible expand for small and large α, but the results
do not seem to be particularly informative. (Similarly, one can solve the α = 1
problem analytically, but to no obvious benefit.)

d. Below is a plot of typical position measurements (light gray dots) for ν = 1
and ξ = 10 (or, α = 10−2). The heavy dark line is the true position. The
lightest gray trace is the filter estimate. The thin dark line is the smoother
estimate, which, indeed, is smoother than the filter. Except at the beginning,
the smoother is also more accurate.
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8.22 Estimating a frequency. Consider the problem of estimating the frequency ω of
a complex signal yk = eiωk +ξk, with ξk ∼ CN(0, σ2), for N data points.

a. Show that ω̂ = argmaxω F(ω) ≡ Re
( 1

N

∑N−1
k=0 yk e− iωk) is the maximum-

likelihood estimator of ω. If you are not familiar with complex Gaussian
distributions, start by considering the real and imaginary parts of the mea-
surement equation, assuming that Re ξk and Im ξk are drawn from i.i.d.
Gaussian distributions, N(0, 1

2σ
2).

b. Use an FFT algorithm to find ω̂. Refine the estimate via a local-optimization
routine. Plot F(ω) for good and bad SNR, and reproduce the figures in
Example 8.4.

Solution.

a. With the notation yk = {y0, y1, . . . , yk−1}, the log likelihood of p(yk |ω), is given
by the joint distribution of real and imaginary parts of yk = eiωk +ξk.

p(yk |ω) =

⎛⎜⎜⎜⎜⎜⎝ 1√
2π(σ2/2)

⎞⎟⎟⎟⎟⎟⎠
N N−1∏

k=0

e−
Re (yk−eiωk)2

2(σ2/2)

⎛⎜⎜⎜⎜⎜⎝ 1√
2π(σ2/2)

⎞⎟⎟⎟⎟⎟⎠
N N−1∏

k=0

e−
Im (yk−eiωk)2

2(σ2/2)

=

(
1

πσ2

)N N−1∏
k=0

e−
|yk−eiωk|2

σ2 .

Notice how the complex notation and circular symmetry (the fact that real
and imaginary parts are independent and identically distributed), greatly
simplifies the joint distribution. Then, starting from the complex noise
distribution, the log-likelihood is

ln p(yk |ω) = ln

⎡⎢⎢⎢⎢⎢⎢⎣
(

1
πσ2

)N N−1∏
k=0

e−
|yk−eiωk|2

σ2

⎤⎥⎥⎥⎥⎥⎥⎦
= −N ln

(
πσ2

)
− 1
σ2

N−1∑
k=0

∣∣∣yk − eiωk
∣∣∣2 .
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Expanding the magnitude-squared term for time k gives∣∣∣yk − eiωk
∣∣∣2 = (

yk − eiωk
) (

y∗k − e− iωk
)

= |yk |2 + 1 − yk e− iωk −y∗k e+iωk

= −2 Re
(
yk e− iωk

)
+ terms independent of ω .

Substituting and ignoring scaling factors (irrelevant for finding a maximum)
and also terms independent of ω gives,

ln p(yk |ω) ∝ F(ω) = +Re

⎛⎜⎜⎜⎜⎜⎜⎝ 1
N

N−1∑
k=0

yk e− iωk

⎞⎟⎟⎟⎟⎟⎟⎠ ,
with the normalization factor N−1 included by convention, to make F = O(1).

b. The expression F(ω) is just the quantity evaluated by a fast Fourier Transform
(FFT), although that algorithm evaluates only at a discrete set of frequencies.
Still, it is a fast, easy algorithm, and the frequencies identified are closely
spaced enough to identify the local peak. Plotting F(ω) for SNR of +10 and
−10 dB shows how, in the former case, the global maximum is at the proper
frequency while, for the low-SNR case, the global maximum is usually at a
noise peak.

(ω
)

(ω)

8.23 Wiener filtering. The Wiener filter is a frequency-domain technique equivalent to
(and predating) the Kalman filter for time-invariant problems. We focus on the
much-simpler smoothing case, where information is available for all times (−∞ <

t < +∞). Consider a signal u(t) measured by an instrument with dynamical
responseLx(t) = u(t), whereL is a differential operator. Its inverse in the Fourier
domain is the transfer function G(ω), with x(ω) = G(ω)u(ω). The measured
response y(t) = x(t)+ ξ(t) adds white noise ξ(t) with spectral density ξ2. The goal
is to find an optimal linear “filter” that minimizes the mean-square estimation
error. (Notice that the goal of estimating u rather than x is slightly different from
that of a Kalman filter. But given û, we have x̂ = Gû.) We thus define û = W

G y,
where all quantities are functions of ω. The mean-square estimation error is
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E =
∫ ∞

0
dt [û(t)− u(t)]2 =

∫ ∞
−∞

dω
2π |û(ω)− u(ω)|2, where the signal u(t) is taken to be

white noise with spectral density u2.

a. Show that û =
[
G−1 (

1 + 1
|G|2SNR2

)−1] y minimizes the mean-square error, with

SNR ≡ u/ξ. The whitening filter G−1 compensates for the instrumental
response.

b. Assume that G = 1
1+iω , a first-order, low-pass filter. For SNR � 1, show that(

1 + 1
|G|2SNR2

)−1] is a low-pass filter with cut-off frequency ωc ≈ SNR. Thus,

the Wiener filter cuts off the naive estimator u(ω) = G−1(ω) y(ω) at ωc.

The optimal filter contains the term |G|2, making it acausal. Finding a causal
Wiener filter that does not depend on future values of the signal turns out to be
a harder problem and is solved more easily by the Kalman filter.

Solution.

a. The mean-square error, in the frequency domain is given by

E =
∫ ∞

−∞
dω
2π
|û(ω) − u(ω)|2

=

∫ ∞

−∞
dω
2π

∣∣∣∣∣WG (x + ξ) − x
G

∣∣∣∣∣2

=

∫ ∞

−∞
dω
2π

1
|G|2

[
|(W − 1)x|2 + |W |2ξ2

]
,

where the cross term x(ω)ξ(ω) vanishes when integrated, since the signal and
measurement noise are uncorrelated. With W∗ the complex conjugate of W,
setting the derivative (∂W∗)E = 0 gives

(W − 1)|x|2 +Wξ2 = 0 ,

which implies

W =
|x|2

|x|2 + ξ2
=

1
1 + ξ2/|x|2 =

1

1 + 1
(|G|2SNR2)

.

b. For an instrument response that is a low-pass filter with unit cutoff, G(ω) =
1

1+iω . Then

W =
1

1 + 1+ω2

SNR2

≈ 1

1 + ω2

SNR2

,

which is indeed the magnitude-squared frequency response of a low-pass filter
with cutoff ωc = SNR, assuming SNR � 1.



9 Robust Control

Problems

9.1 Input shaping: Moving a load of uncertain mass. From Section 9.1.1, we consider
a transfer function G(s) = 1

1+(s/ω)2 , with ω an unknown oscillation frequency of
nominal value ω0 = 1. The goal is to move from y from 0 to 1 in finite time using
the input-shaping protocol: n + 1 steps of amplitude A = {Ai}, applied at times
t = {ti}.
a. Show that the amplitude of residual oscillations is given by Eq. (9.3).
b. Zero Vibration (ZV): Show that A =

{
1
2 ,

1
2

}
and t = {0,π} satisfies J(ω) = 0

for ω = ω0 = 1, which thus solves the control problem exactly if the system
is known perfectly. Find the exact expression for J1(ω). Here and below, set
t0 ≡ 0.

c. Zero Vibration Derivative (ZVD): Show that A =
{

1
4 ,

1
2 ,

1
4

}
and t = {0,π, 2π}

satisfies J2 = J′2 = 0 at ε ≡ ω − 1 = 0.
d. Zero Vibration Double Derivative (ZVDD): Show that A =

{
1
8 ,

3
8 ,

3
8 ,

1
8

}
and

t = {0,π, 2π, 3π} satisfies J3 = J′3 = J′′3 = 0 at ε = 0.
e. Show that the Taylor expansions of ZV, ZVD, and ZVDD solutions about
ω = 1 give

(
π
2 |ε|

)n
, with n = 1, 2, 3, respectively.

f. Adiabatic limit. Show that the ramp at left leads to residual oscillations whose
typical amplitude is (ωτ)−1, which is small for τ � ω−1.

Solution.

a. In standard state-space notation, the dynamics ÿ + ω2y = ω2u(t) correspond
to

d
dt

(
x1

x2

)
=

(
0 1
−ω2 0

) (
x1

x2

)
+

(
0
ω2

)
u(t) , y(t) = x1(t)

which has a solution, for y(0) = ẏ(0) = 0, of

y(t) =
(
1 0

) ∫ t

0
dt′

(
cosω(t − t′) 1

ω
sinω(t − t′)

−ω sinω(t − t′) cosω(t − t′)

) (
0
ω2

)
u(t′)

= ω

∫ t

0
dt′ sinω(t − t′) u(t′) .

200
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Substituting u(t) =
∑

i Ai θ(t − ti) and assuming t > tn, the last step, gives

y(t) = ω
n∑

i=0

Ai

∫ t

ti

dt′ sinω(t − t′) =
ω

ω

n∑
i=0

Ai[1 − cosω(t − ti)]

= 1 −
n∑

i=0

Ai cosω(t − ti) .

Here, we use the normalization of relative amplitudes,
∑

i Ai = 1. This last
condition must be imposed to make y(t) oscillate about the desired position
y = 1 at the end of the protocol.

To find the amplitude of residual oscillations, we expand the cosine term:

n∑
i=0

Ai cosω(t − ti) =
n∑

i=0

Ai (cosωt cosωti + sinωt sinωti)

=

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai cosωti

⎞⎟⎟⎟⎟⎟⎠ cosωt +

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai sinωti

⎞⎟⎟⎟⎟⎟⎠ sinωt ,

which has amplitude

Jn =

√√√⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai cosωti

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai sinωti

⎞⎟⎟⎟⎟⎟⎠
2

.

To see this last identity, we note that we find the amplitude of

δy = α cosωt + β sinωt

by finding the extremum. Setting the derivative to zero, we have

d
dt

( δy) = ω(−α sinωt + β cosωt) = 0 .

This implies

tanωt = β/α =⇒ cosωt = α√
α2+β2

, sinωt = β√
α2+β2

.

Thus, as seen below,

δy =
α2√
α2 + β2

+
β2√
α2 + β2

=

√
α2 + β2 .
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b. We solve

Jn =

√√√⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai cosωti

⎞⎟⎟⎟⎟⎟⎠
2

+

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

Ai sinωti

⎞⎟⎟⎟⎟⎟⎠
2

= 0 ,

for n = 1. For J1 = 0, each sum must vanish. Recalling that t0 = 0, we have

A0 + A1 cosωt1 = 0 , A1 sinωt1 = 0 .

The second equation requires ωt1 = mπ for integer m. The smallest m (short-
est protocol) is m = 1, which implies t1 = π, assuming that ω = ω0 = 1.
The first equation is then A0 − A1 = 0, or A0 = A1. With the normalization
A0 + A1 = 1, we conclude that

A =
{

1
2 ,

1
2

}
, t = {0, π} .

Again, these values assume a nominal oscillator frequency ω0 = 1.

If a control based on this design is carried out on an oscillator whose actual
frequency is ω, the exact expression for residual amplitude J1 is

J1 =
1
2

√
(1 + cosωπ)2 + (sinωπ)2 =

∣∣∣cos π
2 ω

∣∣∣ = ∣∣∣sin π
2 ε

∣∣∣ ,
where ε = ω − 1. See below.

ε

|επ/2|

 |επ/2|

More generally, if the design frequency is ω0 (not necessarily =1), then t1 =
π/ω0 and ε = (ω/ω0) − 1.

c. For n = 2,

J2 =

√
(A0 + A1 cos πω + A2 cos 2πω)2 + (A1 sin πω + A2 sin 2πω)2 .

But symmetry implies A2 = A0 and normalization implies A1 = 1−2A0. These
lead to

J2 = |1 − 2A0 + 2A0 cos πω| .
To satisfy J2(ω = 1) = 0, we have J2 = |1 − 2A0 − 2A0| = 0, which implies
A0 =

1
4 . Then,

J2 = cos
(

π
2 ω

)2
.
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d. The n = 3 (ZVDD) case is similar. With A0 = A3 and A1 = A2 (by symmetry),
we have

J3 = 2
∣∣∣∣cos

(
π
2 ω

)
(−A0 + A1 + 2A0 cos πω)

∣∣∣∣ .
Taking two derivatives with respect to ω gives

J′′3 (ω) = −2π2[A1(2A0 + A1) cos πω + A0(8A1 cos 2πω + 9A0 cos 3πω)] .

Solving for J′′3 (1) = 0 then implies A1 = 3A0. Normalization of the Ai then
implies that A0 = A3 =

1
8 , while A1 = A2 =

3
8 . Then

J3 =
∣∣∣∣cos

(
π
2 ω

)∣∣∣∣3 ,
e. For ZV, ZVD, and ZVDD, the cost functions are

Jn =
∣∣∣∣cos

(
π
2 ω

)∣∣∣∣n = ∣∣∣∣sin
(

π
2 ε

)∣∣∣∣n ,
with n = 1, 2, 3, respectively. In the latter expression, we change variables to
ε = ω − 1. The Taylor expansions are then

Jn ≈
∣∣∣π

2 ε
∣∣∣n .

The expression generalizes to arbitrary n-th order, showing that, for a long-
enough protocol, we can make the response arbitrarily robust to frequency
mismatch.

f. Adiabatic limit. The easiest approach is to integrate directly for a ramp
solution u(t) = t/τ. That is, we solve

ÿ + ω2y = ω2(t/τ) , y(0) = ẏ(0) = 0 .

The solution is simply,

y(t) =
t
τ
− sinωt

ωτ
, ẏ =

1
τ

(1 − cosωt)

At the end of the ramp, at time t = τ, this solution simplifies to

y(τ) = 1 − sinωτ
ωτ

, ẏ(τ) =
1 − cosωτ

τ
.

Intuitively, we can guess that, with this initial condition and setting u(t) = 1
for later times, the oscillations in y(t) will be of order (ωτ)−1 about the steady-
state solution y = 1. Below, we show this in more detail.

If u(t) = 1 thereafter, the solution, by inspection, is

y(t) = 1 + [y(τ) − 1] cosω(t − τ) +
ẏ(τ)
ω

sinω(t − τ) ,
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which just oscillates with amplitude√
[y(τ) − 1]2 +

(
ẏ(τ)2

ω

)2

=

√(
sinωτ
ωτ

)2

+

(
1 − cosωτ

ωτ

)2

=

(
1
ωτ

) √
2(1 − cosωτ)

=

(
2
ωτ

)
sin 1

2ωτ .

Thus, depending on the exact value of ωτ � 1, the oscillation amplitude
ranges between 0 and 2(ωτ)−1. A “typical” value is then (ωτ)−1. If the
ramp is slow enough, then the residual oscillation will be small, whatever
the frequency of the oscillator. There is a tradeoff between performance and
robustness.

9.2 Swing up a pendulum robustly.

a. Derive the equations of motion for the four-dimensional augmented dynam-
ics for X = (x xω)T that augment Eqs. (9.6). Express them in the form
Ẋ = F(X,u).

b. Write the eight-dimensional equations for the combined state and adjoint
(X Λ)T.

c. Write a boundary-value code to solve the eight-dimensional equations of
motion and make plots similar to the ones given in the text.

Solution.

a. The augmented state vector is

X =
(

x
xω

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
θ

θ̇

θω
θ̇ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x1,ω

x2,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
For the ordinary pendulum, θ̈ = −ω2 sin θ + u. Taking a derivative of the
right-hand side with respect to ω gives −2ω sin θ−ω2(cos θ) θω. The combined
dynamics are then

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x1

x2

x1,ω

x2,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸︷︷︸
X

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x2

−ω2 sin x1 + u
x2,ω

−2ω sin x1 − ω2 cos x1 x1,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

− sin x1 + u
x2,ω

−2 sin x1 − cos x1 x1,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�������������������������︷︷�������������������������︸
F(X,u)

.

In the second identity, we evaluate at the nominal frequency, ω = 1.
b. Find the four-dimensional adjoint equations by computing the Jacobian of

F. Then write the eight-dimensional equations for the combined state-adjoint



Problems 205

system (X Λ). As before, the functions are evaluated at the nominal frequency
ω = 1.

− (∂X F)T = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

− cos x1 0 0 0
0 0 0 1

−2 cos x1 + sin x1 x1,ω 0 − cos x1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

= +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 cos x1 0 2 cos x1 − sin x1 x1,ω

−1 0 0 0
0 0 0 cos x1

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T

.

Then, since L does not depend on x (in this problem),

dΛ
dt
=

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ1

λ2

λ1,ω

λ2,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 cos x1 0 2 cos x1 − sin x1 x1,ω

−1 0 0 0
0 0 0 cos x1

0 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2

λ1,ω

λ2,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos x1λ2 + (2 cos x1 − sin x1x1,ω)λ2,ω

−λ1

cos x1λ2,ω

−λ1,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Finally, we put together the equations for X and Λ into a single system of
eight coupled equations:

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x1,ω

x2,ω

λ1

λ2

λ1,ω

λ2,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

− sin x1 + u
x2,ω

−2 sin x1 − cos x1 x2,ω

cos x1λ2 + (2 cos x1 − sin x1x1,ω)λ2,ω

−λ1

cos x1λ2,ω

−λ1,ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1(0)
x2(0)

x1,ω(0)
x2,ω(0)
x1(τ)
x2(τ)

x1,ω(τ)
x2,ω(τ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
π

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that because the u dependence does not change, we will have the same
equation, u(t) = −λ2(t). We then substitute u = −λ2 in the second equation,
for ẋ2. The result is a system of eight coupled, nonlinear first-order ODEs
with eight boundary conditions.

Although the manual procedure used here is tedious and would be even more
so with more uncertain parameters, it is worth noting that all operations are
simple, standard ones (differentiation, matrix algebra) and can, in principle,
be automated in a symbolic-manipulation package.

c. See book website for code.
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9.3 Robust rejection of disturbances for harmonic oscillator.

a. Derive the perturbative result that δk ≡ (δK
K0

)
= + 3

2 ε
2.

b. Let p(ω) be lognormal, with 〈ω〉 = 1 and 〈( δω)2〉 = ε2. Show that 〈ωn〉 =
enμ+(nσ)2/2 and thus lnω ∼ N(μ, σ2), with μ = −(1/2) ln

(
1 + ε2

)
and σ2 = −2μ.

c. Find exact expressions for the scaled optimal cost 〈 j∗〉 and gain k∗ as functions
of ε. Taylor expand to confirm β = 3

2 .

Solution.

a. The problem to solve is

ẍ + Kẋ + ω2x = 0 , x(0) = 0, ẋ(0) = 1 ,

where we have substituted the feedback derivative-control signal u(t) = −Kẋ(t)
into the system equation of motion and where the initial condition is derived
from the delta-function “kick” at time 0. (Integrate ẍ(t) from t = 0− to 0+.)

For the underdamped case (ω > K/2), solving the equations of motion leads
to

x(t) = e−ζ
′t

(
sinω′t
ω′

)
, ω′ ≡

√
ω2 − ζ′2 , ζ′ ≡ K/2 .

u(t) = −Kẋ = K e−ζ
′t

[(
− ζ

′

ω′

)
sinω′t + cosω′t

]
.

The overdamped solution is similar, with hyperbolic functions replaced by
trigonometric functions and

(
ω2 − ζ′2) → (

ζ′2 − ω2). As noted in the main
text, evaluating both cases in the cost function leads to the same result,

J(ω,K) =
∫ ∞

0
dt

[
x2(t) + u2(t)

]
=

1
2

(
K +

1
ω2K

)
,

To find the optimal value of the feedback gain K, we solve

dJ
dK
= 0 , =⇒ K =

1
ω
, =⇒ K0 = 1 .

In the last step, we evaluate K at the nominal frequency, ω0 = 1. The optimal
cost is then J0 = J(ω0,K0) = 1.

To find the shift δK/K0 in optimal gain as a function of the relative frequency
uncertainty 〈 δω2〉, we evaluate

β = −1
2

(
∂kϑϑJ
∂k,k J

)
.

Differentiating (and using ϑ = ω and k = K),

∂kϑϑ J =
∂3J
∂k ∂ϑ2

= − 3
k2ϑ4

→ −3 , ∂kk J =
∂2J
∂k2
=

1
k3ϑ2

→ +1 ,
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where we substitute the nominal values k = ϑ = 1. Finally,

β = −
(

1
2

) −3
1
= +

3
2
.

It is interesting to note that if we were to redo the calculation allowing for a
relative cost R of control in J, we would find out that the coefficient β does
not depend on R. It appears in the expression for K0 but not in its relative
shift.

b. First, let us first show that 〈ωn〉 = enμ+(nσ)2/2 for a lognormal distribution with
lnω ∼ N(μ, σ2). We start by defining

y = (lnω) and
y − μ
σ

≡ z ∼ N(0, 1) .

Then

〈ωn〉 = 〈eny〉 = 〈enσz+nμ〉 = enμ 〈enσz〉 = enμ+(nσ)2/2︸�����︷︷�����︸
our result

〈
enσz−(nσ)2/2

〉
.

But 〈
enσz−(nσ)2/2

〉
=

1√
2π

∫ ∞

−∞
dz e−z2/2 enσz−(nσ)2/2

=
1√
2π

∫ ∞

−∞
dz e−(z−nσ)2/2 = 1 ,

which proves our result.

Using the n = 1 and n = 2 cases, we have

〈ω〉 = eμ+σ
2/2 = 1

〈( δω)2〉 = 〈ω2〉 − 〈ω〉2 = e2μ+2σ2 −1 = ε2 .

Solving these two equations for μ and σ2 gives

μ = −1
2

ln
(
1 + ε2

)
, σ2 = ln

(
1 + ε2

)
= −2μ .

c. In the cost function, J contains a factor of 1/ω2, which is the n = −2 case of
the result from (b). Thus,〈

ω−2
〉
= e−2μ+(4σ2)/2 = e−6μ =

(
1 + ε2

)3
.

Substituting this formula into the cost function leads to

〈J〉 = 1
2

⎛⎜⎜⎜⎜⎜⎜⎝k +
〈
ω−2

〉
k

⎞⎟⎟⎟⎟⎟⎟⎠ = 1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝k +
(
1 + ε2

)3

k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Solving ∂k〈J〉 = 0 gives

k∗exact = (1 + ε2)3/2 =⇒ 〈J∗〉exact = (1 + ε2)3/2 .



208 Robust Control

We see immediately that

δk∗ = k∗ − 1 =
3
2
ε2 + O

(
ε4

)
,

which confirms that β = 3/2 calculation above. Similarly,

δJ∗ = J∗ − 1 =
3
2
ε2 +

3
8
ε4 + O

(
ε6

)
.

The plot below shows that the perturbative approximation agrees well up to
relative frequency variations of about 60%. The left plot shows the exact
result for k (thin line), compared to the perturbative result in our formalism,
thick dashed line. The right plot shows the optimal scaled cost function,

〈J〉(ε, k) =
1
2

[
k +

1
k

(
1 + ε2

)3
]
,

We use three different formulas for k, which is minimized either exactly or
with approximations.

• Exact solution: k∗exact =
(
1 + ε2

)3/2
and 〈J∗〉exact (ε) =

(
1 + ε2

)3/2
.

• Naive solution: k∗naive = 1 (uncorrected) and 〈J∗〉naive =
1
2 [1 + (1 + ε2)3].

• Perturbative solution: k∗pert = 1 + 3
2ε

2 and

〈J∗〉pert =
1
2

⎡⎢⎢⎢⎢⎣1 + 3
2
ε2 +

(1 + ε2)3

1 + 3
2ε

2

⎤⎥⎥⎥⎥⎦ .
As you can see, all three expressions agree to O(ε2). In the “naive” solution,
we fix k = 1 and calculate 〈J∗〉. Amazingly, the perturbative expression, in
this case, exceeds the exact calculation only at O(ε8), which is high order!
Note the ordering: for a given ε,

〈J∗〉naive > 〈J∗〉pert > 〈J∗〉exact .

δ 

ε

 J
 

ε

〈
〉

9.4 Harmonic oscillator with PD control. Redo Prob. 9.3 using PD control (two gains
– proportional gain Kp and derivative gain Kd).

a. Find the solution x(t) for the disturbance response. Evaluate the cost function
J. Find the optimal values of the derivative gain Kd and proportional gain
Kp.

b. Write out more explicitly Eq. (9.16) for the present case of two control
parameters and one uncertain system parameter.
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c. Find the scaled gain shifts, δkd and δkp as a function of ε2.
d. Evaluate the cost function 〈J〉(ε,Kd,Kp) numerically by computing the expec-

tation over the lognormal distribution for ω and minimizing over gains
Kd = K∗

d and Kp = K∗
p to find 〈J〉∗(ε). Plot and compare to the perturba-

tive result. Do the same with the cost function and plot three curves (right):
a naive control where you fix Kd = Kd,0 and Kp = Kp,0, the optimal values
for the nominal model, a perturbative control using the techniques of this
book, and an exact control using the gains determined using the numerically
determined K∗

d and K∗
p.

Solution.
For proportional-derivative control of an undamped oscillator, the equations

of motion are

ẍ + Kd ẋ + (Kp + ω
2)x = 0 , x(0) = 0, ẋ(0) = 1 ,

where we have substituted the feedback derivative-control signal u(t) = −Kpx(t)−
Kd ẋ(t) into the system equation of motion.

a. The solution for x(t) to the above initial-value problem is, for the under-
damped case,

x(t) = e−ζ
′t

(
sinω′t
ω′

)
, ω′ ≡

√
ω2 + Kp − ζ′2 , ζ′ ≡ Kd/2 .

Putting this into the cost function gives

J(ω,Kd,Kp) =
1
2

∫ ∞

0
dt

[
x2(t) + u2(t)

]
=

Kd

4
+

1 + K2
p

4Kd(Kp + ω2)
,

Setting the gradient of J to zero gives

∂K J =

(
∂Kd

∂Kp

)
J =

(
0
0

)
=⇒

(
Kd,0

Kp,0

)
=

⎛⎜⎜⎜⎜⎜⎜⎝
√

2
(√

2 − 1
)

√
2 − 1

⎞⎟⎟⎟⎟⎟⎟⎠ ≈
(
0.91
0.41

)
.

The optimal value of the cost function is J0 = J(Kd,0,Kp,0) =
√(√

2 − 1
)
/2 ≈

0.46.

We rescale J by defining

j(ω, kd, dp) ≡ 1
J0

J(ω, kdKd,0, kpKp,0) =
1
2

⎡⎢⎢⎢⎢⎢⎢⎣kd +
1

2kd

⎛⎜⎜⎜⎜⎜⎜⎝
(√

2 + 1
)
+ (

√
2 − 1)k2

p(√
2 − 1

)
kp + ω2

⎞⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎦

Then j(1, 1, 1) = 1, which simplifies further numerics.
b. The general formula for the corrections to the control parameter gains,

Eq. (9.16), is given by

δK = −1
2

(∂KK J)−1 ∂KTr [Σ (∂θθJ)] .
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For our present case of one uncertain parameter ω with nominal value = 1
and with two control parameters, we can write

(
δKd,0

δKp,0

)
= −1

2

(
∂kk j ∂kKp j
∂kKp j ∂KpKp j

)−1 (
∂kωω j
∂Kpωω j

)
ε2 ,

with all derivatives evaluated at k = Kp = ω = 1.
c. The Hessian matrix for the control parameters is

(
∂kdkd j ∂kdkp j
∂kdkp j ∂kp,kp j

)−1

=

(
1 0
0 (2 − √

2)/4

)−1

=

(
1 0
0 2(2 +

√
2)

)
.

It is nice that the matrix happens to be diagonal! The gradient matrix is

(
∂kdωω j
∂kpωω j

)
=

(
1/
√

2 − 2
5/
√

2 − 9/2

)
.

Putting everything together gives

(
δkd

δkp

)
= −1

2

(
1 0
0 2(2 +

√
2)

) (
1/
√

2 − 2
5/
√

2 − 9/2

)
ε2

=

(
1 − 1/(2

√
2)

4 − 1/
√

2

)
ε2

≈
(
0.65
3.3

)
ε2 .

The result tells us how to modify each gain Kd and Kp relative to the nominal
optimal control values Kd,0 and Kp,0.

9.5 Harmonic oscillator with uncertain frequency and damping. Analyze the distur-
bance response of a harmonic oscillator ẍ + 2ζωẋ + ω2x = u, with u = −Kẋ, for
two uncertain parameters ω ≈ 1 and ζ ≈ 0.1 and cost function J =

∫ ∞
0

dt (x2+u2).

a. Show that the nominal optimal control problem leads to K0 = J0 ≈ 0.82.
b. Write out more explicitly Eq. (9.16) for the present case of one control

parameter and two uncertain system parameters.
c. Find the shift in relative gain δK/K in terms of

√〈 δω2〉/〈ω〉 and
√〈 δζ2〉/〈ζ〉.

Are uncertainties in both parameters important?

Solution.

a. The solution to the equations of motion is, for the underdamped case,

x(t) = e−ζ
′t

(
sinω′t
ω′

)
, ω′ ≡

√
ω2 − ζ′2 , ζ′ ≡ ζ + K/2 .
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The cost function J is given by

J(ω, ζ,K) =
∫ ∞

0
dt

[
x2(t) + u2(t)

]
=

1 + K2ω2

2(K + 2ζ)ω2
.

Solving ∂K J = 0 at the nominal values ω = 1 and ζ = 0.1 gives K0 = J0 ≈
0.819804.

The rescaled cost function

J(ω, z, k) = J(ω, z ζ0, k K0) =
1 + 0.672078k2ω2

(1.63961k + 0.4zω)ω2
.

In this problem, we had to rescale the uncertain system parameter ζ since its
nominal value is 0.1. No such scaling is needed for ω, since its nominal value
happens to be 1.

b. The general formula for the corrections to the control parameter gains,
Eq. (9.16), is given by

δK = −1
2
(
∂K,K J

)−1 ∂KTr
[
Σ

(
∂θ,θJ

)]
.

In our present case, we have one control parameter k and two uncertain
system parameters ω and ζ, all scaled to have nominal values = 1. We
will assume uncorrelated uncertainties for the unknown parameters, since
the problem mentions that we know 〈 δω2〉 and 〈 δζ2〉 but does not men-
tion the cross-correlation 〈 δω δζ〉. The trace term then becomes simply
(∂ω,ω J)〈 δω2〉 + (∂ζ,ζ J)〈 δζ2〉. Thus,

δk = βω
〈
δω2

〉
+ βζ

〈
δζ2

〉
,

where

βω ≡ −1
2

(
∂kωωJ
∂kk J

)
, βζ ≡ −1

2

(
∂kζζ J

∂kk J

)
,

with all derivatives evaluated at ω = ζ = k = 1.
c. Evaluating the derivatives for the two β coefficients using a computer-algebra

program gives

βω ≈ 2.34025 , βζ ≈ 0.0769231 .

Since βω/βζ ≈ 30, the solution is more sensitive to uncertainty in ω. This
seems intuitive, as the gain K directly alters the damping ζ but only indirectly
the frequency. Probably, it would be enough to account for the uncertainty in
frequency alone.

Note that because the unknown damping must still be positive (we know the
uncontrolled system is stable), we would again take a lognormal distribution
for ζ, and we know a priori that our control has no danger of destabilizing
the system.
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9.6 One-step LQR. The problem considered in Section 9.3.3 can be solved analyti-
cally.

a. One striking feature of the probability distributions is that they are zero when
the cost J < Jmin. Explain why (without calculation) and find Jmin(u).

b. By changing variables, transform the normal distribution for ν and show that

p(J) =

(
1
σ2

)
1√

π( δJ)
e
−
(
δJ+

1
2 ( δx)2

)
cosh

( √
2( δJ) δx

)
θ( δJ) ,

where θ(·) is the step function, δJ = (J − Jmin)/σ2, and δx = (x − u)/σ.
c. Find analytic expressions for the mean 〈J〉, standard deviation σJ , and tail

probability P(J > Jmax). Can you find a simpler approximation to this last
quantity?

Solution.

a. The cost function

J(ν) = 1
2

(
(x − u + ν)2 + Ru2

)
is minimized by a lucky fluctuation ν = −(x−u) that makes the first term zero.
The minimal cost is thus Jmin =

1
2 Ru2.

b. The noise ν obeys a normal distribution of mean zero and variance σ2:

p(ν) =
1√
2πσ

e−
ν2

2σ2 ,

Following the logic of Example A.17, we write

p(J) =
p (ν+)
|J′(ν+)| +

p (ν−)
|J′(ν−)| ,

where ν±(J) is the inverse function of J(ν) and J′(ν) = dJ/dν . Notice that
there are two roots to the inverse, and the pdf p(J) picks up contributions
from both. Inverting the relationship J(ν) gives,

ν± = −(x − u) ± √
2(J − Jmin) ,

and

|J′(ν±)| = |x − u + ν±| = | ±
√

2(J − Jmin)| = √
2(J − Jmin) .

Putting all the pieces together, we have

p(J) =
1√

2πσ
√

2(J − Jmin)

(
e−

ν2−
2σ2 + e−

ν2
+

2σ2

)
.

Substituting for ν± and recalling that 2 cosh x = ex + e−x and then defining δJ
and δx leads directly to the expressions given in the main text.
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c. The mean was already given in the main text:

〈J〉 = 1
2

(
(x − u)2 + Ru2 + σ2

)
,

which is minimized by choosing

u∗ =
(

1
1 + R

)
x =⇒ 〈J〉min =

x2

2

( R
1 + R

)
+

1
2
σ2 .

For the variance, we first define

δJ = J − 〈J〉 = 1
2

(
(x − u + ν)2 + Ru2

)
− 1

2

(
(x − u)2 + Ru2 + σ2

)
= σ(x − u) + 1

2

(
ν2 − σ2

)
and, using 〈ν4〉 = 3σ4 for a Gaussian variable of mean zero, we have

σ2
J ≡

〈
( δJ)2

〉
= σ2(x − u)2 + 1

4

(〈
ν4

〉
− 2σ2σ2 + σ4

)
= σ2(x − u)2 + 1

2σ
4 .

Note that the cross term is ∼
〈
σ(x − u)

(
ν2 − σ2)〉 = σ(x− u)〈ν2 −σ2〉 = 0. The

expression for σJ is minimized for u = x, where σJ = σ
2/
√

2.

The last quantity to calculate (using Mathematica) is

P(J > Jmax) =
∫ ∞

Jmax

dJ p(J)

= 1
2

[
erfc

( √
δJmax − ( δx)/

√
2
)
+ erfc

( √
δJmax + ( δx)/

√
2
)]
,

where Jmax/σ
2 = δJmax + Jmin/σ

2.

To simplify this expression for P(J > Jmax), we note that the second term is
negligible for almost all values of its arguments. (When δx = 0, or u = x, there
is an error of a factor of 2. But for smaller u, the term is truly small.) Thus,

P(J > Jmax) ≈ 1
2

[
erfc

( √
δJmax − ( δx)/

√
2
)]
.

For large values of the argument, this simplifies even more: erfc(x) ∼
e−x2

/(
√

πx).

9.7 Harmonic oscillator statistics. We analyze the cost distribution p(J) for an
undamped harmonic oscillator with uncertain frequency, continuing Prob-
lem 9.3.

a. Derive the analytic form for p(J) and plot for K = 1.4, 2, 3.
b. Derive analytic expressions for 〈J〉, σJ , and the tail probability p(J > Jmax).
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c. Show that the gain K∗∗ = 2Jmax minimizes the tail probability.
d. Plot p(J) for K = 1.4, 2, 3; mean 〈J〉 and σJ versus gain K; gain K∗ that

minimizes 〈J〉 versus ε; and tail probability P(J > Jmax = 1) versus K.

Solution.

a. As usual, we derive p(J) by change of variables. We invert J(ω) to ω(J):

J(ω) = 1
4

(
K +

1
ω2K

)
=⇒ ω±(J) = ± 1√

K(4J − K)
.

Although there are formally two roots, ω±, only ω+ = 1/
√

K(4J − K) is
relevant, as the support is ω ∈ [0,∞). We also need the Jacobian:

|J′(ω+)| =
∣∣∣∣∣∣ −2

4Kω3
+

∣∣∣∣∣∣ = 1

2Kω3
+

.

Then, using the standard form for a lognormal distribution, we have

p(J) =
p(ω+)
|J′(ω+)| =

(
2Kω3

+

ω+σ
√

2π

)
exp

(
− (lnω+ − μ)2

2σ2

)

=

√
2
π

(
Kω2

+

σ

)
exp

(
− (lnω+ − μ)2

2σ2

)
.

We can further substitute for ω+, μ = − 1
2 ln

(
1 + ε2

)
, and σ2 = −2μ, but the

overall expressions remain complicated. So we stop here.
b. The result for the mean is derived for scaled units in Problem 9.3c. It is based

on the identity 〈
ω−2

〉
= e−2μ+(4σ2)/2 = e−6μ =

(
1 + ε2

)3
.

Thus,

〈J〉 = 1
4

(
K +

1
K

〈
ω−2

〉)
=

1
4

[
K +

1
K

(
1 + ε2

)3
]
,

which is minimized for K∗ =
(
1 + ε2

)3/2 ≈ 1.398 for ε = 0.5. The minimum
mean cost is 〈J〉∗ = 1

2 K∗.

To calculate the variance σ2
J , we first define

δJ = J − 〈J〉 = 1
4K

(
1
ω2

− (1 + ε2)3

)
,

so that

σ2
J = 〈( δJ)2〉 = 1

16K2

〈(
ω−2 − (1 + ε2)3

)2
〉

=
1

16K2

[〈
ω−4

〉
− 2

〈
ω−2

〉
(1 + ε2)3 + (1 + ε2)6

]
=

1
16K2

[
(1 + ε2)10 − (1 + ε2)6

]
,
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where we use the moment identity described above, 〈ω−4〉 = (1 + ε2)10. Thus,
the standard deviation is

σJ =
(1 + ε2)3

4K

√
(1 + ε2)4 − 1 .

Notice that σJ ∼ 1/K, which always decreases with K. For small uncertainty
in frequency, σJ ≈ ε/(2K).

To calculate the tail probability P(J > Jmax), we need the complement of the
cumulative distribution function. Since J is monotonic in ω, we transform
the cumulative distribution function Fω(ω) into FJ(J) as follows:

FJ(J) =
∫ ∞

J
dJ′ pJ(J′) =

∫ ∞

ω

pω(ω′) = Fω(ω) .

Thus, Fω(ω) = Fω[ω(J)]. Since ω ∼ N(μ, σ2), we have

Fω[ω(J)] =
1
2
+

1
2

erf
(

lnω − μ√
2σ

)
.

The tail probability is the complement:

P(J > Jmax) = 1 − Fω[ω(J)] = 1
2 erfc

(
lnω − μ√

2σ

)
.

We then substitute for ω+(J) = 1/
√

K(4J − K).
c. To find the minimum of the tail probability P(J > Jmax), we differentiate with

respect to K. The problem simplifies enormously when we realize that the
factors containing K all vary monotonically with K, except the “core” part of
ω′(K), which is ω ∼ [K(J − K/4)]−1/2.

dω
dK
= −1

2
(· · · )−3/2(J − K/2)|J=Jmax = 0 ,

which implies K∗∗ = 2Jmax.
d. Below, we plot the cost distribution p(J) for an undamped harmonic oscilla-

tor with uncertain frequency p(ω) satisfying 〈ω〉 = 1 and ε = 0.5. (a) p(J) for
three gains. K ≈ 1.4 minimizes 〈J〉. K = 2 minimizes P(J > 1). K = 3 has
lower variance but higher mean. (b) Same, on log scale, with K = 2 hidden for
clarity. (c) Mean and standard deviation, vs. gain. (d) Gain that minimizes
mean, as function of oscillator frequency uncertainty ε. (e) Tail probability
for Jmax = 1.
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J

σJ

(ε)

J

J

ε = 0.5

J

J

J

9.8 Unstable first-order system. Consider an unstable first-order system,

ẋ = ax + u , u = −Kx , x(0) = 1 , J =
∫ ∞

0
dt

(
x2 + u2

)
. (9.1)

The closed-loop system, ẋ+ (K − a)x = 0, is stable for feedback gain K > a. Now
assume an uncertain a with lognormal distribution, as in Problem 9.3: ln a ∼
N(μ, σ2), with μ = − 1

2 ln
(
1 + ε2

)
and σ =

√−2μ. Here, ε2 is the variance of a,
and 〈a〉 = 1.

a. Show that the optimal control is K0 =
√

2 + 1 and that J0(K0) = K0, for a = 1.
b. Use perturbation theory to find the optimal feedback gain to O(ε2), ignoring

the possibility of instability. Show that β = 1 and, thus, K∗(ε) = K0(1 + ε2).
c. For α = 0.01, show that perturbation theory is limited to ε < εmax ≈ 0.74.
d. Minimize 〈J〉good(K) for α = 0.01 and ε < εmax. Plot K(ε) and 〈J〉good versus ε

for both the numerical minimization and the perturbation theory.
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For the graphs at right, dashed quantities are from the perturbation theory. Intu-
itively, to stabilize systems up to a = amax, we need to set the gain K a “little bit”
higher than amax. At ε = εmax, for example, amax ≈ 3.7 for α = 0.01. The
perturbation-determined gain Kpert ≈ amax is too low and leads to the divergence
of average cost. The numerically determined value that optimizes 〈J〉good ≈ 3.0
is K∗ ≈ 4.0.

J

Solution.

a. For fixed, known a, we can choose K > a, and the problem is defined by

ẋ − ax = u , u = −Kx , x(0) = 1 , J =
∫ ∞

0
dt

(
x2 + u2

)
.

The solution to the equations of motion is x(t) = e(a−K)t, which leads to an
integrated cost of

J =
(
1 + K2

) ∫ ∞

0
dt e2(a−K)t︸�︷︷�︸

x2

=
1
2

(
1 + K2

K − a

)
.

Differentiating and setting ∂K J = 0 implies K0 = J0 = a +
√

1 + a2.
For a = 1, this gives K0 = J0 =

√
2 + 1 ≈ 2.4.

Note that this part of the problem repeats a calculation done for a slightly
more general cost function in Problem 7.2.

b. The scaled cost function is

j(k, a) =
(√

2 − 1
) 1 +

(
3 + 2

√
2
)

k2(√
2 + 1

)
k − a

,

which satisfies j(1, 1) = 1. Evaluating derivatives of the cost function leads to

β = −1
2

(
∂k,a,a j

∂k,k j

)
a=k=1

= 1 .

Thus, δk = (K∗ − K0)/K0 = ε
2 + O(ε4).

c. The perturbation theory tells to choose K∗(ε) = K0(1+βε2), with K0 =
√

2+1
and β = 1. However, stability requires K∗ > a. With an unbounded p(a),
some fraction of systems will be unstable and thus “fail.” If we start with
a prescription that we need to choose K so that only a defined fraction α

of failures will occur, we can have a conflict with perturbation theory. We
visualize this issue by plotting amax and K∗ as a function of ε and looking for
the crossing point. Note that amax is defined as the inverse survival function (or
inverse to the complementary cumulative distribution),

α =

∫ ∞

amax

da p(a, ε) ,

with p(a, ε) the lognormal distribution with 〈a〉 = 1 and variance ε2. The
graph below illustrates α = 0.01 for ε = 0.5.
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ε

α

d. The cost for feedback control of the “good” systems is given by

Jgood(K, ε) =
∫ amax

0
da p(a) J(a,K)

=

∫ amax

0
da

1√
2πσa

e−
(μ−ln a)2

2σ2

(
1 + K2

2

)
1

K − a
,

with μ = − 1
2 ln

(
1 + ε2

)
and σ =

√−2μ. The upper limit amax is chosen as a
function of ε as described in (c).

It is straightforward to minimize this function numerically (over K for fixed
ε). The starting point for an iterative solution can either be the perturbative
solution or the solution found numerically for the previous, neighboring value
of ε. Here, there is a single, global minimum, and the solution is easily found.

9.9 Internal Model Control (IMC) and feedforward. Consider the “two degrees of
freedom” variant of IMC shown below, with system model and two controller
transfer functions Qd and Qr. The latter is the feedforward filter defined in
Section 3.4.1.

Show that the transfer function of the error signal e = r − y is given by

e =

(
1 − GQr

1 + Qd(G −G0)

)
r −

(
1 −G0Qd

1 + Qd(G −G0)

)
d +

(
GQd

1 + Qd(G −G0)

)
n .

For a perfect model, G0 = G, this reduces to e = (1 −GQr) r − (1 −GQd) d +
GQd n, which shows very clearly the role of Qr in tracking the reference and Qd

in rejecting disturbances. Without feedforward (Qr = 1), we cannot, in general,
do both. We also see that rejecting disturbances generally adds noise to the error
signal.
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Solution.
From the block diagram,

v = (G −G0)u + d + n , u = Qrr − Qdv , y = Gu + d .

Then,

u = Qrr − Qd[(G −G0)u + d + n] = Qrr − Qdd − Qdn − Qd(G −G0)u .

Solving for u gives

u =
Qrr − Qdd − Qdn
1 + Qd(G −G0)

.

The error is

e = r − y = r −Gu − d = r − GQrr −GQdd −GQdn
1 + Qd(G −G0)

− d

=

(
1 − GQr

1 + Qd(G −G0)

)
r −

(
1 − GQd

1 + Qd(G −G0)

)
d +

(
GQd

1 + Qd(G −G0)

)
n

=

(
1 − GQr

1 + Qd(G −G0)

)
r −

(
1 −G0Qd

1 + Qd(G −G0)

)
d +

(
GQd

1 + Qd(G −G0)

)
n .

For a perfect model, G0 = G, we have then

e = (1 −GQr) r − (1 −GQd) d + Qd n .

Choosing Qr = Qd = G−1 would thus eliminate errors in the tracking due to
the reference r and disturbances d, although not to measurement noise n. But,
as we have seen repeatedly, it will not, in any case, be possible to perfectly invert
a system. We recall the main limitations: the inverse of G can be acausal or
unstable; the required inputs may be too big, K = 1/(1 − GQd) → ∞; and, of
course, we may not have a perfect model, G0 � G. In some limits, for example at
low frequencies, good approximations can be feasible.

9.10 Transfer function norms. Define the 2 and ∞-norms of a transfer function G(iω)
as ‖G‖2 ≡ [∫ ∞

−∞
dω
2π |G(iω)|2]1/2 and ‖G‖∞ ≡ supω |G(iω)|.

a. 2-norm. Using Parseval’s theorem (Problem A.4.3) and representing G(s)

in statespace via {A, B,C}, show that ‖G‖2 =
√

CPCT, where P =∫ ∞
0

dt eAt B BT eATt is the Gramian matrix introduced in Example 4.4. Recall
that you can compute P directly or solve the Lyapunov equation, AP+PAT =

−BBT (Problem 2.15).
b. For G(s) = 1

1+τs , show that ‖G‖2 = 1/
√

2τ and ‖G‖∞ = 1.
c. Show that the 2- and ∞-norms for G(s) = 1

1+2ζs+s2 give the curves at right.

Solution.

a. From Parseval’s theorem, the square of the 2-norm is given by

‖G‖2
2 =

∫ ∞

−∞
dt |G(t)|2 .
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But G(t) is the response function to an impulse δ (t) at time t = 0. From
Eq. (2.66) and using causality, it is given by

G(t) =

⎧⎪⎪⎨⎪⎪⎩C eAt B t > 0

0 t ≤ 0
.

Thus,

‖G‖2
2 =

∫ ∞

0
dt C eAt B BT eATt CT = CPCT .

b. For the first-order system G(s) = 1
1+τs , the state-space representation has A =

−1/τ, B = 1, and C = 1/τ. Then the Gramian is

P =
∫ ∞

0
dt e−t/τ(1)(1) e−t/τ =

∫ ∞

0
dt e−2t/τ =

τ

2
.

The 2-norm is then

‖G‖2 =

√(
1
τ

) (
τ

2

) (
1
τ

)
=

1√
2τ

.

Another way to calculate ‖G‖2 is to do a contour integral in the complex
s-plane (Doyle et al., 1992).

To calculate ‖G‖∞, we note that the magnitude is

|G(iω)| = 1√
1 + τ2ω2

,

which clearly has a maximum value =1 (for ω = 0).
c. For the second-order system G(s) = 1

1+2ζs+s2 and referring to Eq. (2.17), the
state-space representation has

A =
(

0 1
−1 −2ζ

)
, B =

(
0
1

)
, C =

(
1 0

)
.

