
on-site interaction U and the tunnelling strength J (ref. 8). In 2D optical
lattices, superfluid is converted into a Mott insulator when U/J exceeds
16 near the density of one atom per site2,14. Here, the superfluid–Mott
insulator phase transition can be induced by either increasing the lattice
potential depth V (typically measured in units of recoil energy
ER 5 h 3 1.3 kHz, where h is Planck’s constant)1,2,12 or the atomic inter-
action strength (characterized by scattering length a, typically measured
in Bohr radii aB) via a magnetically tuned Feshbach resonance15,
together providing complete, independent control of U and J.

Atomic density profiles in the lattice are shown in Fig. 1. For weak
lattice depths (superfluid regime), the density profiles are bell-
shaped, with negative curvature at the centre (Fig. 1a), indicating a
finite, positive compressibility dictated by the interaction coupling
constant (discussed below). In sufficiently deep lattices, we observe a
flattened density at the centre of the sample (Fig. 1b, c), indicating
development of a Mott-insulating phase with one particle per lattice
site. This density plateau, an important feature of the Mott-insulator
phase, arises from incompressibility.

A primary check on the Mott insulator is to compare the measured
density in the plateau to that corresponding to one atom per site,
given by Mott-insulator physics as a ‘standard candle’ of atomic
density. Using the known scattering cross-section, correcting for
saturation effects (see Methods), we determine the plateau density
(and standard error, in parentheses) to be n 5 3.5(3) mm22, in agree-
ment with the expected value 1/d2 5 3.53 mm22.

To distinguish a Mott insulator from superfluid or normal gas, we
histogram the occurrence of pixels h(n) in the images corresponding to
a density n within a small bin size Dn. The Mott-insulator plateau,
containing a large number of pixels with similar atomic density, appears
as a peak at n 5 1/d2 (Fig. 2a). In general, the occurrence of a particular
density n can be regarded as the rate at which local chemical potential
changes with density, multiplied by the number of pixels w (m)Dm
corresponding to a chemical potential between m and m 1Dm. The
occurrence at density n is then h nð Þ~Dnv mð ÞDm=Dn<Dnv mð Þk{1,
where k~Ln=Lm is the local compressibility16. In a harmonic trap,
v mð Þ~2p

!
md2v2

r is constant, and the histogram is a particularly
useful tool for distinguishing different phases. For a pure Bose–
Einstein condensate (BEC) in the Thomas–Fermi limit, the compres-
sibility is constant up to the peak density npeak, and results in a constant
h(n) for n # npeak (see Fig. 2b for 0.5/d2 , n , 1.5/d2). For the Mott
insulator, the density is insensitive to chemical potential in a narrow
range near n 5 1/d2, indicating a vanishing compressibility, and thus a
sharp histogram peak at n 5 1/d2. The peak’s presence in Fig. 2a is thus
directly related to the incompressibility in the Mott phase. Finally, the
compressibility of a normal (ideal) gas is proportional to its density, so
h nð Þ!1=n, leading to the strong upturn at low densities in Fig. 2a, b for
both regimes.

Much more information can be obtained from the density profiles,
as recently suggested in ref. 17. For example, the compressibility in a
2D cylindrically symmetric trap can be written k~Ln

!
Lm~

{n’ rð Þ
!

rmv2
r

" #
, where we have assumed the local density approxi-

mation, and that the chemical potential depends on the trapping
potential m~m0{V h rð Þ. For a BEC in the Thomas–Fermi regime,
the compressibility is positive and constant, kBEC 5 1/g, where
g~

ffiffiffiffiffi
8p
p

aB2
!

maz is the 2D interaction parameter18. We can thereby
relate the measured compressibility to that of a BEC as:

k

kBEC
~{

2

p

% &7=2n’ rð Þ
rd{4

a

az

ER

Bvr

% &2

ð1Þ

We evaluate k from azimuthally averaged density profiles (Fig. 3a).
The eccentricity of the trap is corrected by rescaling the principal axes
as determined from the density profile, and verified to be consistent
with direct measurement of trap frequencies. Owing to the singular
nature of n’ rð Þ=r near the centre, we evaluate k there by fitting n(r) to a
quadratic, n rð Þ~n 0ð Þ{ar2. The curvature a then gives the compres-
sibility as k 0ð Þ~2a

!
mv2

r , for which we obtain k/kBEC 5 0.34(10) in a
weak lattice and k/kBEC 5 0.013(6) in a strong lattice (see Fig. 3). In
the weak lattice (superfluid regime), the finite and constant compres-
sibility at the centre agrees with expectation for the superfluid phase,
though lower than expected, which we attribute to finite temperature
and calibration of trap parameters. The finite temperature is also clear
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Figure 3 | Extraction of compressibility from density profiles. a, Radially
averaged profiles (three images) in the superfluid (black squares, V 5 0.3ER,
N 5 7,200) and Mott insulator (red circles, V 5 22ER, N 5 6,700), with
a 5 310aB. A quadratic fit to the sample’s centre extracts the curvature near
r 5 0. b, Normalized compressibilities derived from a using equation (1) in
the superfluid (black squares) and Mott-insulator (red circles) regimes. The
horizontal lines indicate compressibility near r 5 0, estimated from the
quadratic fits in a. Rising compressibility at r 5 20d marks the Mott-
insulator boundary. c, The dependence of compressibility on atomic density.
Linear dependence at low densities (normal gas) is best-fitted by solid lines.
Error bars indicate standard error in the mean.
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reliably even in the regions of high atomic density, as illustrated in
Fig. 3.

