Digital Design: A Systems Approach

Lecture 11: Pipelining

(c) 2005-2012 W. J. Dally

Readings

 L11: Chapter 23
 L12: Chapter 15

(c) 2005-2012 W. J. Dally

System Design — a process

« Specification
— Understand what you need to build
» Divide and conquer
— Break it down into manageable pieces
» Define interfaces
— Clearly specify every signal between pieces
— Hide implementation
— Choose representations
« Timing and sequencing
— OQverall timing — use a table
— Timing of each interface — use a simple convention (e.g., valid — ready)
* Add parallelism as needed (pipeline or duplicate units)
« Timing and sequencing (of parallel structures)
« Design each module
« Code
* Verify

Iterate back to the top at any step as needed.

(c) 2005-2012 W. J. Dally

Two ways to make things faster: pipeline and parallel

Master

(c) 2005-2012 W. J. Dally

Pipelines

More Like an Assembly Line

(c) 2005-2012 W. J. Dally

Pipelines

Like an assembly line — each pipeline stage does part of the work and

passes the ‘workpiece’ to the next stage

Example 1: Pipelined 32b Adder

(c) 2005-2012 W. J. Dally

s31

s1

AN
3
b31
a31 FA
™
(@]
[
[]
[
(q\|
(@]
b1
y FA
©
b0
0 FA

cO

sO

Split into 4 8-bit adders

AN
3
b[31:24]
S[23:16]
a[31:24] [Add
-
o
b[23:16]
s[23:16]
a[23:16] [Add
©
b[15:8] —~
s[15:8]
a[15:8] |Add
(o0
(@)
b[7:0]
S[7:0]
a[7:0] |Add
cO

(c) 2005-2012 W. J. Dally

Split into stages

4 problems ‘in process’ at once

c32 c32
b[31:24] |
a[31:24] Add s[23:16]
c24 [
b[23:16] I
a[23:16] Add s[23:16]
c16 |
b[15:8] I
a[15:8] Add s[15:8]
c8 [
b[7:0] |
ar:0p A% S[7:0]
A
c0

(c) 2005-2012 W. J. Dally

Pipeline Diagram

lllustrates pipeline timing

PO
P1
P2
P3

Problems

b[31:24]

c32

c32

a[31:24]

b[23:16]

c24

Add

s[23:16]

a[23:16]

Add

b[15:8]

c16

s[23:16]

a[15:8]

Add

s[15:8]

b[7:0]

a[7:0]

Add

s[7:0]

7:0

15:8

23:16

31:24

7:0

15:8

23:16

31:24

7:0

15:8

23:16

31:24

7:0

15:8

23:16

31:24

7:0

15:8

23:16

31:24

(c) 2005-20141MNE. Dally

Movie

c32 c32
b[31:24]
a[31:24] Add s[23:16]
c24
b[23:16]
a[23:16] Add s[23:16]
c16
b[15:8]
a[15:8] Add s[15:8]
c8
b[7:0]
a[7:0) [|Add s[7:0]

AN A A A
%

11
(c) 2005-2012 W. J. Dally

Cycle 1

c32 c32
b[31:24]
a[31:24] Add s[23:16]
c24
b[23:16]
a[23:16] Add s[23:16]
c16
b[15:8]
a[15:8] Add s[15:8]
c8
b[7:0]
a[7:0) |~ SO s[7:0]

AN A A
%

12
(c) 2005-2012 W. J. Dally

Cycle 2

c32 c32
b[31:24]
S[23:16]
a[31:24] Add
c24
b[23:16]
S[23:16]
a[23:16] Add
c16
b[15:8]
s[15:8]
a[15:8] Add
c8 30
b[7:0]
S[7:0]
a[7:0) |~
cO

(c) 2005-2012 W. J. Dally

13

Cycle 3

b[31:24]

a[31:24]

b[23:16]

a[23:16]

b[15:8]

a[15:8]

b[7:0]

a[7 0]

cO

c8

Add

c32

c32

c24

Add

Add

S2

Add

s[23:16]

s[23:16]

s[15:8]

s[7:0]

(c) 2005-2012 W. J. Dally

14

Cycle 3

c32 c32
b[31:24]
a[31:24] Add s[23:16]
- c24
b[23:16]
a[23:16] Add s[23:16]
c16
b[15:8]
a[15:8] Add s[15:8]
c8 32
b[7:0]
a[7:0] |Add S2 S[7:0]

o = = = =

15
(c) 2005-2012 W. J. Dally

Latency and Throughput of a Pipeline

« Suppose before pipelining the delay of our 32b adder is 3200ps (100ps
per bit) and this adder can do one problem each 3200ps for a throughput
of 1/3200ps = 312Mops

« What is the delay (latency) and throughput of the adder with pipelining?

