
1
(c) 2005-2012 W. J. Dally

Digital Design: A Systems Approach

Lecture 11: Pipelining

2

Readings

• L11: Chapter 23

• L12: Chapter 15

(c) 2005-2012 W. J. Dally

3
(c) 2005-2012 W. J. Dally

System Design – a process

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

– Overall timing – use a table

– Timing of each interface – use a simple convention (e.g., valid – ready)

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

4
(c) 2005-2012 W. J. Dally

Two ways to make things faster: pipeline and parallel

A B C D

Master

A B C D

5
(c) 2005-2012 W. J. Dally

Pipelines

6
(c) 2005-2012 W. J. Dally

More Like an Assembly Line

Pipelines

• Like an assembly line – each pipeline stage does part of the work and

passes the ‘workpiece’ to the next stage

• Example 1: Pipelined 32b Adder

FA
a0

b0

c0

s0

c
1

FA
a1

b1
s1

c
2

FA
a31

b31
s31

c
3
2

c
3

1
(c) 2005-2012 W. J. Dally

8
(c) 2005-2012 W. J. Dally

Split into 4 8-bit adders

Add
a[7:0]

b[7:0]

c0

s[7:0]

c
8

Add
a[15:8]

b[15:8]
s[15:8]

c
1

6

Add
a[23:16]

b[23:16]
s[23:16]

c
2

4

Add
a[31:24]

b[31:24]
s[23:16]

c
3
2

9
(c) 2005-2012 W. J. Dally

Split into stages

4 problems ‘in process’ at once

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

Pipeline Diagram

Illustrates pipeline timing

P
ro

b
le

m
s

Time

P0

P1

P2

P3

P4

7:0 15:8

0

Cycle

23:16 31:24

1 2 3 4 5 6 7

7:0 15:8 23:16 31:24

7:0 15:8 23:16 31:24

7:0 15:8 23:16 31:24

7:0 15:8 23:16 31:24

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

(c) 2005-2012 W. J. Dally

11
(c) 2005-2012 W. J. Dally

Movie

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

12
(c) 2005-2012 W. J. Dally

Cycle 1

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

S0

P0

13
(c) 2005-2012 W. J. Dally

Cycle 2

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

S0

P1

P0

S1

14
(c) 2005-2012 W. J. Dally

Cycle 3

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

P2

S2

S0

P0

P1

S1

15
(c) 2005-2012 W. J. Dally

Cycle 3

a[31:24]

b[31:24]

a[23:16]

b[23:16]

Add
a[7:0]

b[7:0]

c0

s[7:0]

c8

Add
s[15:8]

c16

Add
s[23:16]

Add
s[23:16]

a[15:8]

b[15:8]

c24

c32 c32

P2

S2

S0

P1

S1

P2

S2

16
(c) 2005-2012 W. J. Dally

Latency and Throughput of a Pipeline

• Suppose before pipelining the delay of our 32b adder is 3200ps (100ps

per bit) and this adder can do one problem each 3200ps for a throughput

of 1/3200ps = 312Mops

• What is the delay (latency) and throughput of the adder with pipelining?

Suppose tdCQ = 100ps, ts = 50ps, tk = 50ps (200ps Overhead)

• tpipe = n(tstage + tdCQ + ts + tk) 4(1000) = 4000

• Q = n/tpipe = 1/(tstage + tdCQ + ts + tk) 4/4000 = 1Gops

17
(c) 2005-2012 W. J. Dally

Example 2: Processor Pipeline

P

C Inst

Cache IR
R

Regs

IR
A

ALU

IR
M

IR
W

RegsMux

Data

Cache

Inst1

Inst2

Inst3

Inst4

Fetch Read ALU Mem Write

Fetch Read ALU Mem Write

Fetch Read ALU Mem Write

Fetch Read ALU Mem Write

18
(c) 2005-2012 W. J. Dally

• Example 3: Graphics rendering pipeline

Xform
triangles

Clip Light Rasterize

triangle pipeline

Shade Composite

fragment pipeline

Textures Z-buffer
Frame

Buffer

triangle

fragment

19
(c) 2005-2012 W. J. Dally

Example 4 – Packet Processing Pipeline

And each of these modules is internally pipelined

You get the idea. Lots of systems are organized this way.

Framer Policing
Route

Lookup

Switch

Scheduling

Queue

Mgt

Output

Scheduler
Framer

20
(c) 2005-2012 W. J. Dally

Issues with pipelines

(all deal with time per stage)

• Load balance (across stages)

– one stage takes longer to process each input than the others –
becomes a ‘bottleneck’

– Example

• Rasterizing an ‘average’ triangle in a graphics pipeline takes more time
than ‘lighting’ its vertices.

