Digital Design: A Systems Approach

Lecture 14: Sequential Logic Review
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Readings

« L14: Sequential Logic Review
« L15:22,24, & 25
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Outline

« Combinational vs. sequential logic
« Classic FSMs

« Datapath FSMs

* Microcode

« System decomposition

« Timing, concurrency and pipelines
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Combinational Logic

 We compose gates into combinational logic circuits

Output depends only on present value of inputs

b

-

>

This circuit realizes the function f=
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Sequential Logic

« Sequential logic circuits have state.

Next state and outputs are a function of inputs and present state.
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Sequential Building Block: D Flip-Flop

 Input: D

« Output: Q
¢ CIOCk: A d D

« Q outputs a steady value

« Edge on * changes Q to be D clk

« Flip-flop stores state
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Example: A Traffic-Light Controller
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Finite State Machines (State Table)

State Next State Output
lcarew carew

00 00 01 100001

01 11 11 010001

11 10 10 001100

10 00 00 001010
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Finite State Machines (State Diagram)

—carew | rst
carew & rst

gns yns gew
100 001 010 001 001 100

yew
001 010

state carew = car east-west sensor active
output / =gyrgyr rst = reset
ns ew
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Draw a State Diagram for a Missing-Pulse Filling FSM

AT
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Draw a State Diagram for a Missing-Pulse Filling FSM

AT

LV AVAVAWAWAWAWAWAWRAWRWRWRWRW
in [\ [ /
out [ [\

A C'D'E C' DissEaBsC ' D

filled in
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Draw a State Diagram for a Missing-Pulse Filling FSM

AT

LV AVAVAWAWAWAWAWAWRAWRWRWRWRW
in [\ [ /
out [ [\

A C'D'E C' DissEaBsC ' D

filled in
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FSM Factoring

Partition problem into smaller problems
— Major theme of circuit design

Separate a multi-dimensional state space into multiple smaller FSMs
— Control and data
— State variables
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Light Flasher FSM Diagram

out=1 out=1 out=1 out=1 out=1 out=1 >

out=0 out=0 out=0 out=0
out=1 out=1
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Factored Light Flasher

tload= 1 tload = done tload = done tload = done tload = done out=1
tsel =1 tsel=0 tsel =1 tsel=0 tsel =1
out=0 out=1 out=0 out=1 out=0
in out
—> FSM >
(4] ()
S B 5
Timer

15
(c) 2005-2012 W. J. Dally



Data paths are more easily described by realizing the next state
function from building blocks
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Most FSMs are a combination of a data path realized from
building blocks, and a controller designed from a state diagram.
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Design a DP FSM that computes parity across a block of 16 8-bit
words
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Design a DP FSM that computes ‘horizontal’ parity across a
block of 16 8-bit words

* Inputs
— Start — first word
— In — 8-bit data

« Outputs

— P — parity — running parity across 16 words then hold until next start
« Two pieces of state

— P —running parity

— N — words to go
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DP FSM is designed by writing equations for each case

Case N

Start in 15
~Start & ~Done in*P N-1
Done P N (=0)

P=start ?7in:(done? P :P"in)
N =start ? 15: (done ? 0 : N-1)
Done = (N == 0)

(c) 2005-2012 W. J. Dally

20



Check timing with table

Cycle |Start [Done |NextP [N _____
i-1 0 P 0

1
i 1 1 in; 0
i+1 0 0 In; A iny, 4 15
i+] 0 0 In; AL Aing, 16-
i+15 0 0 In, * ... Miniys 1
i+16 O 1 In, A ... M ingq5 0

Catches off-by-one errors
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Microcode

« Microcode, realizing a FSM with a memory - a programmable FSM

« Compress the size of the memory by encoding control and output

instructions

i | Branch
Logic

o} 0
2 -2 out1
el E
_ target/value e N
s
lk
uPC c
#—a Memory d—+—<
s y X+s
o] 0
° g q—2 outn
en |
Y A
\ Output | |
X | Decode [ 1 clk
instruction X

Branch Instruction

Store Instruction
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Microcode For Traffic-Light Controller With brx & Idx