We can find the Gramian P = PT by solving the Lyapunov equation:

AP + PAT + BBT =

(
0 1
−1 −2ζ

) (
p11 p12

p12 p22

)
+

(
p11 p12

p12 p22

) (
0 −1
1 −2ζ

)
+

(
0 0
0 1

)

=

(
2p12 −p11 + p22 − 2p12ζ

−p11 + p22 − 2p12ζ −2p12 − 4p22ζ + 1

)
=

(
0 0
0 0

)
,

which leads to p11 = p22 =
1
4ζ and p12 = 0. Thus,

‖G‖2 =

√
1
4ζ

(
1 0

) (
1 0
0 1

) (
1
0

)
=

1

2
√
ζ
.
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For the∞-norm, we take d
dω . It is simpler algebraically to differentiate the the

magnitude squared of |G|2, which is given by

|G(iω)|2 =
∣∣∣∣∣ 1
1 + 2ζ iω − ω2

∣∣∣∣∣2 = 1
(1 − ω2)2 + 4ζ2ω2

,

This condition implies

d
dω

|G(iω)|2 = 0 =⇒ (ω∗)2 = {0, 1 − 2ζ2} ,

which implies, being careful to select the physical root ω∗ that gives a
maximum,

‖G‖∞ = |G(iω∗)| =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

2ζ
√

1−ζ2
ζ < 1√

2

1 ζ ≥ 1√
2

.

Note that for ζ ≥ 1/
√

2, we evaluate |G| at the ω = 0 root. The two norms are
plotted against ζ in the main text.

9.11 Tracking a ramp. For the system discussed in Example 9.1, use Internal Model
Control to design a controller to track a ramp. Put all closed-loop poles at s =
−1/τ, and choose τ = 1/3 for plots. Make a time-domain plot to show that the
output does track a ramp. Make a Bode plot for K(s). At right we add a dashed
line showing the controller from Example 9.1, which tracks a step input but not
a ramp.

Solution.

The solution follows Example 9.1 closely and is a more sophisticated version
of Example 3.7. The system is

G =
1

(1 + s)2
.

We want the sensitivity function S to have the inverse model, i.e., s2 for tracking
a ramp, whose Laplace-domain signal is r(s) ∼ 1/s2. We also want it to replace
the two poles at −1 with poles at −1/τ. We can do this with an IMC function
Q(s)

Q =
(1 + s)2(a + bs)

(1 + sτ)3
,

where a and b are coefficients that need to be determined. The complementary
sensitivity function T (s) is then

T (s) = Q(s) G(s) =
a + bs

(1 + sτ)3
,
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which implies

S (s) = 1 − T =
τ3s3 + 3τ2s2 + (3τ − b)s + (a − 1)

(1 + sτ)3
→ (sτ)2(3 + sτ)

(1 + sτ)3
,

where we have taken b = 3τ and a = 1. Finally, the controller K(s) is given by

K(s) =
Q
S
=

(1 + s)2 (1 + 3sτ)
(sτ)2(3 + sτ)

.

which is plotted in the main text, along with the controller from Example 9.1.
Note that for low frequencies, K(s) ∼ s−2, showing it will track a ramp. (Com-
pare K ∼ s−1 in Example 9.1, which tracked a step but not a ramp.) The
controller is biproper and thus realizable: K(s) → 3/τ2 as s → ∞. The response
is shown below.

9.12 Norms and transfer functions. Why is a transfer function with finite ∞-norm
proper but one with finite 2-norm strictly proper?

Solution.
Let us start with the 2-norm,

‖G‖2 ≡
[∫ ∞

−∞
dω
2π
|G(iω)|2

]1/2

.

If a transfer function G(s) does not vanish at infinity, then clearly the integral
diverges. Being strictly proper is thus necessary for having finite 2-norm.

Now consider the ∞-norm,

‖G‖∞ ≡ sup
ω
|G(iω)| .

If G(s → i∞) is constant, then either it will determine the ∞-norm or a finite-
frequency maximum will. In either case, if it has a finite norm, it will not diverge
at ω = ∞ and hence is proper.

9.13 First-order system with uncertain delay. Consider a nominal G0(s) = 1
1+s e−stmax/2

and multiplicative uncertainty G(s) = G0[1 + Δ(s)W(s)], with W =
2.1s tmax
1+s tmax

and
|Δ| ≤ 1. The controller K(s) = K, for t ∈ [0, tmax], with tmax = 0.1 and τ = 1.

a. From the robust stability limit ‖WT‖∞ = 1, find (numerically) the maximum
allowable gain for which stability is guaranteed. Hint: Find the frequency ω∗

and gain Kmax such that |WT | = 1 and d
dω |WT | = 0. Here, T = L

1+L and L = KG.
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b. Plot K(ω) to confirm the values of Kmax and ω∗ (right). Next, make a Bode
magnitude plot of T (iω) and W−1(iω). Finally, plot in the complex plane the
circles of possible loop transfer functions L(iω) for a few different frequencies
and a gain Kmax ≈ 6.4. Highlight the circular domain corresponding to Kmax

and ω∗.
c. Calculate Kmax for known delays 1

2 tmax and tmax.

Solution.

a. The condition ‖WT‖∞ = 1 means that we seek the highest controller gain Kmax

such that the magnitude |W(iω) T (iω)| ≡ f (K, ω) has a maximum at some ω∗

that is just equal to one. With

G0(s) =
e−stmax/2

1 + sτ
, K(s) = K ,

the complementary sensitivity function is

T (s) =
KG

1 + KG
=

K

K + estmax/2(1 + sτ)
.

Using Mathematica to write out the explicit expression for the magnitude
|WT | ≡ f (K, ω), we have

f (K, ω) ≡ 2.1K ω tmax√(
ω2t2

max + 1
) 1√(

K2 − 2Kτω sin
(
ωtmax

2

)
+ 2K cos

(
ωtmax

2

)
+ τ2ω2 + 1

) .
We then seek the lowest Kmax > 0 such that

f (Kmax, ω
∗) = 1 ,

∂ f
∂ω

(Kmax, ω
∗) = 0 .

Numerically solving in Mathematica then gives ω∗ ≈ 10.678 and Kmax ≈
6.446.

b. The inverse bound is

W−1(s) =
1 + stmax

2.1stmax
.

The closed-loop transfer function (complementary sensitivity function) is

T (s) =
KG

1 + KG
=

K e−stmax/2

K e−stmax/2 +(1 + sτ)
.

Below are Bode magnitude plots for tmax = 0.1, τ = 1, and K = {5, 6.45, 8}. At
Kmax ≈ 6.45, the plot for T (s) first hits W−1(s).
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ω

Below, we plot in the complex L plane, elements of the response function
with the multiplicative uncertainty “circles.” Shown in light gray are the fre-
quencies ω = 0.02, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 5, 20, 30, 40, 60. The black circle
represents ω∗ ≈ 10.678. All plots are at the critical gain Kmax ≈ 6.446. The
black circle intersects the point (−1, 0) that marks the onset of instability.

c. If we assume that we know the delay exactly, we simply solve L(iω) = −1 by
separating into two equations, one for the magnitude, |L| = 1, the other for
the phase tan φ = tan π = 0 = (Im L/Re L). The magnitude condition gives

|L| =
∣∣∣∣∣∣K e− iωtmax/2

1 + iωτ

∣∣∣∣∣∣ = K√
1 + ω2τ2

= 1 =⇒ Kmax =
√

1 + (ω∗)2τ2 .

The condition that the phase φ = π implies

0 = Im L(iω) ∝ Im [(cos 1
2ωtmax − isin 1

2ωtmax) (1 − iωτ)]

= −ωτ cos 1
2ωtmax − sin 1

2ωtmax ,

which implies

tan
(

1
2ω

∗tmax

)
+ ω∗τ = 0 .
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Solving these two simultaneous equations for τ = 1 and tmax = 0.1 gives
ω∗ ≈ 32.04 and Kmax ≈ 32.06. For τ = 1 and tmax = 0.2, they give ω∗ ≈ 16.32
and Kmax ≈ 16.35.

9.14 Robust stability for additive noise. Show that for a set of systems with additive
noise limits, G(s) = G0(s) + Δ(s) W(s), that the condition for robust stability in
a control loop with controller K(s) is ‖WKS ‖∞ ≤ 1, where S = (1 + L0)−1 is the
sensitivity function of the nominal loop dynamics, L0 = K(s) G0(s).

Solution. The easiest solution is graphical and is illustrated below.

ω

ω

Comparing with the multiplicative case, we see that the radius of the cir-
cular uncertainty domain is now |WK| rather than |W |. Algebraically, for all
frequencies ω,

|1 +L| = |1 + K(s) [G0(s) + Δ(s) W(s)]|
= |1 + L0(s) + [Δ(s) W(s) K(s)]| � 0 .

Then, choosing the worst possible case, with |Δ| = 1 and an appropriate phase,

|1 + L0(s)| − |[W(s) K(s)]| ≥ 0 ,

which implies that, for all frequencies s = iω,

|W(s) K(s)|
|1 + L0(s)| =

∣∣∣∣∣W(s) K(s)
1 + L0(s)

∣∣∣∣∣ = |W(s) K(s) S (s)| ≤ 1 ,

with S = 1
1+L0

. This condition is equivalent to ‖WKS ‖∞ ≤ 1.
9.15 Bounding functions. The bounding functions W1(s) and W2(s) of Section 9.4.4

are typically lag and lead compensators, respectively. Find forms that give good
approximations to arbitrary low- and high-frequency limits.

Solution.
For the lag compensator W1(s), we want |W1| ≈ a � 1 for ω � ω0 and |W1| ≈

b � 1 for ω � ω0. We also want |W1| ≈ 1, for ω = ω0. The most general lag
compensator is

W1(s) =
α + s/ω0

β + s/ω1
.
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Imposing these limits, defining terms appropriately, and playing around leads to

W1(s) = a

⎛⎜⎜⎜⎜⎝1 + s
ω0

b

1 + s
ω0

a

⎞⎟⎟⎟⎟⎠ = W2(s) .

We can verify that W1(0) = a, W1(i∞) = b, and

|W1(iω0)| = a
∣∣∣∣∣1 + ib
1 + ia

∣∣∣∣∣ = a

√
1 + b2

1 + a2
=

√
1 + b2

1 + a−2
≈ 1 ,

using a � 1 and b � 1.

For W2(s), we can use the same formula but with a � 1 and b � 1.
9.16 Loop-shaping criteria. Robust performance requires Γ ≡ ‖ |W1S | + |W2T | ‖∞ < 1.

Typically, W1 is large at low frequencies and small at high frequencies and W2 the
reverse. Here, S = 1

1+L and T = L
1+L . (Notice that S + T = 1.)

a. Show that Γ < 1 implies that Min(|W1|, |W2|) < 1 at all frequencies.
b. Show that |L| > |W1| at low frequencies and |L| < |W2|−1 at high frequencies.

Solution.

a. Let us assume, at some frequency ω, that |W1| < |W2|. Then

|W1| = |W1(S + T )| ≤ |W1S | + |W1T | ≤ |W1S | + |W2T | < 1 .

Alternatively, if |W2| < |W1|, we have

|W2| = |W2(S + T )| ≤ |W2S | + |W2T | ≤ |W1S | + |W2T | < 1 .

Thus, Min(|W1|, |W2|) < 1 at all frequencies. One or the other weight must
have magnitude < 1 at each and every frequency. Notice that we prove only
necessity, and the converse is not true: Setting one of the weights W1 or W2 to
have magnitude < 1 at some frequency does not imply that |W1S | + |W2T | < 1.

b. The robust-performance criterion Γ < 1 is equivalent to

| |W1S | + |W2T | | < 1 ,∀ω .
In the low-frequency limit (ω � 1), we have |W1| � 1 and |W2| � 1. The

robust performance criterion reduces to

|W1S | =
∣∣∣∣∣ W1

1 + L

∣∣∣∣∣ ≈
∣∣∣∣∣W1

L

∣∣∣∣∣ < 1 =⇒ |L| > |W1| .

In the high-frequency limit (ω � 1), we have |W2| � 1 and |W1| � 1. The
robust performance criterion reduces to

|W2T | =
∣∣∣∣∣ W2L
1 + L

∣∣∣∣∣ ≈ |W2L| < 1 =⇒ |L| < |W2|−1 .

A more-refined version of these limits imposes the looser requirements that
at low frequencies, |W1| � 1 but only that |W2| < 1 (not � 1) and similarly for
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high frequencies. The reasoning is that the uncertainty bounds are unlikely to be
negligibly small at any frequency. The corresponding limits are

|L| > |W1|
1 − |W2| , and |L| < 1 − |W1|

|W2| ,

which push up further the required gain at low frequencies and push it further
down at high frequencies. The added demands on the loop shape come from
accommodating the “other” shaping function in each limit. See Doyle et al.
(1992), Chapter 7. Remember, too, that in order to preserve stability the slope
of |L| on the Bode plot must be shallower than −2 near the crossover frequency
where |L| = 1

9.17 Feedforward with model uncertainty (Devasia, 2002). What happens when an
actual transfer function deviates from its model G0(s)? Let G(s) = G0(s)+ΔG(s).

a. Assuming an invertible model and a feedforward block F = G−1
0 , show that

the tracking error e(s) = r(s) − y(s) to a command signal r(s) is e(s) =
−ΔG/G0

1+KG r(s).
b. Argue that feedforward helps only for frequencies where ΔG/G0 < 1.
c. Let G0 =

1
1+s with uncertainty ΔG = ε, a constant. What does such an uncer-

tainty represent physically? Design a feedforward filter F(s) = G−1
0 (s) Glp(s),

where Glp(s) is a low-pass cutoff whose frequency respects the criterion
derived in (b).

Solution.
For convenience, the Figure 3.5 block diagram is reproduced here:

From the block diagram,

y = G(u + d) uff = Fr

u = uff + ufb ufb = Ke

= Fr + K(FG0r − y) e = FG0r − y .

Then

y = G[Fr + K(FG0r − y) + d]

= FGr + FGKG0r − KGy +Gd

= FG

(
1 + KG0

1 + KG

)
r +

( G
1 + KG

)
d .
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a. For command tracking errors ecommand = r − y, we can set d = 0 and find

ecommand =

(
(1 − FG) + KG(1 − FG0)

1 + KG

)
r

= −
⎛⎜⎜⎜⎜⎝ΔG G−1

0

1 + KG

⎞⎟⎟⎟⎟⎠ r ,

where the second line uses F = G−1
0 and G = G0 + ΔG.

b. A pure feedback solution would lead to tracking error

ecommand =

(
1

1 + KG

)
r ,

The ratio of the performance with and without feedforward is then, simply,
−ΔG/G0. At frequencies where the magnitude of this quantity is less than one,
feedforward is advantageous. When the criterion is violated, it is not.

c. Adding a constant uncertainty is a way to model high-frequency modeling
errors. The idea is that they persist at all frequencies and dominate at high
frequencies, where the model has small magnitude response. The criterion
from (b) is

|(1 + s)ε| < 1 .

For small ε, this implies that feedforward to be limited to a bandwidth

ω < ωff = ε
−1 .

A simple feedforward filter that inverts the system to as high a frequency as
is reasonable uses Glp(s) = 1

1+s/ωff
, which implies

F(s) =
1 + s

1 + s/ωff
=

1 + s
1 + εs

,

which is a lead compensator that is active up to the frequency ωff, whose
magnitude response is illustrated below for ε = 0.1. The general lesson is that
the architecture of Figure 3.5 is useful and allows us to respect the limitations
of model uncertainty at (typically) high frequencies in a simple way.

ω

9.18 Input shaping by minimax. Go through Example 9.5.

a. Argue that symmetry dictates that the command response function is sym-
metric under time reversal, implying that J2 reduces to J2 = |1 − 2A0 +

2A0 cosωt1|.
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b. Conclude that the minimax solution has A0 = [2(1 + (cos π
2 ε)2)]−1 and t1 = π.

c. Generate the minimax plot of Example 9.5.

Solution.

a. Because the equations of motion are invariant under time reversal, an optimal
step going forward in time must be optimal for the time-reversed dynamics.
Thus, for the optimal u(t), it is possible to define an origin t = 0 such that the
response function of the input-shaping filter obeys F(t) = F(−t). Here, it is
easier not to work with this origin explicitly, but for

u(t) = A0θ(t) + A1θ(t − t1) + A2θ(t − t2) ,
n∑

i=0

Ai = 1 ,

we ask that A0 = A2. The normalization condition then implies A1 = 1 − 2A0.
Similarly, the time interval between step 0 and 1 and then 1 and 2 must be
equal: With t0 = 0, we have t2 = 2t1. Substituting these constraints into

J2 =

√
(A0 + A1 cos πω + A2 cos 2πω)2 + (A1 sin πω + A2 sin 2πω)2 .

then leads to

J2 = |1 − 2A0 + 2A0 cosωt1| .
The absolute value comes after taking the square root. Since amplitudes are
by definition positive, we “reflect” all negative solutions about zero.

b. The minimax solution satisfies

J2(ω = 1 − ε) = J2(ω = 1) = J2(ω = 1 + ε) .

The condition J2(ω = 1 − ε) = J2(ω = 1 + ε) implies that

cos[(1 − ε)t1] = cos[(1 + ε)t1] .

Using the relation cos(x − y) = cos x cos y + sin x sin y then implies

sin t1 sin εt1 = − sin t1 sin εt1 ,

which implies sin t1 = 0, since ε is arbitrary. Thus, t1 = π is the shortest
solution. We then need to determine the A0 that minimizes the maximum
value of

J2 = |1 − 2A0 + 2A0 cosωπ| =
∣∣∣∣1 − 4A0

(
sin π

2 ω
)2

∣∣∣∣
over the interval 1 − ε < ω < 1 + ε. The condition J2(ω = 1 − ε) = J2(ω = 1)
then implies

1 − 4A0 = 4A0

(
sin π

2 (1 + ε)
)2 − 1 = 4A0

(
cos π

2 ε
)2 − 1 ,
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or

A0 =
1

2
(
1 +

(
cos π

2 ε
)2

) .
c. The plot is of

J2(ω) = |1 − 2A0 + 2A0 cosωπ| ,
with the above value of A0.
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Problems

10.1 MRAC stability for a feedforward gain. Analyze the stability of a constant
solution for the feedforward adaptive control of an underdamped oscillator pre-
sented in Eq. (10.8). That is, let uc = u0 + δuc(t), θ(t) = (km/k) + δθ(t), and so
on.

a. Define μ ≡ γkkm(u0)2. Show that the gain perturbations δθ obey, to lowest
order, dttt(δθ) + dtt(δθ) + dt(δθ) + μ (δθ) = −γkmu0(δy).

b. The Laplace transform of the δθ dynamics is s3 + s2 + s + μ = 0. Deduce
that stability of the MRAC system requires 0 < μ < 1. Hint: Look up the
Routh–Hurwitz theorems, graph the roots, or just prove directly.

In the text, we use a square-wave input, not a constant. However, since
the period of the square wave is long compared to the oscillation time scales,
the square wave acts as a sequence of steady-state conditions, with “jump
perturbations” at the start.

Solution.

a. Recalling that L = (
dtt + dt + 1

)
and L ym = km uc and L y = k u = kθuc, we

write

Lθ̇ = −γL[ym(y − ym)]

= −γ [
(Lym)y + ym(Ly) − 2ym(Lym)

]
= −γ [

(kmuc)y + ym(kθuc) − 2ym(kmuc)
]

= −γ [
(kmuc)y + ym[k(km/k) + δθ]uc − 2ym(kmuc)

]
= −γuc

[
km(y − ym) + kym(δθ)

]
.

We note that Lθ̇ = L(δθ̇) and that, to lowest order, ym(δθ) = kmuc(δθ). Thus,

Lδθ̇ + μ δθ = −γuckmδy(t) ,

with μ = γkkm(u0)2. Here, we use [square2(t)] = 1, implying uc(t)2 = u2
0.

b. Taking the Laplace transform of the above relation shows that stability is gov-
erned by the roots in the complex plane of s3+ s2+ s+μ = 0, the characteristic
equation. There are several ways to see that 0 < μ < 1 implies that all roots
are in the LHS of the s-plane:

231
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• Routh-Hurwitz criterion. This is a straightforward application of a rather
complicated algebra algorithm for counting the numbers of roots in the
LHS and RHS of the complex plane (and on the imaginary axis). The
general algorithm is complicated (Dutton et al., 1997), but for a cubic
polynomial, it is simple. If

σ(s) = s3 + a1s2 + a2s + a3 ,

then the roots of σ(s) = 0 are in the left-hand side of the complex plane if

ai > 0 and a1a2 > a3 .

Applying the two criteria to the present case implies stability for 0 < μ < 1.
• Graphical approach. Plot the roots in the complex plane as a function of μ,

and verify directly the claim.
• Direct proof. Even without recourse to general algebra theorems, it is possi-

ble to argue that 0 < μ < 1 is necessary. Because the stability is governed by
a cubic equation with real coefficients, there must either be three real roots
or one real and one complex-conjugate pair.
For three real roots,

σ(s) =(s + λ1) (s + λ2) (s + λ3)

= s3 + (λ1 + λ2 + λ3)s2 + (λ1λ2 + λ2λ3 + λ3λ1)s + λ1λ2λ3 ,

stability implies negative roots (s = −λi < 0), which implies λi > 0 and
thus ai > 0. In particular, a3 = μ = λ1λ2λ3 needs μ > 0. Then, given that
λ1 + λ2 + λ3 = 1 and λi > 0, we conclude that 0 < λi < 1 and thus that the
product λ1λ2λ3 = μ < 1. The two conditions together give 0 < μ < 1.

Assuming one real and one complex-conjugate pair, we consider the limit-
ing cases. Either the real root = 0 or the complex-conjugate pair is ± iω. In
the former case, we have

s(s + λ + iω)(s + λ − iω) = s[(s + λ)2 + ω2] .

Equating this to s3 + s2 + s+μ, we see that μ = 0, λ = 1
2 , and ω =

√
3

2 , which
is a possible solution. In the other case λ = 0 and μ = 1, and it is easy to
see ω = 1 and the other root is at −1.

These two cases define the limiting values of μ. Since there are no
bifurcations—these would imply three real roots, with two degenerate
and cannot occur given that the coefficients of s2 and s are unity—the
intermediate cases connect them by continuity.

10.2 Normalized MRAC. Normalizing the model reference adaptive control algo-
rithm can stabilize it for all operating amplitudes.

a. Simulate the MRAC system of Figure 10.2. Show stability for γ = 0.1 and
u0 = 1.
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b. Confirm numerically that u0 >
√

10 leads to instability for γ = 0.1.
c. The normalized MRAC algorithm replaces e′(θ) → e′(θ)/

(
α + |e′(θ)|2), where

α is a small constant. Find the normalized equation for θ̇ analogous to
Eq. (10.5).

d. Explain how the algorithm works, using the result in Problem 10.1.
e. Reproduce the plot at right for γ = 0.1, k = km = am = 1, a = 2, α = 0.001,

and u0 = 10. Without normalization, the response would be unstable.

Solution.

a. See Figure 10.2.
b. Confirm with your code. Note that the

√
10 comes from the linear stability

analysis in Problem 10.1, where we show that stability is governed by μ ≡
γkkm(u0)2. Here, k = km = 1, so that the stability parameter μ is

μ = γ(u0)2 ,

so that γ = 0.1 implies (u0)max =
√

10 to have μ < 1.
c. We have

e′(θ) = ym =⇒ θ̇ = − γeym

α + y2
m
.

Since ym = kmuc, we can also write

μ =
γ(k/km)u2

0

α + u2
0

,

where we redefine α slightly.
d. To simplify, let k = km = 1, as in the numerical examples. Then

μ =
γu2

0

α + u2
0

,

which shows that μ → γ for large u0. Thus, the normalization implies that
stability is independent of u0 for u2

0 � α. The constant α is needed to prevent
the θ̇ equation from blowing up when ym = 0.

e. Reproduce the plots in the book.

10.3 MRAC to stabilize a first-order system. Consider the system ẏ = ay + u, with
a > 0 unknown. Let the desired stable dynamics be ẏm = amym + uc, with am < 0
and uc(t) an arbitrary input function. Define the control u = uc − θy.

a. Show that the error e = y − ym obeys ė = ame − (θ − θ∗)y, with θ∗ ≡ a − am.
b. Show that V(t) = 1

2 [e2 + 1
γ
(θ − θ∗)2] is a Lyapunov function if θ̇ = γye.

c. For uc(t) = u0 � 0, show that the stationary solution θ(t) = θ∗. Why is this
solution not valid for u0 = 0?
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d. Simulate the adaptive dynamics and show that the steady-state solution of
Part (b) is reached in the long-time limit. The solution for parameters γ =
a = 1 and am = −1, initial conditions y(0) = 2, ym(0) = θ(0) = 0, and input
uc(t) = 1 should resemble the plots at left. Note that θ∗ = 0. What happens as
u0 → 0?

e. Solve analytically for u0 = 0 for uc = ym(0) = 0 and θ(0) = −a. Then show
that ym(t) = 0 and θ(t) =

√
γ y0 tanh

(√
γ y0t

)
− a and y(t) =

√
γ y0 sech(

√
γ y0t).

Notice that θ(∞) =
√
γ y0 − a, but y(∞) = ym(∞) = 0: an input signal u(t) that

vanishes as t → ∞ will not force θ → θ∗, even though y → ym.

Solution.

a. The error dynamics e = y − ym obey

ė = ay +		uc − θy − amym −		uc

= (a − θ)y − amym

= ( a − θ∗︸︷︷︸
am

−θ + θ∗)y − amym

= ame − (θ − θ∗)y .
b. The candidate Lyapunov function V(t) = 1

2 [e2 + 1
γ
(θ − θ∗)2] is clearly ≥ 0 and

= 0 when the error vanishes (e = 0) and the parameters have converged to the
correct value, θ = θ∗. Then, we just need to show V̇ ≤ 0.

V̇ = e ė +
1
γ

(θ − θ∗)θ̇

= e
[
ame − (θ − θ∗)y] + 1

γ
(θ − θ∗)θ̇

= am e2 +
1
γ

(θ − θ∗)(θ̇ − γye)

= am e2 if θ̇ = γye

≤ 0 ,

since am < 0. Thus, choosing θ̇ = γye ensures that V(t) is a Lyapunov
function.

c. For uc = u0 � 0, the equations are

ẏ = ay + u0 − θy , ẏm = amym + u0 , θ̇ = γy(y − ym) .

The stationary solution is obtained by setting the time derivatives = 0. Then

y = ym = − u0

am
, or e = 0 .

Substituting these into the y equation gives

θ = a +
u0

y
= a − am = θ

∗ ,
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meaning that the steady-state solution is consistent with the correct param-
eter values. The simulations in Part (d) will show that the solution actually
reaches this steady-state solution. When u0 = 0, we are dividing 0/0 and must
be careful. Indeed, the analysis in Part (e) confirms that θ goes to a different
value when u0 = 0.

d. The equations to be solved are

ẏ = y + 1 − θy , ẏm = −ym + 1 , θ̇ = y(y − ym) ,

with initial conditions ym(0) = θ(0) = 0 and y(0) = 2. You can simplify the
numerics further by using the analytical solution ym(t) = 1 − e−t.

It is interesting to examine the solution for u0 → 0, to confirm numerically
the conclusions of Parts (c) and (e) that when u0 � 0, θ → θ∗, but when u0 = 0,
θ → −a +

√
γ y0. As u0 → 0, θ takes a diverging time to reach θ∗.

e. When uc(t) = u0 = 0, ẏm = −amym + 0, with ym(0) = 0, which implies ym(t) = 0,
too. The equations then simplify to

ẏ = ay − θy = −(θ − a)y ≡ −θ1y with θ1(t) = θ(t) − a

θ̇ = θ̇1 = γye = γy2 .

Differentiating the equation for θ1 gives

θ̈1 = 2γy ẏ = −2γθ1y2 = −2θ1θ̇1 = − d
dt
θ2

1 .

Integrating, we find

θ̇1(t) + θ2
1(t) = const

= θ̇1(0) + θ2
1(0)

= γy2
0 + 0

= γy2
0 .

Scaling by defining τ =
√
γy0 t and θ1 =

√
γy0 θ reduces the equation to

θ
′
(τ) + θ

2
(τ) = 1 , θ(0) = 0 , =⇒ θ(τ) = tanh τ .

In dimensional variables, θ1(t) =
√
γy0 tanh

√
γy0t, or

θ(t) = −a +
√
γy0 tanh

√
γy0t .

We then substitute θ1(t) into ẏ = −θ1y and integrate again, to get

y(t) =
√
γ y0 sech(

√
γ y0t)

As discussed, for t → ∞, y(t) → 0, but θ(t) → −a +
√
γ y0, which depends on

the learning rate γ, the initial state y0, and a. For θ(0) � −a, the limit depends
on that initial condition, too. The important point is that θ(t) �→ θ∗.

10.4 Lyapunov function for 2nd-order MRAC. In Example 10.3 the Lyapunov con-
struction works if we observe the full state vector ex, or, equivalently, y
and ẏ.
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a. Find a Lyapunov function by showing that Q =
( 1 0

0 1
)
=⇒ P =

( 3
2

1
2

1
2 1

)
.

b. Show that the adaptation law for θ(t) becomes θ̇ = −γ(e + 2ė) uc.
c. Why might it be better to integrate the law for θ̇ in a practical implementation?
d. Verify by simulation that the resulting adaptive system is stable for step

commands of any amplitude.

Solution.

a. Here are three ways to find the matrix P given a positive-definite matrix Q.
i. You can show that the Lyapunov equation is satisfied by substituting the

matrices P, Q, and A and confirming that

AT P − PA = −Q .

ii. Control software usually has a Lyapunov equation solver built in.
iii. Write P as a 3-component vector and solve the resulting matrix equation.
Once you have found P, you can find the Lyapunov function (with k = 1):

V =
1
2

[(
eT

x Pex

)
+

1
γ

(θ − θ∗)2

]

=
1
2

[(
e ė

) ( 3
2

1
2

1
2 1

) (
e
ė

)
+

1
γ

(θ − θ∗)2

]

=
1
2

(
3
2

e2 + e ė + ė2

)
+

1
2γ

(θ − θ∗)2 .

b. From the text, the control is of the form

θ̇ = −γBT Pex uc

with

ex =

(
e
ė

)
,

with e = y − ym. This gives

θ̇ = −γ
(
0 1

) ( 3
2

1
2

1
2 1

) (
e
ė

)
uc = −γ(e/2 + ė)uc

= −γ(e + 2ė)uc ,

where we rescale γ in the last step.
c. The problem with the adaptation law

θ̇ = −γ(e + 2ė) uc

is that we need to evaluate ė = ẏ − ẏm. There is no problem calculating the
latter, since ym(t) is determined by uc(t), which we choose. Thus, we can calcu-
late ym(t) either analytically or numerically as accurately as required. But the
observation y(t) is another story, as taking a numerical derivative will amplify
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any measurement noise. In this case, integrating the law for θ̇ can improve the
situation. Doing so gives

θ(t) = −γ
[∫ t

0
dt′ e(t′) + 2e(t) uc(t) − 2

∫ t

0
dt′ e(t′) u̇c(t′)

]
,

where we have integrated by parts and assumed uc(0) = 0 for convenience.
Although this law requires the time derivative of uc(t), we know uc exactly,
since we choose it. Thus, we can also compute its derivative u̇c exactly.
Notice that even though our simple construction from Eq. (10.14) failed, we
nonetheless have found an integral-control-like feedback law that requires
only the observation y(t), in addition to uc(t), u̇c(t), and ym(t), which are all
known exactly. This success hints that a more sophisticated approach can
systematically lead to stable, observation-based algorithms for higher-order
systems. Åström and Wittenmark (2008) and Slotine and Li (1991) show how
to proceed.

d. Simulating the dynamics confirms the claim. It is interesting to see that drop-
ping the ė term in the law for θ̇ can lead to instability when the amplitude of
uc(t) is too large.

10.5 MRAC with unmodeled dynamics. Consider a Lyapunov control for a model
system ym = kmG0(s)uc, with G0(s) = 1

1+s where the actual dynamics are given
by G1(s) =

(
1

1+s

) (
1

1+s/α

)
, and the feedforward gain θ(t) is adjusted according to

θ̇ = −γ uc e, with e = y − ym and command input uc(t) = u0 cosωt. Now analyze
the stability of the θ dynamics by assuming a separation of time scales, γ � ω,
so that θ(t) evolves very slowly compared to the oscillation period of the forcing,
τ = 2π/ω.

a. By averaging over the time τ, show that θ̇ ≈ −γθk
(
uc G1 uc

)
+ γkm

(
uc G0 uc

)
,

where the overline, x ≡ 1
τ

∫ τ

0
dt x(t), denotes averaging over one period.

b. Show that θ(t) is unstable when u2
0 Re G(iω) < 0.

c. Show that this happens for the example here when the input frequency ω >√
α.

This method of averaging is widely used to analyze nonlinear oscillating systems.

Solution.
The feedforward gain θ(t) obeys

θ̇ = −γ uc (y − ym) .

Given a sinusoidal input,

uc =
1
2

(
u0 eiωt +u∗0 e− iωt

)
.

a. The response ym(t) is strictly sinusoidal at frequency ω, since it is a linear
equation. The response y(t) is not strictly at ω, since θ(t) changes in time.
However, in the spirit of averaging, we take ω constant over the time scale of
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averaging, and then y(t) is also sinusoidal. Averaging the equation of motion
for θ(t) then leads to

θ̇ = −γθk
(
uc G1 uc

)
+ γkm

(
uc G0 uc

)
,

where overline denotes average over τ. Also, ym = kmG0 uc and y = kG1 θuc.
b. Only DC terms formed by eiωt × e− iωt survive the averaging. This gives, for

the first term,

uc G1 uc =
1
2

u2
0 Re G1(iω) .

The θ equation then becomes

θ̇ = −γθk 1
2 u2

0 Re G1(iω) + γkm
1
2 u2

0 Re G0(iω) ,

The first term on the RHS leads to an instability if it is negative. Thus, the
criterion for instability is

u2
0 Re G(iω) < 0 .

c. Since u2
0 > 0, instability occurs when Re G(iω) < 0. For

u2
0 Re G(iω) < 0 .

In this case, G1(s) =
(

1
1+s

) (
1

1+s/α

)
, and thus

Re G1(iω) ∝ Re (1 − iω)(1 − iω/α) = (1 − ω2/α) ,

which leads to the condition that stable adaptation requires that ω <
√
α.

10.6 Extremum-seeking control. Assuming that J(θ) − J0 +
1
2 J′′(θ0)(θ − θ0)2 exactly,

analyze Eqs. (10.18), with k = 50, a = 0.2, ω0 = 2π × 10, ωh = 2π.

a. By averaging over the modulation period 2π/ω0, show that ˙̂θ ≈ −γJ′(θ̂), Hint:
Expand J[θ(t)] to first order in a, filter DC terms, modulate, filter AC terms.

b. Solve Eqs. (10.18) numerically and confirm the plots of J(t) and θ̂(t) in
Section 10.1.2. Investigate the effects of periodically modulating the coeffi-
cient J′′.

Solution.

a. For convenience, the block diagram is reproduced below. Recall the equa-
tions,

J(θ) = J(θ̂ + a cosω0t) modulate

η̇ = −ωhη + J̇ high pass
˙̂θ = −k (a cosω0t) η demodulate .
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×∫ dt

J(θ)

+
θ ̂θ

η

We proceed through the equations. Expanding about θ̂ to first order in a, we
have

J(θ) ≈ J(θ̂) + J′(θ̂)a cosω0t .

The high-pass filter, with transfer function s
s+ωh

removes the (nearly) DC
terms, leaving

η(t) ≈ J′(θ̂)a cosω0t .

The demodulation step is accomplished here by multiplying by a cosω0t and
then integrating. (Some implementations of extremum seeking use a low-pass
filter, as is common in lock-in amplifiers.) This gives,

˙̃θ(t) = −k(a cosω0t)η

= −ka2J′(θ̂) cos2 ω0t

≈ − 1
2 ka2J′(θ̂)

≡ −γJ′(θ̂) .

In the third line, we use cos2 ω0t = 1
2

(
1 + cos 2ω0t) ≈ 1

2 , using the averaging.
The implicit picture (supported below by numerics) is of a slow relaxation
with a small rapid ripple. Mathematically, we need γ � ω0. Notice how the
unknown J′′(θ0) coefficient affects the relaxation rate but not the convergence
of θ̂ (up to the ripple contribution, which is neglected in the final equation).

The above arguments are clearly only heuristic: where we “drop” various DC
and AC terms, we need to more carefully assess their size and influence. More
rigorous arguments draw on singular perturbation theory, as dropping terms
reduces the dimension of the state space. (Singular perturbations occur when
a small term increases the order of a dynamical system, as, for example, in the
WKB theory of quantum mechanics.)

b. The plot below is for a “disturbance” θ0 → θ0(t) = θ0+ad cos(ωdt), with θ0 = 5,
ad = 1, and ωd = 2π× 0.1. Notice that θ̂(t) (solid line) tracks the time-varying
parameter θ0(t) (dashed line) with only a small phase lag while the cost (J)
remains very close to its minimum value (7). Notice, too, that the approxi-
mation implicit in the demodulation equation is reasonable: The θ̂ behavior
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really does consist of a slow relaxation plus small added ripple. Increasing the
frequency and/or amplitude of the θ0(t) disturbance will increase the phase lag
(and increase the small cost oscillations). Increasing k makes the system track
parameters better but also makes the system more sensitive to noise.

J

θ

10.7 Simplest LS. In Example 10.5, we wrote down the formulas for estimating the
gain of a linear relationship yk = θuk + ξk. Here, we simplify further by choosing
uk = 1.

a. Interpret the formulas for θ̂, ξ̂, and P in terms of elementary statistics.
b. Introduce a forgetting factor λ, with 0 < λ < 1. Assume that observations last

long enough that (1 − λ) � 1
k . Show that θ̂k ≈ (1 − λ)

∑
i λ

k−iyi.
c. Show that the recursive version for θ̂k is the moving average given in

Eq. (10.39).

Solution.

a. The least-squares formulas are

θ̂ =

∑N
k=1 yk uk∑N

k=1 u2
k

=

∑N
k=1 yk (1)∑N

k=1(1)2
=

∑
yk

N
≡ y ,

where y is the arithmetic average of the N terms yk. Then

(N − 1)ξ̂2 =
∑

y2
k − θ̂

∑
ukyk =

∑
y2

k − θ̂
∑

(1)yk =
∑

y2
k − Ny2

=
∑

(yk − y)2 .

In other words, ξ̂2 = 1
N−1

∑
(yk − y)2, which is just the unbiased estimate of the

sample variance. Finally, P = ξ̂2

N is the variance of the mean.
b. We minimize the weighted least-squares sum

χ2 =

k∑
i=1

λk−i(yi − θk)2 .

Taking ∂θkχ
2 = 0 gives

k∑
i=1

λk−i(yi − θk)(−2) = 0 ,

which implies

θ̂k =

∑
λk−iyi∑
λk−i

= (1 − λ)
k∑

i=1

λk−iyi .



Problems 241

In the last step, we assume that k is large enough that we can approximate the
sum by extending to ∞.

c. The recursive version is then

θ̂k = (1 − λ)
k∑

i=1

λk−iyi

= (1 − λ)

⎡⎢⎢⎢⎢⎢⎢⎣ k−1∑
i=1

λk−iyi + yk

⎤⎥⎥⎥⎥⎥⎥⎦
= (1 − λ)

⎡⎢⎢⎢⎢⎢⎢⎣λ k−1∑
i=1

λk−i−1yi + yk

⎤⎥⎥⎥⎥⎥⎥⎦
≈ λ(1 − λ)

k−1∑
i=0

λk−i−1yi + (1 − λ) yk

= λ θ̂k−1 + (1 − λ) yk .

10.8 Recursive estimation of the noise strength. Derive Eq. (10.27). Reformulate the
recursion relation as ξ̂2

0 = 0 and ξ̂2
k = ξ̂

2
k−1 + ε

2
k for 1 ≤ k ≤ Np + 1. For k ≥ Np + 2,

we have ξ̂2
k =

( k−Np−1
k−Np

)
ξ̂2

k−1 +
( 1

k−Np

)
ε2

k . Hint: write the first few cases, for Np = 1.

Solution.
Let’s first write out the first few terms, assuming Np = 1:

ξ̂2
2 = ε

2
1 + ε

2
2

ξ̂2
3 =

3 − 1 − 1
3 − 1

ξ̂2
2 +

1
3 − 1

ε2
3 =

1
2

(
ε2

1 + ε
2
2

)
+

1
2
ε2

3 =
1
2

(
ε2

1 + ε
2
2 + ε

2
3

)
ξ̂2

4 =
4 − 1 − 1

4 − 1
ξ̂2

3 +
1

4 − 1
ε2

4 =
2
3
· 1

2

(
ε2

1 + ε
2
2 + ε

2
3

)
+

1
3
ε2

4 =
1
3

(
ε2

1 + ε
2
2 + ε

2
3 + ε

2
4

)
Now that we see the pattern, the general case is

ξ̂2
k =

(
k − Np − 1

k − Np

)
ξ̂2

k−1 +

(
1

k − Np

)
ε2

k

=

(
�����k − Np − 1

k − Np

) [(
k − Np − 2

�����k − Np − 1

)
ξ̂2

k−2 +

(
1

�����k − Np − 1

)
ε2

k−1

]
+

(
1

k − Np

)
ε2

k

=

(
k − Np − 2

k − Np

)
ξ̂2

k−2 +

(
1

k − Np

) (
ε2

k + ε
2
k−1

)
...

=

(
k − Np − (k − Np − 1)

k − Np

)
ξ̂2

k−(k−Np−1) +

(
1

k − Np

) (
ε2

k + ε
2
k−1 + · · · + ε2

k−(k−Np−2)

)
=

(
1

k − Np

) (
ξ̂2

Np+1 + ε
2
k + ε

2
k−1 + · · · + ε2

Np+2

)

=

(
1

k − Np

) k∑
i=1

ε2
i .
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Notice that in the last step we have set

ξ̂2
Np+1 =

Np+1∑
i=1

ε2
i ,

which is the initialization condition for the recurrence relation.
10.9 LS vs. RLS. The goal is to compare the ordinary least squares (LS) equations

with their recursive (RLS) counterparts for yk = θuk + ξk. Cf. Examples 10.5
and 10.6. To simplify the analysis, choose a step-function input, uk = 1, and let
ξ2 = 1.

a. Show that the LS solution for k steps is θ̂k =
1
k

∑
yk, with variance Pk = 1/k.

b. Show that the RLS solution is the same, if you correctly choose P1 and θ̂1.
c. How does altering the step-input amplitude to uk = u affect the convergence?
d. How does choosing a pulse, uk = u for k ≤ K and 0 otherwise, affect

convergence?
e. (i) Write a simulation to illustrate that LS = RLS only if the RLS initial condi-

tions are chosen correctly. (ii) Compare the convergence for step amplitudes
u = 1 and u = 10. (iii) Show that θ̂ for a finite pulse gets “stuck” when the
pulse ends.

Solution.

a. The LS solution is θ̂k =
∑

ykuk∑
u2

k
=

∑
yk

k . This is the arithmetic average of

{y1, y2, . . . , yk}. Similarly, the variance is Pk =
1∑
u2

k
= 1

k .

b. The RLS solution for P is

Pk+1 =
Pk

1 + u2
k+1Pk

=
Pk

1 + Pk
,

Iterating this recurrence relation gives

Pk+1 =
Pk

1 + Pk
=

Pk−1
1+Pk−1

1 + Pk−1
1+Pk−1

=
Pk−1

1 + 2Pk−1
= · · · = P1

1 + kP1
.

Thus, Pk = 1/k for all k if and only if we choose P1 = 1 (or ξ2 if not scaled).
On the other hand, Pk → 1/k asymptotically for k → ∞, for all P1.
From Pk, we can calculate Lk+1 as

Lk+1 =
Pkuk+1

1 + u2
k+1Pk

=
Pk

1 + Pk
=

P1

1 + kP1
.

Again, if P1 = 1, we have Lk = 1/k. For the parameter estimate itself, we have

θ̂k+1 = θ̂k + Lk+1(yk+1 − θ̂k)

= (1 − Lk+1) θ̂k + Lk+1 yk+1

=

(
1 − P1

1 + kP1

)
θ̂k +

P1

1 + kP1
yk+1 .
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If we choose P1 = 1, the expression simplifies to

θ̂k+1 =

(
k

k + 1

)
θ̂k +

1
1 + k

yk+1 .

With this choice of P1, the estimate θ̂k+1 is given by an exponential moving
average of yk, which is just the result of LS. The corollary, of course, is that if
we make the wrong choice for P1 or θ̂1, the two estimates will not agree. How-
ever, the recurrence relations will converge to the same asymptotic solution as
the batch algorithm, for k → ∞. Better choices of initial conditions converge
faster.

c. Redoing the calculations with uk = u, we find

θ̂k =

∑
ykuk∑
u2

k

= θ +

∑
ξkuk∑
u2

k

→ θ +

∑
ξk

uk
,

where we substitute for yk in terms of the (unobservable) noise ξk. We see that
the estimate is unbiased and that the correction term converges more quickly,
by a factor u. We can reach a similar conclusion by examining the variance:

Pk =
1∑
u2

k

=
1
ku

.

Thus, θ̂ will converge faster if the input signal is larger. The relevant ratio is
〈uk〉/ξ in dimensional units.

d. If the input is a pulse of amplitude u that lasts until k = K, the estimate is
“stuck” at its k = K value and does not change thereafter:

θ̂k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑k

i=1 yi

ku k ≤ K
∑K

i=1 yi

Ku k > K
, Pk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ku k ≤ K

1
Ku k > K

.

Intuitively, with no new information coming in, the estimate remains what it
was at the last time step where new information was available. This is perhaps
the simplest example illustrating the need for persistent excitation in the input
signal uk. From the formula for Pk, we see that for Pk → 0, we need

∑
u2

k → ∞.
Since uk is bounded (it’s the input), it must not go too quickly to zero as
k → ∞.

e. The graphs below show simulations for θ = 0.5. The top, for different initial
conditions, shows the LS curve (dashed) and RLS curve (solid). The RLS
curve uses the “wrong” initial conditions.
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10.10 Continuous-time recursive-least-squares (RLS). The continuous-time algorithm
is simpler than the discrete-time case and illuminates its structure. For scalar
output y(t), the model is y(t) = ϕT(t) θ + ξc(t), with Gaussian noise 〈ξc(t) ξc(t′)〉 =
ξ2

cδ(t − t′). If we scale y → y/ξc and ϕ → ϕ/ξc, the loss function χ2(θ) =∫ t

0
dt′

[
y(t′) − ϕT(t′) θ

]2.

a. Show that θ̂(t) = P(t)
∫ t

0
dt′ ϕ(t′) y(t′), with P−1(t) ≡ ∫ t

0
dt′ ϕ(t′)ϕT(t′) mini-

mizes χ2. Note that P(t) is the covariance matrix for the estimate θ̂(t) (see
Problem A.8.2).

b. Differentiating the equations for θ̂ and P−1, derive an equivalent recursive
algorithm. Hint: dt I = dt

(
P P−1) = 0. Show that dtθ̂ = Pϕ ε and dt P =

−PϕϕT P, with ε ≡ y − ϕTθ̂. The parameter estimate θ̂ changes because of
non-zero innovations ε, the difference between the prediction ϕTθ̂ and the
observation y.

c. Include a forgetting factor λ′ by defining χ2(θ) =
∫ t

0
dt′ e−λ′(t−t′)

[
y(t′) − ϕT(t′) θ

]2
.

Show that the only change to the RLS equations is to take Ṗ = λ′P− PϕϕT P.
d. Derive the discrete RLS equations, Eq. (10.26). Hint: Apply the Sherman–

Morrison matrix-inversion formula, Eq. (A.15), to dt P−1.
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Solution.

a. Differentiating with respect to the vector θ gives

∂χ2

∂θ
=

∫ t

0
dt′

[
y(t′) − ϕT(t′) θ̂

]
ϕT(t′) = 0T .

We take the transpose and recognize that the estimate θ̂ is really a function
of time because it will change as the length of data collected over the interval
(0, t) increases. Then[∫ t

0
dt′ ϕ(t′)ϕT(t′)

]
θ̂(t) ≡ P−1(t) θ̂(t) =

∫ t

0
dt′ ϕ(t′) y(t′) ,

which, on multiplying by P(t), gives the result for θ̂.
b. We first establish the identity for d

dt P−1:

d
dt

I =
d
dt

(
P P−1

)
=

(
d
dt

P
)

P−1 + P
(

d
dt

P−1

)
= 0 ,

so that

Ṗ = −P
(

d
dt

P−1

)
P .

In our problem, d
dt P−1 = ϕϕT, so that

Ṗ = −PϕϕT P .

Then, differentiating the equation for θ̂ gives

dθ̂
dt
=

d
dt

[
P

∫ t

0
dt′ ϕ(t′) y(t′)

]

= Ṗ
∫ t

0
dt′ ϕ(t′) y(t′) + Pϕ(t) y(t)

= −PϕϕT P
∫ t

0
dt′ ϕ(t′) y(t′) + Pϕ(t) y(t)

= −PϕϕTθ̂ + Pϕ(t) y(t)

= Pϕ
(
y − ϕTθ̂

)
= Pϕ ε , ε ≡ y − ϕTθ̂ .

c. We quickly repeat Parts (a) and (b), modified to include the forgetting factor
e−λ′t. Differentiating with respect to the vector θ gives

∂χ2

∂θ
=

∫ t

0
dt′ e−λ

′(t−t′)
[
y(t′) − ϕT(t′) θ̂

]
ϕT(t′) = 0T .

