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Figure 5 | Finite temperature phase diagram and suppression of Tc in the
lattice. The critical temperature for superfluidity Tc/J as obtained from the
measurement (triangles) and the QMC simulations (squares and
diamonds) is plotted versus the interaction strength U/J. Filled symbols
mark the values Tc

(width) extracted from the peak width w0, and the values
represented by open symbols represent Tc

(weight) as obtained from the
evaluation of the peak weight f0. The experimental data has been corrected
to account for heating during the lattice loading (see text). The horizontal
error bars reflect an uncertainty of ±1% on the lattice depth. The vertical
error bars represent the ±� confidence intervals obtained from the bi-linear
fits and in the case of the experiments also the estimate of the heating
power. The solid line is the QMC result for Tc

hom of the homogeneous
Bose–Hubbard model at unity filling, taken from ref. 26.

below Tc to zero, as done in ref. 44 for a weakly interacting
harmonically trapped Bose gas.

For larger interactions (U/J ⇠>20), although the picture remains
the same for a cloud below Tc, the deviations from the ideal-gas
distribution become much stronger, and we find a significant peak
weight f0 above Tc in both the experimental data and the QMC
simulations. As a result, the behaviour of f0 with temperature is
much smoother than in the regime of weak interactions. This
observation is in agreement with the predictions of refs 28,31,
38, that interferences should be visible in the normal phase for
U/J ⇠< (U/J )c. The coherence length in the NF, however, is still
much smaller than the system size, yielding broader peaks than for
the long-range phase coherent superfluid. This indicates that one
could determine the onset of Bose–Einstein condensation from the
width w0. As shown in Fig. 4, we indeed find a sudden increase
of w0 above a certain temperature, which we identify as Tc for
both experiments and QMC simulations. This leaves us with two
different methods to determine the critical temperature Tc, either
by fitting the increase of the peak weight f0 to obtain a critical
temperature Tc

(weight), or by fitting the decrease in peak width w0 to
obtain a critical temperature Tc

(width). We use a linear extrapolation
of the weight to zero and a piece-wise linear fit for the width
(see Supplementary Information for an alternative analysis). The
former method is limited to low lattice depths (approximately
U/J ⇠< 20), whereas the latter also works for larger interactions
(U/J ⇠> 20), but cannot be applied to the experimental data for the
lowest values of U/J because of signal-to-noise limits, as discussed
above. For the experimental data, both methods agree with each
other within '10% in the region where they overlap. For the
QMC simulations, where the noise is negligible, bothmethods work
at any lattice depth.

In Fig. 5, we plot Tc
(width) (filled symbols) and Tc

(weight) (open
symbols) obtained from theQMCsimulations and the experimental
data as a function of U/J . For the experimental data points,
we do not assume purely adiabatic loading but correct for the
measured heating occurring during the lattice loading (seeMethods
for details; for uncorrected data, see Supplementary Information).

Both the experimental and QMC results consistently exhibit a
suppression of Tc when the interaction strength is increased
towards its critical value, as predicted for the homogeneous Bose–
Hubbard model22,26. The critical temperatures obtained from the
inhomogeneous system in the experiments and simulations are
remarkably close to the ones of the homogeneous case with unity
filling (solid line in Fig. 5; ref. 26), apart from a small systematic
shift towards lower values. This shift can be in parts attributed to
the evaluation procedure, which employs a linear interpolation and
therefore does not capture a smoother change of f0 and w0 caused
by the inhomogeneous density. We have tried several alternative
methods to fit the data and to find Tc from the weight and from the
width (see Supplementary Information).We found that allmethods
agreed within a method-dependent systematic shift on the order of
10%, comparable to the uncertainty of ourmeasurement.