To compare the digitally reconstructed atom distribution (see
bottom row of Fig. 2) with the raw images, we show the reconstructed
distribution convoluted with the point spread function in the middle
row of Fig. 2. For a BEC with a Poissonian atom number distribution
the average filling one detects due to the parity measurement in the
fluorescence imaging is !nni,det~1=2 1{exp {2!nnið Þ½ $, which saturates
at !nni,det~0:5 for !nni *> 1:5. In this limit, the detected atom number
variance then saturates accordingly at s2

i,det~0:25. Indeed, for a BEC,
we observed that the recorded atomic density exhibits large atom
number fluctuations from site to site. In contrast, for a Mott insulator
we obtain plateaus of constant integer density, with almost vanishing
fluctuations. For increasing particle numbers, the images in Fig. 2
show how successive Mott insulator shells are formed and appear as
alternating rings of one and zero atoms per site owing to our parity
measurement. In both the raw images and the reconstructed ones,
individual defects are directly visible. The high symmetry of our atom
clouds reflects the high optical quality of our lattice potentials. A
small ellipticity is caused by the different harmonic trapping frequencies
vx and vy.

We used the reconstructed site occupation numbers to determine
the temperature of the sample based on a single image. For deep
lattices, U=J^300, as used in our experiments for Mott insulators,
tunnelling becomes completely suppressed such that coherent
particle–hole fluctuations are expected to be negligible and defects
are induced only by thermal fluctuations. The symmetry of our
clouds allowed us to average the data azimuthally, taking into
account the ellipticity, and to obtain radial profiles for the average
density !nndet rð Þ and variance s2

det rð Þ (see Fig. 4a and b and Methods).
We fitted analytic expressions derived in the zero-tunnelling regime
(see Methods) to our data. The results of such a fit for an n 5 1 (0 ,
m/U , 1) and an n 5 2 (1 , m/U ,2) Mott insulator are displayed in
Fig. 4a and b. The Mott insulator regions can be identified as con-
nected regions of constant integer density and vanishing on-site
number fluctuations, which in the zero-tunnelling limit of the
Hubbard model signify the presence of incompressible Mott
domains24. For both density profiles and atom number variances
we find excellent agreement between the experimental data and the
theoretical model for all radial distances. This supports the assump-
tion that our system is in global thermal equilibrium, in contrast to
ref. 27. The extracted temperatures of T 5 0.090(5)U/kB and
T 5 0.074(5)U/kB for the n 5 1 and n 5 2 data are well below the

Mott insulator melting temperature Tm. Our temperature measure-
ments are conservative, because all defects are attributed to thermal
excitations in our model. However, defects might for example also
arise from ‘collateral damage’ caused by atoms undergoing the light-
induced collisions. For reference, we show the corresponding data
obtained by freezing out the atom distribution of a BEC. We observe
the expected saturation of !nndet at 0.5 together with a maximum vari-
ance of s2

det at 0.25. We note that the thermal shells surrounding a
Mott insulator core also exhibit this maximum variance and can be as
narrow as one to two lattice sites. In Fig. 4c and d we plot both Mott
insulator data sets versus local chemical potential. In a single image,
we thus mapped out an entire line in the phase diagram as illustrated
in the inset of Fig. 4c. The slightly different temperatures of the two
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Figure 3 | Identification of single atoms in a high-resolution image. The
points mark the centres of the lattice sites; circles indicate those sites where
our deconvolution algorithm determined the presence of an atom. The
image is a zoom into the upper right part of Fig. 2g.
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Figure 4 | Radial atom density and variance profiles. Radial profiles were
obtained from the digitally reconstructed images by azimuthal averaging.
a, b, Yellow and red points correspond to the n 5 1 and n 5 2 Mott insulator
images of Fig. 2d and e. The grey points were obtained from a BEC (data from
Fig. 2a) for reference. The displayed statistical error bars are Clopper–Pearson
68% confidence intervals for the binomially distributed number of
excitations. For the Mott insulators, both average density !nndet(r) and variance
s2

det(r) profiles are fitted simultaneously with the model functions of
equations (1) and (2) (see Methods) with T, m and r2

0~2U
!

mvxvy

" #
as free

parameters. For the two curves, the fits yielded temperatures T 5 0.090(5)U/
kB and T 5 0.074(5)U/kB, chemical potentials m 5 0.73(3)U and
m 5 1.17(1)U, and radii r0 5 5.7(1)mm and r0 5 5.95(4)mm, respectively.
From the fitted values of T, m and r0, we determined the atom numbers of the
system to N 5 270(20) and N 5 529(8). c, d, The same data plotted versus the
local chemical potential using the local-density approximation. The inset of
c is a Bose–Hubbard phase diagram (T 5 0) showing the transition between
the characteristic Mott insulator lobes (grey shading) and the superfluid
region. The straight line with arrow shows the part of the phase diagram
existing simultaneously at different radii in the trap owing to the external
harmonic confinement. The inset of d shows the entropy density calculated
for the displayed n 5 2 Mott insulator.
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