Taking the transpose then gives[∫ t

0
dt′ e−λ

′(t−t′) ϕ(t′)ϕT(t′)
]
θ̂(t) ≡ P−1(t) θ̂(t) =

∫ t

0
dt′ e−λ

′(t−t′) ϕ(t′) y(t′) .
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We thus have

P−1(t) =
∫ t

0
dt′ e−λ

′(t−t′) ϕ(t′)ϕT(t′)

= e−λ
′t
∫ t

0
dt′ eλ

′t′ ϕ(t′)ϕT(t′) .

Differentiating with respect to time gives

d
dt

P−1(t) = −λP−1(t) + ϕ(t)ϕT(t) .

Then,

dP
dt
= −P

(
d
dt

P−1

)
P

= −P
(
−λP−1 + ϕϕT

)
P

= λP − PϕϕT P .

If there is no input (ϕ = 0), then Ṗ = λP, and P(t) diverges exponentially.
d. From Eq. (A.15), the Sherman-Morrison formula is(

A + uvT
)−1
= A−1 − A−1uvT A−1

1 + vT A−1u
,

We apply this to d
dt P−1 = ϕϕT, with A → P−1, u → ϕ and vT → ϕT. First,

P−1
k+1 = P−1

k + Ts

(
ϕk+1 ϕ

T
k+1

)
.

If we now scale time by t → t/Ts, we can write

Pk+1 =
(
P−1

k + ϕk+1 ϕ
T
k+1

)−1

Then the Sherman-Morrison formula gives

Pk+1 = Pk −
Pkϕk+1 ϕ

T
k+1 Pk

1 + ϕT
k+1 Pkϕk+1

.

Next, we discretize dθ̂
dt = Pϕε:

θ̂k+1 = θ̂k + Pk+1ϕk+1εk+1

= θ̂k +

⎛⎜⎜⎜⎜⎝Pk −
Pkϕk+1 ϕ

T
k+1 Pk

1 + ϕT
k+1 Pkϕk+1

⎞⎟⎟⎟⎟⎠ϕk+1εk+1

= θ̂k +

⎛⎜⎜⎜⎜⎜⎝ Pkϕk+1(1 +�����
ϕT

k+1 Pkϕk+1) −��������
Pkϕk+1 ϕ

T
k+1 Pkϕk+1

1 + ϕT
k+1 Pkϕk+1

⎞⎟⎟⎟⎟⎟⎠ εk+1

= θ̂k + Lk+1εk+1 ,

where we define, using the notation of Chapter 8, the Kalman observer gain

Lk+1 ≡ Pkϕk+1

1 + ϕT
k+1 Pkϕk+1

.
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Notice that

Pk+1 = Pk −
Pkϕk+1 ϕ

T
k+1 Pk

1 + ϕT
k+1 Pkϕk+1

= Pk − Lk+1ϕk+1 Pk

=
(
I − Lk+1ϕ

T
k+1

)
Pk .

One subtlety is that the innovations εk+1 = yk+1 − ϕT
k+1θ̂k. That is, the inno-

vations use θ̂k and not θ̂k+1. In fact, the issue is mainly one of notation. Our
ϕT

k+1 depend on quantities at time k. Essentially, we are just using the forward
Euler discretization, where all terms on the right-hand side are evaluated at
time k. Physically, the innovation is the prediction at time k + 1 based on the
information available at time k, before the observation at k + 1.
Finally, in unscaled units, we have

d
dt

P−1 =
ϕϕT

ξ2
c
,

or

P−1
k+1 = P−1

k + Ts
ϕk+1 ϕ

T
k+1

ξ2
c

= P−1
k +

ϕk+1 ϕ
T
k+1

ξ2
, .

where ξ2 ≡ ξ2
c/Ts is the discrete-time variance over Ts. The Sherman-

Morrison formula then gives

Pk+1 = Pk −
Pkϕk+1 ϕ

T
k+1 Pk

ξ2 + ϕT
k+1 Pkϕk+1

.

Similarly,

Lk+1 ≡ Pkϕk+1

ξ2 + ϕT
k+1 Pkϕk+1

.

10.11 Persistent excitation. Input signals that are not persistent can bias parameter
estimates. Estimate the parameters of the FIR filter yk = b0uk+b1uk−1+ξk, where
ξk ∼ N(0, 1). Using non-recursive least squares, find the asymptotic parameter
estimates and associated covariance matrix for time steps N → ∞ for a step
input (what goes wrong?) and for a random input, uk ∼ N(0, 1). See Åström and
Murray (2008).

Solution.
To match up with ordinary least-squares analysis in the form yk = ϕ

T
kθ+εk, we

write

ϕ =

(
uk

uk−1

)
, θ =

(
b0

b1

)
.

Then

θ̂ = PΦTY = P
( ∑

uk yk∑
uk−1 yk

)
, P−1 =

( ∑
u2

k

∑
uk uk−1∑

uk uk−1
∑

u2
k−1

)
.
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All sums are from 1 to N.

a. Step input (uk = 1). Then

P−1 = N

(
1 1
1 1

)
,

which is degenerate, implying infinite covariance, which means that we do not
expect the parameters to converge to their correct values in practice. Another
way to understand the problem is that the recursion relation becomes

yk = (b0 + b1) + ξk ,

so that there is no way to identify b0 or b1 individually. Only their sum is
determined. (Actually, the initial conditions slightly break the degeneracy.)

b. Random input: Using 〈uk〉 = 0 and 〈u2
k〉 = 1, we have

P−1 =

( ∑
u2

k

∑
uk uk−1∑

uk uk−1
∑

u2
k−1

)
= N

( 〈u2
k〉 〈uk uk−1〉

〈uk uk−1〉 〈u2
k−1〉

)
= N

(
1 0
0 1

)
.

Similarly,

ΦTY =
( ∑

uk yk∑
uk−1 yk

)
= N

( 〈uk (b0uk + b1uk−1 + ξk)〉
〈uk−1 (b0uk + b1uk−1 + ξk)〉

)
= N

(
b0

b1

)
.

Thus,

θ̂ =

(
b0

b1

)
.

The conclusion is that, for this example, a random Gaussian input is
persistent but not a step input.

10.12 Identification in closed-loop systems. Investigate yk+1 = −ayk + buk + ξk, from
Example 10.7, with a = − 1

2 and b = 1
2 and 1 ≤ k ≤ N. Compare two feedback

laws: uk = −κyk (no delay) and uk = −κyk−1 (unit delay).

a. Show that the closed-loop system is stable for −1 < κ < 3 for feedback without
delay and for −1 < κ < 2 for feedback with delay. (As usual, delay limits gain.)

b. Show that the inverse covariance matrix P−1 = ΦTΦ→ N
(
〈y2〉 −〈y u〉
−〈y u〉 〈u2〉

)
.

c. For uk = −κyk, show that P−1 is degenerate at large k and hence that the least-
squares estimate will not converge.

d. For uk = −κyk−1, show that P−1 is invertible if the closed-loop dynamics is
stable.

e. For uk = −κ1yk or −κ2yk, with 50% probability, show that P−1 is invertible.
f. Simulate the system and reproduce the graphs at left, showing lack of identifi-

ability for feedback with no delay, convergence with a delay and also with no
delay but two randomly alternating gains.

Solution.

a. The roots of the discrete transfer function must satisfy |z| < 1.
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i. For feedback without delay, yk+1 = −(a + bκ)yk + ξk. The Z-transform is

(z + a + bκ)y = ξ → Gd(z) =
y(z)
ξ(z)
=

1
z + a + bκ

,

whose poles are at z = −(a + bκ) = 1
2 (1 − κ), implying −1 < κ < 3.

ii. For feedback with unit delay, yk+1 = −ayk − bκyk−1 + ξk. The transfer
function is

Gd(z) =
z

z2 + az + bκ
,

whose poles are at

z = 1
2

(
−a ±

√
a2 − 4bκ

)
→ z = 1

4

(
1 ± √

1 − 8κ
)
.

For κ = −1, we confirm z = +1,− 1
2 , which is one limit. The other is

found by allowing complex roots, z = 1
4

(
1 ± i

√
8κ − 1

)
, which implies |z| =

1
16 (1+8κ−1) = κ/2. Thus, the upper gain is κ = 2 and we require −1 < κ < 2.

b. We have ϕT
k = (−yk uk) and, hence,

P−1 =

N∑
k=1

ϕk ϕ
T
k =

( ∑
y2

k −∑
yk uk

−∑
yk uk

∑
u2

k

)
→ N

( 〈y2〉 −〈y u〉
−〈y u〉 〈u2〉

)
.

The last identity holds for feedback laws uk that lead to time-invariant
dynamics.

c. For uk = −κyk, we have 〈y u〉 = −κ〈y2〉 and 〈u2〉 = κ2〈y2〉, so that

P−1 → N〈y2〉
(
1 κ

κ κ2

)
,

which is clearly degenerate (det=0).
d. For uk = −κyk−1, the cross-correlation N〈y u〉 is

N〈y u〉 =
∑

k

yk uk = −κyk yk−1 = −Nκ〈y y−1〉 .

We can evaluate 〈yy−1〉 by multiplying the closed-loop dynamical equations
by yk, summing over k, and using the time invariance of the dynamics. Thus,∑

k

yk+1 yk = −a
∑

y2
k − bκ

∑
k

ykyk−1 +

	
	

		
∑

k

ξk yk ,

which implies

〈y y−1〉 = −a
〈
y2

〉
− bκ 〈y y−1〉 .

Solving gives 〈y y−1〉 = − a
1+bκ 〈y2〉, and the inverse covariance matrix is

P−1 → N
〈
y2

〉 (
1 aκ

1+bκ
aκ

1+bκ κ2

)
,
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whose determinant is

N2
〈
y2

〉2
κ2

[
1 −

( a
1 + bκ

)2
]
→ N2

〈
y2

〉2
κ2

⎡⎢⎢⎢⎢⎢⎣1 −
(

1
2 + κ

)2⎤⎥⎥⎥⎥⎥⎦ .
The latter expression is for a = − 1

2 and b = 1
2 . The determinant thus vanishes

only for κ = −1, which is also the stability limit. Since it will be close to zero
as κ → −1, we expect greater and greater fluctuations in estimation in this
limit. By contrast, the variance stays finite for all κ > 0, even as the upper
stability limit (κ = 2) is approached.

e. For uk = −κ1 yk or −κ2 yk, with 50% probability, we can write

〈y u〉 = −
〈
y2

〉
2

(κ1 + κ2) .

On the other hand,

〈
u2

〉
=

〈
y2

〉
2

(
κ2

1 + κ
2
2

)
.

Thus,

P−1 → N
2

〈
y2

〉 (
2 κ1 + κ2

κ1 + κ2 κ2
1 + κ

2
2

)
,

and the determinant is
( N

2 〈y2〉)2 (κ1 − κ2)2, which vanishes only when κ1 = κ2.
A geometrical interpretation is that when κ = κ1, the linear combination a+bκ1

is fixed and equals, say, c1. The locus of points (a, b) satisfying a + bκ1 = c1

determines a line of slope −κ1 in the a-b plane. Similarly, when κ = κ2, another
line, of slope −κ2 is also determined. The intersection of the two lines gives a
unique point in the a-b plane. See below.

10.13 Colored-noise. For xk = θxk−1 + ξk + aξk−1, with 〈ξkξ�〉 = δ k�,

a. Find 〈x2〉 and 〈x x−1〉 by following the suggestions in Example 10.8.
b. Simulate the system with θ = 0.5 and a = −0.5 and analyze by RLS on the

raw and filtered signals. Make plots such as the one shown in Example 10.9.
c. For unknown a, implement the extended RLS scheme from Example 10.10.

Show numerically that θ̂ → θ and â → a unless a = −θ. Why does that case
not work?
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Solution.

a. Causality implies that 〈xk−1 ξk〉 = 0: the past state does not affect the present
noise. Then, with 〈ξ2

k 〉 = 1, the covariances are as follows:

× ξk : 〈xξ〉 = 0 + 1 + 0 = 1

× ξk−1 : 〈xξ−1〉 = θ(1) + 0 + a(1) = θ + a

× xk :
〈
x2

〉
= θ 〈x x−1〉 + 1 + a(θ + a)

× xk−1 : 〈x x−1〉 = θ
〈
x2

〉
+ a

There are two coupled equations for 〈x2〉 and 〈x x−1〉:(
1 −θ
−θ 1

) ( 〈x2〉
〈x x−1〉

)
=

(
1 + a(θ + a)

a

)
( 〈x2〉
〈x x−1〉

)
=

1
1 − θ2

(
1 θ

θ 1

) (
1 + a(θ + a)

a

)

=
1

1 − θ2

(
1 + 2aθ + a2

(θ + a)(1 + θa)

)
.

b. The filtered signal for x is determined by xf
k + axf

k−1 = xk. We substitute this
into xk = θxk−1 + ξk + aξk−1, which gives

xf
k + axf

k−1 = θ
(
xf

k−1 + axf
k−2

)
+ ξk + aξk−1 .

Then we can isolate at times k and k − 1:

xf
k = θxf

k−1 + ξk

axf
k−1 = a

(
θxf

k−2 + ξk−1

)
.

which must both hold and are in fact the same equation, just shifted by one
time step. This new equation has a white-noise source.

c. Code is similar to previous section, except that no filtering is needed. We
insert the estimate for ξk−1 into the ϕ vector. When a = −θ, we have that
xk − θxk−1 = ξk − θξk−1, so that xk = ξk. Thus, the inverse covariance matrix

P−1
k =

∑
k

(
x2

k−1 xk−1ξk−1

xk−1ξk−1 ξ2
k−1

)
→ N

〈
x2

〉 (
1 1
1 1

)

is degenerate and not invertible. In the spirit of Problem 10.11, if we replace
the θxk−1 term with θuk−1, we can say that uk = xk is not a persistent input. On
the other hand, changing it slightly—e.g., to uk = xk−1 solves the problem.

10.14 Brownian particle with noisy observations. We seek to trap an overdamped par-
ticle diffusing in a liquid and measure its mobility and diffusion coefficients. In
1d, the position xk = xk−1 +μuk + νk. The measurement yk = xk + ξk, reflecting the
finite resolution of the microscope. The mobility is μ, the input uk. The Gaussian
noise terms have 〈νk ν�〉 = ν2δ k� and 〈ξkξ�〉 = ξ2

0δ k�. The variance ν2 = 2DTs, with
D the diffusion coefficient and Ts the sampling time.
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a. For instantaneous observation-based feedback, uk = −α0 yk, eliminate x to
find an equation for y and the noise. Find the correlation functions 〈y2〉 and
〈y y−1〉 and use them to show that the least-squares mobility estimate μ̂ =
μ
[
1 + (2−α)ξ2

1+2αξ2

]
, where α ≡ μα0 and ξ2 = ξ2

0/ν
2. The estimate is biased for

ξ2 � 0.
b. For uk = −α0 yk−1, show that μ̂ = μ for all ξ. Why does delaying the feedback

eliminate the bias? (You need not solve for 〈y2〉, 〈y y−1〉, and 〈y y−2〉 to find μ̂.)
c. Use RLS to estimate μ recursively. Check that μ̂ converges to a biased value

(calculate it) for no-delay feedback and to the correct value for unit delay.
Include a recursive estimate of ν2, based on Eq. (10.27). Why is ν̂2 biased
when μ̂ � μ?

d. For ξk = 0 and known μ, show numerically that choosing α ≈ 0.47 minimizes
the position variance, with 〈y2〉min ≈ 2.4 ν2. For unknown μ, combine the RLS
and simulation codes. Then try to adaptively control the particle variance by
choosing the gain (α0)k = 0.47/μ̂k. Why does this algorithm fail? Propose a
simple fix and then compare the observed variance with 〈y2〉min.

Solution.

a. Substituting xk = yk − ξk and calculating covariances, we have

yk = (1 − α)yk−1 + νk + ξk − ξk−1

× νk : 〈yν〉 = 0 + ν2 + 0 − 0 = ν2

× ξk : 〈yξ〉 = 0 + 0 + ξ2
0 − 0 = ξ2

0

× ξk−1 : 〈yξ−1〉 = (1 − α)ξ2
0 + 0 + 0 − ξ2

0 = −αξ2
0

× yk :
〈
y2

〉
= (1 − α) 〈y y−1〉 + ν2 + ξ2

0 − (−αξ2
0)

× yk−1 : 〈y y−1〉 = (1 − α)
〈
y2

〉
+ 0 + 0 − ξ2

0 ,

The coupled equations for
〈
y2

〉
and 〈y y−1〉 are(

1 −(1 − α)
−(1 − α) 1

) ⎛⎜⎜⎜⎜⎝
〈
y2

〉
〈y y−1〉

⎞⎟⎟⎟⎟⎠ = (
ν2 + (1 + α)ξ2

0
−ξ2

0

)
⎛⎜⎜⎜⎜⎝

〈
y2

〉
〈y y−1〉

⎞⎟⎟⎟⎟⎠ = 1
(2 − α)α

(
1 1 − α

1 − α 1

) (
ν2 + (1 + α)ξ2

0
−ξ2

0

)

=
1

(2 − α)α

(
ν2 + 2αξ2

0
(1 − α)ν2 − α2ξ2

0

)
.

Finally, the least-squares estimate for μ is

μ̂ =

(
1
α0

) 〈(yk − yk−1)(−yk−1)〉〈
y2

k−1

〉
=

(
1
α0

) 〈
y2

〉
− 〈y y−1〉〈
y2

〉
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=

(
1
α0

)
α

〈
y2

〉
+ ξ2

0〈
y2

〉
= μ +

ξ2
0

α0
〈
y2

〉 = μ + ξ2
0(2 − α)α

α0(ν2 + 2αξ2
0)
= μ

[
1 +

(2 − α)ξ2

1 + 2αξ2

]
.

which is biased (μ̂ � μ) when ξ2 > 0.
b. For delayed feedback uk = −α0 yk−1, the covariances are

yk = yk−1 − αyk−2 + νk + ξk − ξk−1

× νk : 〈yν〉 = 0 + 0 + ν2 + 0 − 0 = ν2

× ξk : 〈yξ〉 = 0 + 0 + 0 + ξ2
0 − 0 = ξ2

0

× ξk−1 : 〈yξ−1〉 = ξ2
0 + 0 + 0 + 0 − ξ2

0 = 0

× yk :
〈
y2

〉
= 〈y y−1〉 − α 〈y y−2〉 + ν2 + ξ2

0 − 0

× yk−1 : 〈y y−1〉 =
〈
y2

〉
− α 〈y y−1〉 + 0 + 0 − ξ2

0

× yk−2 : 〈y y−2〉 = 〈y y−1〉 − α
〈
y2

〉
+ 0 + 0 − 0 ,

The coupled equations for
〈
y2

〉
, 〈y y−1〉, and 〈y y−2〉 are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 α

−1 1 + α 0
α −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
y2

〉
〈y y−1〉
〈y y−2〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ν2 + ξ2

0
−ξ2

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
y2

〉
〈y y−1〉
〈y y−2〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 1
α(1 − α)(2 + α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ν2(1 + α) + 2αξ2

0
ν2 + α2ξ2

0
ν2(α2 + α − 1) + α2ξ2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
ν2

α(1 − α)(2 + α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + α + 2αξ2

1 + α2ξ2

α2 + α − 1 + α2ξ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The least-squares estimate for μ is

μ̂ =

(
1
α0

) 〈(yk − yk−1)(−yk−2)〉〈
y2

k−2

〉
=

(
1
α0

) 〈y y−1〉 − 〈y y−2〉〈
y2

〉 .

But we can substitute directly 〈y y−2〉 = 〈y y−1〉 − α
〈
y2

〉
to get

μ̂ =
α

〈
y2

〉
α0

〈
y2

〉 = μ .
Notice that this result is independent of the noise-correlation terms, and we
did not need to solve for 〈y2〉, etc., to find μ̂ and to show that the estimate is
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unbiased. Intuitively, the feedback has been delayed long enough that it does
not correlate with any of the noise terms. Thus, the 〈y y−2〉 equation does not
involve any noise-correlation terms.

c. To estimate ν2, we can calculate the innovations εk ≡ yk − yk−1 − μ̂ uk−1. If
μ̂ = μ, then εk = νk + ξk − ξk−1, implying that ν̂2 = 〈e2〉 − 2ξ2

0. From Eq. (10.27),

ν̂k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k = 0

ν̂k−1 + ε
2
k k = {1, 2}(

k−2
k−1

)
ν̂k−1 +

(
1

k−1

)
ε2

k k ≥ 3

.

But when μ̂ is biased, we cannot correctly subtract the deterministic parts of
the motion to get the stochastic residuals. For feedback without delay, we can
calculate the bias in ν̂ directly:

εk = yk − yk−1 + α̂ yk−1

= yk − yk−1 + α yk−1 + Δα yk−1

= νk + ξk − ξk−1 + Δα yk−1 ,

where Δα ≡ α̂ − α. Then〈
e2

〉
= ν2 + 2ξ2

0 + (Δα)2
〈
y2

〉
− 2(Δα) 〈yξ〉

= ν2 + 2ξ2
0 + (Δα)2

〈
y2

〉
− 2(Δα)ξ2

0 .

In Part (a), we derived that Δα = ξ2
0/

〈
y2

〉
. Thus,

ν̂2 =
〈
e2

〉
− 2ξ2

0 = ν
2 + (Δα)ξ2

0 − 2(Δα)ξ2
0

= ν2 − (Δα)ξ2
0 .

Thus, the bias in μ̂ (or α̂) leads to a bias for ν̂2, as well.
d. For ξk = 0 and known μ, the variance is〈

y2
〉
= ν2 1 + α

α(1 − α)(2 + α)
.

We minimize the variance by setting ∂α
〈
y2

〉
= 0. This gives the cubic equation

α3 + 2α2 + α − 1 = 0 ,

whose real solution is α∗ = 0.465571 ≈ 0.47. The corresponding minimum
variance is

〈
y2

〉∗
= 2.38898 ν2 ≈ 2.4 ν2.

For unknown μ, if we impose (α0)k = 0.47/μ̂k, then yk diverges because the
initial estimates of μ are bad enough that the (α0)k correspond to unstable
dynamics. (Recall that the dynamics are stable for 0 < α < 1 and that α ≡
α0μ.) A simple solution is to use a fixed, “safe” gain for the first K time steps
and then to use the value based on the adaptive estimate. Empirically, K = 10
works well for 0.1 < μ < 10.
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Once divergences are prevented, the estimate μ̂ converges to within 10% of
μ in typically < 100 time steps. The variance curve 〈y2〉(α) is broad enough
about the minimum that there is negligible performance difference between
the case with known μ and that with unknown μ. Of course, by using an opti-
mal condition (minimum variance) as our goal, we minimize the sensitivity
to deviations between the estimated parameters and their true values.

10.15 Colored noise subtleties. From the Wiener–Khintchine theorem, colored noise
with temporal correlations has a non-flat power spectrum. A white-noise
sequence ξk, with 〈ξk ξ�〉 = δ k�, that is filtered by a rational transfer function
C(z) has an output power spectrum density φ(ω) = C(eiωTs )C(e− iωTs ). Conversely,
under reasonable conditions, a measured power spectrum can be approximated
by the output of a linear system H driven by ideal white noise (Åström, 2006a).
Use this representation to show that if a noise source characterized by C(z−1, a)
in the z-domain has zeros at a which is outside the unit circle in the complex
z-domain, then the power spectrum of C(z−1, a−1) matches that of the original
function. Illustrate for C(z−1) = 1 − az−1.

Solution.

This problem is longer to state than to solve! The power spectrum is, with
z = eiωTs , equal to C(z) C(z−1). Now, if C(z) has a zero at z = a, it is clear that
C′(z) ≡ C(z−1) has a zero at z = 1/a. If |a| > 1, then |a−1| < 1. For the example of
C(z) = 1 − az−1, C(z) = 1 − az has a zero at 1/a, as claimed.

Also, the power spectrum of C′ is C(z−1) C(z), which obviously matches the
power spectrum of C. In effect, every stable response function has an unstable
counterpart with identical magnitude plot vs. frequency response (but different
phase response).

10.16 Estimate mobility of a trapped particle by correlation methods. We use the cor-
relation method to study the case of a diffusing particle with unknown mobility,
from Example 10.12. Use steady-state statistics (i.e., assume that you analyze a
long time series where any initial or final conditions can be neglected).

a. Set up the problem (e.g., define all estimators, etc.), including the effects of
measurement noise (yk = xk + ξk, with 〈ξk ξ�〉 = ξ2δ k�).

b. State carefully the simplifications that occur if ξ2 = 0.
c. Derive Eq. (10.47) for the innovation correlations, assuming ξ2 = 0.

Solution.

a. The equations for the physical system are

xk+1 = xk + μuk + νk , uk = −αx̂k , ,

with 〈νk ν�〉 = ν2δ k� and 〈ξk ξ�〉 = ξ2δ k�. With ŷk+1 = x̂−k+1, the estimators are

x̂−k+1 = x̂k + μ
′uk , x̂k+1 = x̂−k+1 + L(yk+1 − ŷk+1) .
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b. When the measurement noise ξ2 = 0, then yk = xk. From Chapter 8, we
also know that the steady-state Kalman gain L will tend to 0. That is, with
no observational noise, the best estimate we can make is to use just the
measurement and not at all the prediction. Then

ŷk = x̂k = x̂−k

and the prediction x̂−k+1 then becomes

x̂−k+1 = xk + μ
′uk .

The innovations are

εk = yk − ŷ−k = xk − x̂k = ek .

That is, the innovations are the same as the state error in this simple example.
More generally, they are not, and are even vectors of different dimension,
since the dimension of ε equals the number of simultaneous measurements
and the dimension of e is the number of state-vector elements.

c. Using the simplifications from (b), we write the recurrence relation for the
innovations as

εk+1 = xk+1 − x̂−k
= (xk + μuk + νk) − (xk + μ

′uk)

= (μ − μ′)uk + νk

= +(Δμ)αxk + νk .

We can now calculate the correlations:

〈εk+� εk〉 = 〈[(Δμ)αxk+� + νk+�] [(Δμ)αxk + νk]〉

=��������� small
(Δμ)2α2〈xk+� xk〉 + (Δμ)α〈xk+� νk〉 +��������0

(Δμ)α〈xk νk+�〉 +�����0〈νk+� νk〉
≈ (Δμ)α 〈xk+� νk〉 .

We evaluate successively the correlations 〈xk+� νk〉:
〈xk+1 νk〉 = (1 − αμ)�����0〈xk νk〉 + 〈ν2

k〉 = ν2

〈xk+2 νk〉 = (1 − αμ)〈xk+1 νk〉 +�����0〈νk+1 νk〉 = (1 − αμ)ν2

〈xk+3 νk〉 = (1 − αμ)〈xk+2 νk〉 +�����0〈νk+2 νk〉 = (1 − αμ)2ν2

...

〈xk+� νk〉 = · · · = (1 − αμ)�−1 ν2 .

Thus,

〈εk+� εk〉 = (Δμ)αν2(1 − αμ)�−1 + O(Δμ2) ,

which vanishes when the correct mobility is used to make predictions.
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10.17 LMS and a variant. Explore the system from Example 10.13.

a. Implement the standard LMS adaptive filter, and reproduce the associated
plots.

b. Let uk ∼ N(0, u2). Keep γ = 0.1. What happens as the input amplitude u
increases and why? Plot RMS convergence error vs time, for representative
values of u.

c. The normalized LMS (n-LMS) algorithm is θ̂k+1 = θ̂k + γ
( ϕk

α+ϕT
k ϕk

)(
yk − ϕT

k θ̂k
)
.

Justify the algorithm when α = 0. Why add the small parameter α?
d. Explore n-LMS convergence. Try changing the input level.

Solution.

a. See book website for code.
b. For γ = 0.1, as the amplitude u is increased, the error decay time decreases

until about u = 1. Then it first becomes unstable to noise (less averaging in
the 1000 trials done here). Then at about u = 1.8, it becomes unstable.

This value is lower than the prediction from the stability-limit given in the
text. That limit would suggest umax = 1/

√
2γ ≈ 2.2. The difference results

from using the variance of the uk series to approximate the actual values of
the 4 previous values uk, uk−1, uk−2, uk−3. The fluctuations help build up the
instability in the b coefficients.

See graphs below, labeled with the value of u.

〈
〉
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c. “Bottom-up” argument: In the text, we argued that the stability limit is

0 < γ <
2

ϕT
kϕk

.

Here, we simply rescale γ → γ

ϕT
kϕk

. We then add the α term to prevent the

possibility that noise on small inputs leads to a γ that is too large.

A “top-down” argument starts from Eq. (10.49). To derive the ordinary LMS
algorithm, we made the approximation

Pk

1 + ϕT
k Pkϕk

≈ γ ,

From the batch LS algorithm, we know that

P−1
k =

k∑
i=1

ϕi ϕ
T
i .

We now assume that the ϕT
k Pkϕk term in the denominator leads to a roughly

constant numerical factor γ = 1/
(
1 + ϕT

k Pkϕk
)
. In the numerator, we approxi-

mate the covariance with just the last term in the sum, P−1
k ≈ ϕk ϕ

T
k ≈

(
ϕT

k ϕk
)

I,
we have

P−1
k ≈ ϕk ϕ

T
k → Pk

1 + ϕT
k Pkϕk

≈ γPk ≈ γ
(
ϕT

k ϕk

)−1
I .

The approximations turn out to be reasonable if the eigenvalues of the full Pk

are not too unequal.
d. Now, since numerator and denominator areO(u2), we can use arbitrarily large

values of the input. For small values of input, the behavior will revert back to
the ordinary LMS algorithm, with an effective learning rate of γ/α.

10.18 Feedforward control using LMS. In the simplest architecture for adaptive
inverse feedforward control, shown at top left, the LMS algorithm does not
converge.

a. The reversed configuration, shown bottom left, does converge, as suggested
by Example 10.14. Implement and make a version of the figures in that
example.

b. Consider the more elaborate scheme depicted below. Why should it work?

c. Simulate the above example, showing that you can control the system.
d. Add a disturbance ν ∼ N(0, ν2) and show that the above LMS scheme con-

verges for small disturbances but not for large ones. An even more elaborate
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scheme – copy the system and find the controller offline – is needed to both
follow a reference and compensate for a disturbance. See Widrow and Walach
(1996).

Solution.

a. See website for code.
b. In the absence of the disturbance ν, the right-hand part of the scheme is the

same as in part (a). The difference is that we put the reference through the
current estimate of the filter and use that filtered signal as the input to the
system-controller combination of (a). Now we both use the LMS algorithm
directly on the controller output and we run the input through the controller
before it enters the system.

c. See website for code.
d. The appearance of the controller K and its copy K̂ accentuates the nonlinear-

ity. Below, we see that there is a subcritical bifurcation as a function of noise
strength ν. We have noisy convergence up to ν = 0.24 and collapse to zero
for the filter coefficients for ν = 0.25. The threshold levels are stochastic. We
illustrate below the convergence (or lack thereof) for different values of ν.

10.19 Feedforward with preview. Adaptive feedforward filters can have zero-phase-lag
output. Of course, to obey causality, you need to know the reference signal in
advance. If the desired waveform is periodic, then you do. We use the feedfor-
ward architecture from the previous problem, without disturbances. First, shift
the desired reference N steps into the future. Then track this reference with a
delay of N steps.
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a. To understand the timing, let the G dynamics be a simple delay of Δ. Let
the reference be a square wave. Your code should find that the required
feedforward filter is zero, except for the “advanced weight,” which is one.

b. Next, filter the reference to avoid aliasing. The figure below uses a binomial
smoothing filter with n + 1 = 51 coefficients (or “taps” ), with weights 2−n

(
n
k

)
.

The filter is symmetric (acausal), to follow the reference with no phase shift.
Use a square wave (dotted line) as input to generate the filtered reference
(dashed line).

c. Input the filtered reference into an LMS algorithm, using the timing from (a).
Reproduce the figure at left, for yk = (1 − a)yk−1 + auk, with a = 0.1 and a
21-tap LMS filter. The learning rate γ = 0.05, and Δ = 10. The input (heavy
line) leads the output so that the phase-shifted output is centered on the ref-
erence. Filtering the reference with more taps reduces the required amplitude
for u.

Solution.

The coding is straightforward in principle, but the numerics easily blow up.
Using smaller γ can help, as can smaller number of coefficients for the LMS
filter. See adaptive filtering books, e.g. Widrow and Walach (1996), for tricks to
make the numerics more robust.

10.20 Learning an unknown charge. One step in the reinforcement-learning example
of Section 10.4.2 is to parameterize the knowledge of the unknown charge gained
from observations xk and inputs uk. In particular, given the diffusive dynamics of
Eq. (10.60), use Bayes’ theorem to prove the update law θk+1 = θk + (xk+1 − xk)uk

stated in Eq. (10.63). Hint: show that you can write 1
2 (1 + βk) = exp(bθk)

exp(bθk)+exp(−bθk) .
You might want to start by showing the formula works for k = 1, given that
θ0 = 0.

Solution.

Using Bayes’ theorem, we can write, with xk ≡ {xk, xk−1, . . . , x0} and Pk(b) ≡
P(b|xk),

P(b|xk+1, uk) =
p(xk+1|xk, uk, b) Pk(b)

p(xk+1|xk, uk)

=
p(xk+1|xk, uk, b) Pk(b|xk)

p(xk+1|xk, uk, b = 1) Pk(b) + p(xk+1|xk, uk, b = −1) Pk(−b)
.

The likelihood function

p(xk+1|xk, uk, b) ∝ exp
[
− 1

2 (xk+1 − xk − buk)2
]
.

As suggested, we parametrize Pk(b) by

Pk(b) =
exp(bθk)

exp(bθk) + exp(−bθk)
.
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We also follow the hint and compute first the k = 1 case, given k = 0 and given
P(b = ±1|x0) = 1

2 . Then,

P(b|x1, x0, u0) =
1
2 exp

[
− 1

2 (x1 − x0 − bu0)2
]

1
2 exp

[
− 1

2 (x1 − x0 − bu0)2
]
+ 1

2 exp
[
− 1

2 (x1 − x0 + bu0)2
]

=
exp(bΔθ0)

exp(bΔθ0) + exp(−bΔθ0)
,

where Δθ0 ≡ (x1 − x0)u0 = θ1. We have cancelled factors of 1
2 and exp

[− 1
2

(
(x1 −

x0)2 + u2
0

)]
. This proves the formula for k = 1.

For general k, the proof is similar:

P(b|xk+1, uk) =
exp

[
− 1

2 (xk+1 − xk − buk)2
]

Pk(b)

exp
[
− 1

2 (xk+1 − xk − buk)2
]

Pk(b) + exp
[
− 1

2 (xk+1 − xk + buk)2
]

Pk(−b)

=
exp(bΔθk) Pk(b)

exp(bΔθk) Pk(b) + exp(−bΔθk) Pk(−b)
.

But

Pk(±b) =
exp(±bθk)

exp(bθk) + exp(−bθk)
.

Substituting Pk(±b) and cancelling the denominator then gives

P(b|xk+1, uk) =
exp(bΔθk) exp(bθk)

exp(bΔθk) exp(bθk) + exp(−bΔθk) exp(−bθk)

=
exp(bθk+1)

exp(bθk+1) + exp(−bθk+1)
,

where

θk+1 = θk + Δθk+1 = θk + (xk+1 − xk)uk .

This proves the requested update formula for θk.
10.21 Control of a diffusing particle with unknown sign of charge.

a. Derive the single-stage optimization results in Eqs. (10.64) and (10.66) by
averaging over both b and ν1 and using the equation of motion for x2.

b. Show that J∗ = 2+min
u0

[
(1+R)u2

0− f++ f−
2(1+R)

]
, with f± = 〈(ν0±u0)2 tanh2(ν0±u0)u0〉ν0 .

c. For large R, assume that u0 is small. Taylor expand to show f ≈ 3u2
0 − 4u4

0.
Deduce Eq. (10.68) and the expression for u∗0.

d. For small R, assume u0 � 1 and show that
(
u2

0

)∗ ∼ − 1
2 ln R, dropping constants

and logarithmic corrections. Hint: show, for x � 1, that tanh2 x ∼ 1 − 4 e−2|x|.
e. For β0 � 0 (partial knowledge of the sign of the charge) and x0 � 0 (biased

initial position), show that the bifurcation is biased by the analog of an exter-
nal field equal to 2β0x0. Why must β0 and x0 both be non-zero to have a finite
field?
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Solution.

a. The one-stage cost-to-go function is

J1(x1, β1, u1) =
〈
x2

2 + Ru2
1

〉
b,ν

=
〈
(x1 + bu1 + ν1)2 + Ru2

1

〉
b,ν

=
〈
(x1 + bu1 + ν1)2

〉
b,ν
+ Ru2

1

=

(
1 + β1

2

) 〈
(x1 + u1 + ν1)2

〉
ν
+

(
1 − β1

2

) 〈
(x1 − u1 + ν1)2

〉
ν
+ Ru2

1

=

(
1 + β1

2

)
(x1 + u1)2 +

(
1 − β1

2

)
(x1 − u1)2 + Ru2

1 + 1

= (1 + R)u2
1 + x2

1 + 2β1x1u1 + 1 .

Then

∂J1

∂u1
= 2(1 + R)u1 + 2β1x1 = 0 =⇒ u∗1 = −

β1x1

1 + R

Substituting u1 into J1(x1, β1, u1) gives

J1(x1, β1) = J1(x1, β1, u
∗
1)

= (1 + R)(u∗1)2 + x2
1 + 2β1x1u∗1 + 1

= (1 + R)
(
β1x1

1 + R

)2

+ x2
1 − 2β1x1

(
β1x1

1 + R

)
+ 1

=
1 + R − β2

1

1 + R
x2

1 + 1 .

b. Starting from the logic given in the text or, more formally, from the Bellman
equations, the two-stage cost-to-go function is given by

J∗ = min
u0

[
Ru2

0 + 〈J1(x1, β1)〉x1, β1, b, ν0

]
.

In principle J∗ = J∗(x0, β0), but the problem specifies x0 = β0 = 0. We use our
result on the one-stage problem to proceed. Defining J0(u0) by J∗ =minimum
of J0(u0) over u0, we have

J0(u0) =
[
Ru2

0 + 〈J1(x1, β1)〉x1, β1, b, ν0

]
= Ru2

0 +

〈
1 + R − β2

1

1 + R
x2

1

〉
b, ν0

+ 1

= Ru2
0 +

〈
x2

1

〉
b, ν0

− 1
1 + R

〈
x2

1 β
2
1

〉
b, ν0
+ 1

We use 〈x2
1〉 = 〈(bu0 + ν0)2〉 = u2

0 + 1 and also β1 = tanh θ1, with θ1 = x1u0 =

(bu0 + ν0)u0. Then,

J0(u0) = 2 + (1 + R)u2
0 −

f (u0)
1 + R

,
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with

f (u0) =
〈
x2

1 β
2
1

〉
b, ν0

=
〈
(bu0 + ν0)2 tanh2(bu0 + ν0)u0

〉
b, ν0

=
1
2

〈
(u0 + ν0)2 tanh2(u0 + ν0)u0 + (−u0 + ν0)2 tanh2(−u0 + ν0)u0

〉
ν0
.

In the last line, we carry out the average over b, recalling that at stage 0, we
have β0 = 0, so that we just have to use a factor of 1

2 for each case.
c. For small R, we assume we can Taylor expand about u0 = 0, using tanh x ≈

x − 1
3 x3 and thus tanh2 x ≈ x2 − 2

3 x4. Before averaging, we have

f (u0, ν0) = ν4
0 u2

0 +

(
6ν2

0 −
2
3
ν6

0

)
u4

0 + O(u6
0) .

Recalling that 〈ν2
0〉 = 1, 〈ν4

0〉 = 3, and 〈ν6
0〉 = 15, we find f (u0) = 3u2

0 − 4u4
0.

Then substituting into the expression for J0 gives

J0(u0) = 2 + (1 + R)u2
0 −

f (u0)
1 + R

= 2 +

(
(1 + R) − 3

1 + R

)
u2

0 +

(
4

1 + R

)
u4

0 .

We find the value of u∗0 by solving

∂J0

∂u2
0

=

(
(1 + R) − 3

1 + R

)
+

(
8

1 + R

) (
u2

0

)∗
= 0 ,

which gives

(
u2

0

)∗
=

3
1+R − (1 + R)

8
1+R

=
2 − 2R − R2

8
.

The roots u∗0 are real for R < R∗ =
√

3 − 1. Otherwise, the minimum is at
u∗ = 0.

d. In the small-R limit, we assume u2
0 � 1. We use the asymptotic expansion

tanh2 x =

(
ex − e−x

ex + e−x

)2

=

(
1 − e−2x

1 + e−2x

)2

∼ 1 − 4 e−2x .

Repeating for −x leads to

tanh2 x ∼ 1 − 4 e−2|x| .

Then, assuming that u0 � ν0, so that tanh(u0 + ν0)u0 ≈ tanh u2
0, we have

f (u0) =
1
2

〈
(u0 + ν0)2 tanh2(u0 + ν0)u0 + (−u0 + ν0)2 tanh2(−u0 + ν0)u0

〉
ν0

∼ 1
2

〈
(u0 + ν0)2 tanh2 u2

0 + (−u0 + ν0)2 tanh2 u2
0

〉
ν0

∼
(
1 − 4 e−2u2

0

) (
u2

0 + 1
)
.
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Then, since R � 1 and u0 � 1, we have

J0(u0) = 2 + (1 + R)u2
0 −

f (u0)
1 + R

∼ 2 +

(
1 + R − 1

1 + R

)
u2

0 −
1

1 + R
+

4
1 + R

e−2u2
0

(
u2

0 + 1
)

∼ 1 + R + 2Ru2
0 + 4u2

0 e−2u2
0 .

Taking the derivative with respect to u2
0 gives

∂J0

∂(u2
0)
= 2R + (4 − 8u2

0) e−2u2
0 ≈ 2R − 8u2

0 e−2u2
0 = 0 .

Then

R
4
=

(
u2

0

)∗
e−2(u2

0)
∗
,

implying

ln
4
R
= 2(u2

0)∗ + logarithmic corrections ,

Thus,

u∗0 ∼ ±
√
− 1

2 ln R ,

The approximation is relatively crude, as we drop the ln 2 inside the square
root as well as the logarithmic corrections. But these have only a small effect
on the final result.

e. Now we start with the particle at x0 and an initial knowledge of its charge β0.
We re-evaluate J0(u0):

J0(u0) = Ru2
0 +

〈
x2

1

〉
b, ν0

− 1
1 + R

〈
x2

1 β
2
1

〉
b, ν0
+ 1

Now, the average of x2
1 is given by the same expression we derived for stage 2

when picking u1.〈
x2

1

〉
b,ν
=

〈
(x0 + bu0 + ν0)2

〉
b,ν
= x2

0 + u2
0 + 2β0x0u0 + 1

The average of x2
1β

2
1 is

f (u0, x0, β0) =
〈
x2

1 β
2
1

〉
b, ν0

=
1
2

〈
(x0 + u0 + ν0)2 tanh2(u0 + ν0)u0

+(x0 − u0 + ν0)2 tanh2(−u0 + ν0)u0

〉
ν0
.
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By inspection, we can see that the lowest order terms areO(u2
0). Thus, the aver-

age will give higher-order corrections to the field O(u3
0). In fact, a calculation

using symbolic algebra gives

f (u0, x0, β0) =
(
3 + x2

0

)
u2

0 + 6x0β0u3
0 −

(
4 + x2

0

)
u4

0 .

Putting together the averages, we find the modified “free energy” to O(u4
0):

J0(u0) =
(
2 + x2

0

)
+ (2β0x0) u0 +

⎛⎜⎜⎜⎜⎝1 + R − 3 + x2
0

1 + R

⎞⎟⎟⎟⎟⎠ u2
0 −

(
6x0β0

1 + R

)
u3

0 +

⎛⎜⎜⎜⎜⎝4 + x2
0

1 + R

⎞⎟⎟⎟⎟⎠ u4
0 .

The linear term in u0 implies an effective field 2β0x0. (Actually, this is all
the question asks for. We did not need to calculate the higher-order terms.)
The field leads to an imperfect (symmetry-broken) bifurcation. The field-free

critical point is now at R∗ =
√

3 + x2
0 − 1. Thus, starting at x0 increases the

value of R where it becomes profitable to use control: since we need to move
the particle, it can be worth it to exert control even if it is relatively costly.
The question also asks why both β0 and x0 must be non-zero. Let us consider
what happens if only one of the two is zero:
• x0 = 0, β0 � 0: Imagine, for simplicity, that β0 = 1. If we start and want to

end up at the same point, it does not matter which direction we push the
particle.

• β0 = 0, x0 � 0: We know which way we want to move. But if we try to push
the particle in a particular direction, there is a 50-50 chance it will move in
the opposite direction. Thus, again, it does not matter which direction we
choose.

On the other hand, if we know which direction we need to push the particle
(x0 � 0) and if we know something about the sign of the charge (β0 � 0), then
there will be a preferred direction (sign) for u0. This is the meaning of the
external field 2β0x0.

10.22 Multi-armed bandits. Consider n slot machines (“bandits”), each paying a
reward Ji ∼ N(Q(i), 1), with average payout Q(i) ∼ N(0, 1): On average, some
bandits pay out, while others take money. Given an infinite number of trials, we
could determine the payout of each bandit precisely and then play the best ever
after. With a finite number of trials, we trade off finding the best bandit with
having time to play it. Here, we play 10 bandits 1000 times, repeating for 2000
Monte Carlo trials. We explore different strategies, with the goal of reproducing
the figure at right. The estimate of the average payout Q̂(i)

k of bandit i at time k
averages the payout over the n(i)

k times it has been observed at time step k. The
estimated variance of bandit i at time k is σ̂i

2 = 1/(times played). The largest Q̂(i)
k

defines the “best bandit” at time k.

a. ε-Greedy. At each time step, pick the best bandit with probability 1 − ε or
another at random with probability ε. Three curves are shown here (ε = 0,
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the greedy strategy, and ε = 0.01 and 0.1). Notice that the ε = 0.01 curve
learns more slowly but will eventually surpass the ε = 0.1 curve. Why? To
maximize the fraction of times we play the best bandit at k = 1000, what is
the best value of ε?

b. Probabilistic. At each time step and for each bandit, draw the random number
pi ∼ N(Q̂i, σ̂i). Play the bandit with the highest pi. Why might this be an
effective strategy? (The rule differs from the typical Boltzmann rule but works
better here.)

The optimal solution (Gittins) is complicated. Can you improve our heuristic
one?

Solution.

See website for code.

a. For the ε-Greedy strategy, the best value of ε (for maximizing the probability
of choosing the truly best bandit at time step k = 1000) appears to be roughly
ε = 0.07.

b. In the probabilistic strategy, if we neglected the standard deviation, we would
simply be playing each bandit with a probability proportional to its estimated
payout. Drawing from a distribution means that we have a greater chance
to explore more poorly known alternatives. We can check that omitting the
term (or even changing the proportionality constant in front of the variance),
makes the behavior worse.

10.23 Training a recurrent neural network can be hard. Consider a toy RNN, ẋ =
−x + tanh(wx − 1), with constant input (u = −1) and output y(t) = x(t). Train it
by tuning the parameter w, with the goal of minimizing the value of the steady
state xss ≡ x(t → ∞). Show that the cost function J(w) = minx

(
x2

ss

)
has the form

at left. Thus, since reasonable cost functions can have discontinuities, training

J

algorithms that perturb coefficients locally can have problems (Doya, 1992).

Solution.

The fixed points are given by solving ẋ = 0, which leads to the algebraic
equation,

x = tanh(wx − 1) .

The graph below plots the left- and right-hand sides, for w = 2, 2.56, and 4. The
fixed points are given by the intersection of the tanh curve with the dotted line
y = x. We see that there is a saddle-node bifurcation at w ≈ 2.56, where the
system goes from one to three fixed points. Since the goal is to have the smallest
steady state, there is a discontinuity in the associated cost function because of
this bifurcation. Such behavior is typical when training the internal network
connections of a recurrent neural network.
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As mentioned in the main text, the reservoir computing scheme skirts this
difficulty by using fixed, random connections and training only the output layer,
Wout, which is a convex problem with a simple, easy-to-find solution.
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Problems

11.1 Gain scheduling for a linear system. Consider an oscillator with mass m and
transfer function G(s) = (ms2 + s + 1)−1.

a. For m = 1, find a PID controller K(s) = Kp + Ki/s + Kds such that the closed-
loop transfer function between reference and output T (s) = 1

1+s .
b. Given K(s) from (a), find the closed-loop transfer function Tm(s) for arbi-

trary m.
c. Calculate the step response numerically for m = 0.2, 1, 2, and 5. (Compare at

left.) Note that the response is more robust for smaller than larger masses.
d. Show that the closed-loop response goes unstable at m = 4.
e. Given the mass m, design a “gain scheduled” controller km(s) such that T (s) =

1
1+s . This controller produces a nice step response for all (known) masses.