Conclusions and outlook
In conclusion, we present for the first time a full quantitative
comparison between experiment and ab initio quantum Monte
Carlo simulations for large (N ' 105) systems of ultracold bosons
in optical lattices. Using only experimentally measured parameters
as input to the simulations and assuming adiabatic loading into
the lattice, we find remarkable agreement up to U/J ' 20.
Discrepancies in the final temperature of up to 30% are observed
for deeper lattices, which are resolved by accounting for specific
heating mechanisms. The direct comparison of experimental and
simulated TOF images allows us to perform accurate thermometry
for interacting bosons in an optical lattice.We identify the transition
between the SF and the NF by the appearance of sharp interference
peaks in the SF phase with a width limited by the finite imaging
resolution and finite expansion time. For values of U/J > 20, we
are able to measure the temperature dependence of the coherence
properties in the NF slightly above the transition and identify Tc
as the point of onset of this temperature dependence. At lower
values of U/J , our signal to noise ratio does not allow for a reliable
determination of the width of the interference peaks. Here, we
directly use the onset of the peak weight as an estimate for Tc,
verifying the validity of this approach by the QMC simulations.
Using these analysis techniques, we observe the suppression of Tc
on approaching the quantum critical point (QCP) for the SF–MI
transition in both the experimental and the simulated data, thus
mapping out the finite temperature phase diagram of the system.
Furthermore, we find that up toU/J '27.5 the bosonic gas remains
well in the degenerate regime for the lowest initial entropies used, in
contrast to the theoretical analysis presented in ref. 27. Our results
demonstrate the potential of using ultracold atoms in optical lattices
to quantitatively study large-scale condensed-matter physics. The
direct measurement of the suppression of Tc may furthermore open
the way to approach the region above the QCP to experimentally
study quantum critical phenomena.

Methods
Controlled heating sequence. One important requirement for the measurements
presented is the ability to change the initial temperature Ti of the atomic ensemble
without changing the number of particles N . We use a one-dimensional optical
lattice with wavelength �y = 844 nm superimposed on the magnetic Quadrupole
and Ioffe Configuration (QUIC)-trap and perpendicular to its slow axis to transfer
energy to the ensemble in a controlled way. After evaporative cooling, we slowly
ramp this lattice to a final value Vheat using an s-shaped ramp39, before we rapidly
pulse it off and on for four times using linear ramps of 1ms length. With the lattice
at its high value, the excitations created are allowed to thermalize with the rest of the
sample over a holdtime of 800ms, before the lattice is ramped down again within
700ms. After this heating sequence we find no significant reduction of the particle
number, and no residual sloshing could be observed.

Temperature measurement in the magnetic trap. To measure the temperature
Ti of the ensemble after the heating sequence, we release the cloud from the
QUIC-trap and probe its TOF distribution, after 18.5ms of free expansion, by
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Figure 1 | Simplified scheme of the finite T phase diagram for a single
species of bosons in a lattice potential at density n= 1. At T= 0, the
system undergoes the transition from a SF to a MI at the critical interaction
strength (U/J)c. For U/J< (U/J)c, the SF phase exists up to a critical
temperature Tc which decreases to zero at the quantum critical point
(QCP), signalling the drastic change in the ground state of the system. The
MI phase right of the QCP exists strictly speaking only at T= 0. However,
Mott-like features can be observed at finite temperatures T⌧U/kB. The
dashed line represents a typical trace in the phase diagram along which
experimental data and simulations were taken to determine Tc.

the local chemical potential, the total number of particlesN =P
ini

being controlled by the global chemical potentialµ. In this work, the
external confinement is caused by amagnetic trap and the Gaussian
laser beams creating the optical lattice.

Phase diagram of the trapped system
The phase diagram for the homogeneous system (that is, ✏x,y,z = 0)
at unity filling is shown in Fig. 1 as a function of interaction
strength U/J and temperature T . For T = 0, the system undergoes
a quantum phase transition (QPT) from the SF to the MI phase8–10
at the critical interaction strength (U/J )c = 29.34(2) (ref. 26). For
interactions U/J < (U/J )c, a phase transition between the SF and
the NF exists at a critical temperature Tc which tends to zero as
U/J ! (U/J )c. This behaviour at finite temperatures can be seen as
a generic feature of QPTs, originating from a fundamental change
in the ground state of the system. In this paper, we focus on the
transition between SF andNFphases and the downshift ofTc.

