
Numerical Methods in Finance with C++

Maciej J. Capiński and Tomasz Zastawniak

Solutions to Exercises

Chapter 1

1.1. The line

int n=3; int i=2;

in Main02.cpp needs to be changed to

int n,i;

cout << "Enter n: "; cin >> n;

cout << "Enter i: "; cin >> i;

The details can be found in

Exe1-1_Main02.cpp

1.2. Here is a function that interchanges the contents of two variables of type

double:

void interchange(double& x, double& y)

{

double z;

z=x;

x=y;

y=z;

return;

}

This function can be called by the statement

interchange(a,b);

where a, b are variables of type double. See

Exe1-2_Main.cpp

1

2 Solutions to Exercises

1.3. The for loops in PriceByCRR() in Options01.cpp can be replaced

by

int i=0;

while (i<=N)

{

Price[i]=CallPayoff(S(S0,U,D,N,i),K);

i++;

}

int n=N-1;

while (n>=0)

{

int i=0;

while (i<=n)

{

Price[i]=(q*Price[i+1]+(1-q)*Price[i])/(1+R);

i++;

}

n--;

}

This can be found in the file

Exe1-3_Options01.cpp

1.4. The lines

if (N<=0 || K<=0)

{

cout << "Illegal data ranges" << endl;

cout << "Terminating program" << endl;

return 1;

}

need to be inserted before return 0; in the body of GetInputData()

in Options01.cpp, and the line calling the function in main() in

Main05.cpp should be replaced by

if (GetInputData(N,K)==1) return 1;

See

Exe1-4_Options01.cpp

Exe1-4_Main05.cpp

Solutions to Exercises 3

1.5. The PriceByCRR() function in Options01.cpp can be modified as

follows to compute the time 0 price of a European option using the

Cox–Ross–Rubinstein formula:

double PriceByCRR(double S0, double U, double D,

double R, int N, double K)

{

double p=RiskNeutProb(U,D,R);

double Price=0;

for (int n=0; n<=N; n++)

{

Price=Price

+NewtonSymb(N,n)*pow(p,n)*pow(1-p,N-n)

*CallPayoff(S(S0,U,D,N,n),K)/pow(1+R,N);

}

return Price;

}

The following function also needs to be added to compute the Newton

symbol N!
i!(N−i)!

:

double NewtonSymb(int N, int n)

{

if (n<0 || n>N) return 0;

double result=1;

for (int i=1; i<=n; i++) result=result*(N-n+i)/i;

return result;

}

The complete code is in

Exe1-5_Options01.cpp

1.6. The following function uses the bubble sort method to order a sequence

of numbers:

void bubblesort(double a[], int N)

{

for (int i=1; i<N; i++)

{

for (int j=1; j<=N-i; j++)

{

if (a[j-1]>a[j]) interchange(a[j-1],a[j]);

4 Solutions to Exercises

}

}

}

This function can be called by

bubblesort(Sequence,SequenceLength);

where Sequence is an array of type double and SequenceLength a

variable of type int. See

Exe1-6_Main.cpp

1.7. The following modification of the function interchange() from Ex-

ercise 1.2 accepts two pointers to variables of type double as argu-

ments instead of having the arguments passed by reference:

void interchange(double* px, double* py)

{

double z;

z=*px;

*px=*py;

*py=z;

return;

}

When a, b are variables of type double, then this function can be called

by

interchange(&a,&b);

In the code for bubblesort() in Exercise 1.6 the line calling the

interchange() function can be replaced by

if (a[j-1]>a[j]) interchange(a+j-1,a+j);

The full code can be found in

Exe1-7_Main.cpp

1.8. See

Exe1-8_BinModel01.h

Exe1-8_BinModel01.cpp

Exe1-8_Main04.cpp

1.9. To include the ability to price digital calls we insert the lines

Solutions to Exercises 5

//computing digital call payoff

double DigitalCallPayoff(double z, double K);

in Options03.h and

double DigitalCallPayoff(double z, double K)

