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Digital Design: A Systems Approach 

 

Lecture 10:  System Design 

(c) 2005-2012 W. J. Dally  



2 
(c) 2005-2012 W. J. Dally  

Announcements 

• L10: Chapters 21, 22, & 20 

• L11: Chapter 23 
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System Design – a process 

• Specification 

– Understand what you need to build 

• Divide and conquer  

– Break it down into manageable pieces 

• Define interfaces 

– Clearly specify every signal between pieces 

– Hide implementation 

– Choose representations 

• Timing and sequencing 

– Overall timing – use a table 

– Timing of each interface – use a simple convention (e.g., valid – ready) 

• Add parallelism as needed (pipeline or duplicate units) 

• Timing and sequencing (of parallel structures) 

• Design each module 

• Code 

• Verify 

 

Iterate back to the top at any step as needed.  
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Specification 

• Write the user’s manual first 

• Putting it on paper means that there are no misunderstandings about 

operation 

– In practice, this also serves to validate the specification with 

users/customers 

• Spec includes 

– Inputs and outputs 

– Operating modes 

– Visible state 

– Discussion of “edge cases” 

• Most of design is done writing English-language documents – with 

associated drawings.  Coding comes later. 

– Don’t start coding until your design is complete. 
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Divide and Conquer –common themes 

• Task 

– Divide system into a network of tasks 

– One module per task 

– Model-view-controller: tasks are:  

• The ‘guts’ (model) 

• Output modules that ‘view’ the model 

• Input modules that affect the model 

• State 

– Divide system by state 

– Separate module for each set of state variables 

• Interface 

– Module for each external interface 
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Divide and Conquer 

• Example 1 – Pong 

– Model-view-controller 

– Model – ball and paddle position FSMs, score 

– View – VGA display and sound 

– Controller – inputs to control paddles 
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Pong Decomposition  

 Pong 

RGBSync Buttons 
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Pong Decomposition  
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Each block is now small enough to design 

• Example, Ball FSM 

– State:  x, y, vx, vy 

– Serve:  {x, y} = middle, vy = 0, vx = dir ; 

– Bounce off top/bottom:  vy = -vy ; 

– Bounce off paddle: vx = -vx ; adjust vy ; 

– Otherwise: x = x+vx, y = y+vy ; 

 

• Simple datapath FSM 
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Divide and Conquer  

• Example 2 – DES Cracker 

– Task pipeline: 

• Generate keys 

• Sequence ciphertext 

• Decrypt plaintext 

• Check plaintext 
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DES Example 
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Divide and Conquer 

• Example 3 – Music Synthesizer 

– State x task 

• Tone generator 
– Generate harmonics, generate addresses, lookup sine wave, weight for each harmonic 

• Envelope generator 
– Generate envelopes, multiply by samples 

• Combiner 
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Simple Music Synthesizer 
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With Harmonics and Attack/Decay 
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Define Interfaces 

• For standard modules, already defined for you 

– DES module (from OpenCores library) 

– AC97 CODEC 

 

• For your own modules, interfaces must specify every signal 

– Each Data “Port”: 

• Data signals – how wide, what representation, when valid 

• Flow control – specifies when data transfers take place 

– Other control and status 

– Example – Sine Wave Generator  

• Next (in) – goes high one clock each data sample 

• Freq (in) – 16-bits – u0.16 specifies an interval between samples in the 

sine table.  A value of 1 specifies an interval of pi. 

• Value (out) – 16-bits s0.15 format, on sample pulse 

• NextNote (out) – goes high when current note has been held for 100ms 
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Example decision 

• Suppose we need 15 sine-wave generators 

– 3 notes x 5 harmonics each 

• Do we share a single quarter sine table or use 15 tables? 

 

• In favor of sharing 

– We have time 

• Sample rate is 48KHz, clock is 100MHz. 

• 2,083 cycles per sample 

– It will take less chip area 

• Opposed to sharing 

– Dedicated BRAMs are simpler 

– We have lots of BRAMs. 

 

Which would you do? 
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System Design – a process (reminder) 

• Specification 

– Understand what you need to build 

• Divide and conquer  

– Break it down into manageable pieces 

• Define interfaces 

– Clearly specify every signal between pieces 

– Hide implementation 

– Choose representations 

• Timing and sequencing 

• Add parallelism as needed (pipeline or duplicate units) 

• Timing and sequencing (of parallel structures) 

• Design each module 

• Code 

• Verify 

 

Iterate back to the top at any step as needed.  
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Timing and Sequencing 

• Work out exactly when and in what order things happen 

• Account for pipeline delays 

• Account for multi-cycle operations 

• Draw a timing diagram (or a table) 

• Example: DES Cracker 

 