Solution.

a. We have T = KG
1+KG . Solving for K gives

K(s) = G(s)−1 T (s)
1 − T (s)

= G−1 1
T−1 − 1

=
(
s2 + s + 1

) 1
(s + 1) − 1

=
s2 + s + 1

s
,

which is a PID controller with Kp = Ki = Kd = 1.
b. If the mass is now m but the controller is for m = 1, the closed-loop transfer

function will be T (s) = KG
1+KG , with

G(s) =
1

ms2 + s + 1
, K(s) =

s2 + s + 1
s

,

Simplifying the algebra leads to

T (s) =
s2 + s + 1

ms3 + 2s2 + 2s + 1
.

268
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c. The step response is based on T (s) as found in the previous part. Remember
that the controller is fixed to be K(s).

d. For m = 4, the closed-loop denominator is 4s3 + 2s2 + 2s + 1. We verify that
this factors as (2s + 1)(2s2 + 1), which implies a damped pole at s = − 1

2 , and
two poles s = ± iω on the imaginary axis (marginal stability), at ω = 1√

2
.

e. To make a loop transfer function L(s) = 1/s, choose K(s) = (ms2 + s + 1)/s,
which corresponds to keeping Kp = Ki = 1 and choosing Kd = m. As a
practical note, noise will make the system will be harder to control at large m,
since the derivative term will become large and since that term amplifies the
effects of noise.

11.2 Gain scheduling for a nonlinear system. Analyzing a nonlinear system locally can
improve control.

a. Integrate Eq. (11.1) numerically to reproduce the step plots shown. The PI
gains are Kp = Ki = 0.5. Hint: differentiate u(t) and integrate the system
[y(t), u(t)].

b. Derive the linear system by expanding about the steady-state solution at r.
c. Show that choosing Kp = Ki = 0.5/

√
r makes the transfer function of the

resulting linear system between r and y equal to 1
(1+s)2 .

d. Redo the numerical integration of the nonlinear system for this choice of
gains and show that the response time is now independent of r (see dashed
line at right).

Solution.

a. The coupled system of equations is

ẏ = −y + u2 , u̇ = −Kpẏ + Ki(r − y) .

These can be integrated numerically by any convenient routine. Note that
some programs will require you to solve the equations explicitly for ẏ and u̇.

b. We linearize using y = y0 + y1(t), u = u0 + u1(t), and r = r0 + r1(t). The
steady-state solution for set point r0 is y0 = r0 and u0 =

√
r0. The deviations

obey (
1 0

Kp 1

)
d
dt

(
y1

u1

)
=

( −1 2
√

r0

−Ki 0

) (
y1

u1

)
+

(
0
Ki

)
r1(t) .

Some programs can directly handle such a descriptor state-space description.
Others will want you to solve explicitly for ẏ1 and u̇1. We can do this easily by
inverting the left-hand matrix and multiplying through. This gives

d
dt

(
y1

u1

)
=

( −1 2
√

r0

−Ki + Kp −2Kp
√

r0

)
︸������������������������︷︷������������������������︸

A

(
y1

u1

)
+

(
0
Ki

)
︸︷︷︸

B

r1(t) .
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The corresponding transfer function from r1 to y1 is found either using
control software or by G = C(sI − A)−1B, with C =

(
1 0

)
:

G(s) =
2Ki

√
r0

2Ki
√

r0 + (1 + 2Kp
√

r0)s + s2
.

Notice that G(s = 0) = 1, implying that steady-state perturbations go to
y1 = r1. In addition, we see explicitly that choosing Kp = Ki =

1
2
√

r0
makes the

transfer function equal to G = 1
(1+s)2 .

c. Repeating the numerics for the r = 0.25 case with the new values of Kp and
Ki gives the curve at left. Notice that its time scale is the same. In fact, if you
rescale the amplitudes, you will see that the response is essentially identical.

11.3 Level control in a fluid tank.

a. Using Bernouilli’s Law, show that fluid exits a tank at a velocity v2 = 2gh,
where g is the gravitational acceleration and h is the fluid level above the outlet
orifice. Conclude that the level of a tank with cross section A and outlet area
a obeys Aḣ = −a

√
2gh + u(t), where u(t) is the added fluid flow volume/time.

See left.
b. Design a simple nonlinear controller based on a sensor that measures h(t) and

controls u(t). The controller should linearize the dynamics and converge to a
desired reference height h0. Adapted from Slotine and Li (1991).

Solution.

a. Bernouilli’s Law neglects any frictional losses and integrates the inviscid
Navier-Stokes (Euler) equations for fluids:

P +
1
2
ρv2 + ρgh = const .

In a tank with a hole in the side, the pressure at the outlet (z = 0) is just the
atmospheric pressure, since the exiting fluid is in contact with the atmosphere.
Likewise, the pressure at the top of the tank (z = h) is also 0, and the tank
cross section is big enough that we can consider the fluid as stationary there.
Thus, evaluating at z = h and z = 0 gives

���
0

P +
�

��
0

1
2
ρv2 + ρgh =���

0
P +

1
2
ρv2 +����0

ρgh ,

which implies that the velocity at the outlet orifice obeys v2 = 2gh.

The rate of change of volume in the draining tank is −Aḣ, which must equal
the volume per time of fluid exiting: av. Putting these together and adding
the input volume / time gives

−Aḣ + u(t) = a
√

2gh ,

which is equivalent to the requested result.
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b. To get the desired result, we should “cancel” the nonlinear term and create a
PI controller. Thus, we write

u(t) = a
√

2gh(t) + A

{
Kp[h0 − h(t)] + Ki

∫ t

0
dt′ [h0 − h(t′)]

}
,

which is equivalent to

ḧ + Kpḣ + Kih = Kih0 , h(t = 0) = h(0) , ḣ(0) = Kp[h0 − h(0)] .

Choosing Kp and Ki allows you to choose the pole positions, as in Exam-
ple 11.4. (But note that the pendulum example uses PD control, and here we
use PI control. Think about why.)

11.4 Robustness and error cancellation. Consider the first-order system ẋ = ax2 + u.

a. Choose a state-based control u(t) that eliminates the nonlinearity and imposes
linear dynamics with a pole at s = −1. Assume the state x(t) is observable.

b. Assume now that you mistakenly estimate the parameter a as â and choose the
feedback accordingly. Analyze the global stability of the closed-loop system.

c. Show that adding −bx3 to the feedback can make x = 0 globally stable. Find
the smallest value of b that stabilizes the origin.

Solution.

a. We choose u = −ax2 − x, which gives closed-loop dynamics ẋ = −x, which has
a pole at s = −1.

b. Now we choose u = −âx2 − x, which gives closed-loop dynamics

ẋ = −x + εx2 ,

where ε ≡ â − a. To analyze the global stability, we rewrite the equation in
terms of a Lyapunov function. For a one-dimensional state vector x(t), this is
always possible.

ẋ = −dV
dx
= − d

dx

(
1
2

x2 − ε

3
x3

)
.

From the plot of V(x) given below for ε = 1, it is clear, for positive ε, that
there is a maximum amplitude xmax for perturbations or initial conditions.
The system is stable only if x(t) < xmax for all t. We can find this value by
looking at −∂xV(x) = −x + εx2 = 0, which implies fixed points at x = {0, ε−1}.
Thus,

xmax =
1
ε
,

which implies that the more accurate the estimate of a (the smaller ε), the
greater the domain of stability.
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For negative ε (estimated â < a), the system is stable for x > xmin =
(
−ε−1

)
.

c. Next, consider u = −âx2 − x − bx3, which gives closed-loop dynamics

ẋ = −x + εx2 − bx3 .

The Lyapunov function is

V(x) =
1
2

x2 − ε

3
x3 +

b
4

x4 .

In order to have absolute stability for the point x = 0, we must have V ′(x) < 0
for x > 0 and V ′(x) > 0 for x < 0. The derivative is

dV
dx
= x − εx2 + bx3 = x

(
1 − εx + bx2

)
.

The condition V ′(x) = 0 implies that 1 − εx + bx2 = 0. Solving the quadratic
equation gives

x =
1

2b

(
ε ±

√
ε2 − 4b

)
.

Absolute stability means that there is no x (except for x = 0) that makes
V ′(x) = 0. Thus, we set

b >
ε2

4
.

In other words, we have to estimate the error ε = â − a and set b accordingly.
Then we impose a feedback

u = −âx2 − x − bx3 .

Notice how each term has a function:
• −âx2 tries to cancel the nonlinearity;
• −x imposes the desired linear dynamics and time constant for small

perturbations;
• −bx3 makes the feedback robust to larger perturbations.

11.5 Nonlinear integral control. In Chapter 3, we saw that integral control can stabi-
lize a set point without offset. The same trick can work for nonlinear systems,
too. Consider, as in Problem 11.4, the system ẋ = ax2 + u. Assume that a > 0 but
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that its value is not known. Let the goal now be to stabilize x(t) about the point
x0 � 0.

a. For proportional control u = Kp(x0 − x), find the equilibrium point x∗ and
determine the conditions for linear stability of the fixed point.

b. Add an integral control term, Ki

∫
dt′ (x0 − x). Show that the set point x0

is now a fixed-point solution. Determine its linear stability as a function of
{a, x0,Kp,Ki}. Does integral control improve the stability?

c. Reproduce the step responses at right for Kp = 5 and Ki = {0, 1, 5}.
d. Can integral control stabilize an arbitrary set point for a general nonlinear

system?

Solution.

a. For proportional control, the fixed points are given by

ax2 − Kpx + Kpx0 = 0 .

The solutions are

x∗ =
Kp

2a

⎡⎢⎢⎢⎢⎢⎢⎣1 ±
√

1 − 4a
Kp

x0

⎤⎥⎥⎥⎥⎥⎥⎦ .
We see that for real fixed points to exist, Kp ≥ 4ax0. In the limit Kp � 4ax0,
we have x∗ ≈ Kp/a, x0.

The linear stability is given by x(t) = x∗+ x1(t), with ẋ1 = f ′(x∗) x1. Evaluating

the derivative at the fixed point gives f ′(x∗) = 2ax∗ − Kp = ±
√

1 − 4ax0
Kp

, which

is stable for Kp ≥ 4ax0.

b. For PI control, we have u = Kp(x0 − x) + Ki

∫
dt′ (x0 − x), or

ẋ = ax2 + Kp(x0 − x) + Kiw

ẇ = x0 − x .

The fixed points are now x∗ = x0 and w∗ = −ax2
0/Ki. Linearizing about {x∗,w∗}

gives

A =
(
2ax0 − Kp Ki

−1 0

)
.

The eigenvalues obey a characteristic equation, λ2 − 2(ax0 − Kp/2)λ + Ki = 0,
which gives eigenvalues

λ = (ax0 − Kp/2) ±
√

(ax0 − Kp/2)2 − Ki ,

which implies we need Kp > 2ax0 for linear stability and that increasing Ki

will make the system more oscillatory, albeit with faster response times.
c. You just need to integrate the ODEs. See the book website for Mathematica

code.
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d. In general, we have ẋ = f (x, u,w) and ẇ = x0 − x. The second equation will
drive x → x0 and the auxiliary variable w(t) to a stationary value, w∗. Can the
equation

f (x0, u,w
∗) = 0

be solved by picking a control law u(t)? If yes, then you also need to check for
linear stability about the fixed-point (x0,w∗). (And if it is linearly stable, you
can ask whether there is a finite domain of stability.)

11.6 Stabilization in finite time. Nonlinear control can stabilize a system against per-
turbations in finite time, whereas linear feedback leads to exponential relaxation
that takes an infinite amount of time to decay. As a simple example, consider
ẋ = x + u, a one-dimensional system with unstable fixed point at x = 0. Let the
feedback law be u(t) = −k sign[x(t)] for |x| < 1 and −k x(t) for |x| ≥ 1. See left,
where k = 2.

a. Show that a perturbation x(0) = x0 returns in finite time to x = 0, for k > 1.
b. Compare the control effort,

∫ ∞
0

dt u2(t), for this system against that for u =
−kx.

c. Show that you can replace the destabilizing +x term with a nonlinear f (x)
satisfying | f (x)| < �|x|, for some � > 0 (Lipschitz condition), and x = 0 contin-
ues to be stable. Hint: show that V = 1

2 x2 is a Lyapunov function, using an
inequality.

See Sun et al. (2017) for hints and applications to the control of complex
networks.

Solution.

a. The closed-loop equation of motion is

ẋ = x + u , u(t) =

⎧⎪⎪⎨⎪⎪⎩−k sign[x(t)] |x| < 1

−k x(t) |x| ≥ 1
.

In principle, there are four cases to consider: x0 > 0 and x0 < 0, each subdi-
vided into |x0| ≤ 1 and |x0| > 1. If we let x → −x, we see that the equations
keep the same form and thus need only consider the magnitude of x0 > 0.
If x0 > 1, then the equation of motion becomes, assuming k > 1,

ẋ = x − kx , =⇒ x(t) = x0 e−(k−1)t .

At time t = t∗ = ln |x0| /(k− 1), the state reaches one: |x(t∗)| = 1, and thereafter,
the feedback algorithm changes, and we can look at the x < 1 closed-loop
equation,

ẋ = x − k , =⇒ x(t − t∗) = k − (k − 1) et−t∗ .

Solving for the time for x(t) to reach 0 then gives,

t∗∗ =

⎧⎪⎪⎨⎪⎪⎩
ln|x0 |
k−1 + ln

(
k

k−1

)
|x0| > 1

ln
(

k
k−|x0 |

)
|x0| < 1
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The state x(t∗∗) = 0 at t∗∗ = ln|x0 |
k−1 + ln k

k−1 for x0 > 1. For 0 < x0 < 1, the
corresponding expression is t∗∗ = ln

( k
k−x0

)
for x0 > 1. Thus, whatever the

value of x0, the system reaches x(t) = 0 in finite time, t∗∗. Collecting these
For reference, for k = 2, the expressions simplify to

t∗∗ =

⎧⎪⎪⎨⎪⎪⎩ln |x0| + ln 2 |x0| > 1

ln
(

2
2−|x0 |

)
|x0| < 1

b. Let us first consider the case 0 < x0 < 1. Then, from the previous section,
the control signal is u = −k for a time t∗∗ = ln k/(k − x0). The corresponding
control effort is

ENL = k2 ln

(
k

k − x0

)
.

We compare this to the linear case, where x(t) = x0 e−(k−1)t for 0 < t < ∞. The
control effort is then

EL = k2x2
0

∫ ∞

0
dt e−2(k−1)t =

k2x2
0

2(k − 1)
.

Below, we plot ENL and EL vs. k > 1 for x0 =
1
2 . For gains k � kc = 1, the

nonlinear control is cheaper; for k > k∗ ≈ 1.25, the linear control is cheaper
(but slower). In general, as we have seen often previously, there is a tradeoff
between the speed of response and control effort.

c. For the original equations, let us verify that V = 1
2 x2 is a Lyapunov function.

For x0 > 1, we start with the upper branch:

V̇ = xẋ = x2(1 − k) = −(k − 1)x2 < 0 , for x > 1 .

Then, the lower branch, with 0 < x0 < 1:

V̇ = xẋ = x(x − k) < 0 , for 0 < x < 1 .

For the inequality, we note that x−k < 0 for 0 < x < 1, since we are also given
that k > 1.
Now we modify the closed-loop equation of motion to

ẋ = f (x) + u(x) , with || f (x)|| < �||x|| ,



276 Nonlinear Control

for some positive bound �. Then

V̇ = xẋ = x [ f (x) + u(x)] ≤ �x2 + x u(x) .

So, in the upper branch, V̇ ≤ (� − k)x2 ≤ 0 for k > �. And, for 0 < x < 1,
we have V̇ ≤ �x2 − kx ≤ 0 when 0 < x < 1. The point is that f (x) is less
destabilizing than �x and can be stabilized by linear feedback k > � for x > 1.

11.7 Relative degree. Consider a linear system with transfer function G(s),

G(s) =
b0sk + b1sk−1 + · · · + bk

sn + a1sn−1 + · · · + an
≡ b(s)

a(s)
.

Show that the input u(t) first appears after n − k differentiations of the output
y(t). The relative degree is thus the difference between the numerator and
denominator orders.

Solution.
Let us write a state-space equivalent of the linear system. From Eq. (2.59), we

have,

ẋ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1
−an −an−1 −an−2 · · · −a2 −a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸������������������������������������������������︷︷������������������������������������������������︸
A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn−1

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸︷︷︸
B

u

y =
(
bk bk−1 · · · b1 b0 0 · · · 0

)
︸��������������������������������������������︷︷��������������������������������������������︸

C

x .

To check the relative degree, we need to take derivatives of the output y(t). We
have,

ẏ = CAx + CBu .

If k = n − 1, then the row vector C has no zeros and CB = bn−1 � 0. We would
conclude the system has relative degree n − 1.

If CB = 0, then we differentiate y again:

ÿ = CAẋ +���0
CBu̇

= CA2x + CABu .

Now we look at CAB. Because of the structure of A, with ones above the
diagonal, it just shifts the elements of C one element to the right. That is,

CA =
(
0 bk bk−1 · · · b1 b0 0 · · · 0 .

)
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Before, there were n − k − 1 zeros on the right. Now there are n − k − 2. Thus, if
the relative degree is n − 2, then CAB = b0. Otherwise, we repeat until b0 finally
appears. This will be after n − k differentiations, which proves the claim.

11.8 Internal dynamics. More on the simple example from Section 11.1.3.

a. Show that choosing u = −x3
2 − x1 stabilizes the

( 0
0
)

solution to d
dt

( x1
x2

)
=

( x3
2+u
u

)
.

b. Now alter ẋ2 = u to ẋ2 = −u. Show that the internal dynamics is unstable.

Solution.

a. The control law u = −x3
2 − x1 leads to ẋ1 = −x1, whose solution,

x1(t) = x1(0) e−t, converges to zero for all initial conditions x1(0).

The second dynamical equation,

ẋ2 = u = −x3
2 − x1 ,

is a nonlinear differential equation. If the x1(t) term were absent, then x2 = 0
would be a globally stable fixed point. Indeed, for x2(0) ≡ x0,

x2(t) =
1√

2t + 1
x2

0

.

The x1(t) = x1(0) e−t term appears as an external driving that causes x2(t) to
change and makes the ODE for x2 non-autonomous. We begin by considering
short- and long-time asymptotic limits:
• At short times, t � 1: then ẋ2 ≈ +x1(0), so that x2(t) ∼ x1(0) t.
• At long times, t � 1: the x1(t) term decreases exponentially, whereas the

unperturbed x2(t) t−1/2, a much slower decay. Thus, after sufficient time,
ẋ2 ≈ −x3

2, independent of the initial condition, and x2(t) ∼ 1√
2t

. The overall
sign will depend on the initial condition. Thus, although the x1(t) term can
be initially destabilizing, we still expect asymptotic stability.

Another approach is to bound x1(t) by x1(0). Let us take the case, x2(0) > 0
and x1(0) = −α3, with α > 0. Then

ẋ2 = −x3
2 + α

3

has a fixed point x2 = α. With x2 ≡ x + α, we have

ẋ = −x3 − 3αx2 − 3α2x .

The fixed point is determined from x(x2 + 3αx+ 3α2) = 0, which has solutions

x = 0 ,
α

2

(
−3 ± i

√
3
)
.

The only real root is x = 0. If we interpret the right-hand side as − dV
dx , with

V(x) a Lyapunov function, we can easily see that x = 0 will be a globally stable
solution. Below, we show V(x) for α = 1.
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We then plot numerically, below the full solution for x2(t) assuming x2(0) = 0
and x1(0) = 1. In the plot, the solid line is the full x2(t) solution, while the
dashed lines give long-time (x2 ∼ 1√

2t
) and short-time (x2 ∼ t) approximations.

b. If we consider the equations,

d
dt

(
x1

x2

)
=

(
x3

2 + u
−u

)
, y = x1 ,

then

ẋ2 = −u = x3
2 + x1(t) ,

which clearly blows up. The reference solution to ẋ2 = x3
2 is

x2(t) =
1√

−2t + 1
x2

0

,

which blows up at time t = 1/(2y2
0).

Thus, the internal dynamics are stable in Part (a) and unstable in Part (b).

11.9 Feedback linearization of a two-dimensional system. Complete Example 11.5 by
deriving the equations of motion in the new coordinate system z = T(x). If the
output is given as y = x1, what is the relative degree?
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Solution.
Recall the equations of motion,

d
dt

(
x1

x2

)
=

(
f1(x)
f2(x)

)
+

(
0
1

)
u .

Using the input-state linearization technique of Section 11.1.4, we found that

T1 = x1 , T2 = f1(x) , u = − f2 +

(
∂ f1
∂x2

)−1 [
v − f1

∂ f1
∂x1

]
.

Thus, ż1 = ẋ1 = f1 = z2. Next,

ż2 = ḟ1 =
∂ f1
∂x1

ẋ1 +
∂ f1
∂x2

ẋ2

=
∂ f1
∂x1

f1 +
∂ f1
∂x2

( f2 + u) = v .

Thus, collecting these equations, we have

ż1 = z2

ż2 = v .

We can then pick v as desired. For example, we can choose a feedback law to
stabilize the fixed point z1 = z2 = 0.

The relative degree can be found by differentiating the output until the input
appears. That is just the calculation done above, which shows that the relative
degree = 2.

11.10 Linearizable, but not reachable. Consider ẋ1 = x2
2 and ẋ2 = u(t).

a. Using the results from Example 11.5, find a nonlinear change of coordinates
that makes this system linear and controllable.

b. Show that, nonetheless, you cannot reach all states starting from the origin,( 0
0
)
. Qualitatively, what goes wrong?

c. Find the set of states that can be reached after a time T .

Solution.

a. To put the dynamics in the form of Example 11.5, we write

f =
(

f1
f2

)
=

(
x2

2
0

)
, g =

(
0
1

)
.

We then choose z1 = T1 = x1 and z2 = T2 = f1 = x2
2. Then

β−1 =
∂T2

∂x2
= 2x2 , α = 0 ,

and we write ż2 = 2x2 u = v, or u = v/(2x2). The linear system is then

d
dt

(
z1

z2

)
︸�︷︷�︸

ż

=

(
0 1
0 0

)
︸�︷︷�︸

A

(
z1

z2

)
︸︷︷︸

z

+

(
0
1

)
︸︷︷︸

B

v .
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Noting that

AB =
(
0 1
0 0

) (
0
1

)
=

(
1
0

)
and that Wc = (B, AB) =

(
0 1
1 0

)
has full rank, we conclude that the new linear system is controllable.

b. We can clearly choose a u(t) to make x2(t = T ) an arbitrary value. But since
ẋ1 = x2

2 ≥ 0, we can never decrease x1(t) below its original value. Qualitatively,
even though our control can access a set that has the dimension of the full
state space (2 here), that is not sufficient to say that it can access the whole
of that state space. Something akin to ordinary functional mappings is occur-
ring here. Essentially the mapping of controls to the tangent space is not onto,
in the same way that y = x2 maps the whole real line to the positive line y ≥ 0.

c. The previous section shows that half the state space is inaccessible. Here, we
show that we can reach any point in the rest of state space. Let the desired
endpoint be

( a
b
)
, to be reached at time T Let us assume that a and b are greater

than zero. The case a < 0 is handled similarly.
Consider a control

u(t) =

⎧⎪⎪⎨⎪⎪⎩+1 0 < t < τ

−1 τ < t < T
, =⇒ x2(t) =

⎧⎪⎪⎨⎪⎪⎩t 0 < t < τ

2τ − t τ < t < T
.

Note that x2(T ) = 2τ − T = b. Then, using x1(t) =
∫ t

0
dt′ x2(t′)2, we have,

x1(T ) =
τ3

3
+

1
3

[
τ3 − (2τ − T )3

]
=

2τ3

3
− b3

3
= a .

This shows that we can choose τ and T to match a and b, iff b > 0.

11.11 Involutive or not? Consider the vector fields, f =
(

1
0
x2

)
, g =

(
0−1±x1

)
. Show that

choosing +x1 gives an involutive pair but choosing −x1 does not.

Solution.
The Lie bracket [ f , g] is given by

[ f , g] =
∂g
∂x

f − ∂ f
∂x

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 0
±1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0
0 0 0
0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−1
±x1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
±1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

.

The +x1 case thus leads to three vector fields that we can put together in a matrix
W+ = { f , g+, [ f , g+]}, which we write explicitly as,

W+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 −1 0
x2 x1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Since det W+ = −2 � 0, for all x ∈ M = R3, the three vectors span the full
three-dimensional tangent space for all x ∈ M.

The −x1 case leads to

W− =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
x2 −x1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Now, det W− = 0, which shows that f and g are not involutive.

This exercise is due to Roger Brockett, Harvard University.
11.12 Lie brackets. Let [ f , g] ≡ ∂g

∂x f − ∂ f
∂x g, with f (x) and g(x) vector fields and ∂ f

∂x

and ∂g
∂x Jacobian matrices. Let h(x) be a real-valued function, and recall that the

Lie derivative L f h ≡ ∂h
∂x f . Then show the following:

a. Geometrical interpretation: Consider the following sequence of vector-field
flows:

ẋ = + f (x)︸︷︷︸
0<t<ε

, +g(x)︸︷︷︸
ε<t<2ε

, − f (x)︸︷︷︸
2ε<t<3ε

, −g(x)︸︷︷︸
3ε<t<4ε

.

By Taylor-expanding the state x(t), show that the state fails to return to the
origin by an amount x(4ε)− x(0) = ε2[ f , g]+O(ε3). (Caution: messy algebra.)

b. Bilinearity: [α1 f 1 + α2 f 2 , g] = α1 [ f 1 , g] + α2 [ f 2 , g].
c. Skew commutivity: [ f , g] = −[g , f ].
d. Jacobi identity: L[ f ,g] h(x) = L f Lg h(x) − LgL f h(x).

Solution.

a. For simplicity, let x(t = 0) = 0. Then, an O(ε2) Taylor expansion gives

x(ε) = ε ẋ(0) +
ε2

2
ẍ(0) = ε f (0) +

ε2

2
∂ f
∂x

f
∣∣∣∣∣
0
.

Then we evolve this state from ε to 2ε with ẋ = +g(x):

x(2ε) = x(ε) + ε ẋ(ε) +
ε2

2
ẍ(ε)

= x(ε) + ε g[x(ε)] +
ε2

2
∂g
∂x

g
∣∣∣∣∣
x(ε)

.

We note that, to the lowest required order in ε,

g[x(ε)] = g(0) + ε
∂g
∂x

f
∣∣∣∣∣
0

and
∂g
∂x

g
∣∣∣∣∣
x(ε)
=
∂g
∂x

g
∣∣∣∣∣
0
.

Then, substituting into the expression for x(2ε) gives, to O(ε2),

x(2ε) = ε f (0) +
ε2

2
∂ f
∂x

f
∣∣∣∣∣
0
+ ε

(
g(0) + ε

∂g
∂x

f
∣∣∣∣∣
0

)
+
ε2

2
∂g
∂x

g
∣∣∣∣∣
0

= ε
[
f (0) + g(0)

]
+
ε2

2

(
∂ f
∂x

f +
∂g
∂x

g + 2
∂g
∂x

f
)

0
.
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Next, we evolve from time 2ε to 3ε using ẋ = − f (x), which gives,

x(3ε) = x(2ε) + ε ẋ(2ε) +
ε2

2
ẍ(2ε)

= x(2ε) − ε f [x(2ε)] +
ε2

2
∂ f
∂x

f
∣∣∣∣∣
x(2ε)

.

We have

f [x(2ε)] = f (0) + ε

[
∂ f
∂x

f +
∂ f
∂x

g
]

0
, and

∂ f
∂x

f
∣∣∣∣∣
x(2ε)
=
∂ f
∂x

f
∣∣∣∣∣
0
.

Substituting into the expansion then gives,

x(3ε) = ε
[
��f (0) + g(0)

]
+
ε2

2

(
�

��∂ f
∂x

f +
∂g
∂x

g + 2
∂g
∂x

f
)

0︸�������������������������������������������������������︷︷�������������������������������������������������������︸
x(2ε)

− ε
[
��f (0) + ε

[
�

��∂ f
∂x

f +
∂ f
∂x

g
]

0

]
︸����������������������������︷︷����������������������������︸

f [x(2ε)]

+
ε2

2 �
��∂ f

∂x
f

∣∣∣∣∣∣
0

= ε g(0) +
ε2

2

(
∂g
∂x

g + 2
∂g
∂x

f − 2
∂ f
∂x

g
)

0

= ε g(0) +
ε2

2
∂g
∂x

g
∣∣∣∣∣
0
+ ε2

(
∂g
∂x

f − ∂ f
∂x

g
)

0

= ε g(0) +
ε2

2
∂g
∂x

g
∣∣∣∣∣
0
+ ε2[ f , g]0 .

Finally, we evolve from 3ε to 4ε with ẋ = −g(x):

x(4ε) = x(3ε) + ε ẋ(3ε) +
ε2

2
ẍ(3ε)

= x(3ε) − ε g[x(3ε)] +
ε2

2
∂g
∂x

g
∣∣∣∣∣
x(3ε)

.

We have

g[x(3ε)] = g(0) + ε
∂g
∂x

g
∣∣∣∣∣
0
, and

∂g
∂x

g
∣∣∣∣∣
x(3ε)
=
∂g
∂x

g
∣∣∣∣∣
0
,

so that

x(4ε) = ε��g(0) +
ε2

2 �
��∂g

∂x
g

∣∣∣∣∣∣
0

+ ε2[ f , g]0︸���������������������������������︷︷���������������������������������︸
x(3ε)

−ε
(
��g(0) + ε

�
��∂g

∂x
g

∣∣∣∣∣∣
0

)
︸����������������︷︷����������������︸

g[x(3ε)]

+
ε2

2 �
��∂g

∂x
g

∣∣∣∣∣∣
0

= ε2[ f , g]0 .
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b. Bilinearity follows from the definition and from the linearity of the derivative:

[α1 f 1 + α2 f 2 , g] =
∂g
∂x

(α1 f 1 + α2 f 2) − ∂

∂x
(α1 f 1 + α2 f 2) g = α1 [ f 1 , g] + α2 [ f 2 , g] .

c. Skewness is a trivial property of the definition:

[g, f ] =
∂ f
∂x

g − ∂g
∂x

f = −
(
∂g
∂x

f − ∂ f
∂x

g
)
= −[ f , g] .

d. To establish the Jacobi identity, we work back from the right-hand side to the
left. With Lg h = ∂h

∂x g, we have

L f Lg h(x) − LgL f h(x) =
∂

∂x

(
∂h
∂x

g
)

f − ∂

∂x

(
∂h
∂x

f
)

g

=
	

	
		∂2h

∂x2
g f +

∂h
∂x

∂g
∂x

f −
	

	
		∂2h

∂x2
f g − ∂h

∂x
∂ f
∂x

g

=
∂h
∂x

(
∂g
∂x

f − ∂ f
∂x

g
)

=
∂h
∂x

[ f , g]

= L[ f ,g] h(x) .

11.13 Parking a unicycle. The equations of motion are d
dt

(
x1
x2
θ

)
u1(t)

(
cos θ
sin θ

0

)
+ u2(t)

(
0
0
1

)
for the unicycle, where u1 controls the drive and u2 the spin. Show that the Lie
bracket, [drive, spin] = slip, where slip is ⊥ to drive.

Solution.
To calculate the Lie bracket [drive, spin], we simplify notation by defining

drive ≡ f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos θ
sin θ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , spin ≡ g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then [ f , g] is given by

[ f , g](x) =
�
�
��
0

∂g
∂x

f − ∂ f
∂x

g

= −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 − sin θ
0 0 cos θ
0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
sin θ
− cos θ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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The result is a new vector that we call slip. It clearly corresponds to a
displacement perpendicular to the unicycle’s drive axis. Note that drive · slip = 0.

11.14 Feedback linearization. Let us show that Eq. (11.38) gives necessary and
sufficient conditions for a control affine system to be feedback linearizable.

a. Use the Jacobi identity (Problem 11.12d) to show, for a smooth function h(x)
and smooth vector fields f (x) and g(x) and arbitrary positive integer k, that

Lgh = LgL f h = · · · = LgLk
f h = 0 ⇐⇒ Lgh = Lad f gh = · · · = Ladk

f gh = 0 .

b. Using the above result, show that Eqs. (11.28) and (11.29) imply,

∂T1

∂x
adk

f g = 0 for k = 0, 1, 2, . . . , n − 2 and
∂T1

∂x
adn−1

f g � 0 .

c. Conclude that the vector fields g, ad f g, . . ., adn−1
f g are linearly independent.

d. Using the Frobenius theorem, conclude that the vector fields are involutive.

Solution.

a. For k = 0, the statement is trivial, as both sides of the relation state that
Lgh = 0. For k = 1, we use the Jacobi relation to write,

Lad f gh = L[ f ,g] h = L f����0
Lg h −�����0

LgL f h = 0 .

For k = 2, we use the Jacobi relation twice to write

Lad2
f gh = L[ f ,[ f ,g]] h = L f�����0

L[ f ,g]h − L[ f ,g]L f h

= −
(
L f Lg − LgL f

)
L f h = −L f�����0(

LgL f h
)
+ Lg	

		

0(

L2
f h

)
= 0 .

We continue to establish the relation for all k. We can also reverse the
argument to establish equivalence between the two sets of relationships.

b. The second relation in Eq. (11.29) states, for k = 0, 1, . . . , n − 2, that

LgLk
f T1 = 0 .

Part (a), with h → T1, then implies that

LgT1 = Lad f gT1 = · · · = Ladk
f gT1 = 0 .

Using the definition of the Lie derivative then gives

∂T1

∂x
g =

∂T1

∂x
ad f g = · · · = ∂T1

∂x
adk

f g = 0 .

For k = n − 1, we start from Eq. (11.29), which states that LgTn � 0.
Using the recursive equations Lk−1

f T1 = Tk, we have

LgTn = Lg

(
L f Tn−1

)
= Lg

(
L2

f Tn−2

)
= · · · = Lg

(
Ln−1

f T1

)
� 0 .
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The result of Part (a) then implies that Ladn−1
f gT1 � 0 or, equivalently,

∂T1

∂x
adk

f g � 0 .

c. If g, ad f g, . . ., adn−1
f g are linearly dependent, then there exist � − 1 functions

α1(x), . . . , α�−1(x), with � ≤ n − 1, such that

ad�f g =
�−1∑
k=0

αk(x) adk
f g .

Now, relabel � → n− 1, and then apply the row vector ∇T1 to the left on both
sides. The first step is permissible, since the labels are arbitrary. This gives,

∂T1

∂x
ad�f g =

n−2∑
k=n−�−1

αk(x)
∂T1

∂x
adk

f g .

But from Part (b), the left-hand side is non-zero, while the right-hand side is
zero, a contradiction. Hence the vector fields must be linearly independent.

d. From the Frobenius theorem, if the n − 1 vector fields g, ad f g, . . ., adn−2
f g

satisfy

∂T1

∂x
adk

f g = 0 ,

then they are involutive.

This sketch of the proof of the conditions for input-state linearization fol-
lows that of Slotine and Li (1991), who also show that the above conditions are
sufficient for linearizability of the nonlinear, control-affine system, ẋ = f + g u(t).

11.15 Linear systems from a nonlinear point of view. By specializing the n-dimensional
control-affine system of the form ẋ = f + g u(t) → Ax + Bu, show that

Wc =
(
g ad f g · · · adn−1

f g
)

→
(
B AB A2B · · · An−1B

)
.

In both cases, the matrix Wc must have rank n. But the nonlinear condition refers
to feedback linearizability, while the linear condition also implies controllability.

Solution.
We have f (x) = Ax and g = B. Then, the Lie bracket

[ f , g] = [Ax, B] =
�

�
��

0
∂B
∂x

(Ax) − ∂(Ax)
∂x

B = −AB .

Similarly,

[ f , [ f , g]] = [Ax,−AB] = −
	

	
		


0
∂(AB)
∂x

(Ax) +
∂(Ax)
∂x

AB = +A2B .

Further Lie brackets give (−1)k Ak B. This reproduces Wc, except that odd
columns have a minus sign. But this does not affect the rank of Wc, implying
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that both cases have the condition of rank n. But only the linear case carries the
further implication of controllability.

11.16 Flexible link. Consider controlling a pendulum via an elastic, “soft” torque
such as that provided by a motor. The system may be used to model muscles,
both real and artificial. In robotics jargon, it is known as a single-link flexible
joint. With scaled units and simplified choices for spring constant and inertial
moments, the equations of motion are θ̈1+sin θ1+ (θ1−θ2) = 0 and θ̈2+ (θ2−θ1) =
u(t), where θ1 is the angle of the pendulum with respect to its down equilibrium,
θ2 is the angle of the input to the coupling, and u is the torque applied to the
coupling.

a. Write these equations in control-affine form, ẋ = f (x) + g(x) u(t).
b. Calculate the linearizability matrix Wc =

(
g ad f g ad2

f g ad3
f g

)
, and verify

that it has full rank. We thus can linearize the system exactly.
c. Find the change of variable z = T(x) and control that linearizes the system in

the form of Eq. (11.20). Hint: See Problem 11.14b. In particular, show that

u = −
(
sin x1(x2

2 + cos x1 + 1) + (x1 − x3)(2 + cos x1)
)
+ v(t) .

d. Find the inverse transformation x = T−1(z) and use it to confirm explicitly that
the dynamics are linear in the new variables: ż1 = z2, ż2 = z3, ż3 = z4, ż4 = v.

e. Reproduce the plots at left, for step inputs of amplitude 0.1, 0.4, and 0.5. The
light oscillating trace shows the undamped, open-loop response. The heavy
dark line uses the exact feedback linearization, assuming that the linear part
of the control is set to have 4 poles at −1. You should find a gain (row) vector
K =

(
1 4 6 4

)
. The dashed curve is based on the linearization of the system

about θ1 = θ̇1 = θ2 = θ̇2 = 0. Its gain vector is designed so that the linear
approximation has poles at −1. You should find K′ =

(−6 − 4 3 4
)
. The

approximate design matches the exact linearization very well for u0 = 0.1 but
goes unstable for large input torque input, near u0 = 0.5.

Solution.

a. In control-affine form,

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x2

− sin x1 − x1 + x3

x4

x1 − x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

b. We calculate the Lie brackets as follows:

ad f g = [ f , g] =
�
�
��
0

∂g
∂x

f − ∂ f
∂x

g = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

− cos x1 − 1 0 1 0
0 0 0 1
1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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Next,

ad2
f g = [ f , ad f g] = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

− cos x1 − 1 0 1 0
0 0 0 1
1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Last,

ad3
f g = [ f , ad2

f g] = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 0 0

− cos x1 − 1 0 1 0
0 0 0 1
1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−1
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Putting these all together gives

Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 1
1 0 −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
which has rank=4 and det=1. Full rank implies that we can carry out
feedback linearization.

c. Following the hint, we use (with n = 4),

∂T1

∂x
adk

f g = 0 for k = {0, 1, 2} and
∂T1

∂x
ad3

f g � 0 ,

substituting the results from Part b. Then,

∂T1

∂x
g =

∂T1

∂x4
= 0

∂T1

∂x
ad f g = −∂T1

∂x3
= 0

∂T1

∂x
ad2

f g =
∂T1

∂x2
−

�
�
��

0
∂T1

∂x4
= 0

∂T1

∂x
ad3

f g = −∂T1

∂x1
+

�
�
��

0
∂T1

∂x3
� 0 .

Putting all these together, we conclude that T1(x) = T1(x1) only. As in the text,
we try the simplest choice, T1(x1) = x1. We then use Eq. (11.28) to find T2, T3,
and T4. Thus,

T2 = L f T1 =
∂T1

∂x
f =

∂T1

∂x1
f1 = f1 = x2 .

Similarly,

T3 = L f T2 =
∂T2

∂x
f =

∂T2

∂x2
f2 = f2 = − sin x1 − x1 + x3 .
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Finally,

T4 = L f T3 =
∂T3

∂x
f =

(
−(1 + cos x1) 0 1 0

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

− sin x1 − x1 + x3

x4

x1 − x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −x2 cos x1 + x4 − x2 .

Collecting the change of variables, we have

T(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1

z2

z3

z4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

− sin x1 − x1 + x3

−x2 cos x1 + x4 − x2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

The function β(x) is given by

β−1 =
∂T4

∂x
g =

(
∂T4

∂x4

)
= 1 ,

and the function α(x) is given, from Eq. (11.21) by

αβ−1 = α = −∂T4

∂x
f = −

(
x2 sin x1 − cos x1 − 1 0 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2

− sin x1 − x1 + x3

x4

x1 − x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −x2

2 sin x1 + (cos x1 + 1) (− sin x1 − x1 + x3) − x1 + x3

= − sin x1(x2
2 + cos x1 + 1) − (x1 − x3)(2 + cos x1)

Thus, we find

u = −
(
sin x1(x2

2 + cos x1 + 1) + (x1 − x3)(2 + cos x1)
)
+ v(t) .

d. By substituting, we easily see that the inverse transformation is given by

x = T−1(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z1

z2

z1 + sin z1 + z3

z2 + z2 cos z1 + z4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Notice that T(x) and T−1(z) are both continuous and everywhere, meaning
that the coordinate transformation is a global diffeomorphism.



Problems 289

Let’s substitute into f (x):

f (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
x2

− sin x1 − x1 + x3

x4

x1 − x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z2

− sin z1 − z1 + z1 + sin z1 + z3︸������������︷︷������������︸
x3

z2 + z2 cos z1 + z4︸����������������︷︷����������������︸
x4

z1 − (z1 + sin z1 + z3)︸��������������︷︷��������������︸
x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z2

z3

z2 + z2 cos z1 + z4

− sin z1 − z3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Differentiating the inverse transform gives,

ẋ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ż1

ż2
d
dt (z1 + sin z1 + z3)

d
dt (z2 + z2 cos z1 + z4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1

ż2

z2 + (cos z1)z2 + ż3

z3 + z3 cos z1 − z2
2 sin z1 + ż4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Matching the first two equations, we see that we already have ż1 = z2 and
ż2 = z3. The third equation is

ż3 = −z2 − z2 cos z1 + z2 + z2 cos z1 + z4︸����������������︷︷����������������︸
f3

= z4 .

Finally, the fourth equation is,

ż4 = −z3(1 + cos z1) + z2
2 sin z1 + − sin z1 − z3︸��������︷︷��������︸

f4

+u .

We can transform it into the desired ż4 = v(t) by setting

u = z3(2 + cos z1) + (1 − z2
2) sin z1 + v(t) .

Back in the original coordinates, we have

u = (− sin x1 − x1 + x3)︸������������������︷︷������������������︸
z3

(2 + cos x1) + (1 − x2
2) sin x1 + v

= −
(
sin x1(x2

2 + cos x1 + 1) + (x1 − x3)(2 + cos x1)
)
+ v ,

which is just the expression for u that we found above.
e. To do the numerics, you first need to simulate the open-loop system. Then

simulate the closed-loop system based on the exact linearization. The control
is modified in two ways: first, we use u = α + βv; second, we substitute v =
−Kz, where we have to express the latter back in terms of the x components.
Expicitly, this is

v = −K1z1 − K2z2 − K3z3 − K4z4

= −K1x1 − K2x2 − K3(− sin x1 − x1 + x3) − K4(−x2 cos x1 + x4 − x2) ,

which is included in the above expression for u. Finally, the linear approxi-
mation has its own gain vector, K′. We again simulate the response using the
nonlinear dynamics, but this time the control is just u = −K′x.
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For small linearities, the approximation-based linearization works pretty well,
with the main difference being in the value of the steady state (the difference
between θ and sin θ). But for larger values, it means the difference between
stability and instability!

Finally, although we wanted to work out everything explicitly in this solution,
it is useful to note that programs such as Mathematica can do these calculations
with built-in functions, in just a few lines of code.

11.17 Global Stabilization of the nonlinear pendulum. For θ̈ − sin θ = u and for the
“up” position (θ = θ̇ = 0), consider the function V = 2a sin2

(
θ
2

)
+ 1

2 θ̇
2.

a. For the uncontrolled system (u = 0), show that V is not a Lyapunov function.
b. Show that choosing u = −Kp sin θ − Kdθ̇ cos2 θ can make V a Lyapunov func-

tion that stabilizes the top position. In particular, show that you need to
choose a > 0, Kp = a + 1 > 1, and Kd > 0. What is the physical significance of
these conditions?

c. What if there is friction in the pendulum, so that θ̈ + λθ̇ − sin θ = u?
d. Example 11.8 notes that V̇ is negative semi-definite, not negative definite. Yet

the up solution is stable to almost all perturbations. Consider a new term in
the control algorithm u → u − εθ, with θ defined to be in the range of (−π, π).
There is a discontinuity of amplitude 2ε when crossing the down position,
θ = ±π. Is such a term helpful? Is the modified V still a Lyapunov function?

e. Plot θ(t), V(t), and u(t) for a perturbation of the form θ(0) = 0, θ̇(0) = 2, and
a = Kd = 1. Show that the controller recovers from a “kick” of almost 80◦.

Solution.

a. We compute the time derivative for general u:

V̇ = 4a sin
(
θ

2

)
cos

(
θ

2

) (
1
2

)
θ̇ + θ̇ θ̈ = θ̇ (a sin θ + sin θ + u︸���︷︷���︸

θ̈

) .

For u = 0, this gives

V̇ = (a + 1) θ̇ sin θ ,

which can be both positive and negative, even when a > 0. Thus, V is not a
Lyapunov function if u = 0.

b. For u = −Kp sin θ − Kdθ̇ cos2 θ, with Kp = a + 1 and Kd > 0, we have

V̇ = θ̇[(a + 1) sin θ + u]

= −Kd θ̇
2 cos2 θ ≤ 0 .

This expression is negative semi-definite for Kd > 0, and V is now a Lyapunov
function.

Physically, the condition a > 0 gives the Lyapunov function a minimum at
θ = 0 (up) and maximum at θ = π (down). For negative a, these are reversed,
and we would stabilize the down position. The condition Kp > 1 implies
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that we can supply enough torque to overcome the effects of gravity. That
is, the actuator can directly swing up the pendulum to its up equilibrium.
Example 7.2 discusses how to swing up a pendulum in the more-challenging
underactuated case, where the maximum torque that can be supplied is less
than the gravitational torque.

c. If there is a friction term λθ̇ in the equation of motion, then V̇ → V̇ − λθ̇2.
In other words, friction helps stabilize the motion. We can use the previous
controller and the response will be even faster.

d. The “down” solution (θ = π, θ̇ = 0 in our coordinates) is an unstable equilib-
rium. There is a set of measure zero of perturbations that will end up in these
solutions. Notice that, for the down solution u = 0, meaning that if the down
solution is reached, then the system is “stuck” there. Of course, in practice,
there would never be such a perturbation, and the slightest deviation from the
ideal would be enough to push the system out of the unstable down position.
But we can easily imagine modifying the control law to avoid even this remote
possibility. What we need is a control law that is discontinuous at θ = π. Why
discontinuous? Angles that are just less than π should be pushed “down” to
zero. Angles just on the other side should be represented as near −π and thus
pushed “up” to zero. A term in the control law of the form

u → u − ε θ
will work for small ε > 0. We can replace θ by any monotonic function of θ,
too. Here, we restrict the angle θ to be within the range (−π, π), so that there is
the required discontinuity at ±π. If we adopt such a strategy, then we cannot
have a Lyapunov function, which, by definition, must be differentiable. Again,
we emphasize that this discussion is mostly to make a somewhat academic
point. In practical applications, the Lyapunov design works well.

e. Below, we integrate the equations of motion for the closed-loop system,
extracting at the same time V and u. The initial condition is θ(0) = 0 and
θ̇(0) = 2, and we use a = Kd = 1. Thus, we knock the pendulum nearly 80◦

away from the vertical, and it recovers easily. (Note that we set ε = 0, too.)

θ 

It is instructive to look at the Lyapunov function and the feedback law for
small deviations about the up equilibrium. Linearizing at θ = 0 then gives an
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approximate Lyapunov function,

V ≈ 2a

(
θ2

4

)
+

1
2
θ̇2 ≈ 1

2

(
aθ2 + θ̇2

)
.

For the controller,

u ≈ −Kpθ − Kdθ̇ ,

which is just standard PD control.

11.18 Sending “secret” messages by synchronized chaos. Section 10.5.1 introduced the
Lorenz equations for state variables xT = (x, y, z). Here, think of this system as
the transmitter, and set up a receiver with state variables xT

r = (xr, yr, zr) driven by
x(t) from the original system (but not in the ẋr equation). The two systems are

ẋ = σ (y − x) ẋr = σ (yr − xr)

ẏ = x (r − z) − y ẏr = x (r − zr) − yr

ż= xy − bz︸�����︷︷�����︸
transmitter

żr = xyr − bzr︸�������︷︷�������︸
receiver

.

a. Simulate for σ = 16, b = 4, and r = 45.6. Demonstrate synchronization of
the chaotic motion by plotting components of xr(t) vs. x(t). Also, plot the
components of the error e ≡ x − xr, and show that they decay exponentially.

b. Show that V = 1
2

( 1
σ

e2
x + e2

y + e2
z
)

is a Lyapunov function for this dynamical
system. Why does this explain the synchronization?

c. Cuomo and Oppenheim built analog electronic circuits corresponding to
these equations and demonstrated synchronization experimentally (Strogatz,
2014). They then communicated “secret messages” by both analog and digital
techniques. To understand the latter, let the “signal” m(t) be a stream of 0 and
1’s – we will use a square wave but a random bit sequence will work equally
well. Use m to modulate the b coefficient. That is, let b → b(t) = b + a m(t).
Take a = 0.4. The altered x(t) signal to the receiver, compute xr, and then plot
the quantity ex = (xr − x)2. Send ex through a low-pass filter, and plot the
result. Then apply a threshold: set the signal = 0 below a certain amplitude
and 1 above it. Call this estimate m̂ and compare to the original m (see below).
Why does this scheme work?