{

if (z>K) return 1.0;

return 0.0;

}

in Options03.cpp. We can compute the price of such an option by

adding the following lines in the main() function in Main07.cpp:

cout << "Enter digital call option data:" << endl;

GetInputData(N,K);

cout << "European digital call option price = "

<< PriceByCRR(S0,U,D,R,N,K,DigitalCallPayoff)

<< endl << endl;

See

Exe1-9_Options03.h

Exe1-9_Options03.cpp

Exe1-9_Main07.cpp

1.10. The payoff function for a digital put option can be placed in new files.

For details, see

Exe1-10_DigitalPut.h

Exe1-10_DigitalPut.cpp

The Main07.cpp file should be modified by inserting the line

#include "Exe1-10_DigitalPut.h"

at the beginning of the file, and the lines

cout << "Enter digital put option data:" << endl;

GetInputData(N,K);

cout << "European digital put option price = "

<< PriceByCRR(S0,U,D,R,N,K,DigitalPutPayoff)

<< endl << endl;

in the body of the main() function. See

Exe1-10_Main07.cpp

6 Solutions to Exercises

1.11. The strike price K can be replaced by an array to contain the parameters

of the payoff function. The details can be found in

Exe1-11_Options03.h

Exe1-11_Options03.cpp

Exe1-11_Main07.cpp

Chapter 2

2.1. The code is implemented and tested by computing the integral
∫ 2

1
(x3 −

x2
+ 1)dx in

Exe2-1_Main.cpp

2.2. The code for the BullSpread and BearSpread classes is given in

Exe2-2_Options06.h

Exe2-2_Options06.cpp

These classes are used to price a bull spread and a bear spread in

Exe2-2_Main10.cpp

2.3 See

Exe2-3_Main.cpp

2.4 The classes to price strangle and butterfly spreads are included in the

files

Exe2-4_SpreadOptions.h

Exe2-4_SpreadOptions.cpp

and used in

Exe2-4_Main11.cpp

Chapter 3

3.1 The code for computing the replicating strategy for a European option

can be found in

Solutions to Exercises 7

Exe3-1_Options09.h

Exe3-1_Options09.cpp

Exe3-1_Main14.cpp

Note that the strategy as given by (3.3), (3.4) is a predictable process

indexed by n = 1, . . . ,N. However, in the code the numbering is shifted

by 1, with n = 0, . . . ,N − 1.

3.2 A new class BSModel is developed for the Black–Scholes model in

Exe3-2_BSModel.h

It contains the function ApproxBinModel() to set up the approximat-

ing binomial model. In the files

Exe3-2_BinModel02.h

Exe3-2_BinModel02.cpp

Exe3-2_Options09.h

Exe3-2_Options09.cpp

manual data entry has been replaced by constructor functions to initiate

the parameter values. In

Exe3-2_Main.cpp

after setting the values of all parameters, we compute the binomial

model ApproxModel approximating the Black–Scholes model Model,

and then compute the price of an American put using the Snell algo-

rithm in this binomial model.

3.3 A function template designed to interchange the contents of two vari-

ables of arbitrary type can be designed by adapting the function from

Exercise 1.2:

template<typename Type>

void interchange(Type& x, Type& y)

{

Type z;

z=x;

x=y;

y=z;

return;

}

The code in

8 Solutions to Exercises

Exe3-3_Main.cpp

uses this function template with variables of type double and int.

Chapter 4

4.1 See

Exe4-1_Solver03.h

Exe4-1_Main17.cpp

4.2 In

Exe4-2_Main.cpp

we define a class called Bond which contains the Value() function to

compute the bond price from (4.5) and the Deriv() function to com-

pute the derivative of the bond price (4.5) with respect to the yield y.

An object of the Bond class is then initiated and passed to the solvers

to compute the yield.

