
CHAPTER 16

EXERCISES: COVARIANCE DISCRIMINANT
ANALYSIS

Exercise 16.1. Prove (16.14). Hint, substitute (16.12) into the outer product and expanding
gives

(xt − µ̂Y ) (xt − µ̂Y )
T

= A + B + C, (16.1)

where

A = (u∗t − µ̂Y ) (u∗t − µ̂Y )
T (16.2)

B = ftf
T
t (16.3)

C = (u∗t − µ̂Y ) fTt + ft (u∗t − µ̂Y )
T
. (16.4)

Show that E[C] = 0. What is E[A]?

Exercise 16.2. Suppose d(σ2
X , σ

2
Y ) is some measure of the difference between the vari-

ances σ2
X , σ

2
Y . Suppose further that the function d(, ) is invariant to an invertible linear

transformation of X and Y . Prove that d(, ) can depend only on the ratio of variances

d(σ2
X , σ

2
Y ) = f

(
σ2
X

σ2
Y

)
(16.5)

Exercise 16.3 (Discriminant analysis via SVD). Given two data matrices X and Y, solve
discriminant analysis based on the singular value decomposition (SVD) (i.e., without solv-

Exercises for Statistical Methods for Climate Scientists. By DelSole and Tippett 67
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ing an eigenvalue problem). Show how the discriminant ratios, variates, and loading vec-
tors can be derived from the results of the SVD. Hint: compute the SVD of Y to construct
a whitening transformation, then compute the SVD of the whitened data matrix X.

Exercise 16.4 (Loading Patterns). Show that the matrix P that minimizes

γY = E
[
‖y − E[y]−PrY ‖2W

]
, (16.6)

is
P = cov[y, rY ] (cov[rY , rY ])

−1
, (16.7)

thereby proving (16.64). Also, show that the matrix P that minimizes

γ̇Y = ‖Ẏ −RY PT ‖2W . (16.8)

is
Ṗ = ẎTRY

(
RT
Y RY

)−1
, (16.9)

thereby proving (16.94). Note that Ṗ and P are merely the sample and population versions
of each other.

Exercise 16.5. Prove that if ΣX 6= ΣY , then there exists a q such that λ 6= 1, where

λ =
qTΣXq

qTΣY q
. (16.10)

Exercise 16.6. Define the sum total variance of Ẏ as

‖Ẏ‖2W =
1

NY − 1
tr
[
ẎWẎT

]
, (16.11)

where W is a positive definite matrix defining how different points are weighted. If Ẏ =
RY ṖT

Y , use the properties of CDA to show explicitly that the sum total variance can be
written as

‖Ẏ‖2W =

T∑
k=1

pTkWpk. (16.12)
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Numerical Exercises

Rcode.exercise.Chapter16.CCSM4.R program for reading the data sets
tas Amon CCSM4 historical r1i1p1 185001-200512.nc 20C, 1st member
tas Amon CCSM4 historical r2i1p1 185001-200512.nc 20C, 2nd member
tas Amon CCSM4 piControl r1i1p1 080001-130012.nc PI simulation

In this homework you will write an R function to perform covariance discriminant anal-
ysis. You will need to download data and a few R programs. These files are summarized
in the above table. The R code Rcode.exercise.Chapter16.CCSM4.R reads data
files for the 20C and PI simulations, combines them, and computes EOFs. The following
exercises break up the discriminant analysis into discrete steps, but you should submit a
single function that performs all the calculations. The preamble of this function should be
the following:

1 cda.eof = function(xdata,ydata,eof.list) {
2 ### PERFORMS COVARIANCE DISCRIMINANT ANALYSIS ON X AND Y
3 ### INPUT:
4 ### XDATA[NX,MDIM]
5 ### YDATA[NY,MDIM]
6 ### EOF.LIST: LIST FROM EOF CALCULATION
7 ### OUTPUT:
8 ### MIC[NEOF]: MIC AS A FUNCTION OF NUMBER OF PCS
9 ### NMIN: LOCATION OF MINIMUM MIC

10 ### DISCR.RATIO[NEOF]: DISCRIMINANT RATIOS VS. NUMBER OF PCS
11 ### RX[NX,NMIN]: VARIATE TIME SERIES FOR X
12 ### RY[NY,NMIN]: VARIATE TIME SERIES FOR Y
13 ### PMAT[SPACE,NMIN]: LOADING VECTOR

In the following calculations, you should include *both* ensemble members from 20C.
A trick for doing this is to reshape the array so that the time series looks twice as long:

1 ### RESHAPE PC.20C[TIME,NENS,NEOF] TO PC.20C[TIME*NENS,NEOF]
2 dim(pc.20c) = c(tdim.20c*nens,neof)

Then, when you want individual ensemble members, you can reshape the array back to
[time,ensemble,eof]

Exercise 16.7. Write a function that evaluates Mutual Information Criterion (MIC) for
comparing covariance matrices. MIC is defined as

MIC =
1

NT
log

(
|ΣX |NX |ΣY |NY

|ΣT |NT

)
+ P, (16.13)

where

P =
T

NT

(
NX(NX + 1)

NX − P − 2
+
NY (NY + 1)

NY − P − 2
− NT (NT + 1)

NT − P − 2

)
,
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and

Σ̂T =
NXΣX +NY ΣY

NT
and NT = NX +NY . (16.14)

The function should evaluate MIC over all possible EOF truncations T. Plot MIC for a
range of values and identify the value of T that minimizes MIC. Print out the first 5 values
of MIC. These results should match the example in the notes.

Exercise 16.8. Compute the discriminant ratios for the optimum choice of T . State the
values. These values should be consistent with those in the notes

Exercise 16.9. Write a function that computes discriminant variates. Compute the variates
for the optimum choice of T and plot them. Verify that the sample covariance matrix of
the PI variates equals the identity matrix. Verify that the sample covariance matrix of 20C
variates is diagonal, with diagonal elements equal to the discriminant ratios.

Exercise 16.10. Write a function that computes the loading vectors. Plot the leading load-
ing vector.

Exercise 16.11. Write a separate code that computes the 5% significance levels of the
discriminant ratios based on 5000 trials of Monte Carlo experiments. State the 95% per-
centile for all discriminant ratios for the optimum choice of T . Are your discriminant ratios
significant or not?

Exercise 16.12. What is the 5% significance level of the univariate F-test for equality of
variances for sample sizes NX = 51, NY = 51? Using your Monte Carlo code, show
a plot of the 5% and 95% percentiles of the leading discriminant ratio as a function of
the truncation parameter T . In this exercise, let NX = 51, NY = 51, and the number
of trials = 1000. Also, let the maximum dimension be 30. What happens to the ratios
as T increases? Explain why this happens. The 95% percentile from the Monte Carlo
experiments should be close to the univariate F-test for T = 1.