One note: although here the “carrier” of the message is chaotic and chaotic
motion seems complicated, this problem shows that the message scheme is not
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inherently secure, in that any eavesdropper could achieve the same synchro-
nization as the intended receiver. Whatever robustness exists in the detection
scheme will be available to all, and any desired security will arise by encrypt-
ing the message itself. For a discussion of why using a chaotic carrier might
nonetheless be useful, see Abarbanel (2008). Quantum communication meth-
ods, by contrast, can provide inherently secure protection against eavesdroppers
(Mermin, 2007).

Solution.

a. The parameters σ = 16, b = 4, and r = 45.6 are different from the set often
used to demonstrate chaos in the Lorenz equations, but the motion and attrac-
tor are qualitatively the same. Below is a plot of x(t) and y(t) vs. x(t). The
latter shows a 2d projection of the 3d attractor.

Next, we look at synchronization. The plots below show, at left, xr(t) vs x(t).
As a diagonal line, it indicates synchronization. At right is ex = (xr − x)2.
It decays exponentially until numerical noise takes over. Thus, there is fast
convergence to synchronization.
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b. The candidate Lyapunov function is

V =
1
2

(
1
σ

e2
x + e2

y + e2
z

)
,

which is clearly positive definite, as it is the sum of squares. All three error
components must vanish simultaneously, which is only possible at perfect
synchronization. Next, we compute

V̇ =
1
σ

ex ėx + ey ėy + ez ėz .

The error dynamics are

ėx = σ (ey − ex)

ėy = x ez − ey

ėz = x ey − b ez .

Substituting into the expression for V̇ gives

V̇ =
1
σ

ex ėx + ey ėy + ez ėz

= ex(ey − ex) + ey(��x ez − ey) + ez(��x ey − b ez)

= −
(
ex − 1

2 ey

)2 − 3
4 e2

y − be2
z ,

which is negative definite. Since the error converges to zero, the two
trajectories are the same: this is what synchronization means.

c. The basic idea behind the digital communication scheme outlined in the text
is that for b = 0, the two systems are identical and rapidly synchronize. When
modulated to the “1” state, the value of b is different (4.4 in the example,
rather than 4). The two systems no longer synchronize well. The mean-square
error is then positive. Thus, in the scheme, we effectively look for period of
small mean-square error and call them zero and one for larger amplitudes.
The low-pass and threshold is just one algorithm to pick up this signature.

This example, due originally to K. Cuomo and A. Oppenheim, follows the
description by Strogatz (2014). They also describe a way to transmit analog
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signals, too, by adding the signal m(t) to the output x(t) and then setting m̂ =
xr − x. I found, numerically, that this can work approximately if the parameters
are adjusted but that it is much less robust than the digital scheme.

This problem is nice because it combines several aspects of nonlinear control
that are explored in this chapter: It uses Lyapunov functions; it synchronizes
two dynamical systems; and, also, one system acts as a nonlinear observer.

11.19 Backstepping. Here is a recursive way to start from a Lyapunov function for
a simple system and “extend” it to a new Lyapunov function for an enlarged
dynamical system. Consider a system of the form ẋ = f (x) + g(x) ν, with ν̇ = u.
Here, the input variable is u, as usual, and ν is an “extra” state variable, along
with the n variables in x. Now pretend that ν is the control variable for ẋ =
f (x)+g(x) ν, and imagine that we know a Lyapunov function V0(x) that stabilizes
x = 0 for the system ẋ = f (x)+ g(x) φ(x) for some appropriate “control” ν = φ(x).

a. In the original problem, ν is not directly controlled. Define a new variable
z = ν − φ(x). Find a u to make a new Lyapunov function, V = V0 +

1
2 z2.

b. Use backstepping to find a control u and Lyapunov function V for ẋ1 = x2
1+x2,

ẋ2 = u that stabilizes x1 = x2 = 0.

Khalil (2001) extends this idea to a chain of dynamical equations (not
restricted to the simple integrator discussed here).

Solution.

a. Since ν = φ(x) leads to a Lyapunov function V0 for the first equation, let us
try the change of variable z = ν − φ. The new equations of motion are then

ẋ = f (x) + g(x) (z + φ)

ż = ν̇ − φ̇ = u − ∂φ

∂x
ẋ = u − ∂φ

∂x
[ f (x) + g(x) (z + φ)] .

Then V = V0 +
1
2 z2 is a Lyapunov function if

V̇ = V̇0 + z ż

=
∂V0

∂x
ẋ + z

{
u − ∂φ

∂x
[ f (x) + g(x) (z + φ)]

}
.

Choosing

u =
∂φ

∂x
[ f (x) + g(x) (z + φ)] − z

leads to V̇ = V̇0 − z2. Since V̇0 is already negative (semi)-definite, so is V.
b. The dynamical system is

ẋ1 = x2
1 + x2

ẋ2 = u .
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If x2 were a “control” for the x1 equation, we could choose

x2 = −x1 − x2
1 ≡ φ(x1)

and have ẋ1 = −x1, which has a Lyapunov function V0 =
1
2 x2

1.

Defining z = ν − φ = x2 + x1 + x2
1 leads to new equations

ẋ1 = −x1 + z

ż = ẋ2 + ẋ1(1 + 2x1) = u + (−x1 + z)(1 + 2x1) .

We would like the full Lyapunov function to be V = 1
2 (x2

1 + z2). To be a
Lyapunov function, V̇ must be negative (semi)-definite. Thus,

V̇ = x1 ẋ1 + z ż

= x1(−x1 + z) + z(u + (−x1 + z)(1 + 2x1))

= −x2
1 + z [x1 + u + (−x1 + z)(1 + 2x1)] .

Now choose u to cancel out the unwanted terms and leave V̇ negative definite:

u = −x1 + (x1 − z)(1 + 2x1) − z = 2
[
x2

1 − z(1 + x1)
]
,

which implies V̇ = −x2
1 − z2.

As a check, we transform back to the original variables by substituting for z:

u = −2(x1 + x2
1 + x3

1 + x2 + x1x2) .

11.20 Oscillator frequency stabilization. The Pound–Drever–Hall (PDH) technique is
a way to stabilize the frequency of a tunable laser that is similar to extremum-
seeking control (Section 10.1.2). It uses a standard PID loop based on an error
signal proportional to the frequency shift between laser and reference cavity. The
clever part is how the error signal is generated. Here, we discuss a simplified ver-
sion of PDH that applies to a signal y(t) = y(ω) eiωt + c.c., whose frequency ω(t)
can drift in time and a reference passive filter, whose response has a fixed reso-
nance frequencyω0. Our focus will be on generating an error signal proportional
to the shift in frequency, e(t) ∝ ω0−ω(t). In keeping with the optical applications,
we will assume that ω is so large that we cannot measure the time-domain signal
y(t) directly but must rather measure its time-averaged power, P(ω) ≡ 〈|y(ω)|2〉,
which can drift slowly.

a. We begin with a naive strategy that seems like it should work but has flaws.
As shown below, we pass the signal, y(t), through a second-order filter with
highly underdamped, resonant response. Select ω0 so that the ω(t) is located
on the side of the resonance, at or near the point of maximum slope. Using
a Taylor expansion of the power variation δP = P − P0, show that we expect
δP =

(
∂P
∂P0

)
δP0 +

(
∂P
∂ω

)
δω, to first order in variations of signal power ( δP0)
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and frequency ( δω). We cannot distinguish between these variations without
monitoring the signal power.

b. Now consider the PDH strategy, illustrated below. Set ω0 ≈ ω(t) and add
a deliberate phase modulation of amplitude a and frequency Ω � ω0/Q,
where Q is the enhancement factor of the resonance. Specifically, let the fre-
quency be modulated so that ω(t) = ω0 + δω(t) + aΩ cosΩt. Repeat the
calculation from (a) and show, ignoring 2Ω and higher-frequency terms, that
δP =

(
∂P
∂P0

)
δP0 +

(
∂2P
∂ω2 δω

)
aΩ cosΩt, where ∂2P

∂ω2

∣∣∣∣
ω0

δω ≡ e(t) functions as an

error signal. In the PDH strategy, we use a mixer to multiply the output
of the filter F(ω) by cosΩt and a low-pass (LP) filter with cutoff frequency
� Ω. Explain why this isolates e(t), the amplitude of the cosΩt term in δP
and why the effects of amplitude variation in the original signal now give a
higher-order contribution.

The real Pound–Drever–Hall technique not only adds the physics of laser cav-
ities but also includes many subtleties, such as the advantages of working with
a higher modulation frequency Ω > ω0/Q, of working in reflection with an
intensity minimum (as opposed to the maximum analyzed here), and the cal-
culation of nonlinearities in the shape of the error function for larger frequency
excursions (Black, 2001).

Solution.

a. The given expression is simply the Taylor expansion of the power at a fre-
quency ω. We get both terms because the power has an overall factor P0(t)
that can drift and well as a frequency ω(t) that can also drift. Choosing ∂P

∂ω

at the point of maximum slope helps in that it makes the coefficient of the
variations that we care about (δω) as large as possible relative to the varia-
tions that we do not care about δP0. Still, the fundamental problem is that if
you use this signal to infer frequency shifts, you cannot be sure that you are
not confusing an amplitude shift. One strategy, of course, is to do a separate
monitoring of the power, eventually adding a feedback to stabilize it. That is a
reasonable strategy, but the PDH strategy, as we will see below, does manage
to isolate the frequency variation without the need for continual monitoring
of the signal power.
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b. The first term, ∂P
∂P0

is unchanged. To understand the second term, we calculate
it in two stages. First, we Taylor expand in the frequency deviations. This
gives a term of the form, (

∂P
∂ω

)
a cosΩt .

But now we have chosen a frequency near the top of the filter resonance where
∂P
∂ω
= 0, so that we can do a further Taylor expansion for nearby frequencies:

∂P
∂ω

≈ ∂2P
∂ω2

∣∣∣∣∣∣
ω0

δω .

Putting this result with the first gives the formula in the text. Choosing the
filter frequency so that ω ≈ ω0 is important because changes to the intensity
do not affect the equilibrium point (set point) in a feedback loop. (The error
signal is zero whatever the intensity is.) Note that the second derivative is only
an approximation that holds if Ω is small enough that P(ω) is approximately
quadratic about the maximum (or minimum).

The mixer works by multiplying the filtered signal by cosΩt. The reference
has fixed frequency Ω, but the signal, because of the slow drifts, will actually
have components at Ω′ ≈ Ω (but not quite equal to it). The cosine-product
trig identity

cosΩt cosΩ′t =
1
2

(
cos

(
Ω −Ω′)t + cos

(
Ω + Ω′

)
t
)
.

The term with (Ω − Ω′) is near DC, while the other is near 2Ω. By low-
pass filtering, we can isolate the near-DC term, which is proportional to the
amplitude of the cosΩt term in the drifting signal. All other terms, including
the one near DC in the original signal, are filtered out after mixing with the
reference signal.

11.21 Synchronization of the van der Pol oscillator to periodic forcing. Consider
ẍ − ε(1 − x2) ẋ + ω2

0x = F cosωt, a forced version of the van der Pol equation
introduced in Problem 7.17, with 0 < ε � 1. The forcing amplitude is weak
(F � ε), and the detuning small (ω/ω0 = 1 + O(ε)).

a. Assume a solution of the form x(t) = A eiωt + c.c., with A an amplitude that
can vary on time scales ε−1. Show that Ȧ = O(ε) and Ä = O(ε2). Then show
that

Ȧ = − i

⎛⎜⎜⎜⎜⎝ω2
0 − ω2

2ω

⎞⎟⎟⎟⎟⎠ A +
1
2
ε
(
1 − |A|2

)
A − i

F
4ω

.

Hint: Write ẍ + ω2x = · · · and include all other O(ε) terms on the RHS.
Substitute for x, multiply by e− iωt, and average over one period.

b. Rewrite (a) to give a generic amplitude equation, a′(τ) = − iνa+(1−|a|2)a− i f ,
by rescaling and redefining quantities. Show that all terms are O(1).
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c. Write a in polar form, a = r eiφ, and show that r′ = (1 − r2)r − f sin φ, with
φ′ = −ν − f

r cos φ. Does φ obey an Adler equation?
d. Simulate the forced van der Pol equation and find conditions for synchroniza-

tion. Compare to the asymptotic analysis based on the Adler equation. Use
the parametric plot (Lissajous figure) between x(t) and cosωt to test for syn-
chronization. Reproduce the plots above at left, where ε = 0.1, ω0 = 1, and
(top two graphs) f = 0.4.

ω

ω

Solution.

a. We write the equations of motion

ẍ + ω2x = (ω2 − ω2
0)x + ε(1 − x2) ẋ + ω2

0x + F cosωt .

Let’s substitute x(t) = A eiωt + c.c. into the LHS. Neglecting the O(ε2) term,
we get

ẍ + ω2x = −ω2A eiωt +2 iωȦ eiωt +��̈A eiωt +ω2A eiωt

≈ 2 iωȦ eiωt .

We proceed similarly for the right-hand side. To simplify notation, we multi-
ply both sides of the equation by e− iωt. If we then average over a period 2π/ω,
then all terms eimωt with integer m � 0 will vanish. This leaves

2 iωȦ = (ω2
0 − ω2)A + iωεA − ε|A|2A(iω) +

1
2

F .

Here, we have changed F cosωt to 1
2 F eiωt + c.c. Also, in the nonlinear term,

we have collected all contributions with two factors of A eiωt and one factor of
A∗ e− iωt. These combine to give contributions proportional to eiωt. Dividing
by 2 iω gives the desired equation.

b. We define τ = 1
2εt to be the slow time variable and A → a (no change needed).

Then

ε

2
a′(τ) = − i

⎛⎜⎜⎜⎜⎝ω2
0 − ω2

2ω

⎞⎟⎟⎟⎟⎠ A +
1
2
ε
(
1 − |A|2

)
A − i

F
4ω

.

Dividing by ε
2 gives

a′(τ) = − i

⎛⎜⎜⎜⎜⎝ω2
0 − ω2

ωε

⎞⎟⎟⎟⎟⎠ A +
(
1 − |A|2

)
A − i

F
2εω

.

Defining

ν ≡
(
ω2

0−ω2

ωε

)
, f ≡ F

2εω

gives the desired equation. Notice that the assumptions on forcing and
detuning imply that ν and f are both O(1).
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As a side remark, the forced van der Pol equation is special in lacking a non-
linear dependence of the limit cycle frequency on limit cycle amplitude (at
O(ε)). More generally, the scaled amplitude equation takes the form

a′(τ) = − iνa + a − |a|2a − iα|a|2a − i f ,

where α gives the frequency shift due to amplitude a.
c. Let a = r eiφ. Then a′ = (r′ + iφ′r) eiφ. Substituting and then separating real

and imaginary terms gives the desired equations. Note that we use f e− iφ =

f cos φ − i f sin φ.
We have already required F to be of O(ε). If we further require f � 1, then

r′ = (1 − r2) f − f sin φ

has a solution r ≈ 1. The f term is then a small perturbation. By contrast,
using r = 1 in the φ equation gives

φ′ = −ν − f cos φ ,

which is a form of the Adler equation. (A trivial π/2 phase shift in φ converts
the cosine into a sine.) Unlike the r equation, the phase φ is neutral to con-
stant perturbations (the φ′ = −ν part). This is an explicit illustration of our
assertion that phase perturbations are “soft” while amplitude perturbations
are “hard.”

d. See code on book website. To reproduce the Lissajous figures, you have to
eliminate transient motion. The figures shown simulate to t = 500 and show
only the last 20 time units.

The plot shows the numerically obtained boundaries between locked and
quasiperiodic (unlocked) motion, as judged crudely by Lissajous figures, as
demonstrated by the top two graphs. We can compare to the predictions of
the Adler equation. In scaled units, this is just f = |ν|. Going back to the orig-
inal quantities, F, ω, and ω0 = 1, we see that we expect lines F = 1 ± 4(ω − 1).
These are the two straight lines shown in the plot. They are consistent with
the numerical results at small forcing F and start to deviate at higher val-
ues. (However, the method used to estimate the boundaries numerically is, as
already noted, rather crude.)

Note that an alternative to using a Lissajous figure to detect phase relations
is to use the Hilbert transform, which leads to a direct estimate of the phase
of the response. In the locked regime, this phase will be a constant relative
to that of the cos ωt term. In the quasiperiodic regime, it will increase (or
decrease) linearly in time. This and many other details on this problem may
be found in Pikovsky et al. (2001).

11.22 Synchronization of N globally coupled oscillators (Example 11.9). Consider N
coupled oscillators obeying Eq. (11.53), with frequencies ωk having symmetric
distribution g(ω) and mean ω0. Define the complex order parameter K = K eiΘ,
which can be viewed as a “mean field” that “externally” forces the oscillators.
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a. Show that Eq. (11.53) can be rewritten as φ̇k = ωk + εK sin
(
Θ − φ j

)
.

b. Show that the synchronized oscillator frequency ≈ ω0 and that ψk ≡ φk − ω0t
obeys the Adler equation ψ̇k = ωk − ω0 − εK sinψk.

c. Argue that for N → ∞, a self-consistent condition for the order parameter
is K = K eiΘ =

∫ π

−π dψ eiφ ns(ψ), where ns(φ) is the distribution of synchro-
nized oscillators having phase φ. Why do only the synchronous (and not the
asynchronous) oscillators contribute? Why is the integral over ψ?

d. Rewrite the self-consistent equations for K as 1 = ε
∫ π/2

−π/2 dψ cos2 ψ g(ω) and

0 = ε
∫ π/2

−π/2 dψ cosψ sinψ g(ω), where ω = ω0 + εK sinψ.

ε

ε -
 ε

e. Argue that the second equation is satisfied if the mean frequency is ω0, as we
guessed. Taylor expand the first equation about ω0 and show that there is a
phase transition at εc =

2
πg(ω0) from K = 0 to K2 =

8g(ω0)
|g′′(ω0)| ε3

c
(ε − εc), as shown

at right.
f. Integrate numerically the equations in (a), with N = 105 and g(ω) ∼ N(1, 0.12).

Reproduce the order-parameter plot at right for K(t). The values by the three
curves indicate ε/εc. Show that the synchronization threshold εc =

√
8/πσ.

For details, see Kuramoto (1984) and also Pikovsky et al. (2001), Section 12.1.

Solution.

a. First, we note that we can separate the equation defining the order parameter,

K = K eiΘ =
1
N

N∑
j=1

eiφk .

into real and imaginary equations:

K cosΘ =
1
N

N∑
j=1

cos φk , K sinΘ =
1
N

N∑
j=1

sin φk .

Then,

dφk

dt
= ωk +

ε

N

N∑
j=1

sin
(
φ j − φk

)

= ωk +
ε

N

N∑
j=1

(
sin φ j cos φk − cos φ j sin φk

)
= ωk + εK (sinΘ cos φk − cosΘ sin φk)

= ωk + εK sin(Θ − φk) .

Notice that if Θ and K were fixed external variables, we would have N
separate equations describing how each oscillator is forces by the external
periodic forcing. Here, the “external” forcing is provided by the synchronized
oscillators themselves.
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b. The symmetry of g(ω) implies that the synchronized oscillators must oscillate
at the mean frequency ω0, which is also the peak of the distribution g. Indeed,
ω0 is the only “special” frequency. With a more general, non-symmetric distri-
bution, the synchronization frequency must be determined self-consistently,
in a way that is similar to the equations we will write below for the synchro-
nization condition. Then, using the definition ψk = φk − ω0t and the result
from part (a), we write

dψk

dt
=

dφk

dt
− ω0

= ωk − ω0 + εK sin(Θ − φk)

= ωk − ω0 + εK sin(ω0t − φk)

= ωk − ω0 − εK sinψk .

c. We can view the order parameter as the estimator of an average quantity.
The self-consistent equation just writes down this average in terms of the
probability distribution ns(ψ). Only the synchronized oscillators contribute:
intuitively, the order parameter reflects the contribution of the synchronized
oscillators, with the contributions of the unsynchronized fraction averaging
to zero for N → ∞. The integral should be over the population of synchro-
nized oscillators. It is convenient to use ψ as the integration variable (and not
φ) because that is the stationary variable.

d. To convert from the distribution of oscillators by frequency, g(ω), to the
distribution of synchronous oscillators by phase, ns(ψ), we use the change-
of-variables formula of probability theory:

ns(ψ) = g(ω)
∣∣∣∣∣dωdψ

∣∣∣∣∣ = g(ω0 + εK sinψ) εK cosψ .

Because probability distributions must be positive functions (as reflected in
the absolute value in the Jacobian factor), the range of ψ is restricted to
(−π

2 ,+
π
2 ), which makes cosψ > 0. Then, with Θ = ω0t and φ = ψ + ω0t,

the self-consistent order-parameter equation becomes

K = K eiΘ =

∫ π

−π

dψ eiφ ns(ψ)

�K��eiω0t =

∫ π

−π

dψ eiψ ��eiω0t g(ω0 + εK sinψ) ε�K cosψ ,

1 = ε
∫ π

−π

dψ cosψ eiψ g(ω0 + εK sinψ) .

Writing the real and imaginary parts separately then gives,

1 = ε
∫ π/2

−π/2
dψ cos2 ψ g(ω0 + εK sinψ) ,

0 = ε
∫ π/2

−π/2
dψ cosψ sinψ g(ω0 + εK sinψ) .
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The integration range is now (−π
2 ,+

π
2 ) to reflect the support of ns(ψ).

e. The second equation determines the frequency, which we already assumed
was equal to ω0. Thus, all we must do is verify that it is satisfied. It is, since
cos and g are even functions of ψ while sinψ is odd. Had we not been smart
enough to guess that symmetry implies that the synchronization frequency
must be ω0, this equation would have shown us that.
For the first equation, Taylor expanding g to second order about ω0 gives

g(ω0 + εK sinψ) ≈ g(ω0) +
1
2

(εK sinψ)2 .

Then substitute:

1 = ε
∫ π/2

−π/2
dψ cos2 ψ

[
g(ω0) +

1
2

(εK sinψ)2

]
,

≈ επ

2
g(ω0) + ε3K2g′′(ω0)

π

16
.

One solution to this equation is

K = 0 , ε = εc =
2

πg(ω0) .

For ε > εc and |K| small, we can expand in (ε − εc) and find

0 = (ε − εc)
π

2
g(ω0) + ε3

c K2g′′(ω0)
π

16
,

which implies

K2 =
8g(ω0)

|g′′(ω0)| ε3
c

(ε − εc) .

Again, we note that this equation is valid only near onset, i.e., for ε � εc and
small K. Note also that K ≥ 0, so that we must take the positive square root.

f. See website for code.

11.23 Controlling chaos via the OGY method. Implement the OGY method and tar-
geting, to reproduce the plots in Figure 11.6. For targeting, write a function that
expands the range λ ± Δλ and compute the range of possible images x1 ± Δx1.
Then count the number of further iterations (using λ as control parameter) to
expand Δx1 to a larger range Δxn that includes the target x∗. You now have
a function between the range λ ± Δλ and xn ± Δxn that includes x∗. Use this
function in a root-finder routine to predict the value of the perturbation λ′ that Δλ

brings the system to x∗ in n iterations. Verify that the number of required iter-
ations grows logarithmically as the perturbation tolerance Δλ is reduced. For
plots, use ε = 0.02 and x0 = 0.5.

Solution.
See book website for code.

11.24 Time-delayed feedback for chaotic systems. Consider a control algorithm for
a signal y(t) that is based on K[y(t) − y(t − τ)], where K is a feedback gain and
τ is the period of limit cycle that you wish to stabilize. The control signal will
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vanish when y(t) is periodic with period τ. Use this idea to stabilize the Rössler
equations, a canonical dynamical system exhibiting chaos. The equations for a
three-dimensional state vector (x y z)T are ẋ = −y − z and, ẏ = x + ay − K[y(t) −
y(t − τ)], and ż = b + z(x − c).

a. Simulate a time series y(t) for 0 ≤ t ≤ 300, using a = b = K = 0.2 and c = 5.7.
Start the control at t = 100. For K = 0 (no control), the motion should be
chaotic.

b. The method needs the period τ. To find τ from the motion itself, calculate the
mean-square error of the control signal (after transients have died away), as a
function of τ. From the minima locations, find the periods to use in part (a).

Cf. Pyragas and Pyragas (2011), who show how to tune τ adaptively. Note that
using a delayed signal turns ordinary differential equations into delay-differential
equations, whose infinite-dimensional state spaces are hard to analyze.

Solution.
See book website for code. You should find graphs resembling those below.

τ
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12 Discrete-State Systems

Problems

12.1 Coarse graining. There are two steps: time averaging and then a nonlinear
“classification.” Here, we investigate the choice of time-averaging scale.

a. Write a code to make time series plots similar to those in Figure 12.3 for
xk+1 = xk + a

(
xk − x3

k

)
+ νk, with νk ∼ N(0, ν2). The control parameters are a

and ν.
b. Investigate the role of averaging time in coarse graining and reproduce

Fig. 12.4.
c. Show that if the coarse-graining factor is too small, the resulting process is not

Markov by using the update law, pk+1 = A pk twice: pk+2 = A2 pk. Compare
with pk+2 =

(
A2

)
pk, where A2 can be empirically estimated by looking at

frequencies of the four different state combinations. Does A2 = A2? Average
a simulated time series by a “coarse-graining factor” ; then compute the ratio
of off-diagonal matrix elements (A2)01 / (A2)01 as a function of ν and coarse
graining (see left).

Solution.

a. Simulations were done using 107 time steps in the raw (fast) time series, before
averaging by the coarse-graining factor.

b. Time series for ν = 0.15. You should get something resembling Fig. 12.4.
c. The ratio converges faster for larger ν, as illustrated below.

ν = 0.1
      0.2
      0.5

Taking into account the constraints of accuracy (previous part) and Markov
dynamics (present part), we see that a factor of about 100 is appropriate for

306



Problems 307

ν = 0.15. More generally, for dynamics on a time scale τ, the averaging time
should be somewhat shorter than τ. We want to average as much as possible
to avoid high-frequency dynamics, but we do not want to lose any of the
dynamics at the chosen time scale. Coarse-graining works best when there
is a clear separation between the time scale of the desired dynamics and the
slowest time scale of uninteresting dynamics.

Note: An alternative test is to see whether dwell-time distribution in each
state is exponential.

12.2 Equilibrium and steady states of a Markov chain. A steady state is reversible if
the stochastic process forward in (discrete) time is indistinguishable from the
backward process. The steady state in a reversible Markov chain is also termed
an equilibrium state, as it is closely connected to the notion of thermodynamic
equilibrium. In the following, the matrix element Ai j is the j → i transition
probability.

a. Detailed balance for a homogeneous Markov chain is defined by Ai j p j =

Aji pi, for all i and j. Show that reversibility implies detailed balance, and vice
versa. Hints: Sum i over all n states. Also, consider P(xk+1 = i, xk = j) and its
time reversal, along with sequences of N elements and their time reversal.

b. Show that the steady state of the two-state Markov model in Example 12.1
obeys detailed balance and is hence an equilibrium state.

c. For a diagonalizable, stochastic transition matrix A with no zero entries, show
that limN→∞ AN = P, where each column of P is the steady-state distribution
p. Please interpret. Use the fact (or prove) that λ = 1 is the largest eigenvalue.
Hints: p is a right eigenvector, and there is also a left eigenvector of all ones.

d. In order to use the detailed-balance condition for equilibrium, we have to first
solve for p. Kolmogorov derived a condition for equilibrium that depends
only on the transition probabilities Ai j. In particular, a stationary Markov
chain is reversible and obeys detailed balance if and only if

A�1�2 A�2�3 . . . A�N−1�N A�N�1 = A�N�N−1 A�N−1�N−2 . . . A�2�1 A�1�N

for every finite sequence of states �1, �2, . . ., �N for any length N. Show that
detailed balance implies Kolmogorov’s condition. The converse is trickier:
consider a very long path, fix �1 = i and �N = j, sum over all intermediate
states �2, . . . , �N−1, and use the identity from (c). Kolmogorov’s condition
implies that clockwise and counterclockwise probability currents around a
loop are equal for an equilibrium (reversible) state. Here, the j → i current
is Ji j = Ai j p j − Aji pi. In equilibrium, detailed balance implies Ji j = 0: the
only way to have a nonequilibrium steady state is to have a loop with differing
clockwise and counterclockwise probability currents. Finally, as a corollary
of Kolmogorov’s criterion, show that steady states must be reversible for trees
– graphs with no loops. Cf. Kelly (1979).
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Solution.

a. First, we assume time-reversal symmetry and prove detailed balance. We
denote the n states by {1 , . . . , n}, with probabilities p1 to pn. Then

P(xk+1 = i, xk = j) = P(xk+1 = i|xk = j) P(xk = j) = Ai j p j .

But reversibility implies that this is also equal to the time-reversed joint
probability

P(xk+1 = j, xk = i) = P(xk+1 = j|xk = i) P(xk = i) = Aji pi ,

and hence we deduce the detailed-balance condition.

To prove that detailed balance implies reversibility, start with

Ai j p j = Aji pi .

Since columns of A sum to unity (stochastic matrix), the sum over i is

n∑
i=1

Ai j p j =

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

Ai j

⎞⎟⎟⎟⎟⎟⎠ p j = (1) p j =

n∑
i=1

Aji pi .

The last relation expresses p = Ap in component form. Thus, detailed balance
implies steady state. To prove that it also implies reversibility, write the joint
probability of an N-element time series:

P(x1 = �1, . . . , xN = �N) = P(x1 = �1) P(x2 = �2|x1 = �1) . . .

P(xN = �N |xN−1 = �N−1)

= p�1 A�2�1 . . . A�N �N−1 ,

where �k denotes the state at time k ∈ (0,N). The time-reversed sequence for
the same set of states is

P(x1 = �N , . . . , xN = �1) = P(x1 = �N) P(x2 = �N−1|x1 = �N) . . .

P(xN = �1|xN−1 = �2)

= p�N A�N−1 �N . . . A�1�2 .

Then using detailed balance repeatedly shows that these forward and back-
wards sequences are identical.

b. From Example 12.1, we have

A =
(
1 − a0 a1

a0 1 − a1

)
, p = 1

a0+a1

(
a1

a0

)
.

Then, the detailed balance condition A10 p0 = A01 p1 is

a0

(
a1

a0 + a1

)
= a1

(
a0

a0 + a1

)
,

which clearly holds for all valid a0 and a1.



Problems 309

c. The elements of the stochastic A are all in the range (0, 1). Since the sum of
each column is 1, the row vector v = (1 1 1 , . . . , 1) is a left eigenvector with
eigenvalue 1. Thus, there is a (left) eigenvector with positive entries (all one)
with eigenvalue one.

The Perron Frobenius Theorem asserts that, for a positive matrix A, there is
a unique eigenvector (up to constant scaling) with all positive entries whose
simple eigenvalue λmax is real and positive. Further, for all other eigenvalues,
|λ| < λmax. For A, we have proven that the (left) eigenvector is all positive and
that the corresponding eigenvalue is also 1. Thus, λmax = 1.
Writing A in diagonal form, we have

AN = RDN R−1 ,

where the diagonal matrix is raised to the N’th power. Since the largest
eigenvalue is 1, we have

DN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1N

λN
2

. . .

λN
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we note that the matrix R has the structure p , v2 , . . . , vn. That is, each
column is a right eigenvector of A, with p corresponding to λ = 1 and v2

corresponding to λ2 and so on. Similarly, R−1 is made up of row vectors that
are the left eigenvectors of A. The top row vector corresponds to λ = 1 and
is given by all ones: 1 1 1 . . . 1. This arises from the normalization condition
for all columns of A. Now, we put this all together to write

P ≡ lim
N→∞ AN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p1

p2
...

pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p1 p1 · · · p1

p2 p2 p2
...

...
...

pn pn pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To interpret this result, we notice that Pv = p, for any normalized initial
distribution v. We can see this by writing

Pv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p1 p1 · · · p1

p2 p2 p2
...

...
...

pn pn pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v1

v2
...

vn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p1(

∑
vi)

p2(
∑

vi)
...

pn(
∑

vi)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p1

p2
...

pn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= p ,
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since
∑n

i=1 vi = 1 (normalization). Thus, whatever the initial distribution v,
the long-time dynamics of the Markov chain converges to p, as expected.

d. We first assume reversibility. Then detailed balance holds, and we can write,
for a cycle of N states,

A�1�2 p�2 = A�2�1 p�1

A�2�3 p�3 = A�3�2 p�2

...

A�N−1�N p�N = A�N�N−1 p�N−1

A�N�1 p�1 = A�1�N p�N .

Then multiplying all these equations together and canceling the common
factors of p gives Kolmogorov’s condition.

Going the other way—proving detailed balance starting from Kolmogorov’s
condition—is trickier. We outline the basic steps here, following Kelly (1979).
We begin with Kolmogorov’s condition, recopied for convenience:

A�1�2 A�2�3 . . . A�N−1�N A�N�1 = A�N�N−1 A�N−1�N−2 . . . A�2�1 A�1�N

Now, let us fix states �1 = i and �N = j and sum over all possible intermediate
states �2, . . . , �N−1. Recall from the definition of matrix multiplication that(

A2
)

i j
=

∑
�

Ai� A� j .

Using this identity repeatedly then gives∑
�2...�N−1

Ai�2 A�2�3 . . . A�N−1 j A ji =
∑

�2...�N−1

Aj�N−1 A�N−1�N−2 . . . A�2i Ai j

(
AN−1

)
i j

A ji =
(
AN−1

)
ji

Ai j

pi A ji = p j Ai j

A ji pi = Ai j p j .

To go from step two to three, take the limit N → ∞ and use the result from
(c). Thus, the matrix element only depends on the first (row) index and is
independent of the second (column) index. Note that the N → ∞ limit is justi-
fied because Kolmogorov’s criterion holds for every path, including arbitrarily
long sequences of states.

Kolmogorov’s criterion immediately implies that for any network graph of
transitions that can be represented as a tree (graph without cycles), the steady
state must be an equilibrium, reversible state. The argument is simply that
Kolmogorov’s criterion is for a cycle of states. But for a tree, there are no
cycles. Thus, at least one of the connecting transition probabilities must equal
zero in both directions. That is, there must be at least one A�i� j = A� j�i = 0.
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Then the criterion is always satisfied. Indeed, you need cycles to have the
possibility of non-equilibrium steady states.

12.3 Kinetic proofreading. Many biological systems have error rates far below that
predicted by the Boltzmann distribution of equilibrium thermodynamics. A sim-
ple nonequilibrium model can model this phenomenon. Consider the three-state,

discrete-time Markov model depicted at right, with A =
(

1−2R R R
R 1−2R−Δ R−Δ
R R+Δ 1−2R+Δ

)
.

a. Find the steady state of the Markov chain.
b. Using Kolmogorov’s condition from Problem 12.2, show that the system is in

equilibrium (reversible) if and only if Δ = 0.
c. Show that choosing Δ controls the ratio p2

p1
to be in the range

( 1
3 ,

5
3

)
.

d. Find the nonequilibrium current J(Δ) circulating around the loop.
e. Compute the steady state when you convert the cycle into a linear chain by

setting A13 = A31 = 0. For this chain, show that p2

p1
is independent of Δ.

The connection with kinetic proofreading is that adding a “useless” node 3
and creating a nonequilibrium cycle alters p2

p1
without changing A12 or A21.

Solution.

a. The steady state is given by the eigenvector of A corresponding to the unit
eigenvalue. Using Mathematica, we find

p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
3

1
3 − 2

9
Δ
R

1
3 +

2
9
Δ
R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
b. For Δ = 0, all states are equally likely (pi =

1
3 ), as is obvious from the transi-

tion diagram. For a three-state system, there is only one possible non-trivial
Kolmogorov condition for equilibrium, which is

A32 A21 A13 = A23 A12 A31 ,

which implies

(R + Δ) R R = (R − Δ) R R .

This relation obviously holds only when Δ = 0. Note that two-state paths
trivially satisfy the Kolmogorov condition, since they are simply

A�1�2 A�2�1 = A�2�1 A�1�2 .

The ratio p2

p1
is given by

p2

p1
= 1 − 2

3
Δ

R
.

For Δ = 0, we recover p2

p1
= 1.
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c. Since all elements of A must be positive (the elements are physically transition
rates, which cannot be less than zero), −R ≤ Δ ≤ R. At the upper bound,
p2

p1
= 1

3 ; at the lower, p2

p1
= 5

3 . (We could do better by altering the rates of
1 → 3 and 3 → 1 transitions or by not requiring A23 + A32 = 2R, as well.)

d. The current J21 in the clockwise direction (1 → 2 → 3 → 1) is given by

J21 = A21 p1 − A12 p2 = +
2
9Δ .

Thus, the higher probability in p1 relative to p2 is accompanied by a current
from 1 to 2. The direction of the current traces back to difference between
the 2 → 3 transition probability, R + Δ, and the 3 → 2 probability, R − Δ.

e. Breaking the 1 → 3 and 3 → 1 transition creates a linear chain (see below),

and the transition matrix becomes

Alinear =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − R R 0

R 1 − 2R − Δ R − Δ
0 R + Δ 1 − R + Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The single steady state is the eigenvector with unit eigenvalue:

plinear =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
R−Δ

3R−Δ
R−Δ

3R−Δ
R+Δ

3R−Δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Thus,

p2

p1
= 1 ,

for all Δ in this linear-chain case. The result again illustrates the conclu-
sion, proved using Kolmogorov’s criterion above, that the steady state for a
network with a tree graph must be in equilibrium and reversible.

12.4 HMM with continuous observations. Consider a two-state, discrete-time, sym-
metric Markov model with hopping probability a and states xk = ±1. Let the
observations yk = xk + ξk be continuous, with ξk ∼ N(0, σ2).

a. Write code to generate a hidden Markov sequence with both discrete and
continuous observations. Match the noise variance ξ2 to b, as in Eq. (12.7).
Solve the filtering problem for continuous observations. Compare plots of
a time series for a = b = 0.1. Plot the true state xk, the observations (solid
markers at left), and filter estimates (hollow markers). First, generate the
continuous observations; then use them to form the discrete symbols via the
sign operation.
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b. Show that the filter performs slightly better using continuous observations.
Hint: look at the vertical arrows.

c. For 0 < b < 0.5, compare the entropy with that of the equivalent
HMM having two observation symbols, defined as in Eq. (12.7). You
should find something resembling the plots comparing filter and smoother
in Section 12.2.1.

Solution.

a. For b = 0.1, we have σ ≈ 0.39, to match the two in terms of error rates.
b. We solve P(xk+1 = 0|yk)N(0, σ2) = P(xk+1 = 1|yk)N(1, σ2) for yk ≡ y∗. The

dividing value y∗ = 0.165627.

For discrete observations, the true state is 1 but the observation is 0. This
fools the filter, which infers x̂92 = 0. But in the continuous case, y92 ≈ 0.3,
which is below the midpoint, 0.5, between the two states. In this case, the
prior “wins,” and the filter estimates a 0 state, even though the observation is
closer to 0 than to 1. The extra information in yk helps. In more detail, show
that if the prior probability to be in state 1 is 0.999937 (the value for the graph
in question), then an observation y∗ � 0.17 will lead the filter to conclude that
the most likely state is 1. That y∗ is so much less than 0.5 reflects the strength
of the prior.

c. You should find something like the plot below, at left for a = 0.02 and time
series that are 105 long. The continuous observations lead to slightly lower
entropy than do the discrete observations and thus to slightly greater cer-
tainty. As before, this difference goes to zero for b → 0, 0.5 (very high
and very low signal-to-noise ratios). As before, the maximum benefit is at
intermediate values of the signal-to-noise ratio (right plot).

Δ 

12.5 Confidence bound for state estimates.

a. For the filter, derive Eq. (12.11) and reproduce its associated plot.
b. For the smoother, show that the maximum confidence

q∗ = 1
2

(
1 + (1−a)(1−2b)√

a2+(1−2a)(1−2b)2

)
.
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Solution.

a. We start from Eq. (12.10):

P(xk = 1|yk = 1)︸��������������︷︷��������������︸
p∗

=
1
Zk

P(yk = 1|xk = 1)︸��������������︷︷��������������︸
1−b

∑
xk−1

P(xk = 1|xk−1)P(xk−1|yk−1 = 1) .

The terms in the sum are

P(xk = 1|xk−1 = 1)P(xk−1 = 1|yk−1 = 1) = (1 − a)p∗

P(xk = 1|xk−1 = −1)P(xk−1 = −1|yk−1 = 1) = a(1 − p∗) ,

so that

p∗ =
1
Zk

(1 − b)[(1 − a)p∗ + a(1 − p∗)] .

Evaluating the other term in the partition function similarly gives

p∗ =
(1 − b)[(1 − a)p∗ + a(1 − p∗)]

(1 − b)[(1 − a)p∗ + a(1 − p∗)] + b[(1 − a)(1 − p∗) + ap∗]

=
(1 − b)(a + p∗ − 2ap∗)

(1 − b)(a + p∗ − 2ap∗) + b(1 − a − p∗ + 2ap∗)

=
(1 − b)[1 + a + p∗(1 − 2a)]

1 + p∗(1 − 2a)(1 − 2b)
.

This gives a quadratic equation for p∗:

(1 − 2a)(1 − 2b)(p∗)2 − [1 − 2b + a(4b − 3)]p∗ + a(b − 1) = 0 ,

whose relevant solution is

p∗ =
1 − 2b + a(4b − 3) +

√
a2 + (1 − 2a)(1 − 2b)2

2(1 − 2a)(1 − 2b)

Setting a = 0.2 and b = 0.3 gives p∗ ≈ 0.851629. The confidence in a given
state can go no higher than this value. The high chance (b = 0.3) that a
symbol is wrong limits the confidence of an estimate, no matter what the
observations.

For b → 0, the confidence bound goes to 1. Thus, after observing a long
series of +1 states, we will be sure that the true state is +1, as there is little
chance the wrong symbol was received. The confidence limit then drops as b
increases.

For b = 0.5, an observation gives no information at all about the underlying
state and the confidence is accordingly p∗ = 0.5: you may as well just flip a
coin.

The case b = 0.3 is indicated by dashed lines.
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b. For the smoother, we start from Eq. (12.12) and write

P(xk = 1|yN = 1) = P(xk = 1|yk = 1)
∑
xk+1

P(xk+1|xk = 1) P(xk+1|yN = 1)
P(xk+1|yk = 1)

.

Substituting q∗ = P(xk |yN = 1) and p∗ = P(xk = 1|yk = 1) for any k gives

q∗ = p∗
∑
xk+1

P(xk+1|xk = 1) P(xk+1|yN = 1)
P(xk+1|yk = 1)

= p∗
(

(1 − a)q∗

a + p∗ − 2ap∗
+

a(1 − q∗)
1 − a − p∗ + 2ap∗

)
,

which we solve for q∗:

q∗ =
p∗[p∗ + a(1 − 2p∗)]

1 − a(1 − 2p∗)2 − 2p∗(1 − p∗)

=
1
2

⎛⎜⎜⎜⎜⎜⎝1 + (1 − a)(1 − 2b)√
a2 + (1 − 2a)(1 − 2b)2

⎞⎟⎟⎟⎟⎟⎠
where we have substituted for p∗ in the last expression and simplified. Using
a computer-algebra program is very helpful here! Plots of p∗ for the filter and
q∗ for the smoother are given below, for a = 0.2, as a function of the symbol
error probability b.

Again, we can look at limits. For a = 0.5, we have q∗ = 1 − b, as before with
p∗. Again, this corresponds to the idea that extra information beyond the
current observation is useless. Thus, past and future information are equally
useless, implying that we expect the same inferences whether based on filter
or smoother.

For a → 0, we can Taylor expand, to find

q∗ = 1 − b(1 − b)
(1 − 2b)2

a2 + O(a3) .

12.6 Phase transition in discord order parameter D.

a. Using the argument given in Section 12.2.1, derive Eq. (12.15).
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b. For the smoother case, let yN\k refer to all observations except yk. Explain why
the condition to be imposed is now P(xk = 1|yk = −1, yN\k = 1) = 1

2 .
c. Show that P(xk = 1|yN\k = 1) = 1

Z P(xk = 1|yN
k+1 = 1) P(xk = 1|yk−1 = 1).

d. Justify P(xk |yN
k+1) = P(xk |yk−1) and then derive Eq. (12.16).

e. Simulate the HMM and, for given a, scan b until D > 0.001 in order
to reproduce the numerical threshold data at left. Do for both filter and
smoother.

Solution.

a. We start from Eq. (12.14) :

P(xk+1 = 1|yk+1 = −1, yk = 1) =
1
2
.

From Bayes’ theorem,

P(xk+1 = 1|yk+1 = −1, yk = 1)

=
P(yk+1 = −1|xk+1 = 1,���yk = 1) P(xk+1 = 1|yk = 1)

P(yk+1 = −1|yk = 1)

=
P(yk+1 = −1|xk+1 = 1) P(xk+1 = 1|yk = 1)∑

xk+1
P(yk+1 = −1|xk+1) P(xk+1|yk = 1)

=
b[(1 − a)p∗ + a(1 − p∗)]

b[(1 − a)p∗ + a(1 − p∗)] + (1 − b)[ap∗ + (1 − a)(1 − p∗)]
,

where p∗ = P(xk = 1|yk = 1) is the maximum confidence for the filter estimate,
a solution of Eq. (12.11). See Problem 12.5, too. We thus solve

b[(1 − a)p∗ + a(1 − p∗)]
b[(1 − a)p∗ + a(1 − p∗)] + (1 − b)[ap∗ + (1 − a)(1 − p∗)]

=
1
2
.

where

p∗ =
1 − 2b + a(4b − 3) +

√
a2 + (1 − 2a)(1 − 2b)2

2(1 − 2a)(1 − 2b)

From a symbolic-algebra program, we find that this equation reduces to

b(1 − a +
√

a2 + (1 − 2a)(1 − 2b)2)

(1 − 2b)(1 + a − √
a2 + (1 − 2a)(1 − 2b)2)

=
1
2
.

Squaring and simplifying gives

(2b − 1)(b2 − b + a) = 0 ,

which has solutions b = 1
2 and b = 1

2 (1 ± √
1 − 4a). The relevant solution

for the phase transition has b < 1
2 , which corresponds to the negative root,

as described in Eq. (12.15). It is amazing that such a complicated expression
simplifies so much!
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b. For the smoother, the condition

P(xk = 1|yk = −1, yN\k = 1) =
1
2
,

is directly analogous to the condition for the filter,

P(xk = 1|yk = −1, yk−1 = 1) =
1
2
.

The difference is that we now assume that the future observations are also
uniform. We then ask if the present observation contradicts both past and
future, do we trust it or do we use the inference?

c. We use Bayes’ theorem and the Markov condition:

P(xk = 1|yN\k = 1)

= P(xk = 1|yk−1 = 1, yN
k+1 = 1)

=
1
Z

P(yN
k+1 = 1|xk = 1,����yk−1 = 1) P(xk = 1|yk−1 = 1)

=
1
Z

P(xk = 1|yN
k+1 = 1)�����

P(yN
k+1 = 1)/�����P(xk = 1) P(xk = 1|yk−1 = 1)

=
1
Z

P(xk = 1|yN
k+1 = 1) P(xk = 1|yk−1 = 1) ,

where we cancel P(yN
k+1 = 1) and P(xk) = 1

2 , as they do not depend on xk and
similar terms show up in the normalization coefficient Z. After cancellation,
the normalization is, explicitly

Z =
∑

xk

P(xk = 1|yN
k+1 = 1) P(xk = 1|yk−1 = 1)

d. The condition, P(xk |yN
k+1) = P(xk |yk−1) is perhaps the trickiest to see. The idea

is that the observations are just symbols. Thus, when evaluating the two con-
ditional probabilities, we get exactly the same thing using future observations
as with past. The sole difference is that P(xk+1|xk) → P(xk |xk+1). But these
are equal for a long time series that is in “equilibrium,” as the Principle of
Detailed Balance tells us:

P(xk+1|xk) P(xk) = P(xk |xk+1) P(xk+1) .

If the equilibrium unconditional probabilities P(xk) = P(xk+1) = 1
2 , then we

conclude that P(xk+1|xk) = P(xk |xk+1).