4.3 See

Exe4-3_Main.cpp

4.4 Option becomes a template parameter rather than a class. The classes

EurOption and AmOption are disposed of. What remains from them

are the PriceByCRR() and PriceBySnell() functions, which be-

come function templates, and are therefore moved from the .cpp file

to the header file. There are also a few cosmetic changes, as N needs to

be moved into the Call and Put classes. Full details can be found in

Exe4-4_Options09.h

Exe4-4_Options09.cpp

Exe4-4_Main14.cpp

Chapter 5

5.1 Two subclasses EurCall and EurPut of the PathDepOption class

are added to the files from Listings 5.3, 5.4. See

Exe5-1_PathDepOption01.h

Exe5-1_PathDepOption01.cpp

Solutions to Exercises 9

These classes are put to work in

Exe5-1_Main19.cpp

5.2 The function

PathDepOption::PriceByMC()

from Listing 5.9 is expanded to include the computation of γ. See

Exe5-2_Main21.cpp

Exe5-2_PathDepOption03.h

Exe5-2_PathDepOption03.cpp

5.3 Based on a sample path (Ŝ (t1), . . . , Ŝ (tm)), we can compute a vector

Z = (Z1, . . . ,Zm) satisfying

Ŝ (t1) = S (0)e

(

r− σ2

2

)

t1+σ
√

t1Z1

Ŝ (ti) = Ŝ (ti−1) e

(

r− σ2

2

)

(ti−ti−1)+σ
√

ti−ti−1Zi
for i = 2, . . . ,m.

It is given by

Z1 =

ln
Ŝ (t1)

S (0)
−
(

r − σ2

2

)

t1

σ
√

t1

,

Zi =

ln
Ŝ (ti)

Ŝ (ti−1)
−
(

r − σ2

2

)

(ti − ti−1)

σ
√

ti − ti−1

for i = 2, . . . ,m,

and computed by GetZ() from the Exe5-3_PathDepOption03.cpp

file.

The function Rescale() from the Exe5-3_PathDepOption03.cpp

file computes a rescaled sample path
(

S̄ 1, . . . , S̄ m

)

,

given by

S̄ 1 = S̄ 1(S̄ (0), r̄, σ̄, τ̄) = S̄ (0)e

(

r̄− σ̄2

2

)√
τ̄+σ̄

√
τ̄Z1
,

S̄ i = S̄ i(S̄ (0), r̄, σ̄, τ̄) = S̄ i−1e

(

r̄− σ̄2

2

)√
τ̄+σ̄

√
τ̄Zi

for i = 2, . . . ,m.

We can use such rescaled paths to compute the Greeks using the same

method as for δ in Listing 5.9. See

Exe5-3_Main21.cpp

Exe5-3_PathDepOption03.h

Exe5-3_PathDepOption03.cpp

10 Solutions to Exercises

5.4 See

Exe5-4_Main.cpp

5.5 The EurCall class from Listing 4.7 is expanded to include a function

DeltaByBSFormula() which computes

δ = N(d+).

A function DeltaByBSFormula() is added to the GmtrAsianCall

class from Listing 5.12. It computes δ = N(da,b
+) a

S (0)
. The N(da,b

+) is com-

puted using the DeltaByBSFormula() function from the EurCall

class.

Finally, a line

delta = VarRedOpt.delta

+ CVOption.DeltaByBSFormula(Model);

is added to the PriceByVarRedMC() function from Listing 5.11. It

computes the δ of the option using

δH = δH−G + δG.

See

Exe5-5_EurCall.h

Exe5-5_EurCall.cpp

Exe5-5_GmtrAsianCall.h

Exe5-5_GmtrAsianCall.cpp

Exe5-5_Main22.cpp

Exe5-5_PathDepOption04.h

Exe5-5_PathDepOption04.cpp

5.6 The files

Exe5-6_BarrierCall.h

Exe5-6_BarrierCall.cpp

contain a subclass BarrierCall of the PathDepOption class for the

payoff

hbarrier call(z1, . . . , zm) = 1{maxk=1,...,m zk≤L} (zm − K)+ .

