Digital Design: A Systems Approach

Lecture 11: Pipelining
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Readings

 L11: Chapter 23
 L12: Chapter 15
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System Design — a process

« Specification
— Understand what you need to build
» Divide and conquer
— Break it down into manageable pieces
» Define interfaces
— Clearly specify every signal between pieces
— Hide implementation
— Choose representations
« Timing and sequencing
— OQverall timing — use a table
— Timing of each interface — use a simple convention (e.g., valid — ready)
* Add parallelism as needed (pipeline or duplicate units)
« Timing and sequencing (of parallel structures)
« Design each module
« Code
* Verify

Iterate back to the top at any step as needed.
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Two ways to make things faster: pipeline and parallel

Master
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Pipelines




More Like an Assembly Line

(c) 2005-2012 W. J. Dally



Pipelines

Like an assembly line — each pipeline stage does part of the work and

passes the ‘workpiece’ to the next stage

Example 1: Pipelined 32b Adder
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Split into 4 8-bit adders
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Split into stages

4 problems ‘in process’ at once
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Pipeline Diagram

lllustrates pipeline timing
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Movie
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Cycle 1

c32 c32
b[31:24]
a[31:24] Add s[23:16]
c24
b[23:16]
a[23:16] Add s[23:16]
c16
b[15:8]
a[15:8] Add s[15:8]
c8
b[7:0]
a[7:0) |~ SO s[7:0]

AN A A
%

12
(c) 2005-2012 W. J. Dally



Cycle 2
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Cycle 3
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Cycle 3
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Latency and Throughput of a Pipeline

« Suppose before pipelining the delay of our 32b adder is 3200ps (100ps
per bit) and this adder can do one problem each 3200ps for a throughput
of 1/3200ps = 312Mops

« What is the delay (latency) and throughput of the adder with pipelining?

Suppose tyc.q = 100ps, t, = 50ps, t, = 50ps (200ps Overhead)

. thipe = N(t
. ® =n/t

stage + 1:dCQ + 1:s + 1:k)

pipe = 1/(tstage + 1:dCQ + ts + tk)
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Example 2: Processor Pipeline
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« Example 3: Graphics rendering pipeline
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Example 4 — Packet Processing Pipeline

Route Switch Queue Output

Framer Policing Lookup Schedulingl : : Mgt Scheduler Framer

And each of these modules is internally pipelined

You get the idea. Lots of systems are organized this way.
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Issues with pipelines
(all deal with time per stage)

* Load balance (across stages)

— one stage takes longer to process each input than the others —
becomes a ‘bottleneck’

— Example

» Rasterizing an ‘average’ triangle in a graphics pipeline takes more time
than ‘lighting’ its vertices.

« Variable load (across data)
— A given stage takes more time on some inputs than others

— Example

* The the time needed to rasterize a triangle is proportional to the number
of fragments in the triangle. The average triangle may contain 20
fragments, but triangles range from 0 to over 1M

* Long latency
— A stage may require a long latency operation (e.g., texture access)
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Load Balancing Pipelines

« Suppose transform takes 2 cycles and clip 4 cycles

« Clip is a ‘bottleneck’ pipeline stage

« Xform unit is busy only half the time

Xform

Clip
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Load Balancing Solutions
1 — Parallel copies of slow unit

/ Clip (1) \
Xform [—»Distribute Join
\ Clip (2) /
Xform Clip (1)
Xform Clip (2)
Xform Clip (1)
Xform Clip (2)
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Load Balancing Solutions
2 — Split slow pipeline stage

Xform Clip A ClipB
Xform ClipA | ClipB
Xform Clip A Clip B
Xform ClipA | ClipB
Xform ClipA | ClipB
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When is it better to split? To copy?
Throughput and latency are the same
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Variable load
Stage A always takes 10 cycles.
Stage B takes 5 or 15 cycles — averages 10 cycles

Pipeline averages cycles per element
—» A — B —>
10 cycles 5 or 15 cycles
A B
A "S“ B E"IHE
A B
A s B
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Stalling a rigid pipeline
A stall in any stage halts all stages upstream of the stall point
instantly (on the next clock)
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What if we stopped all stages, not just upstream stages?

How does the delay of this structure sca/e with the
number of stages?
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Double Buffer
Add an extra buffer to each stage that is filled during the first
cycle of a stall.
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What is the logic equation for “next_full”? “next_buf’? “mux_sel™?
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Double Buffer Timing
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Double Buffer Alternate Timing
(how do you make this happen?)
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Elastic Pipelines

A FIFO between stages decouples timing
Allows stages to operate at their ‘average’ speed
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Resource Sharing
Suppose two pipeline stages need to access the same memory

Mux Arb

@© ©

Memory

How would you set the priority on the arbiter?
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Pipeline overview

* Divide large problem into stages assembly-line style

» Divide evenly or load imbalance will occur
— Fix by splitting or copying bottleneck stage

* RIigid pipelines have no extra storage between stages
— A stall on any stage halts all upstream stages

— Hard to stop 100 stages at once
» Make this scalable with double-buffering

« Variable load results in stalls and idle cycles on a rigid pipeline
— Make pipeline elastic by adding FIFOs between key stages
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