Putting it all together, our equation is

P(xk = 1|yk = −1, yN\k = 1) =
1
Z

P(yk = −1|xk = 1) P(xk = 1|yN\k = 1)

=
1
Z

P(yk = −1|xk = 1) [P(xk = 1|yk−1)]2 =
1
2
.
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Using our earlier results for the filter, we have, for the explicit condition,

b(a+p∗−2ap∗)2

(a+p∗−2ap∗)2+(1−a−p∗+2ap∗)2

b(a+p∗−2ap∗)2

(a+p∗−2ap∗)2+(1−a−p∗+2ap∗)2 +
(1−b) (1−a−p∗+2ap∗)2

(a+p∗−2ap∗)2+(1−a−p∗+2ap∗)2

= 1
2 ,

where

p∗ =
1 − 2b + a(4b − 3) +

√
a2 + (1 − 2a)(1 − 2b)2

2(1 − 2a)(1 − 2b)

Again, an amazing simplification leads to the roots in Eq. (12.16).

12.7 Learning an HMM. Find the parameters a and b of a symmetric, two-state, two-
symbol hidden Markov model. Write a program to generate an HMM time
series of length N, given a = 0.2 and b = 0.1. Call a standard optimization
program that can take the output series yN and initial guesses for a and b and
return estimates â and b̂ based on minimizing the negative log likelihood func-
tion, Eq. (12.21). For given N, repeat enough times to estimate the mean and
standard deviation of each parameter and then compute the relative error, vs. N.
Use the true values of a and b as initial guesses for the optimization. Reproduce
the plot at left.

Solution.
See book website for example code. With N = 104, the accuracy is ≈ 5%.

12.8 Gridworld. Code Example 12.2:

a. Create the 6 × 6 transition matrices P(x′|x, u) for each of the four decisions
u = {N, E, S, and W}. Each column should sum to one. If a move would leave
gridworld, the system stays in its current state. Thus, for example, P(x′ =
1|x = 1, u = N) = 0.8 + 0.1 = 0.9. You are in the NW corner trying to
go N. You cannot go north, which adds 0.8 from the forward branch. You
cannot go west, adding another 0.1 from the left branch. Include rules for the
termination state, too.

b. Reproduce the tables of optimal utilities and policies with greater precision.
c. What happens if you always move forward and never go left, right, or back?

Solution.

a. The four transition matrices are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9 0.8 0 0 0 0
0 0.1 0.8 0 0.1 0
0 0 0.1 0 0 0.1

0.1 0 0 1 0.8 0
0 0.1 0 0 0.1 0.8
0 0 0.1 0 0 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�����������������������������������︷︷�����������������������������������︸
P(x′ |x,N)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0.1 0 0 0 0
0.1 0 0.1 0 0 0
0 0.1 0.1 0 0 0

0.8 0 0 1 0.1 0
0 0.8 0 0 0.8 0.1
0 0 0.8 0 0.1 0.9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�����������������������������������︷︷�����������������������������������︸
P(x′ |x,E)
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1 0 0 0 0 0
0.8 0.1 0 0 0.1 0
0 0.8 0.9 0 0 0.1

0.1 0 0 1 0 0
0 0.1 0 0 0.1 0
0 0 0.1 0 0.8 0.9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�����������������������������������︷︷�����������������������������������︸
P(x′ |x,S)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9 0.1 0 0 0 0
0.1 0.8 0.1 0 0.8 0
0 0.1 0.9 0 0 0.8
0 0 0 1 0.1 0
0 0 0 0 0 0.1
0 0 0 0 0.1 0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸�����������������������������������︷︷�����������������������������������︸
P(x′ |x,W)

b. The optimal utilities are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0.590 10
−1.099 −8.594
−1.225 −1.249

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸������������������︷︷������������������︸
γ=0.2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
7.246 10
4.372 −2.644
2.415 0.550

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠︸����������������︷︷����������������︸
γ=0.9

The algorithm converges much more quickly at small γ (0.2) than for larger
values (0.9). Remember that we need to convert these 2× 3 matrices to 6-dim.
vectors for the algorithm.

c. If you always move forward, the problem becomes deterministic and you
always move in the least-bad direction.
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Problems

13.1 Most general unitary operator on a qubit. Show that

a. the most general two-dimensional Hermitian operator can be written H =
c0I + c1σx + c2σy + c3σz, where the ci are real and the σx,y,z are the Pauli
matrices;

b. the associated unitary transformation can be written U = exp−(iHt/�) =
eiϕ m̂·σ;

c. and eiϕ m̂·σ = cosϕ I + isinϕ (m̂ · σ), where m̂ is a 3d unit vector and σ is the
3-vector of Pauli matrices. Hint: show that (m̂ · σ)2 = I, the 2 × 2 identity
matrix.

Solution.

a. The most general 2 × 2 Hermitian matrix must be of the form

H =

(
α β

β∗ γ

)
,

where α, β, and γ are three arbitrary complex numbers. Because H is Hermi-
tian, it satisfies H = H†, which implies that the off-diagonal elements must be
β and β∗ and that α and γ are real. Next, we expand

c0I + c1σx + c2σy + c3σz =

(
c0 0
0 c0

)
+

(
0 c1

c1 0

)
+

(
0 − ic2

ic2 0

)
+

(
c3 0
0 −c3

)

=

(
c0 + c3 c1 − ic2

c1 + ic2 c0 − c3

)
.

Matching terms with the general expression for H shows that the two forms
are equivalent.

b. From Eq. (13.6) and part (a),

U = e− iHt/� = e− ic0I+c1σx+c2σy+c3σz

= e− ic0t/�
I e− it/�(c1σx+c2σy+c3σz)

= e− ic0t/� e− it/�(c1σx+c2σy+c3σz) .

320
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The e− ic0t/�
I term separates from the rest of the expression because the iden-

tity matrix commutes with all other matrices. We can set the e− ic0t/� term to 1
because it is just a global phase factor. Thus,

U = e− it/�(c1σx+c2σy+c3σz) ≡ eiϕ m̂·σ = cosϕ I + isinϕ (m̂ · σ) ,

c. First, we show that (m̂ · σ)2 = I, the 2 × 2 identity matrix.

(m̂ · σ)2 = (mxσx + myσy + mzσz)
2

= m2
xσ

2
x + m2

yσ
2
y + m2

zσ
2
z

+ mxmy��������0
(σxσy + σyσx) + mymz��������0

(σyσz + σzσy) + mzmx��������0
(σzσx + σxσz)

= (m2
x + m2

y + m2
z )I + 0 = I ,

where σ2
x = σ

2
y = σ

2
z = I (as can be verified directly) and σxσy = −σyσx (and

similarly for the cyclic permutations). Finally, m̂ is a unit vector. Next, we
expand the matrix exponential in a Taylor series:

eiϕ m̂·σ = I + iϕ m̂ · σ − 1
2!ϕ

2 (m̂ · σ)2 − i
3!ϕ

3 (m̂ · σ)3 + 1
4!ϕ

4 (m̂ · σ)4 + · · ·
= I + iϕ m̂ · σ − 1

2!ϕ
2
I − i

3!ϕ
3 m̂ · σ + 1

4!ϕ
4
I + · · ·

=
(
1 − 1

2!ϕ
2 + 1

4!ϕ
4 − · · ·

)
I + i

(
ϕ − 1

3!ϕ
3 + · · ·

)
(m̂ · σ)

= cosϕ I + isinϕ (m̂ · σ) .

which is an explicit form for U that is a linear combination of the four matrices
{I, σx, σy, σz}.

13.2 Feedforward control of a qubit.

a. Show that if |α|2 + |β|2 = 1, then U =
( β −α
α∗ β∗

)
is unitary and transforms the

normalized state |ψ〉 = α|0〉 + β|1〉 to the target state |1〉.
b. To interpret U as a rotation of |ψ〉 on the Bloch sphere, show that Rz(ϕ) ≡

e− i
ϕ
2 σz rotates |ψ〉 by ϕ about the z-axis on the Bloch sphere.

c. For a state |ψ〉 that lies in the x-z plane, show that Ry(ϕ) ≡ e− i
ϕ
2 σy rotates |ψ〉

by ϕ about the y-axis on the Bloch sphere.
d. Using (b) and (c), show that U can be decomposed into a rotation by −φ

about the z-axis followed by a rotation π − θ about the y-axis. Write the
two rotation matrices explicitly and show that the resulting U has the form
supposed in (a).

Solution.

a. First, we show that U is unitary:

U =

(
β −α
α∗ β∗

)
=⇒ U† =

(
β∗ α

−α∗ β

)
,
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and

UU† =
(
β −α
α∗ β∗

) (
β∗ α

−α∗ β

)
=

(|β|2 + |α|2 0
0 |α|2 + |β|2

)
=

(
1 0
0 1

)
,

where αα∗ + ββ∗ = |α|2 + |β|2 = 1. Thus, U is unitary. Next, we apply it to |ψ〉:

U |ψ〉 =
(
β −α
α∗ β∗

) (
α

β

)
=

(
0

αα∗ + ββ∗

)
=

(
0
1

)
.

Thus, U controls the initial state as desired.
b. We start by constructing

Rz(ϕ) = e− i
ϕ
2 σz = cos ϕ

2 I − isin ϕ
2σz

=

(
cos ϕ

2 − isin ϕ
2 0

0 cos ϕ
2 + isin ϕ

2

)
=

⎛⎜⎜⎜⎜⎜⎜⎝e− i
ϕ
2 0

0 ei
ϕ
2

⎞⎟⎟⎟⎟⎟⎟⎠ .
Next, we apply this operator to |ψ〉:

Rz(ϕ) |ψ〉 =
⎛⎜⎜⎜⎜⎜⎜⎝e− i

ϕ
2 0

0 ei
ϕ
2

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ cos θ

2

eiφ sin θ
2

⎞⎟⎟⎟⎟⎟⎠ = e− i
ϕ
2

⎛⎜⎜⎜⎜⎜⎝ cos θ
2

ei(φ+ϕ) sin θ
2

⎞⎟⎟⎟⎟⎟⎠ .
In the last step, we pull out an overall phase factor, as we are free to do. Thus
Rz makes φ → (φ + ϕ) in |ψ〉, which corresponds to a rotation by ϕ about the
z-axis on the Bloch sphere, as claimed.

c. If |ψ〉 lies in the x-z plane, then φ = 0 and

|ψ〉 =
⎛⎜⎜⎜⎜⎜⎝cos θ

2

sin θ
2

⎞⎟⎟⎟⎟⎟⎠ .
A rotation Ry(ϕ) about the y-axis has a matrix representation

Ry(ϕ) = e− i
ϕ
2 σy = cos ϕ

2 I − isin ϕ
2σy =

⎛⎜⎜⎜⎜⎜⎝cos ϕ
2 − sin ϕ

2

sin ϕ
2 cos ϕ

2

⎞⎟⎟⎟⎟⎟⎠ .
Applying this to |ψ〉 in the x-z plane gives,

Ry(ϕ) |ψ〉 =
⎛⎜⎜⎜⎜⎜⎝cos ϕ

2 − sin ϕ
2

sin ϕ
2 cos ϕ

2

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝cos θ

2

sin θ
2

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝cos (θ+ϕ)

2

sin (θ+ϕ)
2

⎞⎟⎟⎟⎟⎟⎠ ,
which is indeed a rotation by ϕ about the y-axis.

d. We put these together to understand how U maps a general state |ψ〉 = α|0〉 +
β|1〉 to the target state |ψ〉. We first apply Rz(−φ), which rotates the state from
φ to 0, which is in the x-z plane. It is not at an angle θ from the north pole,
|0〉, and we want to rotate it to the south pole, |1〉, which is obviously done by
rotating about y by an angle (π − θ).
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The last step is to check that this gives a net U of the claimed form. Remem-
bering that operators act first from the right and progress leftwards, we
have

U = Ry(π − θ) Rz(−φ) =

⎛⎜⎜⎜⎜⎜⎝cos (π−θ)
2 − sin (π−θ)

2

sin (π−θ)
2 cos (π−θ)

2

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝ei

φ
2 0

0 e− i
φ
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝sin θ
2 − cos θ

2

cos θ
2 sin θ

2

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝ei

φ
2 0

0 e− i
φ
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝sin θ
2 ei

φ
2 − cos θ

2 e− i
φ
2

cos θ
2 ei

φ
2 sin θ

2 e− i
φ
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≡
(
β −α
α∗ β∗

)

where

α ≡ cos θ
2

(
e− i

φ
2

)
, β ≡ sin θ

2

(
ei
φ
2

)
.

In other words, U has the form claimed in the problem. We could also
express U as a single rotation on the Bloch sphere, but the decomposition into
elementary rotations about the z- and y-axes given here seems more intuitive.

13.3 Spin- 1
2 particle in a constant external field. Consider a spin- 1

2 particle in a
constant field B0 ẑ, whose normalized state at t = 0 is given by |ψ(0)〉 = α|0〉+β|1〉.
a. Solve the Schrödinger equation to find |ψ(t)〉.
b. Show that 〈μx〉 and 〈μy〉 precess about ẑ at a frequency ω0 = γB0.
c. Show that the field does no work on the particle (expected energy is constant).

Solution.

a. In units where � = 1, the solution to the Schrödinger Equation is

|ψ(t)〉 = e− iHt |ψ(0)〉 .
For a constant magnetic field along the z-axis,

H = − 1
2γB0σz = − 1

2ω0

(
1 0
0 −1

)
.

Since H is diagonal and since |ψ(0)〉 = α|0〉 + β|1〉 = ( α
β
)
, we have

|ψ(t)〉 =
(
eiω0t/2 0

0 e− iω0t/2

)
︸����������������︷︷����������������︸

e− iHt

(
α

β

)
︸︷︷︸
|ψ(0)〉

=

(
α eiω0t/2

β e− iω0t/2

)
≡

(
α(t)
β(t)

)
= α(t) |0〉 + β(t) |1〉 .

Note that |ψ(t)〉 stays normalized. That is, 〈ψ(t) |ψ(t)〉 = 1, since |α(t)|2 +
|β(t)|2 = |α2| + |β2| = 1.
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b. Since only the relative phase of α and β matters, we consider the initial con-
dition variable α to be real and let β → β eiθ, with β now taken as real and
θ denoting the relative phase. We then evaluate the expectation values of the
magnetic moment μx =

1
2γσx:

〈μx〉 = 〈ψ(t)| 1
2γσx |ψ(t)〉

= 1
2γ

(
α∗(t) β∗(t)

) (0 1
1 0

) (
α(t)
β(t)

)
= 1

2γ
[
α∗(t) β(t) + β∗(t)α(t)

]
= 1

2γαβ
[
e− i(ω0t−θ) + e+ i(ω0t−θ)]

= γαβ cos(ω0t − θ) .
Similarly,

〈μy〉 = 〈ψ(t)| 1
2γσy |ψ(t)〉

= 1
2γ

(
α∗(t) β∗(t)

) (0 − i
i 0

) (
α(t)
β(t)

)
= i

2γ
[−α∗(t) β(t) + β∗(t)α(t)

]
= i

2γαβ
[
− e− i(ω0t−θ) + e(iω0t−θ)]

= −γαβ sin(ω0t − θ) .
The two components thus trace out a circle of radius γαβ that rotates at the
Larmor frequency, ω0 = γB0. The classical picture is a unit vector at an angle
with respect to the field axis (ẑ) and precessing at frequency ω0 about the ẑ
axis. Note that if we define the x-axis to be along 〈μx〉 at t = 0, then the phase
θ = 0.

c. We compute the energy:

E = 〈H〉 = 〈ψ(t)| 1
2ω0σz |ψ(t)〉

= 1
2ω0

(
α∗(t) β∗(t)

) (1 0
0 −1

) (
α(t)
β(t)

)
= 1

2ω0

[
|α(t)|2 − |β(t)|2

]
= 1

2ω0

(
α2 − β2

)
= 1

2ω0

(
2α2 − 1

)
.

So, as 0 < α < 1, the average energy ranges from − 1
2�ω0 to + 1

2�ω0 and is
constant.

13.4 Spin- 1
2 particle in a rotating external field. Consider a spin- 1

2 particle in a
time-dependent field consisting of a stationary ẑ component B0 and a rotating
horizontal component B1(t) = B1[cosωt x̂ + sinωt ŷ]. Define ω1 = γB1.

a. Find the Hamiltonian in a frame that rotates about ẑ at frequency ω by
applying a rotation of angle ωt to the Hamiltonian.
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b. Write the Schrödinger Equation in coordinates that rotate with phase −ωt
and thereby show that the field becomes static, with γBeff = − 1

2 (γB0 + ω)σz +
1
2γB1σx.

c. Using (a), solve the Schrödinger equation in the rotating frame and transform
back to the original frame of reference to get |ψ(t)〉. With |ψ(0)〉 = |0〉, show

〈1|ψ(t)〉 = eiωt/2

[
iω1

a
sin

(
1
2 at

)]
, a ≡

√
(ω0 + ω)2 + ω2

1 .

d. Show that at resonance, ω = −ω0, the average energy E(t) = − 1
2�ω0 cosω1t.

The rotating field thus pumps energy in and out of the system periodically.

Solution.

a. In units where � = 1, the Hamiltonian H = −μ · B = − 1
2γB · σ. At time t = 0,

the B vector lies in the z-x plane, and

H(0) = − 1
2γ (B0 σz + B1 σx) .

In coordinates rotating about ẑ at frequencyω, we have H(t) = U(t) H(0) U†(t),
with U(t) = e− iωtS z = e− iωtσz/2. The spin operator S z =

1
2�σz =

1
2σz, with � = 1.

Since [U(t), σz] = 0,

H(t) = − 1
2γ

(
B0 UσzU

† + B1 e− iωtσz/2 σx e+iωtσz/2
)

= − 1
2

(
ω0 σz + ω1 e− iωtσz/2 σx e+ iωtσz/2

)
,

where ω0 = γB0 defines the Larmor frequency and ω1 = γB1 the Rabi
frequency.

b. We transform the Schrödinger Equation into coordinates rotating at −ωt by
multiplying both sides of i∂t |ψ〉 = H|ψ〉 by U†(t). Thus,

iU†(t) ∂t |ψ(t)〉 = U†(t) U(t) H(0) U†(t)︸�������������︷︷�������������︸
H(t)

|ψ(t)〉 = H(0) |Φ(t)〉 ,

where U†|ψ〉 ≡ |Φ〉 and UU† = I. Taking a time derivative of the definition
gives

∂t |Φ〉 = ∂t

(
U†|ψ〉

)
= i

2ωσz U†|ψ〉 + U†∂t |ψ〉 ,

so that iU† ∂t |ψ〉 = i∂t |Φ〉 + 1
2ωσz |Φ〉 and

i∂t |Φ〉 = [H(0) − 1
2ωσz] |Φ〉 ≡ Heff |Φ〉 .

Then H(0) = − 1
2 (ω0σz + ω1σx) is transformed to

Heff(t) = − 1
2 [(ω0 + ω)σz + ω1σx] ,

which has no time dependence (in the rotating frame) and implies an effective
static field via Heff = − 1

2γ (B · σ).
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c. In order to be able to use the identity in Part (a) directly, we rewrite

Heff(t) = − 1
2 [(ω0 + ω)σz + ω1σx] ≡ − 1

2 a (n̂ · σ) ,

where

n̂ · σ = 1
a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ω1

0
ω0 + ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
σx

σy

σz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , a ≡
√

(ω0 + ω)2 + ω2
1

Since n̂ is a unit vector in the xz plane, (n̂ · σ) = I.

Now we can can solve the Schrödinger Equation in the counter-rotating
frame:

|Φ(t)〉 = e− iHeff(t)t |Φ(0)〉 ,
with |Φ(0)〉 = U†(0) |ψ(0)〉 = |0〉.

From the identity proved in Part (a),

e− itHeff(t) = e
it
2 a (n̂·σ)

= cos
(

1
2 at

)
I + isin

(
1
2 at

)
(n̂ · σ)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝cos
(

1
2 at

)
+

i(ω0+ω)
a sin

(
1
2 at

)
iω1
a sin

(
1
2 at

)
iω1
a sin

(
1
2 at

)
cos

(
1
2 at

)
− i(ω0+ω)

a sin
(

1
2 at

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

With the given initial condition |Φ(0)〉 = |0〉,

|Φ(t)〉 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝cos

(
1
2 at

)
+

i(ω0+ω)
a sin

(
1
2 at

)
iω1
a sin

(
1
2 at

)
iω1
a sin

(
1
2 at

)
cos

(
1
2 at

)
− i(ω0+ω)

a sin
(

1
2 at

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝1
0

⎞⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝cos
(

1
2 at

)
+

i(ω0+ω)
a sin

(
1
2 at

)
iω1
a sin

(
1
2 at

)
⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Finally, we transform back to find

|ψ(t)〉 = e− iωtσz/2 |Φ(t)〉 =
(
e− iωt/2 0

0 e+iωt/2

)
|Φ(t)〉

= e− iωt/2

[
cos

(
1
2 at

)
+

i(ω0 + ω)
a

sin
(

1
2 at

)]
|0〉 + eiωt/2

[
iω1

a
sin

(
1
2 at

)]
|1〉 .

Notice that the initial condition is correct: |ψ(0)〉 = |0〉.
d. To save space, we write |ψ(t)〉 = α(t)|0〉 + β(t)|1〉. At resonance, ω = −ω0 and

a = ω1. Thus,

α(t) = eiω0t/2 cos
(

1
2ω1t

)
, β(t) = i e− iω0t/2 sin

(
1
2ω1t

)
,

and the Hamiltonian H(t) becomes

H(t) = − 1
2

(
ω0 σz + ω1 eiω0tσz/2 σx e− iω0tσz/2

)
.
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The operators in the ω1 term can be written(
eiωt/2 0

0 e− iωt/2

) (
0 1
1 0

) (
e− iω0t/2 0

0 eiωt/2

)
=

(
0 eiωt

e− iωt 0

)
,

which implies that the Hamiltonian is

H(t) = − 1
2

(
ω0 ω1 eiωt

ω1 e− iωt −ω0

)
.

Then

E(t) = 〈ψ(t)|H(t) |ψ(t)〉 = − 1
2

(
α∗ β∗

) (
ω0 ω1 eiωt

ω1 e− iωt −ω0

) (
α

β

)

= − 1
2

⎡⎢⎢⎢⎢⎢⎣ω0

(
|α|2 − |β|2

)
+ 2ω1��������0

Re
(
eiω0t α∗β

) ⎤⎥⎥⎥⎥⎥⎦
= − 1

2ω0 cosω1t ,

where |α|2−|β|2 = cos2
(

1
2ω1t

)
−sin2

(
1
2ω1t

)
= cosω1t. The second term vanishes

because the product is purely imaginary. Thus, the average energy E(t) oscil-
lates at the Rabi frequency ω1 from − 1

2�ω0 to + 1
2�ω0. The classical picture is

that the spin flips up and down along the z-axis.

13.5 Optimal control of a two-level system.

a. Derive Euler–Lagrange equations for |ψ〉, |λ〉, ux, and uy. Show that |ψ〉 and
|λ〉 each obey Schrödinger equations and that u{x,y} = (1/η) Re 〈λ|σ{x,y}|ψ〉.

b. Show that u̇x = (ω0 − 1
η
Re 〈λ|σz|ψ〉)uy ≡ k uy, where k is constant in time.

Similarly, show that u̇y = −k ux and hence, that the optimal control is of the
form ux = A cosωt and uy = A sinωt, where A and ω are free parameters.

c. Using the optimal controls, evaluate the cost function and confirm
Eq. (13.24).

d. Show that J(ω,ω1) is minimized when ω = −ω0 (resonance condition for
the rotating field). Then minimize over the remaining variable, ω1, and
confirm the statements made in the text about the small- and large-η lim-
its. Qualitatively, how would your conclusions change if J depended on
−(〈ψ(τ)|P1|ψ(τ)〉)1/2 ?

Solution.

a. From Eq. (13.20), the augmented cost function is

J′ = 1 − |〈ψ(τ)|1〉|2 + 1
2η

∫ τ

0
dt

(
u2

x + u2
y

)
+Re

∫ τ

0
dt 〈λ| (−i∂t + H) |ψ〉 ,

with

H(t) = − 1
2 (ω0σz + uxσx + uyσy) .
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The Euler-Lagrange equation for variations with respect to the wavefunction
|ψ〉 is

d
dt

(
∂J′

∂(∂t |ψ〉)
)
=
∂J′

∂|ψ〉 =⇒ −i∂t〈λ| = 〈λ|H , 〈λ(τ)| = −〈ψ(τ)|P1 .

The Euler-Lagrange equation for variations with respect to the adjoint 〈λ| is
d
dt

(
∂J′

∂(∂t〈λ|)
)
=
∂J′

∂〈λ| =⇒ i∂t |ψ〉 = H|ψ〉 , and |ψ(0)〉 = |0〉 .

Notice that both |ψ〉 and |λ〉 obey the Schrödinger equation (remember i→ − i
when taking the adjoint). This identity is special and results from H = H† and
the fact that the running cost L( |ψ〉, u) depends only on the controls u. (One
can make a similar statement, with analogous qualifications, for the classical
case: if the running cost L(x,u) depends only on u and if the dynamics are
linear and without dissipation, then the state obeys ẋ = Ax and the adjoint
λ̇ = −ATλ.)

The Euler-Lagrange equation for variations with respect to ux and uy are

∂J′

∂ux
= 0 , =⇒ ux =

1
η

Re 〈λ|σx|ψ〉

∂J′

∂uy
= 0 , =⇒ uy =

1
η

Re 〈λ|σy|ψ〉 .

Here, we have used ∂ux H = − 1
2σx and ∂uy H = − 1

2σy.
b. Let us first take a time derivative:

∂t〈λ|σx|ψ〉 = (∂t〈λ|)σx|ψ〉 + 〈λ|σx (∂t |ψ〉)
= i〈λ|Hσx|ψ〉 − i〈λ |σxH|ψ〉
= i〈λ| [H, σx] |ψ〉

Then

[H, σx] = − 1
2 (ω0[σz, σx] + ux�����0

[σx, σx] + uy[σy, σx])

= − 1
2 {ω0(2 i)σy + 0 + uy(−2 i)σz}

= − i(ω0σy − uyσz)

Substituting then gives

∂t〈λ|σx|ψ〉 = 〈λ|(ω0σy − uyσz)|ψ〉 = ω0〈λ|σy|ψ〉 − uy〈λ|σz|ψ〉
and, hence, that

u̇x =
1
η

Re
(
ω0 〈λ|σy|ψ〉 − uy 〈λ|σz|ψ〉

)
=

(
ω0 − 1

η
Re 〈λ|σz|ψ〉

)
uy
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The calculation for the u̇y equation is similar. We find

∂t〈λ|σy|ψ〉 = i〈λ|[H, σy]|ψ〉 ,
with

[H, σy] = − 1
2 (ω0[σz, σy] + ux[σx, σy] + uy������0

[σy, σy])

= − 1
2 {ω0(−2 i)σx + ux(+2 i)σz}

= − i(−ω0σx + uxσz) .

Substituting then gives

∂t〈λ|σy|ψ〉 = 〈λ|(−ω0σx + uxσz)|ψ〉 = −ω0〈λ|σx|ψ〉 + ux〈λ|σz|ψ〉 ,
and, hence, that

u̇y =
1
η

Re (−ω0 〈λ|σx|ψ〉 + ux 〈λ|σz|ψ〉) =
(
−ω0 +

1
η

Re 〈λ|σz|ψ〉
)

ux .

Now we claim that Re 〈λ|σz|ψ〉 is constant. To see this,

∂t〈λ|σz|ψ〉 = (∂t〈λ|)σz|ψ〉 + 〈λ|σz (∂t |ψ〉)
= i〈λ| [H, σz] |ψ〉 .

But

[H, σz] = − 1
2 {ux[σx, σz] + uy[σy, σz]}

= − 1
2 {ux(−2i)σy + uy(2i)σx}

= − i(−uxσy + uyσx) .

so that

∂t (Re 〈λ|σz|ψ〉) = (−uxRe 〈λ|σy |ψ〉 + uyRe 〈λ|σx) |ψ〉
= η(−uxuy + uyux) = 0

We can thus define a scalar constant k = ω0 − 1
η
Re 〈λ|σz|ψ〉, so that

u̇x = k uy , u̇y = −k ux .

which has a solution

ux = A cos(ωt − θ0) , uy = A sin(ωt − θ0) ,

where A, ω, and θ0 are free parameters. As argued in the statement of the
problem, rotational symmetry of the equations and initial state implies we
can take θ0 = 0.

c. From Eq. (13.17), the cost function J is

J = 1 − |〈ψ(τ)|1〉|2 + 1
2η

∫ τ

0
dt

[
u2

x(t) + u2
y(t)

]
,
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The terminal-cost term requires integrating the wavefunction from time t = 0
to τ. Using Eq. (13.23), we write,

〈ψ(τ)| = 〈0| + e− iωt/2

[− iω1

a
sin

(
1
2 at

)]
〈1| ,

where we recall that a =
√

(ω0 + ω)2 + ω2
1. Thus,

−|〈ψ(τ)|1〉|2 = −
(
ω1

a

)2
sin2

(
1
2 aT

)
.

For the other term, we note that∫ τ

0
dt (u2

x + u2
y) =

∫ τ

0
dtω2

1[cos2 ωt + sin2 ωt] = ω2
1τ .

All together, the cost function is

J(ω,ω1) = 1 −
(
ω1

a

)2
sin2

(
1
2 aτ

)
+ 1

2ηω
2
1τ .

d. Since there are no restrictions on ω and ω1, we can set ∇J = 0. Taking the
derivative with respect toω, we observe that the onlyω dependence is through
a2 = (ω + ω0)2 + ω2

1. Since a′(ω) = (ω + ω0)/a, we have

∂J
∂ω
=
∂J
∂a

da
dω

∝ (ω + ω0) · · ·

which vanishes when ω = −ω0. Substituting this value then gives

J1(ω1) = 1 − sin2
(

1
2ω1τ

)
+ ηω2

1τ

= 1
2

(
1 + cosω1τ + 2ηω2

1τ
)

= 1
2

(
1 + cos θ + 1

2η
′θ2

)
,

where θ ≡ ω1τ and η′ = η(4/τ). We then differentiate to find

∂θJ1 =
1
2

(− sin θ + η′θ
)
= 0 .

This leads to sinc θ ≡ sin θ
θ
= η′, or θ∗ = sinc−1η′ for 0 < η′ < 1 (and 0 for

η′ > 1). Alternatively, we can expand the sine to third order, which gives

θ − 1
6θ

3 = η′θ ,

which has solutions θ∗ = 0 for η′ > 1 and θ∗ =
√

6(1 − η′) for 0 < η′ < 1. Thus,

θ∗ = (γτ)B∗ =

⎧⎪⎪⎨⎪⎪⎩sinc−1η′ ≈ √
6(1 − η′) 0 < η′ ≤ 1

0 η′ > 1
.
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The exact and approximate expressions for θ∗(η) are plotted below.

θ*

η

η*

Going back to the original variables, η′ = 1 translates to a critical value of η:

η∗ = 1
4τ .

When η = 0, the exact expression for θ∗ implies that |ψ(τ)〉 = |1〉 if ω1τ = π, or

Bmax
1 =

π

γτ
.

Finally, the problem asks what changes when we replace −|〈ψ(τ)|1〉|2 by its
square root in the cost function. If we look at the Taylor expansion in ω1, we
see that the bifurcation at η∗ occurs because both the final cost and running
cost have, for small ω1, a leading-order term of ω2

1. If we take the square
root, then that no longer occurs (we balance ω1 vs. ηω2

1). There is no longer
a bifurcation but rather a crossover that is a continuous function of η. Thus,
the details of the cost function determine whether a bifurcation or a crossover
occurs.



14 Networks and Complex Systems

Problems

14.1 Deterministic graphs. Let us consider some properties of deterministic graphs.

a. Show that the average path length of a circle graph is 〈d〉 ∼ 1
4 n.

b. How does 〈d〉 of grid graphs scale with n if each node has 2k nearest
neighbors?

c. Show that the average path length of a large star graph is 〈d〉 ∼ 2. (Hint: The
paths from hub to periphery have negligible weight for large n).

Solution.

a. Consider a circle graph with n nodes. Pick a node at random. Starting from
the two nearest neighbors, there are two paths of length 1. Clearly, there
are then two paths of length 2, and so on, until we get half-way around the
network. If n is large, it will be irrelevant whether n is odd or even, so assume
it to be even. Then the longest path (half the circle) has length n/2, and there
are two paths to this node. (There would only be one if n were odd.) Thus, we
see that there is a uniform distribution of path lengths from 2 to n/2. Thus,

〈d〉 = 1 + 2 + · · · + n/2
n/2

=
(n/2)(n/2 + 1)

2(n/2)
=

n
4
+

1
2
→ n

4
,

in the n � 1 limit. We use the identity
∑N

i=1(i) = 1
2 N(N + 1).

A simpler approach is to recognize that for large n, we can replace the sum
with an integral. Then,

〈d〉 =
∫ n/2

0
dx x∫ n/2

0
dx
=

1
2 (n/2)2

n/2
=

n
4
.

b. If each node in a grid graph has 2k nearest neighbors, then the nodes form a
k dimensional grid with periodic boundary conditions. Thus for k = 1, there
are 2 nearest neighbors, and the graph is a circle, as already discussed. For
k = 2, there are 4 nearest neighbors and the graph is a two-dimensional grid
(see main text). Since there are n nodes total, the grid is n1/2 × n1/2. Arguing

332
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heuristically, we expect average paths to be of this scale. Thus, in this case
〈d〉 ∼ n1/2. More generally,

〈d〉 ∼ n1/k .

c. Pick two nodes. Either both will be peripheral nodes (path length =2) or one
will be a hub and the other peripheral (path length = 1). The probability that
both are peripheral is (

n − 1
n

) (
n − 2
n − 1

)
=

n − 2
n

,

where the second probability is from the reduced set n−1 left over after having
chosen the first node.

Then the average path length is

〈d〉 =
(

n − 2
n

)
(2) +

[
1 −

(
n − 2

n

)]
(1) = 2 − 4

n
+

2
n
= 2 − 2

n
,

so that 〈d〉 → 2 as n→ ∞.

14.2 Random graphs. Consider the properties of random Erdős–Rényi graphs with n
nodes and a probability p for a link between any two nodes chosen at random.
Work in the “Poisson” limit where the only parameter is 〈k〉, the average node
degree.

a. Give a reasonable argument that the average path length 〈d〉 ∼ ln n/ ln k. Hint:
consider the “fan out” of paths. Each node reaches roughly 〈k〉 nodes after
paths of length one, 〈k〉2 nodes after paths of length two, ....

b. Show that the graph becomes connected at 〈k〉 = ln n, for large n. Hints:
Estimate the probability for a node to have no links and use (1 − p)n ≈ e−np.

Solution.

a. Following the hint, the number of nodes reached after following paths of
length d is approximately

nd ≈ 〈k〉 + 〈k〉2 + 〈k〉3 + · · · + 〈k〉d ≈ 〈k〉
d+1 − 1
〈k〉 − 1

≈ 〈k〉d .

Since we expect the average path to cover a substantial portion of the network,
the number of nodes explored nd should be on the order of the total number
of nodes n. Thus,

n ≈ 〈k〉d , or, inverting 〈k〉 ≈ (ln n)/(ln d) .

b. As the hint suggests, we estimate the probability p0 that a node, chosen at
random, does not have any links, given that the probability to have a link
between any two nodes is p. We can take as a condition for threshold that the
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expected number of such nodes is equal to one. Thus, we want np0 = 1, for
p0 = 1/n. Since there are roughly n other nodes a given node can connect to

p0 ≈ (1 − p)n ≈ e−np =
1
p
.

Inverting gives pc ≈ ln n/n. Since 〈k〉 = p(n − 1), we have

〈k〉 ≈ ln n

(
n − 1

n

)
= ln n .

Again, we work in the large-n limit.

14.3 Scale-free graphs. Consider node distributions P(k) = Z−1k−γ, with γ ≥ 2 and
k > kmin. Treat, for simplicity, the node degree as a continuous density, p(k).

a. Find the normalization constant Z for the continuous probability density.
b. Show that changing the units k → ak′ does not change the form of the

distribution.
c. Show that 〈k〉 = ( γ−1

γ−2

)
kmin.

d. For a finite network of n nodes, show that kmax = kmin n
1
γ−1 .

e. Why then does γ < 2 imply multiple edges between node pairs?

Solution.

a. For continuous k, the normalization constant is∫ ∞

kmin

dk k−γ =
k1−γ

min

γ − 1
, =⇒ p(k) =

(
γ − 1
kmin

) (
k

kmin

)−γ
.

b. We change scale by substituting k = ak′ and kmin = ak′min into the distribution:

dk p(k) = dk

(
γ − 1
kmin

) (
k

kmin

)−γ
= a(dk′)

(
γ − 1
ak′min

) (
ak′

ak′min

)−γ
= dk′

(
γ − 1
k′min

) (
k′

k′min

)−γ
= dk′ p(k′) .

Thus, changing the scale by a factor a does not change the probability density.
c. The average node degree is

〈k〉 =
∫ ∞

kmin

dk k

(
γ − 1
kmin

) (
k

kmin

)−γ
.

Let k′ = k/kmin. Then

〈k〉 = (γ − 1)kmin

∫ ∞

1
dk′ (k′)−(γ−1)

= (γ − 1)kmin

(
1

γ − 2

)
k′
∣∣∣1∞

=

(
γ − 1
γ − 2

)
kmin .
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For γ = 3, this gives 〈k〉 = 2kmin. The prefactor diverges as γ → 2 (see below).

(γ
-1

) /
 (γ
-2

)

γ

d. kmax is set by asking that the expected number of nodes with kmax or greater
links be less than one. Equivalently, the probability to have such a node is
≤ 1/n. Then,

1
n
=

∫ ∞

kmax

dk p(k) =
∫ ∞

kmax

dk

(
γ − 1
kmin

) (
k

kmin

)−γ
=

∫ ∞

k′max

dk′ (γ − 1) k′−γ

=

(
γ − 1
γ − 1

)
k′−(γ−1)

∣∣∣
k′=k′max

=

(
kmin

kmax

)γ−1

.

Inverting gives

kmax = kmin

(
n

1
γ−1

)
.

For 2 ≤ γ ≤ 3, the dependence on the number of network nodes ranges from
linear (n) to square root (n1/2).

e. For γ < 2, part (d) implies that kmax increases with n as a power law with
exponent 1/(γ − 1) > 1—faster than linear. Then, for large-enough n, the
largest node will connect to more than n nodes, meaning that there must be
multiple edges joining the same node pair. This can occur—think of chemical
species that can transform into each other via different reactions—but is often
not allowed.

14.4 Scaling in the Barabási-Albert model of preferential attachment. Consider a net-
work that adds one node each time step. Let n(k, t) be the number of nodes
with degree k at time t and p(k, t) = n(k, t)/n(t) the corresponding degree-node
distribution at time t. Each new node adds m links. Each new link goes to an
existing node, with the probability to connect to a node of degree k given by
Π(k) = k/

∑
j k j = k/(2mt). For the denominator: at time t there are mt links, and

each link connects two nodes.

a. Show that typically k
2 p(k, t) links are added to degree-k nodes at time t and

that (n + 1)p(k, t + 1) = np(k, t) +
(

k−1
2

)
p(k, t) −

(
k
2

)
p(k, t).
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b. In the long-time limit, p(k, t) → pk. Show that the master equation in (a)
becomes pk =

(
k−1

2

)
pk−1 −

(
k
2

)
pk.

c. Derive the continuum limit pk = − 1
2∂k(kpk) and verify that pk ∼ k−3 is a

solution.

Solution.

a. From the preferential-attachment law, the number of links that connect, on
average, to the set of degree-k nodes at time t is given by the number of nodes
with degree k at time t times the probability to attach to such nodesΠ(k) times
the number of links added for each node m, or

[n(t) p(k, t)]

(
k

2mt

)
m =

k
2

p(k, t) ,

using n(t) = t as the number of nodes at time t. Then we note that adding a
link to a node of degree k increases the population of k + 1-degree nodes but
decreases the population of degree-k nodes. The master equation captures
this dynamic:

(n + 1)p(k, t + 1)︸���������������︷︷���������������︸
degree-k nodes at time t + 1

= np(k, t)︸��︷︷��︸
degree-k nodes at time t

+

(
k − 1

2

)
p(k − 1, t)︸�����������������︷︷�����������������︸

(k−1)→k

−
(

k
2

)
p(k, t)︸������︷︷������︸

k→(k+1)

,

Note that this equation is modified for k = m, since each new node is automat-
ically also a node of degree m. But we are interested in the large-k behavior
and can therefore neglect the “boundary condition” at k = m.

b. In the long-time limit, we set p(k, t + 1) = p(k, t) = pk. Thus,

(n + 1)pk = npk +

(
k − 1

2

)
pk−1 −

(
k
2

)
pk ,

implying

pk =

(
k − 1

2

)
pk−1 −

(
k
2

)
pk

c. The continuum limit is

pk = − 1
2

[
k pk − (k − 1) pk−1

] ≈ − 1
2∂k(k pk) .

It is then straightforward to verify that pk ∼ k−3 is a solution:

− 1
2∂k(k pk) ≈ − 1

2∂kk−2 ≈ k−3 ,

which is just pk.

Note that parts of this problem are from Barabási (2016) but that there are
typos in Eqs. 5.43 and 5.44.
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14.5 Lognormal vs. power law. In practice, it is not easy to distinguish a power-law
distribution from alternatives such as the lognormal distribution.

a. Show that a lognormal degree distribution ln k ∼ N(μ, σ2) is “scale free” in
that a change of scale k = ak′ merely shifts the distribution on a log-log plot.

b. By creating a plot such as the one at right, show that you can find parameters
in a lognormal distribution that are close to a given power law over some
decades.

Solution.

a. The lognormal probability density function (pdf) is

p(k) =

(
1

kσ
√

2π

)
e−

(ln k−μ)2

2σ2 .

If we carry out the transformation k = ak′ in the expression dk p(k), we have

dk p(k) = a(dk′)
(

1

ak′σ
√

2π

)
e−

(ln(ak′)−μ)2

2σ2

= dk′
(

1

k′σ
√

2π

)
e−

(ln k′−μ′)2
2σ2 μ′ = μ − ln a ,

which has the same form, except that the mean is shifted by ln a. Notice
that σ does not change. So, in this sense, one can think of the lognormal
distribution as scale free. But, in another sense, it is not: The quantity ln k
is normally distributed and has the obvious scale σ. A loose example is that
a quantity could be 102±1. There is a scale of ±1 in the uncertainty of the
exponent. But because it is in the exponent, the range is 10–1000, which is
pretty wide.

b. The plot in the book is generated from ln x ∼ N(μ, σ2), with μ = 0.1 and
σ = 0.2. The exercise is mainly to show that a mere fit of a model to data is not
enough. There should be independent reasons for justifying a fit. Otherwise,
some other model may fit nearly as well.

14.6 Controllability of an n-chain. Following an example from Sun and Motter (2013),
we consider a chain of n one-dimensional systems with a single input at its head.
The dynamics are that of an n-fold integrator: ẋ1 = u, ẋ2 = x1, . . . , ẋn = xn−1.

a. Show that the controllability matrix Wc = In, the n-dimensional identity
matrix. The Kalman rank condition for controllability is thus satisfied.

b. A system has strong structural controllability if it is structurally controllable
for all non-zero values of the weights. Show that the n-chain defined above
has this property, allowing for arbitrary weights b, a21, a31, . . . an1.
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Solution.

a. From the dynamical equations, we can read off the system matrices A and B.
For example, for n = 4, we have

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Notice that powers, Ai, make the row of 1s “move away” from the diagonal
by one step per multiplication. That is,

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Then, since AmB picks out the first column of Am, it is immediately clear that
Wc = In.
Alternatively, we can use index notation, where Ai j = δ i, j+1. Then

A2
i j = δ i,k+1δ k, j+1 = δ i, j+2 =⇒

(
A2B

)
i
= δ i, j+2 δ j,1 = δ i,3 .

Continuing the same pattern, we have Am
i j = δ i, j+m. Since B j = δ j,1, we have

(AmB)i = δ i,m+1, which also implies that Wc is the identity matrix.
b. For arbitrary weights, the state-space matrices become (for n = 4)

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0

a21 0 0 0
0 a32 0 0
0 0 a43 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Repeating the arguments from (a), we find a controllability matrix

Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b 0 0 0
0 a21b 0 0
0 0 a32b 0
0 0 0 a43b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
which obviously has rank=4 (det � 0) for all non-zero values of b and the ai1

elements. The system is strongly structurally controllable.

14.7 Dilation. Consider the graph at left of an LTI dynamical system.

a. Show that the system is not controllable, for any values of the link weights.
b. Add a self-link of weight a22 to the node x2. Show that the system is now

controllable and has the strong structural controllability property.
c. Why does adding a self-interaction node remove the dilation?
d. Finally, add a second self-link of weight a33 to the node x3. Show that the

system is controllable but does not have the strong structural controllability
property.



Problems 339

Solution.

a. The graph corresponds to the dynamical system

ẋ1 = b u(t) , ẋ2 = a21x1 , ẋ3 = a31x1 .

If we multiply the x2 equation by a31 and the x3 equation by a21 and then
subtract, we have

a31 ẋ2 − a21 ẋ3 = 0 , =⇒ a31x2 − a21x3 = constant ,

meaning that motion in the x2–x3 plane is limited to the line a31x2 − a21x3 =

constant. More formally, the state-space matrices are

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0

a21 0 0
a31 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
which implies that the controllability matrix is

Wc =
(
B AB A2B

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b 0 0
0 a21b 0
0 a31b 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The matrix Wc has det=0 (rank=2). The system is therefore not controllable.

b. Now we add a self-interaction node, meaning that the dynamics are

ẋ1 = b u(t) , ẋ2 = a21x1 + a22x2 , ẋ3 = a31x1 .

The state-space and controllability matrices are

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0

a21 a22 0
a31 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , =⇒ Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b 0 0
0 a21b a21a22b
0 a31b 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The determinant of Wc = −a21a31a22b3, which vanishes only if one of the
system parameters a21, a22, a31, of b equals zero. Thus, the system has strong
structural controllability.

c. Without the self-interaction, the network illustrated below at left has a dila-
tion and is not controllable. As stated in the main text, the subset S = {x2, x3}
has two elements, while its neighborhood T (S ) = {x1} has but one. Since
the neighborhood has fewer elements than the set, there is a dilation and the
system is not controllable.

With self-interaction (network below at right), the neighborhood T (S ) =
{x1, x2} has the same cardinality as S . Thus, because a self-interaction means
that a node is a neighbor of itself, we no longer have a situation where a sub-
set of nodes has a smaller neighborhood than itself. Consequently, we do
not violate Lin’s conditions for structural controllability, and the system is
structurally controllable.



340 Networks and Complex Systems

d. Finally, if we add another self-link, this time to node x3, the dynamics are

ẋ1 = b u(t) , ẋ2 = a21x1 + a22x2 , ẋ3 = a31x1 + a33x3 .

The state-space and controllability matrices are

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0

a21 a22 0
a31 0 a33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , =⇒ Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b 0 0
0 a21b a21a22b
0 a31b a31a33b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The determinant of Wc = −a21a31(a22 − a33)b3, which vanishes only if a22 =

a33. Thus, the system has structural controllability but not strong structural
controllability.

The digraphs for the three situations are given below.

14.8 Cactus is a minimum controllable structure. Consider the cactus. At left is a
cactus with two buds, reproduced from Figure 14.6d and then annotated. Show
that removing any edge renders the resulting network uncontrollable.

Solution.
There are three types of edges:

• Edges along the stem (here, u → 1, 1 → 2, 2 → 3, 3 → 4). Removing any
of these edges will make the target vertex (and downstream ones) inaccessible.
For example, if we remove the edge between vertex 3 and vertex 4, then vertex
4 is inaccessible.

• Edges within a cycle of the bud (here, 5→ 6, 6→ 5, along with 7→ 8, 8→ 9,
9→ 7). Removing any of these edges will create a dilation. For example, if we
remove the edge 9 → 7, then vertex 2 becomes a dilation. The set of vertices
{3, 7} would then have a neighborhood T (S ) that consists only of vertex 2.

• Edges to a cycle that turn the cycle into a bud (3 → 5, 2 → 7). Removing
either of these edges will create cycles that are isolated. All the vertices in the
cycle are inaccessible.

Thus, removing any edge makes the network uncontrollable, in the formal
sense of the notion of controllability.

14.9 Self-interactions. By computing the determinant of the controllability matrix
Wc, give a non-graphical proof that adding self-interactions generically implies
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that a system is controllable from one input. Hint: Set all non-self interactions
equal to zero and all input couplings to one. (Justify these assumptions.)

Solution.
Following the hint, we consider dynamics of the form, for each component

1 ≤ i ≤ n,

ẋi = −λi xi + u .

The controllability matrix is then

Wc =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 (−λ1) (−λ1)2 · · · (−λ1)n−1

1 (−λ2) (−λ2)2 · · · (−λ2)n−1

...

1 (−λn) (−λn)2 · · · (−λn)n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since generically the λi are all different, then it is clear that det Wc � 0. Having
proven structural controllability for this special case, it is clear that introducing
generic non-zero edges (Ai j for i � j) or letting the coupling constants (the Bi)
be different cannot change this situation (the values where accidental vanishing
occurs will vary and depend on the constants chosen).