The EurCall class from Listing 4.8 is made a subclass of the Path-

DepOption class and equipped with a payoff on a sample path. The

EurCall can thus play the role of a control variate for the BarrierCall.

See

Exe5-6_PathDepOption04.h

Exe5-6_PathDepOption04.cpp

Solutions to Exercises 11

Exe5-6_BarrierCall.h

Exe5-6_BarrierCall.cpp

Exe5-6_EurCall.h

Exe5-6_EurCall.cpp

Exe5-6_Main22.cpp

5.7 It is enough to modify the function PriceByBSFormula() from the

GmtrAsianCall class from Listings 5.12–5.13. The method will give

correct results, provided that m is large enough for the Riemann sums

to approximate the integrals. See

Exe5-7_Main22.cpp

Exe5-7_GmtrAsianCall.cpp

Exe5-7_GmtrAsianCall.h

5.8 We can use the code from Listings 5.6–5.7. Apart form including ap-

propriate header files, no changes are required. See

Exe5-8_PathDepOption05.cpp

Exe5-8_PathDepOption05.h

Exe5-8_Main23.cpp

5.9 A new function Rescale(), which computes

(1 + ε j)Ŝ(tk) =

Ŝ 1(tk)
...

Ŝ j−1(tk)

(1 + ε)Ŝ j(tk)

Ŝ j+1(tk)
...

Ŝ d(tk)

,

is added to the code from Listing 5.20. The PriceByMC() function

from the file

Exe5-9_PathDepOption05.cpp

is analogous to PriceByMC() from Listing 5.9. See

Exe5-9_Main23.cpp

Exe5-9_PathDepOption05.cpp

Exe5-9_PathDepOption05.h

5.10 It is enough to add a subclass EurBasketCall of the PathDepOption

class. For details see

Exe5-10_Main23.cpp

12 Solutions to Exercises

Exe5-10_EurBasket.h

Exe5-10_EurBasket.cpp

5.11 A new class SumOfCalls is created in

Exe5-11_SumOfCalls.h

Exe5-11_SumOfCalls.cpp

to act as a control variate. In the PriceByBSFormula() function we

compute the price of the control variate using a linear combination of

prices of European calls of EurCall class.

The files

Exe5-11_PathDepOption05.cpp

Exe5-11_PathDepOption05.h

are identical to Listings 5.10–5.11, with the exception of including dif-

ferent header files. See also:

Exe5-11_EurBasket.h

Exe5-11_EurBasket.cpp

Exe5-11_Main23.cpp

Chapter 6

6.1 By put–call parity

hcall
u (t) − h

put
u (t) = zu − Ke−r(T−t),

hcall
l (t) − h

put

l
(t) = zl − Ke−r(T−t).

Substituting (6.7) and (6.8) from the book gives hcall
u (t) = zu − Ke−r(T−t)

and hcall
l

(t) = zl, respectively.

6.2 See

Exe6-2_CallOption.cpp

Exe6-2_CallOption.h

where a subclass Call of the Option class is added. This class is put

to work in

Exe6-2_Main24.cpp

6.3 We compute

x(t, z) =
∂u

∂z
(t, z) ≈ u(t, z + ∆z) − u(t, z + ∆z)

2∆z
,

y(t, z) = u(t, z) − x(t, z)z.

Solutions to Exercises 13

It is enough to add two functions:

double x(FDMethod* Method, double t, double S)

{

return (Method->v(t,S+Method->dx)

-Method->v(t,S-Method->dx))

/(2.0*Method->dx);

}

double y(FDMethod* Method, double t, double S)

{

return Method->v(t,S)-x(Method,t,S)*S;

}

to the main() function from Listing 6.10. See

Exe6-3_Main24.cpp

6.4 We add the function

int testStability(BSEq &BSPDE,Call &EuropeanCall, int

imax, int jmax)

to the main() function from Listing 6.10. It tests the stability of the

explicit finite difference method by comparing the price with the price

obtained from the Black–Scholes formula. See

Exe6-4_CallOption.h.cpp

Exe6-4_CallOption.cpp

Exe6-4_Main24.cpp

6.5 We add a subclass ImplicitMethod of the ImplicitScheme class in

the file

Exe6-5_ImplicitMethod.h

See also

Exe6-5_Main.cpp

6.6 Substituting

∂v(ti−λ, x j)