• Variable load (across data)

– A given stage takes more time on some inputs than others

– Example

• The the time needed to rasterize a triangle is proportional to the number
of fragments in the triangle. The average triangle may contain 20
fragments, but triangles range from 0 to over 1M

• Long latency

– A stage may require a long latency operation (e.g., texture access)

21
(c) 2005-2012 W. J. Dally

Load Balancing Pipelines

• Suppose transform takes 2 cycles and clip 4 cycles

• Clip is a ‘bottleneck’ pipeline stage

• Xform unit is busy only half the time

Xform Clip

Stall ClipXform

Stall ClipXform

22
(c) 2005-2012 W. J. Dally

Load Balancing Solutions

1 – Parallel copies of slow unit

Xform

Clip (1)

Distribute

Clip (2)

Join

Xform Clip (1)

Clip (2)Xform

Clip (1)Xform

Clip (2)Xform

23
(c) 2005-2012 W. J. Dally

Load Balancing Solutions

2 – Split slow pipeline stage

Xform Clip A Clip B

Xform Clip A Clip B

Xform Clip A Clip B

Xform Clip A Clip B

Xform Clip A Clip B

When is it better to split? To copy?

Throughput and latency are the same

Xform Clip A Clip B

Xform

Clip (1)

Distribute

Clip (2)

Join

(c) 2005-2012 W. J. Dally

Variable load

Stage A always takes 10 cycles.

Stage B takes 5 or 15 cycles – averages 10 cycles

Pipeline averages ____ cycles per element

A
10 cycles

B
5 or 15 cycles

IS

A B

A B

A B

SA B

ISA B

(c) 2005-2012 W. J. Dally

Stalling a rigid pipeline

A stall in any stage halts all stages upstream of the stall point

instantly (on the next clock)

What if we stopped all stages, not just upstream stages?

How does the delay of this structure scale with the
number of stages?

A
valid

ready

in
t_

re
a
d

y

B
valid

ready

in
t_

re
a
d

y

C
valid

ready

in
t_

re
a
d

y

valid

ready

(c) 2005-2012 W. J. Dally

Double Buffer

Add an extra buffer to each stage that is filled during the first

cycle of a stall.

Full

B
u
ff
e
r Mux

validu
validb

readyu

readyb

readyd

validd

in
t_
re
a
d
y

(c) 2005-2012 W. J. Dally

28
(c) 2005-2012 W. J. Dally

What is the logic equation for “next_full”? “next_buf”? “mux_sel”?

Full

B
u
ff
e
r Mux

validu
validb

readyu

readyb

readyd

validd

in
t_
re
a
d
y

29
(c) 2005-2012 W. J. Dally

Double Buffer Timing

s
ta

g
e

time

0 1 2 3

Not

ready

A B C

B CA

A
B
A

D

B
A

Ready

D
C

E

A

B

D
C

F

E

A

B

C
D

F
E

A

B

C

D

0

1

2

3

4

5

F
E

30
(c) 2005-2012 W. J. Dally

Double Buffer Alternate Timing

(how do you make this happen?)

s
ta

g
e

time

0 1 2 3

Not

ready

A B C

B CA

A
B
A

D

B
A

Ready

D
C

E

A

B

D
C

F
E

A

B

C

D

F
E

A

B

C

D

E

F0

1

2

3

4

5

Elastic Pipelines

A FIFO between stages decouples timing

Allows stages to operate at their ‘average’ speed

A
10 cycles

B
5 or 15 cycles

FIFO

I

A B

A B

A B

A B

A B

A B

(c) 2005-2012 W. J. Dally

32
(c) 2005-2012 W. J. Dally

Resource Sharing

Suppose two pipeline stages need to access the same memory

•

A B C D

Memory

Mux
a

Arb

d

How would you set the priority on the arbiter?

33
(c) 2005-2012 W. J. Dally

Pipeline overview

• Divide large problem into stages assembly-line style

• Divide evenly or load imbalance will occur

– Fix by splitting or copying bottleneck stage

• Rigid pipelines have no extra storage between stages

– A stall on any stage halts all upstream stages

– Hard to stop 100 stages at once

• Make this scalable with double-buffering

• Variable load results in stalls and idle cycles on a rigid pipeline

– Make pipeline elastic by adding FIFOs between key stages

