
1

Digital Design: A Systems Approach

Lecture 10: System Design

(c) 2005-2012 W. J. Dally

2
(c) 2005-2012 W. J. Dally

Announcements

• L10: Chapters 21, 22, & 20

• L11: Chapter 23

3
(c) 2005-2012 W. J. Dally

System Design – a process

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

– Overall timing – use a table

– Timing of each interface – use a simple convention (e.g., valid – ready)

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

4
(c) 2005-2012 W. J. Dally

Specification

• Write the user’s manual first

• Putting it on paper means that there are no misunderstandings about

operation

– In practice, this also serves to validate the specification with

users/customers

• Spec includes

– Inputs and outputs

– Operating modes

– Visible state

– Discussion of “edge cases”

• Most of design is done writing English-language documents – with

associated drawings. Coding comes later.

– Don’t start coding until your design is complete.

5
(c) 2005-2012 W. J. Dally

Divide and Conquer –common themes

• Task

– Divide system into a network of tasks

– One module per task

– Model-view-controller: tasks are:

• The ‘guts’ (model)

• Output modules that ‘view’ the model

• Input modules that affect the model

• State

– Divide system by state

– Separate module for each set of state variables

• Interface

– Module for each external interface

6
(c) 2005-2012 W. J. Dally

Divide and Conquer

• Example 1 – Pong

– Model-view-controller

– Model – ball and paddle position FSMs, score

– View – VGA display and sound

– Controller – inputs to control paddles

7
(c) 2005-2012 W. J. Dally

Pong Decomposition

 Pong

RGBSync Buttons

8
(c) 2005-2012 W. J. Dally

Pong Decomposition

 Pong

RGBSync Buttons

V
G

A
 D

is
p
la

y

In
p
u
t L

o
g
ic

Main

FSM

Ball

FSM

Paddle

FSM

Score

FSM

left pad y

right pad y

ball pos

mode

left pad y

right pad y

mode

ball pos

mode

ball pos

score

score

serve,start

left up/down

right up/down

9
(c) 2005-2012 W. J. Dally

Each block is now small enough to design

• Example, Ball FSM

– State: x, y, vx, vy

– Serve: {x, y} = middle, vy = 0, vx = dir ;

– Bounce off top/bottom: vy = -vy ;

– Bounce off paddle: vx = -vx ; adjust vy ;

– Otherwise: x = x+vx, y = y+vy ;

• Simple datapath FSM

10
(c) 2005-2012 W. J. Dally

Divide and Conquer

• Example 2 – DES Cracker

– Task pipeline:

• Generate keys

• Sequence ciphertext

• Decrypt plaintext

• Check plaintext

11
(c) 2005-2012 W. J. Dally

DES Example

Key

Generator
key

Ciphertext

Storage
cipherTextBlock

firstKey

firstBlock

nextBlock

DES

Decrypt
plainTextBlock

startDES DESdone

Text

Checker

nextKey

isPlainText

Master

FSM

firstKey

firstBlock

nextBlock

nextKey

startDES

DESdone

isPlainText

start

12
(c) 2005-2012 W. J. Dally

Divide and Conquer

• Example 3 – Music Synthesizer

– State x task

• Tone generator
– Generate harmonics, generate addresses, lookup sine wave, weight for each harmonic

• Envelope generator
– Generate envelopes, multiply by samples

• Combiner

13
(c) 2005-2012 W. J. Dally

Simple Music Synthesizer

Note

FSM

Song

RAM

start

a
d
d
r

d
a
ta

note
Note to

Frequency

Quarter

Sine

RAM

a
d
d
r

d
a
ta

freq

ready

Sine Wave

Synthesizer

FSM

value

next CODEC

14
(c) 2005-2012 W. J. Dally

With Harmonics and Attack/Decay

Note

FSM

Song

RAM

start

a
d

d
r

d
a

ta

note Note to

Frequency

Quarter

Sine

RAM
a

d
d

r

d
a

ta

freq

nextNote

Sine Wave

Synthesizer

FSM

w/ Harmonics

value

nextHarmonic
Harmonics

FSM Envelope

value

next

ready ready

value

next

ready
CODEC

nextNote

nextSample

duration note

15
(c) 2005-2012 W. J. Dally

Define Interfaces

• For standard modules, already defined for you

– DES module (from OpenCores library)

– AC97 CODEC

• For your own modules, interfaces must specify every signal

– Each Data “Port”:

• Data signals – how wide, what representation, when valid

• Flow control – specifies when data transfers take place

– Other control and status

– Example – Sine Wave Generator

• Next (in) – goes high one clock each data sample

• Freq (in) – 16-bits – u0.16 specifies an interval between samples in the

sine table. A value of 1 specifies an interval of pi.

• Value (out) – 16-bits s0.15 format, on sample pulse

• NextNote (out) – goes high when current note has been held for 100ms

16
(c) 2005-2012 W. J. Dally

Example decision

• Suppose we need 15 sine-wave generators

– 3 notes x 5 harmonics each

• Do we share a single quarter sine table or use 15 tables?

• In favor of sharing

– We have time

• Sample rate is 48KHz, clock is 100MHz.

• 2,083 cycles per sample

– It will take less chip area

• Opposed to sharing

– Dedicated BRAMs are simpler

– We have lots of BRAMs.

Which would you do?