∂t
≈

vi, j − vi−1, j

∆t
,

∂v(ti−λ, x j)

∂x
≈ λ

vi−1, j+1 − vi−1, j−1

2∆x
+ (1 − λ)

vi, j+1 − vi, j−1

2∆x
,

∂2v(ti−λ, x j)

∂x2
≈ λ

vi−1, j+1 − 2vi−1, j + vi−1, j−1

∆x2
+ (1 − λ)

vi, j+1 − 2vi, j + vi, j−1

∆x2
,

v(ti−λ, x j) ≈ λvi−1, j + (1 − λ) vi, j.

14 Solutions to Exercises

into

∂v(t, x)

∂t
= a(t, x)

∂2v(t, x)

∂x2
+ b(t, x)

∂v(t, x)

∂x
+ c(t, x)v(t, x) + d(t, x)

and rearranging the terms, gives a difference equation

Ei, jvi−1, j−1 + Fi, jvi−1, j +Gi, jvi−1, j+1 = Ai, jvi, j−1 + Bi, jvi, j +Ci, jvi, j+1 + Di, j,

with

Ai, j =
(1−λ)∆t

∆x

(

bi−λ, j
2
− ai−λ, j
∆x

)

, Ei, j = − λ∆t
∆x

(

bi−λ, j
2
− ai−λ, j
∆x

)

,

Bi, j = 1 + (1 − λ)∆t
(

2ai−λ, j
∆x2 − ci−λ, j

)

, Fi, j = 1 − λ∆t
(

2ai−λ, j
∆x2 − ci−λ, j

)

,

Ci, j = −∆t(1−λ)
∆x

(

bi−λ, j
2
+

ai−λ, j
∆x

)

, Gi, j =
λ∆t
∆x

(

∆tbi−λ, j
2
+

ai−λ, j
∆x

)

,

Di, j = −∆tdi−λ, j.

We add a subclass WeightImplicit of the ImplicitScheme class

in the file

Exe6-6_WeightImplicit.h

See also

Exe6-6_Main25.cpp

6.7 The inverse change of coordinates to

z = Z(x) =
Lx

1 − x
,

v = V(z, u) =
u

z + L
,

is given by

X(z) =
z

L + z
,

U(x, v) =
Lv

1 − x
.

We can take

xl = X(zl), xu = X(zu),

and consider the following boundary conditions:

f (x) = V(Z(x), h(Z(x))),

fl(t) = V(zl, hl(t)),

fu(t) = V(zu, hu(t)).

Solutions to Exercises 15

Once we have solved the equation for v numerically, we can compute

u(t, z) = U(X(z), v(t, X(z))).

See

Exe6-7_FiniteDomainEq.h

Exe6-7_FiniteDomainEq.cpp

Exe6-7_Main.cpp

6.8 In the file Exe6-8_HeatEqLCP.h we introduce a class HeatEqLCP

with the free boundary condition

g(t, x) = V(t, h(Z(t, x)).

In the main() function in Exe6-8_Main27.cpp we need to remem-

ber to choose zl > 0 so that zl lies in the domain of X(0, z). After we

solve the LCP for the heat equation for v(t, x), we can compute u(t, z)

using

u(t, z) = U(t, v(t, X(t, z))).

See

Exe6-8_Main27.cpp

Exe6-8_HeatEqLCP.h

6.9 It is enough to add the function

int ExercisePolicy(FDMethod* PtrMethod,LCP* PtrLCP,double

t,double S)

{

if (PtrMethod->v(t,S) > PtrLCP->g(t,S)) return 0;

return 1;

}

in the main file from Listing 6.23. If the function returns 1, then we

should exercise the American option.

See

Exe6-9_Main27.cpp