In the presence of an external confinement, the system
becomes inhomogeneous, rendering the notions of global ‘phase
diagram’ or ‘transition’ problematic. The decrease of the local
chemical potential µi with distance from the trap centre results
in the coexistence of different phases in the trap (see Fig. 2a,b),
complicating the interpretation of the experimental data in general.
Our strategy to avoid this ambiguity is to work with a total number
of particles N such that the central density stays close to unity.
To achieve this, we determine the chemical potential µ ⌘ µ1
corresponding to a central density n= 1 at T =Tc(U/J ) for a given
value ofU/J (see Fig. 2c). A full QMC study usingµ1 and including
the external trap yields the target particle number N , which we
maintain throughout the simulations and experiments. As long as
Tc/J > 3 (U/J < 26.7), this ensures that the SF starts to form first
in the centre of the trap (see Fig. 2a,b). This approach validates
a direct comparison of the critical temperatures measured for the
inhomogeneous system with the ones of the homogeneous system
at unity filling which are well known fromQMC studies26.

Experimental sequence andQMC simulations
Our experimental sequence starts with a Bose–Einstein condensate
(BEC) of 87Rb atoms produced in a cigar-shaped magnetic trap by
evaporative cooling. The condensates have no discernible thermal
fraction and contain a variable number of N = 9⇥ 104 � 3⇥105
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Figure 2 | Thermodynamic properties of the Bose–Hubbard model at
finite temperatures. a,b, Finite-temperature phase diagram of the
Bose–Hubbard Hamiltonian as a function of chemical potential µ/J (a) and
density (b). Shown are the boundaries between the SF and NF phases for
the critical interaction strength (U/J)c = 29.34(2) (solid line, circles), at
U/J= 26 (dotted line, squares) and at U/J= 8.5 (dashed line, diamonds).
c, Chemical potential µ/J to yield a density of n= 1 at the critical
temperature T= Tc as a function of U/J.

atoms. The temperature is subsequently varied by exposing the BEC
to a controlled and calibrated heating sequence, which allows one
to access initial temperatures Ti between 20 nK and 400 nK while
keeping N constant (see Methods). After setting the temperature
of the gas, we adiabatically decompress the magnetic trap towards
an expanded, almost spherical trap with radial and axial trap
frequencies of 2⇡⇥18.31(1)Hz and 2⇡⇥11.69(1)Hz, respectively.
Subsequently, the three-dimensional optical lattice is ramped up
within tramp = 300ms to the final depth V0 using an s-shaped
ramp39. The orthogonal retro-reflected laser beams forming the
optical standing waves have wavelengths of �x = 765 nm along one
direction and �y,z = 844 nm along the other two (see Methods).
Finally, the atoms are released by simultaneously switching off the
magnetic trap and the lattices, and probed after tTOF =15.5ms using
resonant absorption imaging. This procedure yields the integrated
column-density n?(x,y) =

R
nTOF(r) dz which is related to the

single-particle density matrix in the trap.
Numerically, the Hamiltonian (1) can be effectively simulated

by the QMC worm algorithm40,41. This is a statistically exact
method, scaling linearly with the system volume and the inverse
temperature. We can deal with realistic system sizes (up to ⇠220
(ref. 3)) at the experimentally relevant temperatures (kBT  6J ). For
a given lattice depth V0, we calculate the Hamiltonian parameters
J and U from the single-particle band structure (see Methods).
The external trap parameters ✏↵ are deduced from the lattice
depth, the measured laser waists and magnetic trap frequencies.
As all parameter values are taken directly from the measured
experimental control parameters, this comprises a full ab initio
study. The simulation results are translated into integrated column
densities after TOF, taking into account the finite expansion time
as well as a finite imaging resolution29. The latter is accomplished
by convolution of the simulation images with the Gaussian
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