14.10 Control effort in one dimension. For ẋ = λx + u, with x(0) = x0 and x(τ) = xτ:

a. Show that the minimum control effort is E = 2λ(xτ − eλτ x0)2/(e2λτ −1).
b. Deduce the short- and fast-protocol limits given in the text.
c. For τ∗ = λ−1 ln(xτ/x0), the minimum effort E = 0. What is going on?
d. Show that the minimum-effort trajectory x(t) is identical for λ→ −λ.

Solution.

a. The Gramian for this problem is

P(τ) =
∫ τ

0
dt eλt .1.1. eλt =

e2λτ −1
2λ

.

The minimum-effort input is then

u(t) = eλ(τ−t) P−1(xτ − eλτ x0) =
2λ eλ(τ−t)(xτ − eλτ x0)

e2λτ −1
,

which leads to a minimum control effort

E = 2λ(xτ − eλτ x0)2

e2λτ −1
.

b. The short-time limit is λτ � 1, which leads to

E ≈ 2λ(xτ − (1)x0)2

1 + 2λτ − 1
=

(xτ − x0)2

τ
.

The long-time is λτ � 1, which leads to

E ≈ 2λx2
0

−1
= −2λx2

0 = 2|λ|x2
0 .



342 Networks and Complex Systems

In the same long-time limit, for λ > 0, we have

E ≈ 2λ e2λτ x2
0

e2λτ
= 2λx2

0 .

The fact that the limits depend only on one or the other corresponds, as briefly
mentioned in the text, to the idea that only movement against the flow is
costly. The other part of the trajectory is nearly free. But the direction of
flow does depend on whether the local equilibrium x = 0 is stable or unstable.
More generally, we can partition the dynamics into stable and unstable sub-
spaces and draw corresponding conclusions about the difficulty of particular
control movements accordingly.

c. It is easy to verify that τ∗ = λ−1 ln(xτ/x0) makes E = 0. The case corresponds
to “natural,” uncontrolled motion, with u = 0. The effort is obviously zero,
and the solution x(t) = x0 eλt. If the desired x0, xτ, and τ are all compatible
with these values, then you can go from x0 to xτ for free!

d. We substitute the optimal control u(t) into the equations of motion and find

x(t) =
xτ sinh λτ + x0 sinh λ(τ − t)

sinh λτ
,

which is invariant under λ→ −λ because sinh(·) is odd: sinh(−x) = − sinh x.

14.11 Control effort diverges in a nearly uncontrollable system. Consider two first-
order equations driven by a common input: ẋ1 = −x1 + u , ẋ2 = −(1+ δ)x2 + u.

a. Calculate the Gramian P(τ) and show that its determinant ∼ δ2, for δ � 1.
Argue that this implies that the control effort E ∼ δ−2.

b. Calculate numerically and then plot the minimum-effort trajectory connect-
ing

( 0
0
) → ( 0

1

)
for 0 ≤ t ≤ 1. Plot, too, the control effort E as a function

of δ.

Solution.

a. The state-space matrices are

A =
(−1 0

0 −(1 + δ)

)
, B =

(
1
1

)
.

The finite-time control Gramian for a protocol going from 0 to τ is then

P(τ) =
∫ τ

0
dt eATt BTB eAt

=

∫ τ

0
dt

(
e−t 0
0 e−(1+δ)t

) (
1 1
1 1

) (
e−t 0
0 e−(1+δ)t

)

=

∫ τ

0
dt

(
e−2t e−2(1+δ/2)t

e−2(1+δ/2)t e−2(1+δ)t

)

=
1
2

⎛⎜⎜⎜⎜⎜⎝ 1 − e−2τ 1
1+δ/2

(
1 − e−(1+δ/2)τ

)
1

1+δ/2

(
1 − e−(1+δ/2)τ

)
1

1+δ

(
1 − e−(1+δ)τ

) ⎞⎟⎟⎟⎟⎟⎠ .
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The determinant can be calculated using a symbolic-manipulation program:

det P(τ) =
e−2(δ+2)τ

(
δ2 e2(δ+2)τ +δ2 − (δ + 2)2 e2τ −(δ + 2)2 e2(δ+1)τ +8(δ + 1) e(δ+2)τ

)
4(δ + 1)(δ + 2)2

=
δ2

16

[
1 − 2

(
2τ2 + 1

)
e−2τ + e−4τ

]
+ O(δ3) .

The term in brackets interpolates between 4
3τ

4 and 1, for τ � 1 and τ � 1,
respectively.

The control effort E ∼ P−1(τ). Above, we have shown that det P ∼ δ2. The
determinant of the inverse is thus ∼ δ−2 and is the product of the inverse of
the eigenvalues of P. Now it is easy to see that one eigenvalue of P is of order
unity and the other of order δ2. Physically, the controllable subspace requires
O(1) effort. The other eigenvalue is thus ∼ δ2. The size of the control effort
involves matrix products of P−1 and is therefore on the scale of λ−1

min, where
λmin is the smallest eigenvalue of P.

All of these properties are much easier to establish in the long-time limit,
τ � 1. However, that limit leads to large control values that are not caused
by degeneracy. In the long-time limit, an input u(t) that tended to a con-
stant value would force states to approach λ−1, where λ is the rate constant
(1 or 1 + δ) of the relaxation. One needs a violently changing u(t) to get two
simultaneously different values.

b. The plots are shown below. Thicker lines are calculated with greater mis-
match (δ = 1) than thinner lines (δ = 0.5). The parametric plot at top right
of x2(t) versus x1(t) illustrates the nonlocality of these minimum-effort trajec-
tories, explored in Problem 4.3. The bottom plot shows the common input
used to drive both subsystems. Its magnitude is larger for δ = 0.5.
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14.12 Control effort can be sensitive to direction and dimension. Consider the linear
system A =

( −3.2 1.3
1.3 −2.7

)
, B =

( 0
1

)
, with protocol duration τ = 3 (Yan et al., 2015).

a. Find the eigenvalues of the system dynamics A and also the controllability
(Wc) and Gramian matrices P; confirm the plots and numbers given in the
text. Plot u(t) for the minimum- and maximum-effort inputs.

b. Show that applying powers of the Gramian P to an arbitrary unit vector
(normalizing at each step) gives the target direction requiring the least control
effort, and powers of P−1 give the target direction requiring the most control
effort.

c. Enlarge the system to three dimensions. For A =
( −3.2 1.3 1

1.3 −2.7 0.7
1 0.7 −2.2

)
, B =

(
0
1
0

)
,

show that the ratio of largest to smallest control efforts ≈ 979.
d. Show that the efforts for the easiest direction are roughly the same in the

n = 2 and n = 3 cases, whereas the efforts for the hardest direction differ
significantly.

Solution.

a. For the dynamical system defined in the text,

A =
(−3.2 1.3

1.3 −2.7

)
, B =

(
0
1

)
,

the eigenvalues and eigenvectors of the dynamical matrix A are given by

λ ≈ (−4.2738,−1.6262) ↔ ≈
(−0.7710

0.6368

)
,

(−0.6368
−0.7710

)
.

Because A is symmetric, the eigenvectors are orthogonal. (If there are
degenerate eigenvalues, the eigenvectors can still be chosen orthogonal.)
The controllability matrix is

Wc =

(
0 1.3
1 −2.7

)
,

which has rank = 2 and determinant −1.3. Notice that all the numbers so far
are of order one. The Gramian for τ = 3, by contrast, is

P ≈
(
0.0206 0.0507
0.0507 0.210

)
,

with eigenvalues ≈ 0.222, 0.00785. The ratio is now more than 28. Note that
the finite-time Gramian given here for τ = 3 is identical to the infinite-time
limit, at the three-digit precision used here.

The control effort in direction n̂ is

E(n̂) = n̂T P−1(τ = 3)n̂ ,
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which takes on maximum and minimum values at the eigenvectors corre-
sponding to the minimum and maximum eigenvalues of P (since they are
the inverse of the eigenvalues of P−1). We can then confirm that

Emin ≈ 4.50 , for n̂min ≈
(
0.24
0.97

)

Emax ≈ 127.4 , for n̂max ≈
(−0.97

0.24

)
.

The ratio of largest to smallest control efforts Emax/Emin = 28.32.

The optimal input to go to a target state n̂ on the unit circle is given by

uopt(t, n̂) = BT eAT(τ−t) P−1(τ) n̂ .

We plot u(t) for n̂min and n̂max below. The input umax(t) ≡ uopt(t, n̂max) requires
much higher amplitudes than umin(t).

Below, we replot for convenience the phase portrait of the two solutions that
result from applying umin(t) and umax(t). Notice the nonlocal nature of the
umax(t)-produced trajectory. More direct trajectories are possible but would
require even more effort.

b. We compute successive powers of P v0, normalizing the result to a unit vector
after each application of the Gramian. We start from the (arbitrarily chosen)
vector v0 =

( 1
0
)
, which corresponds to θ = 0. At left, we plot the angle of the

unit vector, which rapidly converges (in about N = 3 iterations) to that of the
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associated eigenvector of P. The rapid convergence arises because the ratio
of eigenvalues is almost 30, so that the deviation decreases as ∼ 30−N .

Similarly, we find the direction of maximum effort by looking at the eigenvec-
tor for the largest eigenvalue of P−1. Again, convergence is very rapid. Notice
that the directions differ by 1.32 . . .− (−0.25 . . .) = π/2 = 90◦, as they must for
the eigenvectors of a symmetric matrix.

c. The calculations follow those from the two-dimensional case. The Gramian
for τ = 3 is

P ≈
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.045825 0.0798624 0.042819
0.0798624 0.241266 0.0679964
0.042819 0.0679964 0.0410984

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

with eigenvalues ≈ {0.29, 0.034, 0.00031} and directions of minimum and
maximum effort (over the unit sphere) given by

n̂ ≈
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−0.34
−0.90
−0.29

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−0.73
−0.048
−0.69

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

The ratio Emax/Emin ≈ 979. Note that computing the infinite-time Gramian is
easier, as you need only solve the Lyapunov equation. This gives a condition
number ≈ 948, which is not so different, since τ > 1. The condition number
becomes larger as τ is reduced.

d. The efforts for n = 2 and n = 3 in the easiest directions are ≈ 4.5 and
3.4, respectively. The efforts in the hardest directions are ≈ 127 and 3361
respectively.

14.13 Effective controllability of an n-chain. (Continuation of Problem 14.6.)

a. Show that the control Gramian P(τ) has elements P(τ)i j =
(τ)i+ j−1

(i+ j−1) (i−1)! ( j−1)! .
b. Evaluate the eigenvalues of P numerically, for n = 1, 2, . . . , 20, and show that

the condition number increases exponentially as ∼ e8.4n.
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Solution.

a. From the pattern in (a), we deduce that An = 0, and, thus,

eAt = I + tA +
t2

2!
A2 + · · · + tn−1

(n − 1)!
An−1 .

For n = 4, this is, explicitly,

eAt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0
t 1 0 0
t2

2! t 1 0
t3

3!
t2

2! t 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We then see that

eAt B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
t
t2

2!
...

tn−1

(n−1)!

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The i j element of the integrand is then

ti−1

(i − 1)!
t j−1

( j − 1)!
=

ti+ j−2

(i − 1)! ( j − 1)!
,

implying, after integration over t ∈ [0, τ], that

P(τ)i j =
τi+ j−1

(i + j − 1) (i − 1)! ( j − 1)!
.

b. We calculate the eigenvalues of the Gramian P(τ) numerically and plot the
condition number vs. system size. Asymptotically, it scales as

∼ 1.7 × 10−16 e8.4n ,

with n the system size. See plot below.

14.14 Some like it HOT. Consider a simple model of a forest management in the
face of forest fires. Plant trees on a square lattice of side N, with site probability
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ρ. The forest is subject to “sparks” that have a source above and left of the
forest and fall on the i j site in the forest with probability pi j ≡ pi p j, where px ∝
2−(mx+x/N)/σ2

x . Choose mi = 1, σi = 0.4, mj = 0.5, and σ j = 0.2. If a spark falls
on an unoccupied site, there is no damage. If it falls on an occupied site, all
contiguous occupied sites are burned. The goal is to maximize the yield y(ρ), the
average number of trees left after a fire.

a. For randomly planted trees and N → ∞, show that y(ρ) = ρ − P2∞, where P∞
is the probability that a lattice site is in the infinite percolation cluster.

b. Write code to find the yield plotted at left (top), for N = 32. Ten individual
trials are shown in light gray, and the average in thick black. Hints: Find
contiguous lattice sites of ones (the trees) by finding morphological compo-
nents of a binary image and then counting their size. Find this number for
every lattice site and average over the pi j to determine the expected loss from
a spark.

c. To increase the yield, evolve a design for planting trees as follows: When going
from a density ρ = n/N2 to (n + 1)/N2, explore D possibilities for where to
plant the next tree. For each candidate position, calculate the average loss
and then choose the position that minimizes the loss. D = 1 is equivalent to
the random-forest case. The figure at left is for D = N = 32 (cf. thin black line
for yield).

This simple design procedure naturally leads to firebreaks of unplanted sites that
stop fires from spreading too far. See the lines of unplanted sites in black at left
(bottom). The firebreaks become even more clearly organized if one optimizes
over all free sites instead of only up to D sites. We emphasize that this organiza-
tion arises from the repeated evolutionary cycle of trial planting and evaluation
and not from any kind of self-organization. The distribution of fire sizes turns
out to be approximately a power law, although that fact does not play an impor-
tant role in the organization (function) of the tree-planting algorithm. For more,
see Carlson and Doyle (2000).

Solution.

a. Below the percolation threshold of ρc ≈ 0.59, there are only finite-size clusters
of trees on an infinite lattice. At ρc, an infinite cluster first forms and its size
increases with ρ. In the limit of large lattices, only the sparks hitting the
infinite cluster will decrease the yield by a number of O(N2). Others have
negligible impact. Let P∞ be the probability to hit the infinite cluster. Then
the yield

y(ρ) = (1 − P∞) ρ + P∞(ρ − P∞) = ρ − P2
∞ .

The first term is the probability to miss the infinite cluster and retain full yield.
The second term is the probability to hit the infinite cluster and reduces the
yield by the size of the infinite cluster. These effects are “softened” in a finite
lattice. The sharp, non-analytic transition for the yield at ρc between isolated
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clusters (no infinite cluster) and above is rounded because of edge effects and
finite sampling.

b. See book website for code. As the hint suggests, you can ease the trickiest part
of the programming by leveraging standard routines for image processing of
a binary image. A common task is to find all connected objects, and most
image-processing packages have a routine to find all such sites. Then count
the number in all such objects and return that number to each lattice site.
Then the average loss is just the sum of the element-by-element product of
this matrix with the matrix of probabilities for a spark to fall on each site.
(In Mathematica, the MorphologicalComponents and ComponentMeasurements
commands can carry out the necessary operations.)

c. The evolution algorithm is straightforward to program, particularly if effi-
ciency is not a major goal. On my laptop, the code for the N = D = 32
case took a bit less than 4 minutes for a single iteration (all I did), running in
Mathematica. No doubt this can be improved! See book website for code.

The fall in yield for ρ � 0.95 results mainly from “filling in” the firebreaks.
The firebreaks are essentially one-dimensional curves in the two-dimensional
forest and thus have zero measure in the limit of an infinite forest. In that
case, we expect the yield to go to one. Of course, in a finite forest, the yield
is maximized at a lower value (still quite close to 1, as our 0.95 result for
N = D = 32 shows). We did not have space to include it, but another interest-
ing feature to explore is that the yield decreases sharply if the distribution pi j

changes. For example, the source of sparks might move to a different corner.
The firebreaks were optimized for the given distribution pi j. Such an opti-
mization implicitly assumes that the statistics are stationary over a relatively
long time (long enough to accumulate the statistics to estimate the form of
the distribution, for example). Finally, we would expect a similar fall in yield
if the firebreaks ever have a defect. The increase in yield comes from limiting
the size of the largest cluster that is likely to form. That is why the area in the
upper left, which is where most sparks fall, has a high fraction of unplanted
sites.
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Problems

15.1 Causality and Kramers-Kronig for a first-order system. Consider a first-order,
low-pass-filter system with transfer function G(s) = 1

1+s . Using contour integra-
tion,

a. invert the Fourier transform of G(iω) and verify that the impulse response
function G(t) (the Green function) is causal;

b. verify the Kramers-Kronig relations for G.

Solution.

a. The response function G(t) is given by the inverse Fourier transform:

G(t) =
∫ ∞

−∞
dω
2π

(
1

1 + iω

)
eiωt .

We can do this integral by contour integration about the closed contour γ.
We note that there is a single pole at ω = i, whose residue is

Res(i) =
1

2π

(
ei(i)t

i

)
=

e−t

2π i
.

• For t < 0, we close the contour in the lower half of the complex ω plane.
Since there are no poles inside γ, the integral = 0.

• For t > 0, we close the contour in the upper half of the complex ω plane.
The residue theorem then implies that the integral is e−t.

Putting the two results together, we have

G(t) = e−t θ(t) ,

where the theta function explicitly shows that the response is causal.

350
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b. The real and imaginary parts of the response functions are

G′(ω′) = Re
(

1
1 + iω′

)
=

1
1 + ω′2

G′′(ω′) = Im G(iω′) =
−ω′

1 + ω′2
.

Then, the second Kramers-Kronig relation in Eq. (15.8) asks us to verify that

G′′(ω) =
2ω
π

P
∫ ∞

0
dω′

G′(ω′)
ω′2 − ω2

=
2ω
π

P
∫ ∞

0
dω′

1
(1 + ω′2)(ω′2 − ω2)

=
ω

π

∮
γ

dω′
1

(1 + ω′2)(ω′2 − ω2)

=
ω

π
(2π i)

1
i[1 − (−1)](−1 − ω2)

= − ω

1 + ω2
.

Similarly,

G′(ω) = − 2
π

P
∫ ∞

0
dω′

ω′G′′(ω′)
ω′2 − ω2

= +
2
π

P
∫ ∞

0
dω′

ω′2

(1 + ω′2)(ω′2 − ω2)

= +
1
π

∮
γ

dω′
ω′2

(1 + ω′2)(ω′2 − ω2)

=
1
π

(2π i)
−1

2 i(−1 − ω2)

=
1

1 + ω2
.

Here, the contour γ is chosen as depicted below. The poles are at ± i, and we
can close the contour either in the top or bottom planes. Note the factor of 1

2
that arises when we extend the range from (0,∞) to (−∞,∞).
The last thing is to show that the contributions of the big and little semicircles
go to zero as the radii go to ∞ and 0, respectively. For the big semicircle,
the integrand ∼ ω′−4, which clearly converges. The integral around the little
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semicircle is more subtle. It does not go to zero as r → 0 when ω′ = ω + r eiθ.
However, the contribution turns out to be odd in ω, meaning that the sum of
the contributions from the two semicircles (at ±ω) vanishes.

15.2 Sensitivity function for oscillator. Verify numerically that the waterbed integral
of a second-order system with proportional feedback gain is zero. That is, show
for G(s) = 1

1+2ζω+ω2 and K(s) = Kp that
∫ ∞

0
dω ln |S (iω)| = 0. Plot for Kp = 1 and

ζ = 0.5, and show its numerical integral = 0.

Solution.

We have

L(s) =
Kp

1 + 2ζs + s2
,

which implies

S (s) =
1 + 2sζ + s2

1 + Kp + 2sζ + s2

=⇒ S (iω) =
1 + 2 iωζ − ω2

1 + Kp + 2 iωζ − ω2

=⇒ |S (iω)| =
√

(1 − ω2)2 + 4ζ2ω2

(1 + K2
p − ω2)2 + 4ζ2ω2

.

We then evaluate numerically the integral and confirm that

∫ ∞

0
dω ln |S (iω)| = 0 , ∀ζ > 0 ,Kp > 0 .

The plot at left shows the waterbed plot for Kp = 1 and ζ = 0.5.
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Note that ln |S (iω)| → Kp/ω
2 as ω → ∞, implying that the integral converges

relatively slowly, as Kp/ω. We can see this in the plot below.

ω

15.3 Bode’s waterbed theorem. Derive Eqs. (15.22) and (15.25). For S (s) analytic:

a. Show that Re [ln S (iω)] is an even function of ω and Im [ln S (iω)] is odd.
b. Fill in the missing steps leading to Eq. (15.24).
c. Show that Part II, evaluated along a circle of radius R → ∞, vanishes if L(s)

is of relative order 2 or greater.
d. Deal with RHP poles using the contour at right, with a similar detour for

each pole p j. Evaluate the added contributions to prove Eq. (15.25).

Solution.

a. We have

ln S = ln |S | + iarg S .

Thus,

Re [ln S (iω)] = ln |S (iω)| .
We can write S (iω) = u(ω) + iv(ω), where u and v are real functions of the
frequency ω. Thus, ln |S | = 1

2 ln
(
u2 + v2

)
+ itan−1 v

u is even in ω, and Im
[ln S (iω)] is odd (since arc tan is odd).

Another approach to this problem is to note that for any real function f (t),
the Fourier transform F(ω) = F∗(−ω). Writing F(ω) = F′(ω) + iF′′(ω) imme-
diately shows that the real part, F′(ω) is even and the imaginary part, F′′(ω)
is odd. Applying this observation to S (iω) and ln S (iω) gives the result.

b. Using the result from (a), we have that∫ −R

R
dω ln S (iω) = −

∫ R

−R
dω ln S (iω) = −2

∫ R

0
dω ln |S (iω)| ,

because the even contribution from Re [ln S ] contributes a factor of 2 and the
odd contribution cancels out. (We are integrating over a domain symmetric
about ω = 0.)

c. Part II is ∫
II

ds ln S =
∫

II
ds ln

1
1 + L

≈
∫

II
ds [−L(s)] ,
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since L is small for s = R eiθ and R→ ∞. Assuming that L � s−2, we have∫
II

ds L(s) ∼ 1
R2

R
∫ π

0
dθ d

(
eiθ

)
→ 0 ,

as R → ∞. Thus, Part II goes to 0 and Part I becomes an integral ω ∈ (0,∞),
which proves the theorem.

d. Since the new contours do not include the poles p j, the integral around the
modified γ continues to be zero. Because of the pole at pj, we have to add a
branch cut starting from each pole and going horizontally to the left. Across
the branch cut, the argument jumps by 2π.

We now break the new part of the contour for pole p j into three parts: “◦”,
the little circle of radius r → 0 that goes clockwise around the pole, “→”, the
straight line from the imaginary axis to p j (after the radius of the little circle,
r → 0), and “←”, which goes from p j to the imaginary axis.

We first note that∫
◦

ds ln S ≈
∫ −π

π

dθ (ln r)(r) eiθ ∼ r ln r → 0 ,

as r → 0. Thus, the contribution around the little circle vanishes in the limit
of small r.

The contributions
∫
→ and

∫
← are evaluated by noting that the magnitude of ln

S is equal to that of its corresponding partner. Only the argument is different,
having shifted by 2π. Thus,∫

→
+

∫
←
= (2π i)(Re pj) .

The factor Re pj is just the length of either contour.

Adding up all the contours then gives

−2 i
∫ ∞

0
dω ln |S (iω)| + 2π i Re p j = 0 .

We can extend the argument to all the poles pj, with a keyhole contour and
branch cut for each, to find∫ ∞

0
dω ln |S (iω)| = π

∑
j

Re pj = π
∑

j

p j .

The last identity is true because the poles come in complex-conjugate pairs.
This proof is adapted from Åström and Murray (2008).

15.4 Waterbed theorem for relative degree 1 systems. For a stable, first-order loop
transfer function L(s) with L(s) → α/s as s → ∞, show that the Bode sensitivity
integral is

∫ ∞
0

dω ln |S (iω)| = −π
2 α and that, for degree ≥ 1,

∫ ∞
−∞

dω
2π ln |S (iω)| =∑

j p j − 1
2 lims→∞ s L(s). Hint: in deriving Eq. (15.22), the contribution of the
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big semicircle no longer vanishes. Uncertainties in the dynamics and delays
mean that most practical systems have unmodeled high-frequency dynamics
that are effectively higher order. The first-order case has relatively few practical
consequences.

Solution.

As in the original derivation,
∮
γ

ds ln S (s) = 0 for the half disk of radius R, as
R→ ∞. Part I is unchanged. For Part II, we have∫

II
ds ln S (s) =

∫
II

ds ln

(
1

1 + L

)
≈ −

∫
II

ds L(s) = −α
∫

II

ds
s
.

For the large semicircle of radius R, we have s = R eiθ and ds = i s dθ, giving

lim
R→∞

∫
II

ds ln S (s) = −α
∫ π/2

−π/2
dθ i= − iαπ .

The relation Part I + Part II = 0 then gives

−2 i
∫ ∞

0
dω ln |S (iω)| − iαπ = 0 =⇒

∫ ∞

0
dω ln |S (iω)| = −π

2
α ,

For the general expression, let α = lims→∞ s L(s). Then∫ ∞

−∞
dω
2π

ln |S (iω)| =
∑

j

p j − 1
2

lim
s→∞ s L(s)

applies for ν ≥ 1 for an L with unstable poles p j that are stabilized in closed loop.

15.5 Waterbed theorem for T . Prove Eq. (15.26). Hint: Define s̄ = 1/s and L̄(s) ≡
1/L(1/s) = 1/L(s̄). From Åström and Murray (2008).

Solution.

Following the hint, we write

T (s̄) =
L(s̄)

1 + L(s̄)
=

1
1 + L−1(s̄)

=
1

1 + L̄(s)
≡ S̄ (s) .

We thus apply the Bode waterbed theorem to S̄ (iω), which gives∫ ∞

−∞
dω
2π

ln |S̄ (iω)| =
∑

j

p̄ j .

We rewrite this in terms of T (s̄), remembering that we need to change variables
in the integral to express it in terms of s. Thus, we redefine frequency by ω̄ = 1/ω.
This gives rise to

dω = −dω̄
ω̄2

.
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In rewriting the integral, the minus sign cancels out because the limits are also
flipped. We also note that the poles of S are the zeros of T , meaning that p̄ j →
1/z j. Taking into account the change of variable, we have then∫ ∞

−∞
dω̄
2π

ln |T (iω̄)| =
∑

j

1
z j
.

Then rename the dummy variable ω̄ as ω.
15.6 Waterbed theorem for discrete dynamics. Derive Eq. (15.27): for an open-loop

transfer function L(z) with relative degree ν ≥ 1 and unstable poles |pj| > 1,
we have

∫ π

−π
dω
2π ln |S (eiω)| = ∑

j ln |pj|. Assume that the gain K of L stabilizes
the closed-loop system. Hint: Use Jensen’s relation, Eq. (A.51), to show I(p) ≡∫ π

−π
dω
2π ln

∣∣∣eiω −p
∣∣∣ = ln |p| for |p| > 1 and 0 otherwise. Then write L(z) in pole-zero

form.

Solution.
We write the loop gain in terms of its poles and zeros:

L(z) = K

∏m
j′=1(z − z j′ )∏n
j=1(z − p j)

,

where the loop gain K is chosen so that S = 1
1+L is stable and where the relative

degree ν = n − m ≥ 1. Since S is stable, we can write it in pole-zero form as

S (z) =
1

1 + K
∏m

j′=1(z−z j′ )∏n
j=1(z−p j)

=

∏n
j=1(z − p j)∏n
j′=1(z − r j′ )

,

where r j′ denote the closed-loop poles. For our purposes, we do not care where
they are, except that, since S is stable, we know that |r j′ | < 1, for all j′. Note that
S has ν = 0.

Substituting the expression for S and using the suggested integral I(p) then
gives

=

∫ π

−π
dω
2π

ln

∣∣∣∣∣∣
∏n

j=1(z − p j)∏n
j′=1(z − r j′ )

∣∣∣∣∣∣
z=eiω

=

∫ π

−π
dω
2π

⎡⎢⎢⎢⎢⎢⎢⎣ n∑
j=1

ln | eiω −p j| −
n∑

j′=1

ln | eiω −r j′ |
⎤⎥⎥⎥⎥⎥⎥⎦

=

nu∑
j=1

ln |pj| ,

where nu is the number of unstable poles in L(z). We note that the I(p) identity
shows that all the poles r j′ do not contribute because they are, by hypothesis,
stable. Likewise, the stable parts of L(z) do not contribute. If L(z) is stable to
begin with, then we have shown that∫ π

0
dω ln |S (eiω)| = 0 .
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The I(p) identity is a special case of Jensen’s relation, Eq. (A.51):∫ π

−π
dω
2π

ln | f (eiω)| = ln | f (0)| +
m∑

j=1

ln |pj| −
n∑

j′=1

ln |z j′ | ,

where pj are the poles and z j′ the zeros inside the unit circle. Choose f (z) = z− p,
which has a zero at p. Then,

I(p) =
1
2

∫ π

−π
dω
2π

ln
∣∣∣eiω −p

∣∣∣2
=

∫ π

−π
dω
2π

ln
∣∣∣eiω −p

∣∣∣ .
• |p| < 1. Jensen implies that I(p) = ln |p| + 0 − ln |p| = 0.
• |p| > 1. Jensen implies that I(p) = ln |p| + 0 − 0 = ln |p|.

Finally, we give an alternate, more direct proof for the case of stable L, where
all poles are inside the unit circle, implying that ln S is analytic outside the unit
circle. We write ∫ π

−π
dω ln |S (z)|2 =

∮
dz
iz

ln |S (z)|2

=

∮
dz
iz

[
ln |S (z)| + ln

∣∣∣S (z−1)
∣∣∣]

= 2
∮

dz
iz

ln |S (z)|

where, in the last step, we substitute z′ = z−1 and remember that the limits reverse,
absorbing the minus sign from dz′ = − dz /z2.

We next deform the unit circle contour of the integral to a larger circle of
radius R→ ∞ via the Cauchy Integral Theorem. For z on this enlarged contour,
we have

ln S (z) = ln
1

1 + L
≈ ln(1 − L) ≈ −L .

Then, since L(R eiω) ∼ R−ν as R→ ∞, we have∮
1
iz

dz ln [S (z)] ≈ − lim
R→∞

∫ 2π

0
dω L(R eiω) = 0 .

This proves the waterbed theorem for the discrete, minimum-phase case and
makes clear the role that ν ≥ 1 plays.

Although not asked for in the problem, there is a straightforward generaliza-
tion to loop transfer functions L of relative degree ν = 0. Let α = limz→∞ L(z).
Then

L(z) = α + βz−1 + O(z−2) ,
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and

S (z) =
1

1 + L
=

1
1 + α + βz−1 + · · ·

=
1

1 + α

[
1 −

(
β

1 + α

)
z−1 + · · ·

]
.

Then

ln S (z) ≈ ln
1

1 + α
−

(
β

1 + α

)
z−1 + · · · ,

and the Bode relation generalizes to∫ π

−π
dω
2π

ln |S (eiω)| =
nu∑
j=1

ln |pj| − ln |1 + α| .

15.7 One-dimensional, discrete dynamics: Bode’s waterbed theorem. For the dynamics
of Example 15.1, reproduce the graphs in Figure 15.3 and show that the variance
of observations is given by 〈y2〉 = ν2/[1 − (a − K)2].

Solution.
The graphs are simply plots of

log
∣∣∣S (eiω)

∣∣∣2 = log
(
1 + a2 − 2a cosω

)
.

We can derive the expression for the variance by manipulating correlation
functions and taking advantage of the time invariance of the equations. From
the equations of motion,

yk+1 = (a − K)yk + νk ,

which implies the correlations

〈y ν−1〉 = ν2〈
y2

〉
= (a − K) 〈y y−1〉 + 〈y ν−1〉

〈y y−1〉 = (a − K)
〈
y2

〉
.

Substituting and then solving for
〈
y2

〉
gives

〈
y2

〉
= ν2

1−(a−K)2 .

A faster solution is to square each side of the equation for yk+1 and average:〈
y2

k+1

〉
= (a − K)2

〈
y2

k

〉
+ ν2 ,

where we use the fact that νk and yk are independent, so that 〈yk νk〉 = 0. After
initial transients have decayed, the statistics should be stationary, so that

〈
y2

k+1

〉
=〈

y2
k

〉
=

〈
y2

〉
. Solving for

〈
y2

〉
also gives our result.
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15.8 Temperature control and the waterbed theorem. As a simplified temperature

response let G(s) = 1
(1+s)2 . Add a PID controller, K(s) = Kp +

Ki
s + Kd

(
s

1+s/ω f

)
.

Place the system in a box of thickness 	 and thermal diffusivity D, whose temper-
ature transfer function for high frequencies is approximately Gbox(s) = e−(	/

√
D)
√

s

(see Problem 2.5). Use {D, 	,Kp,Ki,Kd, ω f } = {1, 2, 10, 3, 7, 10}.
a. With no box, compute the sensitivity function S = 1

1+L , with L = K(s) G(s).
Confirm the “no box” Bode integral plot at right.

b. Add the insulating box response and confirm the “box” plot at right.
c. Investigate the response to an impulse disturbance at the output, using a Padé

approximant to the box transfer function or the inverse Laplace transform of
Gbox(s): G(x = 	, t) = 	√

4πDt3
exp

{[
− 	2

4Dt

]}
. Plot the disturbance as filtered by

the box, G(x = 	, t), along with the closed-loop response that it provokes. Plot,
too, the responses to a step input, showing the case of no control (just the sys-
tem), PID control, and PID control augmented with a first-order feedforward
filter between the reference signal and the controller input that eliminates the
overshoot of the simple PID controller.

Solution.

a. The sensitivity function is

S (s) =
1

1 + L
=

(1 + s)2

(1 + s)2 + K(s)
,

with

K(s) = Kp +
Ki

s
+ Kd

⎛⎜⎜⎜⎜⎜⎝ s
1 + s

ω f

⎞⎟⎟⎟⎟⎟⎠ .
Then we compute, numerically, ln |S (iω)|.

b. The Bode response, |Gbox(iω)| = | e−2
√

iω | = e−
√

2ω is shown below. Recall that√
i= ± 1√

2
(1 + i). Select the positive root to make |G| → 0 as ω→ ∞.

See book for plot of |S (iω)| |Gbox(iω)|.
c. The time responses are generated by using a linear response routine for G(s)

in Mathematica with the appropriate driving function. We note that the PID
parameters chosen give reasonable reference control (the step response) and
reasonable disturbance rejection (using the passive insulation from the box).
It is instructive to play around with other combinations, too.
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The solution shown uses a feedforward filter with transfer function Gff(s) =
1

1+s/ωff
, with ωff = 10. No attempt was made to systematically tune the PID

and other controller parameters, and you can probably find better ones.
Here are the plots:

15.9 Acausal control of a first-order system. In reference to Example 15.2:

a. Show that the acausal feedforward input u(t) given leads to the desired con-
trol. Hint: Solve the time-domain equations for u(t < 0), then u(t) ≈ 0, then
u(t) > 0.

b. Explain physically (in words) how this solution works. How can a non-zero
input u(t) for t < 0 nonetheless produce a zero output? If that output is zero,
where does the step response come from?

Solution.

a. First the math. For a transfer function

G(s) =
1 − τs
1 + τs

,

the corresponding time domain equation is

ẏ + τ−1y = −u̇ + τ−1u .

We substitute the desired solution y(t) = θ(t), to find a first-order differential
equation for u(t):

−u̇ + τ−1u = τ−1θ(t) + δ (t) ,

where the delta function arises from differentiating θ(t).

We begin by noting that an “obvious” solution for t > 0 is u(t) = 1. This
clearly both satisfies the differential equation for positive time and meets the
final condition y = 1 at t = +∞.

To solve near t = 0, we integrate from −ε to +ε. All terms that are continuous
or have a finite jump continuity, such as θ(t), give a finite output times the
interval, 2ε. Taking the limit ε → 0 eliminates those terms. Integrating the
other terms then gives,

−u(0+) + u(0−) = 1 , =⇒ u(0−) = 2 .
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In the last step, we use the previous result that u(0+) = 1, since we evaluate it
for t > 0.

In the last regime, t < 0, we solve

−u̇ + τ−1u = 0 , u(0−) = 2 ,

for negative times. This has a solution in this regime of u(t) = 2 et/τ. If inte-
grating backwards in time seems strange to you, change variables t → −t and
solve forward in the new time variable.

b. Now let us try to understand more physically what is going on. The first
question is how a non-zero input u(t) leads to a zero output y(t) for negative
times. Well, this is the meaning of a zero! That is, the zero dynamics implies
a signal u(t) that leads to a zero output. Here, the zero is at s = +τ−1, corre-
sponding to the unstable (in forward time) signal shown. In the text, we have
discussed how zeros can arise due to cancellations that often depend on the
precise placement of input and output.

How then, do we get a step if “nothing” has happened so far? Here we get
to the subtlety of unstable internal states, discussed in Chapters 3 and 4. The
input-output relation of a transfer function misses some internal quantities.
Here, the internal variable blows up. Altering u(t) suddenly from the value
that “maintains” the zero output allows for a sudden output swing.

15.10 Anticipating the future improves control. Consider the system of Problem 15.7,
for |a| > 1, with unstable uncontrolled dynamics. Scale ν2 = 1. What is the
minimum power P∗ = 〈u2(K∗)〉 required to stabilize the system?

a. Use only current information. Assume uk = −Kyk, and show that choosing
K∗ = a − 1/a leads to a minimum power P∗ = a2 − 1. (See Section 15.2.4.)

b. Assume that somehow you know yk+1 at time k and choose uk = −K0yk−K1yk+1.
Show that choosing K∗0 = K∗1 = a−1 minimizes the power, with P∗+ = 2(|a| −1).
For unstable systems, note that P∗+ < P∗ (see right).

c. Show that using yk−1 does not help. That is, if uk = −k0yk − k1yk−1, the best
feedback gains are k0 = a − 1/a and k1 = 0, leading again to P∗− = a2 − 1.

Solution.
To recap, the equations of motion are

yk+1 = ayk + uk + νk ,
〈
ν2

k

〉
= ν2 .

Hereafter, we set ν2 = 1. (In all cases, the power ∝ ν2.)

a. This problem is mostly done in the text. We choose uk = −Kyk and use the
result from Problem 15.7 for the variance:〈

y2
〉
=

1
1 − (a − K)2

.
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The power is

P =
〈
u2

〉
= K2

〈
y2

〉
=

K2

1 − (a − K)2
.

The minimum is found by solving (preferably using a symbolic-algebra
program)

∂P
∂K
=

2K
(
−a2 + aK + 1

)
[
1 − (a − K)2

]2
= 0

for K. The solutions are

K∗ =

⎧⎪⎪⎨⎪⎪⎩0 |a| < 1

a − 1/a |a| ≥ 1
=⇒ P∗ =

⎧⎪⎪⎨⎪⎪⎩0 |a| < 1

a2 − 1 |a| ≥ 1

b. Now assume that we know yk+1 at time k, so that we can have uk = −K0yk −
K1yk+1. Then a similar calculation shows

〈
y2

〉
=

1 + K1

(1 + K1)2 − (a − K0)2
, 〈y y−1〉 = a − K0

(1 + K1)2 − (a − K0)2
.

The power in this case is denoted by P+ and is

P+ =
〈
u2

〉
= (K2

0 + K2
1 )

〈
y2

〉
+ 2K0K1 〈y y−1〉

=

(
K2

0 + K2
1

)
(1 + K1) + 2K0K1(a − K0)

(1 + K1)2 − (a − K0)2
.

We find the minimum by solving the simultaneous equations

∂P
∂K0

=
∂P
∂K1

= 0

for K0 and K1. The solutions are K∗0 = K∗1 = a−1, with a corresponding power
P∗+ = 2(a − 1).

c. What if we had no future information but tried to reduce the stabilization
power by using past information? Let uk = k0yk + k1yk−1. Then

〈
y2

〉
=

1 + k1

(1 − k1)
[
(1 + k1)2 − (a − k0)2

] ,
〈y y−1〉 = a − k0

(1 − k1)
[
(1 + k1)2 − (a − k0)2

] ,
〈y y−2〉 = (a − k0)2 − k1(1 + k1)

(1 − k1)
[
(1 + k1)2 − (a − k0)2

] .
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and the power is

P− =
〈
u2

〉
= (k2

0 + k2
1)

〈
y2

〉
+ 2k0k1 〈y y−1〉

=
(k2

0 + k2
1)(1 + k1) + 2k0k1(a − k0)

(1 − k1)
[
(1 + k1)2 − (a − k0)2

] .

Minimizing this expression for P(k0, k1) leads to k∗0 = a − 1/a and k∗1 = 0,
which is exactly the same expression that we found for a feedback uk = −Kyk.
In other words, adding past information does not allow us to reduce the
minimum power, and P∗− = P∗.

15.11 Entropy-rate paradox. Equation (15.37) claims that, for a stable open-loop
linear dynamics, the entropy rate of the output, H(Y), equals the entropy rate
of an output disturbance, H(ν). Yet Eq. (A.263) claims that if yk = a νk,
then H(Y) = H(ν) + ln |a|. Reconcile these two statements mathematically and
physically.

Solution.

The theorem applies to the sensitivity function S = 1
1+L , where L is the open-

loop transfer function, assumed stable. Physically, L → 0 at high frequencies.
Mathematically, this implies limz→∞ S (z) = 1

1+0 = 1. The initial-value theorem
then implies s0 = limz→∞ S (z) = 1, and Example A.26 shows thatH(Y) = H(ν) +
ln |s0| = H(ν).

Physically, an output disturbance immediately affects the output with unit
gain (by definition). Then, because the closed-loop dynamics is stable, the infor-
mation contained in the disturbance fades away. But because “all of it” entered
in the initial step, it is present in the time series yk.

By contrast, the situation with yk = aνk is different. It implies an immediate,
constant gain a that applies for all frequencies. The “stretching” by the factor |a|
alters the amount of information gained in a measurement with fixed resolution
(assuming a continuous alphabet for the values of Y and ν). Notice that in Prob-
lem 15.12 below, we consider similar dynamics of the form yk+1 = ayk + νk and
show that for |a| < 1, the entropy rate truly converges to H(Y) = H(ν). (The a
has a different interpretation in that problem.) In Problem 15.12, the coefficient
of ν is again 1. If not, the entropy rate would also have been altered.

Physically, then, the equality of entropy rates comes from the fact that output
disturbances affect the output instantaneously and with unit gain.

15.12 Entropy rate of the output of a stable 1d system. Let xk+1 = axk + νk, with
νk ∼ N(0, ν2) and |a| < 1. Let the output yk = xk (no measurement noise).

a. Show that the variance of the output is 〈y2
k〉 = ν2

1−a2 .
b. By direct calculation in the time domain, show that the entropy rate H(Y) =
H(ν), where the time series Y has realizations yk and the series ν has
realizations νk.
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Solution.

a. Assuming stationarity, which requires stable motion (|a| < 1), and substitut-
ing yk = xk, we have

〈y y−1〉 = a
〈
y2

〉
+ 0〈

y2
〉
= a 〈y y−1〉 + ν2 ,

which implies that 〈y2〉 = 1
1−a2 ν

2 and 〈y y−1〉 = a
1−a2 ν

2.
b. The entropy rate H(ν) of the independent random variables νk is that of a

single variable, H(ν) = ln
√

2πe + 1
2 ln ν2. For H(Y), we calculate the entropy

of H(YN), which, from Eq. (A.255) and Problem A.10.2, is given by

H(YN) = ln
(√

2πe
)N
+

1
2

ln | det Σ| ,
where Σ is the covariance matrix with elements 〈yi y j〉. Continuing the
argument from Part (a) gives, for the delayed correlations,

〈yi y j〉 =
(

a|i− j|

1 − a2

)
ν2 ,

which corresponds, explicitly, to a covariance matrix Σ that is a symmetric,
banded-diagonal (Toeplitz) N × N matrix:

Σ =
ν2

1 − a2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a a2 . . . aN

a 1 a aN−1

a2 a 1
. . .

...
. . .

. . . a
aN a2 a 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
By evaluating explicitly low-order cases or using a symbolic algebra program,
it is easy to see that

det Σ =
(

ν2

1 − a2

)N

(1 − a2)N−1 =
ν2N

1 − a2
.

Then

H(Y) = lim
N→∞

H(YN)
N

= lim
N→∞

1
N

⎡⎢⎢⎢⎢⎢⎣ln(2πe)N/2 +
1
2

ln ν2N −�������01
2

log
(
1 − a2

) ⎤⎥⎥⎥⎥⎥⎦
= ln

√
2πe +

1
2

ln ν2

= H(ν) .

15.13 Causal conditioning. Prove that Eqs. (15.38) and (15.39) for ordinary and
causal conditioning are equivalent. Hints: Use Bayes repeatedly and do N = 2
explicitly.
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Solution.
Let us first do the N = 2 case explicitly, to get some hints as to how to proceed

more generally. For the ordinary decomposition of conditional probability,

P(XN ,YN) = P(YN |XN) P(XN)

=

N∏
k=1

P(Yk |Yk−1, XN) P(Xk |Xk−1)

for n = 2→ P(Y2|Y1, X
2) P(Y1|X2) P(X2|X1) P(X1)

For the causal decomposition of conditional probability,

P(XN ,YN) = P(YN ||XN) P(XN ||YN−1)

=

N∏
k=1

P(Yk |Yk−1, Xk) P(Xk |Xk−1,Yk−1)

for n = 2→ P(Y2|Y1, X
2) P(Y1|X1) P(X2|X1,Y1) P(X1) .

Canceling common terms, equating the remaining one, and using Bayes’
theorem gives

P(Y1|X2) P(X2|X1)
?
= P(Y1|X1) P(X2|X1,Y1)

=
����P(Y1|X1) P(Y1|X1, X2) P(X2|X1)

����P(Y1|X1)
.

Thus, the two decompositions of conditional probability are equivalent for this
simple case. More generally, for

P(XN ,YN) = P(YN ||XN) P(XN ||YN−1) =
N∏

k=1

P(Yk |Yk−1, Xk) P(Xk |Xk−1,Yk−1) ,

we apply Bayes’ theorem to P(Xk |Xk−1,Yk−1) = P(Xk |Yk−1, Xk−1):

P(Xk |Yk−1, Xk−1) =
P(Yk−1|Yk−2, Xk) P(Xk |Yk−2, Xk−1)

P(Yk−1|Yk−2, Xk−1)
.

The denominator cancels all the terms in the first product except k = N, leaving

P(XN ,YN) = P(YN |YN−1, XN)
N∏

k=1

P(Yk−1|Yk−2, Xk) P(Xk |Yk−2, Xk−1) .

We use Bayes’ theorem again on the second product:

P(Xk |Yk−2, Xk−1) =
P(Yk−2|Yk−3, Xk) P(Xk |Yk−3, Xk−1)

P(Yk−2|Yk−3, Xk−1)
.

Again, the denominator cancels all but the k = N term of the first product, giving

P(XN ,YN) = P(YN |YN−1, XN) P(YN−1|YN−2, XN)
N∏

k=1

P(Yk−2|Yk−3, Xk) P(Xk |Yk−3, Xk−1) .
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Repeating, we see that we will eventually generate from the first term

P(YN |YN−1, XN) P(YN−1|YN−2, XN) . . . =
N∏

k=1

P(Yk |Yk−1, XN) = P(YN |XN) .

The remaining terms will be of the form

N∏
k=1

P(Xk |Yk−N , Xk−1) =
N∏

k=1

P(Xk |Xk−1) = P(XN) ,

where we note that Y0,Y−1, . . . are all equal to the empty set (there is only
Y1, . . . ,YN) and can thus be eliminated from the conditioning. Thus we have
proven that

P(XN ,YN) = P(YN ||XN) P(XN ||YN−1) = P(YN |XN) P(XN) .

Note that I found it helpful to work out the N = 3 case explicitly, as well.
15.14 Directed information decomposition. Prove Eq. (15.43). Hint: Use Eq. (A.287).

Solution.
The version of the mutual information definition in Eq. (A.287) makes the

symmetric of its arguments explicit:

I(XN ; YN) = H(XN) + H(YN) − H(XN ,YN) .

The joint entropy is

H(XN ,YN) = −
∑

P(XN ,YN) log P(XN ,YN) .

But, from Eq. (15.39), we have

P(XN ,YN) = P(YN ||XN) P(XN ||YN−1) ,

Then

H(XN ,YN) = −
∑

P(XN ,YN) log P(YN ||XN) P(XN ||YN−1)

= −
∑

P(XN ,YN) log P(YN ||XN) −
∑

P(XN ,YN) log P(XN ||YN−1)

= H(YN ||XN) + H(XN ||YN−1) .

Going back to the definition of mutual information, we have

I(XN ; YN) = H(XN) + H(YN) − H(XN ,YN)

= H(XN) + H(YN) − H(YN ||XN) − H(XN ||YN−1)

=
[
H(YN) − H(YN ||XN)

]
+

[
H(XN) − H(XN ||YN−1)

]
= I(XN → YN) + I(YN−1 → XN) ,

which is the identity we set out to demonstrate.
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15.15 Mutual vs. directed information. Using the chain rule, show the results for
mutual and directed information claimed in Example 15.5.