19 
(c) 2005-2012 W. J. Dally  

Example, DES Cracker Timing 

Cycle KeyGen CT Seq DES Check 

0 firstKey firstBlock 

1 Key0 CT Block 0 Round 1 

2 Round 2 

… … 

16 nextBlock Round 16 

17 CT Block 1 Round 1 PT Block 0 

18 Round 2 

… … 

32 nextBlock Round 16 

33 CT Block 2 Round 1 PT Block 1 

… … 

112 nextBlock Round 16 

113 CT Block 7 Round 1 PT Block 6 

… … 

128 nextKey firstBlock Round 16 

129 Key1 CT Block 0 PT Block 7 
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DES Example 
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Example, DES Cracker Timing –  

if a PT block fails, go on to next key 

Cycle KeyGen CT Seq DES Check 

0 firstKey firstBlock 

1 Key0 CT Block 0 Round 1 

2 Round 2 

… … 

16 nextBlock Round 16 

17 CT Block 1 Round 1 PT Block 0 

18 nextKey firstBlock --- 

19 Key1 CT Block 0 Round 1 

Round 2 

… … 

34 nextBlock Round 16 

35 CT Block 1 Round 1 PT Block 0 

… … 



Example timing – Music Synthesizer with Harmonics 
Cycle NextNote NextSample NextHarmonic Ready Comment 

0 1 1 Start – look up note, convert to freq 

1 1 Freq valid this cycle, read value 

2 1 1 Value of fundamental 

3 1 Read 2nd harmonic 

4 1 1 Value of 2nd harmonic (2x freq) 

5 1 Read 3rd harmonic 

6 1 1 Value of 3rd harmonic (3x freq) 

… Idle until next 48KHz request 

2084 1 Read fundamental for next sample 

2085 1 1 Value of fundamental 

2086 1 Read 2nd harmonic 

2087 1 1 Value of 2nd harmonic (2x freq) 

2088 1 Read 3rd harmonic 

2089 1 1 Value of 3rd harmonic (3x freq) 

… Repeat above 4800 times per note 

X+0 1 1 Read next note 

X+2 1 Freq valid, read value 

X+3 1 1 Value of fundamental 
(c) 2005-2012 W. J. Dally  
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With Harmonics and Attack/Decay 
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System Design – a process (reminder) 

• Specification 

– Understand what you need to build 

• Divide and conquer  

– Break it down into manageable pieces 

• Define interfaces 

– Clearly specify every signal between pieces 

– Hide implementation 

– Choose representations 

• Timing and sequencing 

• Add parallelism as needed (pipeline or duplicate units) 

• Timing and sequencing (of parallel structures) 

• Design each module 

• Code 

• Verify 

 

Iterate back to the top at any step as needed.  
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Basic principle 

Keep it simple (KIS) 

• Add complexity only when your design absolutely needs it 

 

A corollary: 

• If its not broken, don’t fix it 

• Don’t optimize something unless there is something wrong with the 

simple design 
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System Design – a process (reminder) 

• Specification 

– Understand what you need to build 

• Divide and conquer  

– Break it down into manageable pieces 

• Define interfaces 

– Clearly specify every signal between pieces 

– Hide implementation 

– Choose representations 

• Timing and sequencing 

• Add parallelism as needed (pipeline or duplicate units) 

• Timing and sequencing (of parallel structures) 

• Design each module 

• Code 

• Verify 

 

Iterate back to the top at any step as needed.  
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Some comments on Coding 

• Don’t start coding until your design is done. 

• Don’t even think about coding until your design is done 

 

• Code a separate module for every block in your block diagrams 

 

• Unit test each module before moving on to the next module 

 

• Follow good Verilog coding practice 

– All state should be explicitly declared DFFs 

– Assign and case/casex for combinational logic 

– Don’t forget its hardware 

 

• Debug in Modelsim before coming into the lab 
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Verification 

• Basic principle 

– If you didn’t test it, it doesn’t work 

• All modules 

• All states 

• All transitions between states 

• All “edge” conditions 

 

• Accelerate tests 

– Initialize to just before the state you’re testing 

– Shorten counters (for testing, don’t forget to lengthen for real 

operation) 
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Debugging 

• Thinking your design through ahead of time will avoid most bugs 

– Work out timing 

– Keep it simple 

• Be a detective to track down the few bugs that slip through 

– Start with known working logic 

– Follow signals to the point where something first goes wrong 

– Run simplest possible test case 

– Unit test modules 

• Make sure you don’t have compilation or simulation warnings 

– Check that your logic meets timing 

• Do not just randomly change Verilog code - stop and think 
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System Design – Overview 

• Specification 

– Understand what you need to build 

• Divide and conquer  

– Break it down into manageable pieces 

• Define interfaces 

– Clearly specify every signal between pieces 

– Hide implementation 

– Choose representations 

• Timing and sequencing 

• Add parallelism as needed (pipeline or duplicate units) 

• Timing and sequencing (of parallel structures) 

• Design each module 

• Code 

• Verify 

– Debug 

 

Iterate back to the top at any step as needed.  