Suppose tyc.q = 100ps, t, = 50ps, t, = 50ps (200ps Overhead)

. thipe = N(t
. ® =n/t

stage + 1:dCQ + 1:s + 1:k)

pipe = 1/(tstage + 1:dCQ + ts + tk)

16
(c) 2005-2012 W. J. Dally

Example 2: Processor Pipeline

(c) 2005-2012 W. J. Dally

Data
Cache
. —_— 1 Mux »| Regs
A A
Regs >ALU
A A
— —
JAN
Inst x < = =
@) > / / / /
o Cache 44 > x @ o
A A A A A
Inst1 Fetch Read ALU Mem Write
Inst2 Fetch Read ALU Mem Write
Inst3 Fetch Read ALU Mem Write
Inst4 Fetch Read ALU Mem Write
17

« Example 3: Graphics rendering pipeline

triangles
———

triangle pipeline
A

fragment pipeline
A

Frame
Buffer

N\ r N\
Xform Clip p—»{ Light [—»|Rasterize}—»| Shade Composite
Textures Z-buffer
triangle
/ fragment
// ””>
[T

(c) 2005-2012 W. J. Dally

18

Example 4 — Packet Processing Pipeline

Route Switch Queue Output

Framer Policing Lookup Schedulingl : : Mgt Scheduler Framer

And each of these modules is internally pipelined

You get the idea. Lots of systems are organized this way.

19
(c) 2005-2012 W. J. Dally

Issues with pipelines
(all deal with time per stage)

* Load balance (across stages)

— one stage takes longer to process each input than the others —
becomes a ‘bottleneck’

— Example

» Rasterizing an ‘average’ triangle in a graphics pipeline takes more time
than ‘lighting’ its vertices.

« Variable load (across data)
— A given stage takes more time on some inputs than others

— Example

* The the time needed to rasterize a triangle is proportional to the number
of fragments in the triangle. The average triangle may contain 20
fragments, but triangles range from 0 to over 1M

* Long latency
— A stage may require a long latency operation (e.g., texture access)

20
(c) 2005-2012 W. J. Dally

Load Balancing Pipelines

« Suppose transform takes 2 cycles and clip 4 cycles

« Clip is a ‘bottleneck’ pipeline stage

« Xform unit is busy only half the time

Xform

Clip

(c) 2005-2012 W. J. Dally

21

Load Balancing Solutions
1 — Parallel copies of slow unit

/ Clip (1) \
Xform [—»Distribute Join
\ Clip (2) /
Xform Clip (1)
Xform Clip (2)
Xform Clip (1)
Xform Clip (2)

(c) 2005-2012 W. J. Dally

Load Balancing Solutions
2 — Split slow pipeline stage

Xform Clip A ClipB
Xform ClipA | ClipB
Xform Clip A Clip B
Xform ClipA | ClipB
Xform ClipA | ClipB

(c) 2005-2012 W. J. Dally

23

When is it better to split? To copy?
Throughput and latency are the same

Xform

—»| Clip A

Xform

Clip B

—

Clip (1)

/
Distribute
\

Clip (2)

Join

N/

(c) 2005-2012 W. J. Dally

Variable load
Stage A always takes 10 cycles.
Stage B takes 5 or 15 cycles — averages 10 cycles

Pipeline averages cycles per element
—» A — B —>
10 cycles 5 or 15 cycles
A B
A "S“ B E"IHE
A B
A s B

(c) 2005-2012 W. J. Dally

Stalling a rigid pipeline
A stall in any stage halts all stages upstream of the stall point
instantly (on the next clock)

> > >
© © ©
(qv] (qv] (qv)
A S B c ©
valid = valid = valid = valid

<ready | (_|_<ready | (_|_<ready | (| ready

What if we stopped all stages, not just upstream stages?

How does the delay of this structure sca/e with the
number of stages?

(c) 2005-2012 W. J. Dally

Double Buffer
Add an extra buffer to each stage that is filled during the first
cycle of a stall.

>
(®
©
S
|
H7 E
_ S —~\ Vvalidb validd
validu)/
readyb < — |

readyu —
% readyd

(c) 2005-2012 W. J. Dally

What is the logic equation for “next_full”? “next_buf’? “mux_sel™?

5 Mux
H
o
>
(44}
Qo
|
Full , = _
id validb validd
validu , >—
readyb | (

L —
readyu
% ‘ readyd

e —
28
(c) 2005-2012 W. J. Dally

Double Buffer Timing

time
>
0 1 2 3
0 A B C D E F
D E F
1 A B C C 5 E =
® B B C D E
gl 2 AMATAlB Tl CcIloD
Z A
3 T A B C
4 Not Ready A B
ready
5 A
\/

(c) 2005-2012 W. J. Dally

29

Double Buffer Alternate Timing
(how do you make this happen?)

time
>
0 1 2 3
F 1 F
0 A B C D _E E = F
D D
1 A B C C C D E
@ B B
8 2 A A ~ B C D
n A
3 T A B C
4 Not Ready A B
ready
5 A

(c) 2005-2012 W. J. Dally

30

Elastic Pipelines

A FIFO between stages decouples timing
Allows stages to operate at their ‘average’ speed

B

—» FIFO |—» —>

5 or 15 cycles

—> A
10 cycles
A B
A B

(c) 2005-2012 W. J. Dally

Resource Sharing
Suppose two pipeline stages need to access the same memory

Mux Arb

@© ©

Memory

How would you set the priority on the arbiter?

32
(c) 2005-2012 W. J. Dally

Pipeline overview

* Divide large problem into stages assembly-line style

» Divide evenly or load imbalance will occur
— Fix by splitting or copying bottleneck stage

* RIigid pipelines have no extra storage between stages
— A stall on any stage halts all upstream stages

— Hard to stop 100 stages at once
» Make this scalable with double-buffering

« Variable load results in stalls and idle cycles on a rigid pipeline
— Make pipeline elastic by adding FIFOs between key stages

(c) 2005-2012 W. J. Dally

33