Solution.
For this problem, let XN = {X0, X1, . . . , XN} and YN = {Y1, . . . ,YN}. That is, X

starts at k = 0 and Y starts at k = 1. Then the dynamics Yk = Xk−1 is valid for
k = 1 to N.

• Mutual-information rate, I(X → Y).

I(XN ; YN) =
N∑

k=1

I(Yk; XN |Yk−1) chain rule

=

N∑
k=1

H(Yk |Yk−1) − H(Yk |Yk−1, XN)

=

N∑
k=1

H(Xk−1|Xk−2) − H(Xk−1|Xk−2, XN) (Yk = Xk−1)

=

N∑
k=1

H(Xk−1) − H(Xk−1|Xk−1) (Xk are i.i.d.)

=

N∑
k=1

H(X) − 0

= N H(X) .

Thus, I(X; Y) = H(X) . Intuitively, since X and Y are the same time series

shifted by 1 unit, each measurement of Y reduces the uncertainty about X by
H(X). Note, however, that our intuition depends on the i.i.d. assumption
about the stochastic process for X. When there are correlations, information
is “spread out” and not “localized” to a particular variable.

• Directed-information rate, I(X → Y).

I(XN → YN) =
N∑

k=1

I(Yk; Xk |Yk−1) definition of dir. info.

=

N∑
k=1

H(Yk |Yk−1) − H(Yk |Yk−1, Xk)

=

N∑
k=1

H(Xk−1|Xk−2) − H(Xk−1|Xk−2, Xk)

=

N∑
k=1

H(Xk−1) − H(Xk−1|Xk−1)

=

N∑
k=1

H(X) − 0

= N H(X) .
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Thus, I(X → Y) = H(X) .

• Directed-information rate, I(Y → X).

I(YN → XN) =
N∑

k=1

I(Xk; Yk |Xk−1)

=

N∑
k=1

H(Xk |Xk−1) − H(Xk |Xk−1,Yk)

=

N∑
k=1

H(Xk |Xk−1) − H(Xk |Xk−1, Xk−1)

=

N∑
k=1

H(Xk) − H(Xk)

= 0 .

Thus, I(Y → X) = 0 .

The last two results show that X causes Y, and not the reverse. Note that our
results are consistent with Problem 15.14, which proves that

I(XN ; YN) = I(XN → YN) + I(YN−1 → XN) .

(Remember that we extended the X variables by adding X0 here.)

15.16 Information rates for a finite-bandwidth, continuous system. Consider an ampli-
fier that acts also as a low-pass filter, with transfer function G(s) = G0/(1+s), that
is used as a transducer between a continuous input signal u(t) and a continuous
output signal y(t). Let y(s) = G(s) u(s) + ξ(s), with 〈ξ(t) ξ(t′)〉 = ξ2δ (t − t′).

a. Using integration by parts, show that
∫ ∞
−∞

dω
2π ln

[∏
i

(
ω2+a2

i

ω2+b2
i

)]
=

∑
i(ai − bi).

b. Show that I(U; Y) is given by Eq. (15.48).

Solution.

a. We have

∫ ∞

−∞
dω
2π

ln

⎡⎢⎢⎢⎢⎢⎣∏
i

⎛⎜⎜⎜⎜⎝ω2 + a2
i

ω2 + b2
i

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ =

∫ ∞

−∞
dω
2π

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣∏
i

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +
a2

i

ω2

1 +
b2

i

ω2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
∑

i

∫ ∞

−∞
dω
2π

⎡⎢⎢⎢⎢⎣ln ⎛⎜⎜⎜⎜⎝1 + a2
i

ω2

⎞⎟⎟⎟⎟⎠ − ⎛⎜⎜⎜⎜⎝1 + b2
i

ω2

⎞⎟⎟⎟⎟⎠⎤⎥⎥⎥⎥⎦ .
We thus focus on∫

dω
2π

ln

(
1 +

a2

ω2

)
=

a
2π

∫
dω ln

(
1 +

1
ω2

)
.
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Isolating the dimensionless part, we integrate by parts:∫
dω ln

(
1 +

1
ω2

)
= ω ln

(
1 +

1
ω2

)
−

∫
dωω

(−2/ω3)
1 + 1/ω2

= ω ln

(
1 +

1
ω2

)
+ 2

∫
dω

1
1 + ω2

= ω ln

(
1 +

1
ω2

)
+ 2 tan−1 ω .

With limits ω = ±∞, we have ω ln
(
1 + 1/ω2

)
→ ω/ω2 = 1/ω → 0 and also

tanω→
[
π
2 − (−π

2 )
]
= π. Thus,∫ ∞

−∞
dω
2π

ln

(
1 +

a2

ω2

)
=

a
2π

(0 + 2π) = a ,

and the full integral follows immediately.

b. With G = G0
1+s/ωc

and |G|2(ω) =
G2

0

1+ω2/ω2
c
, we have

I(U; Y) =
1
2

∫ ∞

−∞
dω
2π

ln

⎛⎜⎜⎜⎜⎝1 + SNR2
0

1 + ω2/ω2
c

⎞⎟⎟⎟⎟⎠
=

1
2

∫ ∞

−∞
dω
2π

ln

⎛⎜⎜⎜⎜⎝ω2 + ω2
c(1 + SNR2

0)

ω2 + ω2
c

⎞⎟⎟⎟⎟⎠
=
ωc

2

(√
1 + SNR2

0 − 1

)
.

where SNR0 = G0σu/ξ.

15.17 Information rates in two different limits. In Section 15.2.3, the mutual infor-
mation rate for a constant-gain amplifier, sampled at Ts, is given as I(U; Y) =

1
2Ts

log
(
1+SNR2

0
)
. On the other hand, the rate for a continuously sampled ampli-

fier of bandwidth ωc is I(U; Y) = ωc
2

(√
1 + SNR2

0 − 1
)
. Calculate I(U; Y) for

finite Ts and ωc, and reconcile the two expressions. Assume G(s) = G0
1+s/ωc

.

Solution.
For a finite sampling interval Ts, the maximum frequency is the Nyquist

frequency, |ωN | = π/Ts. With a finite bandwidth ωc, the amplifier response is

|G|2(ω) =
G2

0

1 + ω2

ω2
c

.

With SNR0 =
G0σu

ξ
and α ≡ ωN/ωc, the information rate is

I(U; Y) =
1
2

∫ ωN

−ωN

dω
2π

log

⎛⎜⎜⎜⎜⎜⎜⎜⎝1 + SNR2
0

1 + ω2

ω2
c

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=
ωc

2

∫ α

−α
dω
2π

log

⎛⎜⎜⎜⎜⎝1 + SNR2
0

1 + ω2

⎞⎟⎟⎟⎟⎠
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=
ωc

2

∫ α

−α
dω
2π

log

⎛⎜⎜⎜⎜⎝ω2 + 1 + SNR2
0

ω2 + 1

⎞⎟⎟⎟⎟⎠
=
ωc

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣α log

⎛⎜⎜⎜⎜⎝1 + SNR2
0

1 + α2

⎞⎟⎟⎟⎟⎠ + 2
√

1 + SNR2
0 tan−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α√
1 + SNR2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 2 tan−1 α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where the integral is derived in Problem 15.16.

In the limit ωN � ωc, or α→ ∞, we use the result from Problem 15.16:

I(U; Y) = ωc
2

[√
1 + SNR2

0 − 1

]
.

Alternatively, in the limit ωc � ωN , or α→ 0, we find

I(U; Y) =
ωc

2π

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣α log
(
1 + SNR2

0

)
+ 2

√
1 + SNR2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ α√
1 + SNR2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
ωN

2π
log

(
1 + SNR2

0

)
= 1

2Ts
log

(
1 + SNR2

0

)
.

Thus, we see that the two expressions depend on which infinite limit is taken
first. Should we be concerned about this ambiguity? I would argue no: concepts
such as infinite bandwidths are idealizations of Nature that are never precisely
realized, anymore than other concepts such as perfect linear relationships or
perfect geometric forms. In a real physical situation, ωc is finite. And, while
a relationship can be continuous (assuming time itself is not quantized), any
measurements will have an effective ωN , too. In a given physical situation, there
will be a specific value of α. If α � 1 or α � 1, then we can make the appropriate
approximation.

15.18 Nonlinearities can reduce information rates. Consider measuring the signal uk ∼
N(0, σ2

u) with the nonlinear saturation function y0 = g(u) shown at left.

a. Show, for suitably defined a, that p(y0) = a
[
δ (y0 − u∗) + δ (y0 + u∗)

]
+

1√
2π

e−y2
0/2 for |y0| ≤ u∗ and 0 otherwise. (Check that p(y0) is normalized,

too.)

b. Then find the full distribution for p(y) for y = g(u) + ξ by convoluting with
the noise distribution ξ ∼ N(0, ξ2). Do the convolution symbolically or
numerically.

c. For u∗ = σu = 1 and ξ = 0.2, confirm p(y), left. Confirm, too, that the dashed
lines show the limiting distributions: N(0, ξ2) for u∗/σu � 1 andN(0, σ2

u + ξ
2)

for u∗/σu � 1. Confirm, too, the information-rate plot in the text.
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Solution.

a. To show that

p(y0) =

⎧⎪⎪⎨⎪⎪⎩a
[
δ (y0 − u∗) + δ (y0 + u∗)

]
+ 1√

2π
e−y2

0/2 |y0| ≤ u∗

0 |y0| > u∗

we change variables:

p(y0) =
p(u)
|g′(u)|

∣∣∣∣∣
u=g−1(y0)

, p(u) =
1√

2πσ2
u

e−u2/2σ2
u .

The δ-functions then arise from the regions |u| > u∗, with weight

a =
∫ ∞

u∗
du

e−u2/2σ2
u√

2πσ2
u

=
1
2

erfc
(

u∗√
2σu

)
.

For −u∗ < u < u∗, g′(u) = 1, so that p(y0) = p(u) in that region. This gives the
last term in the PDF.

We verify that ∫ u∗

−u∗
du

e−u2/2σ2
u√

2πσ2
u

= 1 − 2a ,

showing that the full distribution is normalized.
b. The noisy measurement is y = y0 + ξ. Thus, we find p(y) by convoluting

p(y0), found above with the noise distribution p(ξ), with ξ ∼ N(0, ξ2): Thus,
p(y) = p(y0) ∗ p(ξ). This is straightforward numerically but can also be done
symbolically. Let us see how to do it here (a symbolic-algebra program helps).
The δ functions each give rise to a Gaussian distribution with mean ±u∗.
The convolution integral is

∫ ∞

−∞
dx

1√
2πξ2

e
− x2

2ξ2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√

2πσ2
u

e
− (y−x)2

2σ2
u |y| ≤ u∗

0 |y| > u∗

Evaluating the integral and combining with the δ-function convolutions gives

p(y|u∗, ξ2) =
1
2

a√
2πξ2

(
e
− (y−u∗)2

2ξ2 + e
− (y+u∗ )2

2ξ2

)

+
1
2

e
− y2

2(σ2
u+ξ

2)

[
erf

(
u∗ξ2+u∗σ2

u−yσ2
u

σuξ
√

2(σ2
u+ξ2)

)
+ erf

(
u∗ξ2+u∗σ2

u+yσ2
u

σuξ
√

2(σ2
u+ξ2)

)]
√

2π(σ2
u + ξ

2)
.

For u∗ � {σu, ξ}, we have a → 0 and erf(·) → 1, =⇒ p(y|u∗, ξ2) → N(0, σ2
u +

ξ2).

For u∗ � {σu, ξ}, we have a→ 1
2 and erf(·)→ 0, =⇒ p(y|u∗, ξ2)→ N(0, ξ2).
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c. See code on book website. The mutual-information calculations are based on
Eq. (15.50), which states that

I(U; Y) = H(Y) − H(ξ) .

The latter entropy is log
√

2πe ξ2, and the calculation reduces to finding H(Y),
which is based on p(y) = p(y0) ∗ p(ξ).

15.19 Information flow in the small-noise limit. Make the arguments about the small-
noise limit that lead to Eq. (15.53) more precise.

Solution.
The main issue is how to convert p(y) to p(u) in the low-noise limit. We pro-

ceed by formulating the joint distribution for p(y, u, ξ) and then marginalizing
over u and ξ to find p(y). Using the definition of conditional probability and the
independence of u and ξ, we have,

p(y) =
∫

du dξ p(y, u, ξ)

=

∫
du dξ p(y|u, ξ) p(u) p(ξ)

=

∫
du dξ δ[y − g(u) − ξ] p(u) p(ξ)

=

∫
du p(u) p[y − g(u)] .

Here, p(ξ) = N(0, ξ2), so that p[y − g(u)] = N[y − g(u), ξ2] is just a normal
distribution, with mean y − g(u) and variance ξ2. Thus,

p(y) =
1√

2πξ2

∫
du p(u) e

− [y−g(u)]2

2ξ2 =
1√

2πξ2

∫
dz
|g′(u)| p(u) e

− [y−z]2

2ξ2

→
∫

dz
|g′(u)| p(u) δ (y − z) ,

where we have changed variables from u to z = g(u) and then taken the low-noise
limit ξ → 0. Evaluating the integral then gives

p(y) =
p(u)
|g′(u)|

∣∣∣∣∣
u=g−1(y)

.

Here g(u) is assumed to be monotonic in u. This is equivalent to Eq. (15.53).
15.20 Classic Szilard engine with noisy measurements. For the “energy” version of the

Szilard engine discussed in the text, one can extract energy up to kBT ln 2 I(X; Y)
for noisy measurements where the probability that the wrong state is observed
is ξ. Here, we show that the same result occurs for the traditional version of the
Szilard engine illustrated in Section 15.3.1. See Sagawa (2019).

a. Show that the average information gained by a single measurement y is
I(X; Y) = 1 − H2(ξ), where H2(ξ) is the Shannon entropy function for two
states, in bits.
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b. Extract an average work kBT ln 2 I(X; Y) as follows: If the measurement shows
the particle on the left, move the partition from the center of the box to a
position v chosen to maximize the extracted work. What if the measurement
indicates that the particle is on the right? Explain intuitively this optimal
protocol.

Solution.

a. From the definition of mutual information between the state x and measure-
ment y,

I(X; Y) = H(X) − H(X|Y) = H(Y) − H(Y |X) .

The two forms are equivalent because I(X; Y) = I(Y; X). Here, the second
form is more convenient because we are given the conditional probabilities
P(Y |X). Note that it is obvious, due to the symmetry of the problem, that
P(Y) = P(X) = 1

2 , so that H(Y) = ln 2. For the conditional entropy,

H(Y |X) = −
∑

{X,Y}=L,R

P(X,Y) ln P(Y |X)

= −P(Y)
∑

{X,Y}=L,R

P(Y |X) ln P(Y |X)

= 2
(

1
2

) [−ξ ln ξ − (1 − ξ) ln(1 − ξ)]
= H2(ξ) .

Thus,

I(X; Y) = H(Y) − H(Y |X) = ln 2 − H2(ξ) .

b. To calculate the maximum extractable work, we analyze the suggested proto-
col. We also first calculate the average work conditioned on the observation
of a particle in the left side.

〈WL〉 = P(Y = L|X = L)P(X = L)W(v, good) + P(Y = L|X = R)P(X = R)W(v, bad) ,

where W(v, good) is the work extracted when the measurement is correct and
W(v, bad) is the work “paid” when the measurement is in error. In units of
kBT , we have

W(v, good) = ln
v

1/2
= ln 2 + ln v

W(v, bad) = ln
1 − v
1/2

= ln 2 + ln(1 − v) .

In the “bad” case, we are compressing the particle from a volume 1/2 that of
the box to (1− v). Substituting and using P(X = L,R) = 1

2 and the conditional
probabilities for observations gives

〈WL〉 = (1 − ξ) 1
2 [ln 2 + ln v] + ξ 1

2 [ln 2 + ln(1 − v)]
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=
1
2
[
(1 − ξ + ξ) ln 2 + (1 − ξ) ln v + ξ ln(1 − v)

]
=

1
2
[
ln 2 + (1 − ξ) ln v + ξ ln(1 − v)

]
.

By symmetry, it is clear that the other contribution 〈WR〉 will have exactly the
same form, with ξ → 1 − ξ and v→ 1 − v. Thus,

〈Wext〉 = 2
2
[
ln 2 + (1 − ξ) ln v + ξ ln(1 − v)

]
.

The last step is to choose v to maximize 〈Wext〉. Solving dv〈Wext〉(v) = 0 gives
v = 1 − ξ and

〈Wext〉 = [
ln 2 + (1 − ξ) ln(1 − ξ) + ξ ln ξ

]
= ln 2 + H2(ξ) = I(X; Y) .

Thus, 〈Wext〉 = kBT I(X; Y). Measurement error reduces the information
acquired from the system, which then reduces by the same amount (times
kBT ) the work that can be extracted. Of course, poorer protocols can extract
less work.

Why move the partition only partway? When the measurement is in error, we
will compress the gas. If we compress too much, the cost of bad measurements
will be too high. The optimal protocol balances potential gains against losses.

15.21 Two forms of the master equation. The master equation dt pi =∑
j

(
Wi j p j −Wji pi

)
has transition rates Wi j from state j to i.

a. Interpret this form of the master equation physically in terms of in and out
currents. Can you give a graphical interpretation, too? (Cf. Section 15.3.4.)

b. An equivalent form of the master equation that is more convenient mathemat-
ically is given by dt p = Wp. For this form, why must each column ofW sum
to zero?

c. Express the rate matrixW in terms of the transition rates Wi j.
d. Relate dt p = Wp to its discrete-time counterpart pk+1 = Apk for a protocol of

duration τ. (Hint: exponentiate to find a condition betweenW and A.)
e. Write Eq. (15.67) for a two-state system. What is its matrixW?

Solution.

a. The product of probability × transition rate can be interpreted as a vector
of probability currents J = W p. That is, each component Ji is the current
through the ith state, so that the master equation can also be interpreted as

dt p = J = J in − Jout .
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A graphical interpretation of the first form of the master equation, identifying
the in- and outgoing currents into each node pi is given below:

b. The condition that the columns of W sum to zero is required by the need
to keep the probabilities pi(t) normalized at all times. If we sum the master
equation dt pi =

∑
jWi j p j over i, we have

∑
i

dt pi =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

Wi j p j

⎞⎟⎟⎟⎟⎟⎟⎠
dt

⎛⎜⎜⎜⎜⎜⎝∑
i

pi

⎞⎟⎟⎟⎟⎟⎠ =∑
j

p j

⎛⎜⎜⎜⎜⎜⎝∑
i

Wi j

⎞⎟⎟⎟⎟⎟⎠
dt(1) =

∑
j

p j

⎛⎜⎜⎜⎜⎜⎝∑
i

Wi j

⎞⎟⎟⎟⎟⎟⎠
0 =

∑
j

p j

⎛⎜⎜⎜⎜⎜⎝∑
i

Wi j

⎞⎟⎟⎟⎟⎟⎠ .
The inside sum must be true for arbitrary pj vectors (whose components sum
to one), which implies that the columns of the matrix W must sum to zero.
This is the continuous version of the normalization condition for discrete-
time dynamics,

∑
i Ai j = 1.

c. Let us try the following rule for constructingW from W:

Wi j =

⎧⎪⎪⎨⎪⎪⎩Wi j i � j

−∑
k Wk j i = j

We could also express this as

Wi j = Wi j − δ i j

∑
k

Wk j

using the Kronecker delta function (1 if i = j and 0 otherwise). It is worth not-
ing that Wii = 0 for all i, as W records only the transitions between different
states.
The above definition is set up so that the normalization condition is automat-
ically enforced:

∑
i

Wi j =

⎛⎜⎜⎜⎜⎜⎜⎝∑
i� j

Wi j

⎞⎟⎟⎟⎟⎟⎟⎠ +Wj j =

⎛⎜⎜⎜⎜⎜⎜⎝∑
i� j

Wi j

⎞⎟⎟⎟⎟⎟⎟⎠ −∑
k

Wk j = 0 .
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Armed with this form forW, we show that the compact matrix form is equiv-
alent to the original in-out form. The evolution equation for probabilities
is

dt pi =

n∑
j=1

Wi j p j

=
∑
j�i

Wi j p j +Wii pi

=
∑
j�i

(
Wi j p j −Wji pi

)
=

∑
j

(
Wi j p j −Wji pi

)
.

The first term represents the fraction of states going from any other state i
into j, while the second term represents the fraction of states going out from
j to any other state i. The master equation is usually written in the more
intuitive in-out form. In the last line, we can remove the restriction that the
sum be over j � i, changing to a simple sum over j. This step is justified
because the i = j term has a net right-hand side that is automatically zero.

d. Exponentiating the continuous-time equation

dt p =W p

gives

p(τ) = eWτ p(0) ≡ Ap(0) .

Thus,

A = eτW ≈ I + τW ,

where the latter approximation is to first order in τ. These relations for
stochastic transition matrices are analogous to the ones we derived in
Chapter 5 to relate discrete- and continuous-time formulations of linear
dynamics.

e. To connect to the Maxwell-demon example of Section 15.3.5, we denote the
left and right states as 1 and 2. Thus, we define p1 and p2 = 1 − p1. The
equations of motion, in this language, are

dt p1 = −ω21 p1 + ω12 p2

dt p2 = −ṗ1 = +ω21 p1 − ω12 p2 ,

which implies that the matrixW is given by

W =

(−ω21 ω12

ω21 −ω12

)
.

Each column sums to zero, as expected.
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15.22 Work extraction from a finite-time protocol. We explore numerically and
analytically finite-time protocols of duration τ for a two-state Szilard engine.

a. Show that the master equation reduces to a single differential equation for
p(t), the probability to be in the initially unoccupied state, and ε(t), its energy
level.

b. Integrate the master equation for the protocol ε(t) = ε0(1 − t/τ) and evalu-
ate the average work over the protocol. Confirm that 〈W〉 is maximized for
τ → ∞.

c. Show numerically that the average power extracted, 〈P〉 ≡ 〈W〉/τ, is maxi-
mized for τ → 0. Given that, show analytically that ε0 ≈ 0.3 maximizes 〈P〉.

Solution.

a. We begin by writing the master equation for a two-state system:

dt p1 = −ω21 p1 + ω12 p2

dt p2 = − ṗ1 = +ω21 p1 − ω12 p2 ,

where ω21/ω12 = e−ε . With a scaled time t → Γt, we can write ω21 = e−ε and
ω12 = 1. Then, using p2 = 1 − p1 and writing p ≡ p1, we have, finally,

dt p = e−ε(t)(1 − p) − p , p(0) = 0 ,

where ε(t) = ε0(1 − t/τ).
b. We can solve this equation numerically for a finite-time protocol ε(t) = ε0(1 −

t/τ) over a cycle of duration τ. The expression for the average energy extracted
as work during the protocol is given by

W = −
∫ τ

0
dε(t) p(t, ε(t)) = +

ε0

τ

∫ τ

0
dt p(t, ε(t)) .

The sign is chosen so that W > 0 implies that a positive energy has been
extracted from the heat bath. For numerical results, see the code on book
website. You should be able to reproduce the image given in the text and to
verify that curves tend to

W(ε, τ→ ∞) = ln
2

1 + e−ε
.

c. From the numerics in (b), it is clear that the average power always decreases
with τ and hence is greatest at τ → 0. Similarly, you can readily check that
p(t) � 1 for all t in the range 0 ≤ t ≤ τ, as τ → 0. The master equation for
p(t) is then, approximately,

dt p ≈ e−ε0(1−t/τ) = e−ε0 eε0t/τ .

Integrating, we find

p(t) =
e−ε0 τ

ε0

(
eε0t/τ −1

)
.
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and an average extracted work

W =
ε0

τ

∫ τ

0
dt p(t) =

ε0

τ

e−ε0 τ

ε0

∫ τ

0
dt

(
eε0t/τ −1

)
= τ

[
1
ε0

(
1 − e−ε0

) − e−ε0

]
.

The power is then

P =

[
1
ε0

(
1 − e−ε0

) − e−ε0

]
,

which, numerically has a maximum Pmax ≈ 0.298 for ε0 ≈ 1.79. This
matches the maximum found numerically from the full equations, with no
approximation.

The main point is that while the maximum power per cycle is extracted from
long, quasistatic protocols, the maximum power (here) is extracted for very
fast cycles. Note that we have still assumed a particular protocols, ε(t) =
ε0(1−t/τ). Bauer et al. (2014) use the calculus of variations to find the optimal
protocol function, which turns out to be to let ε jump from 0 to 1 and then
back to 0 rather than ramping down. The maximum possible power is then
Pmax = 1/e ≈ 0.368, which is somewhat better than what we found with our
restricted protocol.

15.23 Entropy production in stochastic thermodynamics.

a. Derive the entropy decomposition dtS = Ṡ i + Ṡ e by showing (or identifying)

dtS =
1
2

∑
i j

Ji j ln
p j

pi
, Ṡ i =

1
2

∑
i j

Ji j ln
Wi j p j

Wji pi
, Ṡ e =

1
2

∑
i j

Ji j ln
Wji

Wi j
.

b. Show that Q̇ = TṠ e is consistent with the definition Q̇ =
∑

i(dt pi)εi used in the
first law. For help on this problem, see Van den Broeck and Esposito (2015).

Solution.

a. The time derivative of the entropy (in units of kB) is

dtS = −
∑

i

(dt pi) ln pi −
∑

i

pi(dt ln pi) .

The second term vanishes because of probability normalization:

∑
i

pi(dt ln pi) =
∑

i

pi

(
1
pi

)
dt pi

= (1) dt

⎛⎜⎜⎜⎜⎜⎝∑
i

pi

⎞⎟⎟⎟⎟⎟⎠
= dt(1) = 0 .
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Thus,

dtS = −
∑

i

(dt pi) ln pi

= −
∑

i j

(
Wi j p j

)
ln pi

= −
∑

i j

(
Wi j p j

)
ln

pi

p j
.

This last step uses the property that
∑

iWi j = 0. Explicitly, the new term is

∑
i j

Wi j p j ln p j =
∑

j

p j ln p j

⎛⎜⎜⎜⎜⎜⎜⎝
�

�
���

0∑
i

Wi j

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 .

Next, we recognize that indices that are summed are dummy variables and
can have any name. If we switch index names i ↔ j, we thus get the same
sum. Noting that the diagonal term then drops out, so thatWi j = Wi j, we can
thus can re-express the entropy rate as

dtS = +
1
2

∑
i j

(
Wi j p j −Wji pi

)
ln

p j

pi
=

1
2

∑
i j

Ji j ln
p j

pi
,

where we also use ln
(
pj/pi

)
= − ln

(
pi/pj

)
and recall that we have previously

defined the current from j to i as Ji j = Wi j p j − Wji pi. This is the desired
expression for dtS .

Finally, writing

ln
p j

pi
= ln

Wi j p j

Wji pi
+ ln

Wji

Wi j
,

we arrive at the desired result: dtS = Ṡ e + Ṡ i, with

Ṡ i =
1
2

∑
i j

Ji j ln
Wi j p j

Wji pi
and Ṡ e = Q̇/T =

1
2

∑
i j

Ji j ln
Wji

Wi j
.

b. We start from the definition used in the first law:

Q̇ =
∑

i

(dt pi)εi

=
∑

i j

(
Wi j p j

)
εi

=
∑

i j

(
Wi j p j

) εi

ε j

=
1
2

∑
i j

Ji j
εi

ε j

=
1
2

∑
i j

Ji j ln
Wji

Wi j
.

Thus, the two definitions of Q̇ are equivalent.
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15.24 Nonequilibrium free energy

a. Show that F(p) = −kBT ln Z when p is the equilibrium distribution π.
b. Show that F = Feq + D(p||π), for relative entropy D(p||π) ≡ ∑

i pi ln(pi/πi) ≥ 0.
c. Generalize the result in (b) to one-dimensional continuous distributions, with

pi → p(x) and
∑

i →
∫

dx. Assume overdamped dynamics, so that εi → U(x).
d. Show that the protocol of Figure 15.7 extracts a work Wextract = F − Feq.
e. Show that the irreversible protocol dissipates heat Q = F − Feq into the bath.

Solution.

a. The equilibrium distribution is

πi =
1
Z

e−εi ,

where the partition function,

Z =
∑

i

e−εi ,

ensures normalization:
∑

i πi = 1. We then write the definition of nonequilib-
rium free energy using the equilibrium distribution:

Feq =
∑

i

πiεi + πi ln πi

=
∑

i

πiεi + πi(−εi − ln Z)

= −
⎛⎜⎜⎜⎜⎜⎝∑

i

πi

⎞⎟⎟⎟⎟⎟⎠ ln Z

= − ln Z .

Going back to unscaled (physical) units gives Feq = −kBT ln Z. This is one
traditional definition of the equilibrium free energy.

b. The difference between nonequilibrium and equilibrium free energy is

F − Feq =
∑

i

εi pi + pi ln pi − εiπi − πi ln πi

= εi(pi − πi) + pi ln pi − πi ln πi − pi ln πi + pi ln πi

= εi(pi − πi) + ln πi(pi − πi) + pi ln
pi

πi

= εi(pi − πi) + (−εi − ln Z)(pi − πi) + pi ln
pi

πi

= pi ln
pi

πi

= D(p||π) .

The terms proportional to ln Z vanish because both p and π are normalized
distributions. Notice that when p = π, we immediately see that F = Feq, since
D(π||π) = 0 for an arbitrary distribution π.



Problems 381

c. For probability density functions p(x) and its equilibrium counterpart π(x),

F − Feq =

∫
dx

[
U(x)p(x) + p(x) ln p(x) − U(x)π(x) − π(x) ln π(x)

]
.

In this expression U(x) is the system energy (all potential energy) when the
particle state is x. Because the system is overdamped and one dimensional,
the state is characterized by the single continuous variable x. Otherwise, we
would need a two-dimensional state, with the second component representing
the momentum. In this case, though, the equilibrium distribution is π(x) =
(1/Z) e−U(x), or ln π = −U − ln Z.
The notation is cleaner if we drop the x dependence from the functions.

F − Feq =

∫
dx

[
U p + p ln p − Uπ − π ln π

]
=

∫
dx

[
U(p − π) + p ln p − π ln π − p ln π + p ln π

]
=

∫
dx

[
U(p − π) + (ln π)(p − π) + p ln

p
π

]
=

∫
dx

[
U(p − π) + (−U − ln Z)(p − π) + p ln

p
π

]
=

∫
dx p ln

p
π
.

We again use the normalization conditions,
∫

dx p(x) =
∫

dx π(x) = 1. Thus,
the derivation proceeds entirely analogously to the discrete case, and again
we find

F − Feq = D(p||π) ≥ 0 ,

for the continuous probability density functions p(x) and π(x).
d. The trick is to define notation carefully. Let U0(x) be the potential shown at

the top of Figure 15.7. Its equilibrium distribution is π(x). Similarly, let Up(x)
be the potential after the quench, shown at bottom left. It is chosen to be the
potential whose equilibrium distribution is p(x), the initial nonequilibrium
state in the protocol. The quench thus requires work

Wquench = 〈Up〉p − 〈U0〉p ,
where the angle brackets 〈·〉p denote the ensemble average with respect to
the distribution p(x). In particular, 〈Up〉p =

∫
dx p(x)Up(x), and 〈U0〉p =∫

dx p(x)U0(x).
In the second step of the protocol, we make a quasistatic transformation
between the two equilibrium states. The work done is the difference in
equilibrium free energies:

Feq
0 − Feq

p = Feq
0 − 〈Up〉p + TS (p) ,



382 Limits to Control

where the second term uses the definition of the equilibrium free energy for
p(x). Putting these two contributions together, the work required to carry out
the protocol is

W =
(
〈Up〉p − 〈U0〉p

)
+

(
Feq

0 − 〈Up〉p + TS (p)
)

= Feq
0 − 〈U0〉p + TS (p)

= Feq
0 − F0(p) .

More intuitively, the work extracted from the heat bath is the negative of this:

Wextract = −W = F − Feq ,

where we have simplified the notation since both free energies are referenced
to the equilibrium distribution of the start (and end) potential U0(x). If the
second step of the protocol is carried out in a finite time, then we would
conclude that Wextract < F − Feq. Some of the energy is returned to the heat
bath.

e. In Figure 15.7, the “do nothing” protocol simply lets the nonequilibrium dis-
tribution p(x) relax to the equilibrium π(x). Since the potential is unchanged,
no work is done on the system. The heat transfer is just TΔS tot, where ΔS tot

is the total entropy change, which includes the change to the system (particle
in potential) and the surrounding heat bath. This is given by

Q = TΔS tot = T
[
S (π) − S (p)

]︸��������������︷︷��������������︸
system

+Qrelax

= T
[
S (π) − S (p)

]︸��������������︷︷��������������︸
system

−
[
〈U〉π + 〈U〉p

]
︸�����������︷︷�����������︸

bath

= F − Feq .

In the second line, −Qrelax = 〈U〉π − 〈U〉p results from the first law. Remember
that the unchanging potential means no work is done during the relaxation
and also that the first law ΔE = W + Q refers all energies to the system. We
thus have Qrelax = −Q because we need to compute the heat transferred to the
bath.

15.25 Bipartite system. Analyze aspects of their dynamics and thermodynamics.

a. Show that the information flow is given by Eq. (15.90).
b. Derive the decomposition of entropy given in Eq. (15.91). Give explicit

expressions for all components and prove that Ṡ X
i and Ṡ Y

i are each non-
negative.

c. Imagine that, not knowing about System Y, you tried to define an X-only

“entropy-production rate” σX
i =

1
2

∑
xy,x′ Jy

xx′
Wy

xx′ px′
Wy

x′ x px
. Explain mathematically

and physically how σX
i can be negative.
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Solution.

a. The mutual information between states x and y is given (in nats) by

IXY =
∑

xy

pxy ln
pxy

px py
≥ 0 .

We then use the master equation dt pxy =
∑

x′y′ Jyy′
xx′ to write the time derivative

as

dt I
XY =

∑
xy

(
dt pxy

)
ln

pxy

px py
+

∑
xy

pxy

��������������0(
1

pxy
dt pxy − 1

px
dt px − 1

py
dt py

)

=
∑

xy

(
dt pxy

)
ln

pxy

px py

=
∑

xy,x′y′
Jyy′

xx′ ln
pxy

px py
.

In the first step, we perform the sums before the time derivative and use the
normalization of the probability distributions, noting that

∑
xy pxy = 1. Sim-

ilarly,
∑

y pxy/px =
∑

y py|x = 1 and
∑

x pxy/py =
∑

x px|y = 1, where we have
introduced the conditional probabilities: pxy = py|x px = px|y py.

Following Eq. (15.88), we use the bipartite structure of J to write∑
x′y′

Jyy′
xx′ =

∑
x′

Jy
xx′ +

∑
y′

Jyy′
x

so that

dt I
XY =

⎛⎜⎜⎜⎜⎜⎜⎝∑
xy,x′

Jy
xx′ +

∑
xy,y′

Jyy′
x

⎞⎟⎟⎟⎟⎟⎟⎠ ln
pxy

px py
.

From the definition Jy
xx′ ≡ Wy

xx′ px′y −Wy
x′x pxy, we see that Jy

xx′ = −Jy
x′x. Thus,∑

xy,x′
Jy

xx′ ln
pxy

px py
=

1
2

∑
xy,x′

(
Jy

xx′ − Jy
x′x

)
ln

pxy

px py

=

⎛⎜⎜⎜⎜⎜⎜⎝1
2

∑
xy,x′

Jy
xx′ ln

pxy

px py

⎞⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝1

2

∑
x′y,x

Jy
xx′ ln

px′y

px′ py

⎞⎟⎟⎟⎟⎟⎟⎠ (swap x↔ x′ in 2nd sum)

=

⎛⎜⎜⎜⎜⎜⎜⎝1
2

∑
xy,x′

Jy
xx′ ln

py|x
py

⎞⎟⎟⎟⎟⎟⎟⎠ −
⎛⎜⎜⎜⎜⎜⎜⎝1

2

∑
xy,x′

Jy
xx′ ln

py|x′
py

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝1
2

∑
xy,x′

Jy
xx′ ln

py|x
py|x′

⎞⎟⎟⎟⎟⎟⎟⎠
≡ İX .
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Similarly, from the definition Jyy′
x ≡ Wyy′

x pxy′ −Wy′y
x pxy, we see that Jyy′

x = −Jy′y
x

and thus ∑
xy,y′

Jyy′
x ln

pxy

px py
= · · · = 1

2

∑
xy,y′

Jyy′
x ln

px|y
px|y′

≡ İY .

Putting both terms together gives dt IXY = İX + İY .
b. The entropy production of the joint system is

Ṡ XY
i =

1
2

∑
xy,x′y′

Jyy′
xx′ ln

Wyy′
xx′ px′y′

Wy′y
x′x pxy

≥ 0 ,

non-negative because each term in the sum is of the form (x − y) ln(x/y) ≥ 0.
Then, using the bipartite structure of the currents and rates, we write

Ṡ XY
i =

1
2

∑
xy,x′y′

[
Jyy′

xx′
(
ln Wyy′

xx′ px′y′ − ln Wy′y
x′x pxy

)]

=
1
2

⎡⎢⎢⎢⎢⎢⎢⎣∑
xy,x′

Jy
xx′

(
ln Wy

xx′ px′y − ln Wy
x′x pxy

)
+

∑
xy,y′

Jyy′
x

(
ln Wyy′

x pxy′ − ln Wy′y
x pxy

)⎤⎥⎥⎥⎥⎥⎥⎦
=

1
2

∑
xy,x′

Jy
xx′ ln

Wy
xx′ px′y

Wy
x′x pxy︸���������������������︷︷���������������������︸

Ṡ X
i

+
1
2

∑
xy,y′

Jyy′
x ln

Wyy′
x pxy′

Wy′y
x pxy︸���������������������︷︷���������������������︸

Ṡ Y
i

.

Recalling that

Jy
xx′ ≡ Wy

xx′ px′y −Wy
x′x pxy and Jyy′

x ≡ Wyy′
x pxy′ −Wy′y

x pxy ,

we see that Ṡ X
i ≥ 0 and Ṡ Y

i ≥ 0 for the same reason that Ṡ XY
i ≥ 0. Thus, the

overall entropy production can be split into X and Y contributions that are
each separately non-negative.

We now rewrite the log term in Ṡ X
i :

ln
Wy

xx′ px′y

Wy
x′x pxy

= ln
Wy

xx′ px′ |y
Wy

x′x px|y
= ln

Wy
xx′ px′

Wy
x′x px

− ln
px|y px′

px′ |y px
.

Next, we use Bayes’ Theorem to write
px|y px′

px′ |y px
=

py|x px px′ py

py|x′ px′ px py
=

py|x
py|x′

.

Then,

Ṡ X
i =

1
2

∑
xy,x′

Jy
xx′ ln

Wy
xx′ px′

Wy
x′x px

− 1
2

∑
xy,x′

Jy
xx′ ln

py|x
px′ |y

=
1
2

∑
xy,x′

Jy
xx′ ln

px′

px︸��������������︷︷��������������︸
dtS X

− 1
2

∑
xy,x′

Jy
xx′ ln

Wy
x′x

Wy
xx′︸����������������︷︷����������������︸

Ṡ X
e

− 1
2

∑
xy,x′

Jy
xx′ ln

py|x
py|x′︸����������������︷︷����������������︸

İX

.
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Collecting the terms gives

Ṡ X
i = dtS

X − Ṡ X
e − İX ≥ 0 ,

which is what we set out to prove. The Y term is handled analogously. Notice
that the X terms involve an average over Y and vice versa. When we define
X-only terms such as dtS X, etc., we always implicitly assume that all “latent”
(unknown, from the point of view of X) terms are averaged over.

c. The imagined “entropy production rate” σX
i ≡ dtS X − Ṡ X

e is

σX
i =

1
2

∑
xy,x′

Jy
xx′

Wy
xx′ px′

Wy
x′x px

=
1
2

∑
xy,x′

(
Wy

xx′ px′y −Wy
x′x pxy

) Wy
xx′ px′

Wy
x′x px

.

Mathematically, there is no reason for this sum to be positive, as, in order to
be of the canonical form (x−y) ln(x/y), the probabilities in the log term would
have to be px′y and pxy. These are simply different from px′ and px. Perhaps
a more intuitive expression is to use px′y/pxy = px′ |y/px|y and to note that px

is different from px|y, etc. Physically, we have given the reason in the text:
the true entropy production rate has an additional term representing flows of
information to and from the hidden system.

15.26 Four-state bipartite system. The system illustrated at right copies that of Fig-
ure 15.8 but relabels the states as {1, 2, 3, 4}, to simplify the analysis as a single
joint system. In addition, we add up to four nonequilibrium driving potentials
f21, f42, f34, f13 (all in units of kBT ) going from 2 → 1, etc. The Wi j = 1 for
the “base” rates (light forward-backward arrows). When nonequilibrium driv-
ing is present, the rates are modified to W21 = e f21/2 and W12 = e− f21/2, so that
W21/W12 = e f21 , etc.

a. Write down the master equation for the joint bipartite system. Show that the
steady-state solution has pi =

1
4 when all driving terms fi j = 0.

b. When the driving terms are present, show that the entropy production rate
is Ṡ XY

i = J( f21 + f42 + f34 + f13), where J is the current around the loop.
Similarly, show that Ṡ X

i = J( f21 + f34) and Ṡ Y
i = J( f42 + f13), thus confirm-

ing Ṡ XY
i = Ṡ X

i + Ṡ Y
i . Finally, show that the information flow is İX = −İY =

J ln(pR0 pL1 / pL0 pR1).
c. Consider the sensor case where f13 = f42 = f and f21 = f34 = 0. Show that the

steady-state probabilities states are 1
4

(
1 ± tanh 1

4 f
)
, as plotted at right. Show,

too, that the steady-state current around the loop is J = 1
2 tanh

( 1
4 f

)
. The total

dissipation rate to run the sensor is then Ṡ XY
i = 2 f J ≈ 1

4 f 2 for f � 1 and ≈ f
for f � 1. Show that the information flow İY = J f ≥ 0, as expected for a
sensor.

d. Consider the regulator case, where f13 = f42 = f34 = f and f21 = 0. Show that
the steady-state probabilities are as shown at right. Find J. Use the latter
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to find Ṡ XY
i and the information flow. Show that for f � 1, Ṡ XY

i ≈ 3 f and
İX ≈ − f /2.

Solution.

a. The rate matrixW has the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− e− f13/2 − e− f21/2 e f21/2 e f13/2 0

e− f21/2 − e f21/2 − e f42/2 0 e− f42/2

e− f13/2 0 − e f13/2 − e− f34/2 e f34/2

0 e f42/2 e− f34/2 − e f34/2 − e− f42/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
We note some general points:
i. The cross-diagonal terms are all zero because of the bipartite structure.

ii. The diagonal terms are simply minus the sum of the other column com-
ponents. They are chosen so that each column sums to zero, conserving
probability.

With all fi j = 0, the rate matrix simplifies to

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
By inspection, theWpeq = 0 for

peq =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
1
1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

meaning that pi =
1
4 after normalization.

b. In single-index notation, the entropy production is

Ṡ i =
∑
i< j

Ji j ln
Wi j p j

Wji pi
,

where we revert to the restricted sum so that we do not double-count terms.
Because there is a single loop, the non-zero currents are J12 = J42 = J34 =

J13 = J, which can be factored out of the sum. We then have

Ṡ i = J
∑
i< j

(
ln

Wi j

Wji
+ ln

p j

pi

)
,

For the first term in the sum, each one gives fi j for each non-zero contribution.
That is, we have f12 + f42 + f34 + f13. As for the other term, it is

ln
p2 p4 p3 p1

p1 p2 p4 p3
= ln 1 = 0 .
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In this simple case, the decomposition into X and Y means simply summing
the current times the forces in X and Y, respectively, which immediately gives
the result for this problem.

For the information flow, we write the index sum explicitly for the X
subsystem:

İX =
1
2

∑
xy,x′

Jy
xx′ ln

py|x
py|x′

= J0
LR ln

p0|L
p0|R
+ J1

LR ln
p1|L
p1|R

= (−J) ln
p0|L
p0|R
+ J ln

p1|L
p1|R

= J ln
p1|L p0|R
p1|R p0|L

= J ln
pL1 pR0

pR1 pL0
.

Conversely,

İY = −İX = J ln
pR1 pL0

pL1 pR0
.

A few comments: The sum over x, x′ has but one term (LR here). The terms
LL and RR are zero because the corresponding J is always zero. The term RL
is equal (and compensates for the 1/2 factor). In going from conditional to
joint probabilities, we multiply and divide by factors of pL and pR, as needed.
Those factors all cancel in the end, if you have your signs correct! Notice, in
particular, that the summation convention combined with the sign convention
for currents means that J enters with opposite sign in the two terms.

c. By symmetry, it is clear that pL0 = pR1 or p1 = p4 in the single-index notation.
Likewise, pL1 = pR0, or p2 = p3. With this condition and setting f13 = f42 = f
and f21 = f34 = 0, the steady-state equations are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 − e− f /2 1 e f /2 0
1 −1 − e− f /2 0 e− f /2

e− f /2 0 −1 − e− f /2 1
0 e f /2 −1 − e− f /2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
1 − p
1 − p

p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

We can solve, for example, the first equation (and divide p and 1 − p by 2 for
normalization).
To find the steady-state current J around the loop, we note that every edge
has the same current. It will be easier here to use single-index notation. We
calculate the flux through the “bottom” edge, from 1→ 2:

J = J21 = W21 p1 −W12 p2

= p1 − p2



388 Limits to Control

= 1
4

(
1 + tanh 1

4 f
)
− 1

4

(
1 ± tanh 1

4 f
)

= 1
2 tanh

(
1
4 f

)
.

For the information flow, we calculate the Y term as

İY = J ln
pR1 pL0

pL1 pR0

= 2J ln
1 + tanh 1

4 f

1 − tanh 1
4 f

= 2J 1
2 f = J f .

The factor of 2 in the second line results from pR1 = pL0 and similarly in the
denominator. The square in the log becomes the 2. Going from line 2 to 3
requires writing out the tanh in terms of exponentials.

15.27 Voltage fluctuations in an RCR circuit.

a. By finding V(t) for arbitrary driving function η(t), evaluate 〈V(t) V(0)〉 for an
RC circuit and thereby derive Eq. (15.94).

b. Find 〈V2〉 for an RC circuit using Eq. (8.50) for the evolution of the variance.
c. Generalize to the two-resistor case, Eq. (15.97).

Solution.

a. The equation of motion for the current in the single-resistor case is

CV̇ = −V
R
+ I +

√
2kBT

R
η(t) ,

where the fluctuating term is the Johnson-Nyquist noise at temperature T .
Treating η(t) as “just a function” and neglecting initial conditions (which die
away exponentially and are irrelevant for long-time statistics), we integrate to
find

V(t) =

√
2kBTR
τ

e−t/τ
∫ t

∞
dt′ et′/τ η(t′) ,

with τ = RC. Multiplying by V(0) and ensemble averaging over the noise gives

〈V(t) V(0)〉 = 2kBTR
τ2

e−t/τ
∫ t

−∞
dt′

∫ 0

−∞
dt′′ e(t′+t′′)/τ 〈

η(t′) η(t′′)
〉︸��������︷︷��������︸

δ (t′−t′′)

=
2kBTR
τ2

e−t/τ
∫ 0

−∞
dt′′ e2t′′/τ

=
kBTR
τ

e−t/τ

=
kBT
C

e−t/τ .
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Setting t = 0 then gives 〈V2〉 = kBT/C. Thus, in accordance with the
Equipartition Theorem, the average energy stored in the capacitor is

1
2

C
〈
V2

〉
=

1
2

kBT .

b. Equation (8.50) for the evolution of the variance in a general linear system
gives a much faster derivation. Since there are no observations (here),

dP
dt
= Ac P + PAT

c︸��������︷︷��������︸
dynamics

+ Qc
ν︸︷︷︸

disturbances

.

Here, we translate P → 〈V2〉, Ac → −1/(RC) = −1/τ, and Qc
ν → 2kBTR

τ2 . Then
the stationary variance equation is

−2
〈V2〉
τ
+

2kBTR
τ2

= 0 ,

which implies, using τ = RC,

〈V2〉 = kBTR
τ
=

kBT
C

.

Physically, a typical power is P = 〈V2〉/R = kBT/τ, meaning that energies of
order kBT slosh in and out of the capacitor on time scales of order τ = RC.

c. For the two-resistor case, the current obeys,

CV̇ = −V
R
− V

R′
+

√
2kBT

R
η(t) +

√
2kBT ′

R′
η′(t) ,

with independent noise sources η(t) and η′(t). Rewriting, we have

V̇ = − V
τeff
+

√
2kBTR
τ

η(t) +

√
2kBT ′R′

τ′
η′(t) ,

with τ−1
eff = τ

−1 + τ′−1, τ = RC, and τ′ = R′C.
The simplest solution is to realize that the independence of the noise sources
implies that we can simply add the variances of the two contributions. Thus,

〈V2〉 = τeff

(
kBTR
τ2
+

kBT ′R′

τ′2

)

=
τ τ′

τ + τ′

(
kBTR
τ2
+

kBT ′R′

τ′2

)

=
kB

C

(
R′

R + R′
T +

R
R + R′

T ′
)
.
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