17
(c) 2005-2012 W. J. Dally

System Design – a process (reminder)

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

18
(c) 2005-2012 W. J. Dally

Timing and Sequencing

• Work out exactly when and in what order things happen

• Account for pipeline delays

• Account for multi-cycle operations

• Draw a timing diagram (or a table)

• Example: DES Cracker

19
(c) 2005-2012 W. J. Dally

Example, DES Cracker Timing

Cycle KeyGen CT Seq DES Check

0 firstKey firstBlock

1 Key0 CT Block 0 Round 1

2 Round 2

… …

16 nextBlock Round 16

17 CT Block 1 Round 1 PT Block 0

18 Round 2

… …

32 nextBlock Round 16

33 CT Block 2 Round 1 PT Block 1

… …

112 nextBlock Round 16

113 CT Block 7 Round 1 PT Block 6

… …

128 nextKey firstBlock Round 16

129 Key1 CT Block 0 PT Block 7

20
(c) 2005-2012 W. J. Dally

DES Example

Key

Generator
key

Ciphertext

Storage
cipherTextBlock

firstKey

firstBlock

nextBlock

DES

Decrypt
plainTextBlock

startDES DESdone

Text

Checker

nextKey

isPlainText

Master

FSM

firstKey

firstBlock

nextBlock

nextKey

startDES

DESdone

isPlainText

start

21
(c) 2005-2012 W. J. Dally

Example, DES Cracker Timing –

if a PT block fails, go on to next key

Cycle KeyGen CT Seq DES Check

0 firstKey firstBlock

1 Key0 CT Block 0 Round 1

2 Round 2

… …

16 nextBlock Round 16

17 CT Block 1 Round 1 PT Block 0

18 nextKey firstBlock ---

19 Key1 CT Block 0 Round 1

Round 2

… …

34 nextBlock Round 16

35 CT Block 1 Round 1 PT Block 0

… …

Example timing – Music Synthesizer with Harmonics
Cycle NextNote NextSample NextHarmonic Ready Comment

0 1 1 Start – look up note, convert to freq

1 1 Freq valid this cycle, read value

2 1 1 Value of fundamental

3 1 Read 2nd harmonic

4 1 1 Value of 2nd harmonic (2x freq)

5 1 Read 3rd harmonic

6 1 1 Value of 3rd harmonic (3x freq)

… Idle until next 48KHz request

2084 1 Read fundamental for next sample

2085 1 1 Value of fundamental

2086 1 Read 2nd harmonic

2087 1 1 Value of 2nd harmonic (2x freq)

2088 1 Read 3rd harmonic

2089 1 1 Value of 3rd harmonic (3x freq)

… Repeat above 4800 times per note

X+0 1 1 Read next note

X+2 1 Freq valid, read value

X+3 1 1 Value of fundamental
(c) 2005-2012 W. J. Dally

23
(c) 2005-2012 W. J. Dally

With Harmonics and Attack/Decay

Note

FSM

Song

RAM

start

a
d

d
r

d
a

ta

note Note to

Frequency

Quarter

Sine

RAM
a

d
d

r

d
a

ta

freq

nextNote

Sine Wave

Synthesizer

FSM

w/ Harmonics

value

nextHarmonic
Harmonics

FSM Envelope

value

next

ready ready

value

next

ready
CODEC

nextNote

nextSample

duration note

24
(c) 2005-2012 W. J. Dally

System Design – a process (reminder)

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

25
(c) 2005-2012 W. J. Dally

Basic principle

Keep it simple (KIS)

• Add complexity only when your design absolutely needs it

A corollary:

• If its not broken, don’t fix it

• Don’t optimize something unless there is something wrong with the

simple design

26
(c) 2005-2012 W. J. Dally

System Design – a process (reminder)

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

27
(c) 2005-2012 W. J. Dally

Some comments on Coding

• Don’t start coding until your design is done.

• Don’t even think about coding until your design is done

• Code a separate module for every block in your block diagrams

• Unit test each module before moving on to the next module

• Follow good Verilog coding practice

– All state should be explicitly declared DFFs

– Assign and case/casex for combinational logic

– Don’t forget its hardware

• Debug in Modelsim before coming into the lab

28
(c) 2005-2012 W. J. Dally

Verification

• Basic principle

– If you didn’t test it, it doesn’t work

• All modules

• All states

• All transitions between states

• All “edge” conditions

• Accelerate tests

– Initialize to just before the state you’re testing

– Shorten counters (for testing, don’t forget to lengthen for real

operation)

29
(c) 2005-2012 W. J. Dally

Debugging

• Thinking your design through ahead of time will avoid most bugs

– Work out timing

– Keep it simple

• Be a detective to track down the few bugs that slip through

– Start with known working logic

– Follow signals to the point where something first goes wrong

– Run simplest possible test case

– Unit test modules

• Make sure you don’t have compilation or simulation warnings

– Check that your logic meets timing

• Do not just randomly change Verilog code - stop and think

30
(c) 2005-2012 W. J. Dally

System Design – Overview

• Specification

– Understand what you need to build

• Divide and conquer

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between pieces

– Hide implementation

– Choose representations

• Timing and sequencing

• Add parallelism as needed (pipeline or duplicate units)

• Timing and sequencing (of parallel structures)

• Design each module

• Code

• Verify

– Debug

Iterate back to the top at any step as needed.