Instructions
State Addr Inst [Value
( rst1 00000 Idit |RED (w6 10000 Idew |YELLOW
rst2 00001 Idew |RED EWto J ew? 10001 Itim |T_YELLOW
Ns 4 nsT 00010 Idns |GREEN Red ] ews 10010 bntz [ew8
Green | Ns3 00011 Itim |T_GREEN _ew9 10011 Idew |RED
| ns4 00100 bntz |ns4 Back to NS ew10 10100 br  |ns1
Until input | ns5 00101 brnle|ns5 wait for [ 11 10101 Itim |T_RED
s [ns6 00110 Idns |YELLOW  NsRed, | 1t2 10110 bntz [It2
Yellow J Ns7 00111 Itim |T_YELLOW make LT < [t3 10111 Idlt |GREEN
toRed ] ns8 01000 bntz |ns8 Green | jt4 11000 Itim |T_GREEN
_ns9 01001 Idns |RED , It5 11001 bntz [It5
EW or LT? ns10 01010 bt [It1 1t6 11010 Idit |YELLOW
Wait for [ €W 01011 Itim |T_RED LTto ) 1t7 11011 Itim |T_YELLOW
NS Red, | ew2 01100 bntz |ew2 Red ) |t8 11100 bntz |It8
make < ew3 01101 Idew | GREEN _t9 11101 Idit |RED
o | ewd 01110 Itim |T_GREEN  Backto NS It10 11110 br  |ns1
_EWS 01111 bntz |ewb
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Microcode

Microcode is just FSM implemented with a ROM or RAM
— One address for each state x input combination
— Address contains next state and output
Adding a sequencer reduces size of ROM/RAM
— One entry per state rather than 2’
— uPC, incrementer, branch address, and branch control
Adding instruction types reduces width of ROM/RAM
— Branch or output in each instruction — rather than both
— Type field specifies which one
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Circuit Timing

t.., (contamination delay): minimum time it takes the output B to be
contaminated from a contamination of input A

t,., (Propagation delay): maximum time it takes the output B to be stable
from when input A is stable

t, (setup time): duration signal must be stable before clocking a flip-flop
t, (hold time): duration signal must be stable after clocking a flip-flop
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates

t=150
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates

t=200
tog = 200ps
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates

t=250
tog = 200ps
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates

t =350
tog = 200ps
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Timing Example

b contaminated at time t=0, stable at {=150
All gates have delay 100ps
AND-OR counts as two gates

t=450
tog = 200ps
typg = 300ps
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Setup and Hold Times (back to our friend the DFF)

« t, (setup time): duration signal must be stable before clocking a flip-flop
« 1, (hold time): duration signal must be stable after clocking a flip-flop

* t,cq: contamination time of clock to Q

* tycq: Propagation time of clock to Q

d X X X
d S S Ft a1 >
/ D Q ;A s h
7 7
clk /e {
A ica =
clk <lcq™
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Sequential circuits work properly if setup and hold time
constraints are met

C Min d b Q a
A
a Max b b Q C
t, &
clk

Suppose tycq = teq= ts = t, = 100ps, t, = 200ps or —200ps,
t.in = 50ps, t..,=2ns.
Is hold time met? What is minimum t, ?
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Pipelining

Modules are composed in pipelines and parallel configurations
Throughput and latency

Master
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Pipelines

Pipelines can stall and idle

When do these happen? How can you prevent them?
Max latency vs. average latency (absorbing bursts)

—>

A —> B —
10 cycles 5 or 15 cycles
A B
A "S" B “I-HE
A
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Asynchronous Failure

« Dealing with asynchrony
— Purely asynchronous signals
— Traversing clock domains
« Probability of entering illegal state is the probability that a clock edge

lands during setup or hold time:
Clk l 'I‘ f 'I

1 I
e . ]

I:)E = (ts + th) / 1:cy

* Forreasonable values, error rate is very high:

t. =t, = 100ps, tcy= 2ns, Pg = 0.1
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Synchronizing

« Sample asynchronous signal a
» Clock a into intermediate (possibly metastable) value a_w
« Clock a_w into synchronized value a_s
« Take advantage of exponential decay of metastability
te = th = tacqg = 7s = 100ps and t., = 2ns

le +1 — b
Pps = PP =( h)t-:{l}( )
!cy Ta
'!I'-w - l!l-.g-y — E'.S — EI'EEC"I'.?
s +1 —to
Pps = ( ki h){*}:p( )
'!I'u:'y Tg
100ps + 100ps —1.8ns
- exp
2ns 100ps

0.1exp(—18) = 1.5 x 107
* Note In(10)=2.3 so exp(-18) = 107(-18/2.3) ~ 10”(-8
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How do you fix this?

cnt cnt_w cnt_s

counter

N §
-h\\l
N

clk1 clk2
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Questions
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