Chapter

3

BANDSTRUCTURE MODIFICATION

BANDSTRUCTURE MODIFICATION

In bulk crystals the electronic properties (bandstructure) are determined by the nature of the atoms forming the crystal. We would like to modify the bandstructure for a variety of reasons, depending upon technology needs. There are three important ways of modifying bandstructure.

ALLOYS: LATTICE CONSTANT

Lattice constant of an alloy $A_x B_{1-x}$ is given by Vegard's Law

 $a_{\text{alloy}} = x a_A + (1 - x)a_B$

Composition of an alloy is usually chosen to produce lattice matching with a substrate.

Alloys: Bandgap

In bulk crystals the electronic properties (bandstructure) are determined by the nature of the atoms forming the crystal. We would like to modify the bandstructure for a variety of reasons, depending upon technology needs. There are three important ways of modifying bandstructure.

Compound	Direct Energy Gap <i>E_g</i> (eV)		
$Al_x In_{1-x} P$	1.351 + 2.23x		
Al_xGa_{1-x} As	1.424 + 1.247x		
$Al_x In_{1-x} As$	$0.360 + 2.012x + 0.698x^2$		
Al_xGa_{1-x} Sb	$0.726 + 1.129x + 0.368x^2$		
$Al_x In_{1-x} Sb$	$0.172 + 1.621x + 0.43x^2$		
$\operatorname{Ga}_{x}\operatorname{In}_{1-x}\operatorname{P}$	$1.351 + 0.643x + 0.786x^2$		
$\operatorname{Ga}_{x}\operatorname{In}_{1-x}\operatorname{As}$	0.36 + 1.064x		
$Ga_x In_{1-x}$ Sb	$0.172 + 0.139x + 0.415x^2$		
GaP_xAs_{1-x}	$1.424 + 1.150x + 0.176x^2$		
$GaAs_xSb_{1-x}$	$0.726 + 0.502x + 1.2x^2$		
InP_xAs_{1-x}	$0.360 + 0.891x + 0.101x^2$		
$InAs_xSb_{1-x}$	$0.18 + 0.41x + 0.58x^2$		

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

Semiconductor heterostructures: How do bands line up?

An extremely important issue in the properties of a quantum well is the bandedge discontinuity, ΔE_c (and ΔE_v) which defines the confining potential. The electron affinity rule suggests that the conduction band discontinuity is determined by the electron affinity difference. Unfortunately, the rule does not work.

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

BANDSTRUCTURE IN QUANTUM WELLS: SUBBANDS

What is the electronic spectra in a 2-dimensional quantum well? Electrons are confined in the *z*-direction and are free to move in the *x*-plane.

The Schrödinger equation for the quantum well in which the confinement is along the *z*-axis can be separated into equations in the *x* and *y* direction and in the *z*-direction as follows:

Valence band quantum well
 ∞

POSITION z —

 ∞

Schematic of a quantum well and the sub-band levels. Note that in a semiconductor quantum well, one has a quantum well for the conduction band and one for the valence band. In the infinite barrier model, the barriers are chosen to have an infinite potential, as shown.

SUBBAND STRUCTURE IN QUANTUM WELLS

In an infinite square well, the electron energies are

$$E(n,k_x,k_y) = \frac{\pi^2 \hbar^2 n^2}{2m^* W^2} + \frac{\hbar^2 k_x^2}{2m^*} + \frac{\hbar^2 k_y^2}{2m^*} ; n = 1,2,3...$$
(subband number)

In an finite barrier, an iterative method is to be used to solve the following transcendental equations. The solutions give the subband levels.

$$\alpha \tan\left(\frac{\alpha W}{2}\right) = \beta \qquad \qquad \alpha = \sqrt{\frac{2m^*E}{\hbar^2}}$$

$$\alpha \cot\left(\frac{\alpha W}{2}\right) = -\beta \qquad \qquad \beta = \sqrt{\frac{2m^*(V_o - E)}{\hbar^2}}$$

Schematic of a quantum well and the subband levels. In the *x*-*y* plane, the subbands can be represented by parabolas. Subbands are produced in the conduction band and the valence band.

LOW-DIMENSIONAL STRUCTURES: DENSITY OF STATES

One of the most important motivations for low-dimensional systems is the ability they offer to modiy the density of statees.

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

BANDSTRUCTURE IN A MOSFET CHANNEL

MOSFET is the most important electronic device. In the device electrons are confined (in inversion) in a triangular quantum well. A subband structure is formed for each of the six conduction band valleys.

QUANTUM WELLS: VALENCE BANDSTRUCTURE

Due to the strong coupling between the heavy hole (HH) and light hole (LH) bands, the bandstructure in the valence band is quite non-parabolic.

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

BANDSTRUCTURE MODIFICATION BY STRAIN

Strain changes the relative positions of atoms in a material.

- \rightarrow causes changes in bandstructure.
- \rightarrow degeneracies can be lifted.
- \rightarrow selection rules for optical transitions can be altered.

Symmetries and deformation potentials

It is possible to predict which elements of the tensor $D_{ij}^{\alpha\beta}$ are non-zero by examining the symmetry of the problem.

In fcc based structures it is useful to examine the following points:

- Γ_2^1 : bottom of the conduction band in direct gap material.
- Δ_l : direction along (100) and equivalent directions.
- L_1 : direction along (111) and equivalent directions.
- Γ_{15} : top of the valence band.

DEFORMATION POTENTIAL THEORY

WHAT DOES STRAIN DO? DEFORMATION POTENTIAL THEORY

Deformation potential theory relates strain to changes in bandstructure (usually within first order perturbation theory).

$$H_{\varepsilon}^{\alpha\beta} = \sum_{ij} D_{ij}^{\alpha\beta} \varepsilon_{ij}$$

ij: *x*,*y*,*z* indices defining the strain tensor ε_{ij} .

 α,β : basis functions describing the electronic states

(eg., s, p_{xy}, p_{xy}, p_z).

- H_{ϵ} : perturbation due to strain.
- *D*: deformation potentials (usually determined from pressuredependent optical measurements.

STRAIN EFFECTS ON CONDUCTION BAND EDGES

Direct gap conduction band: Γ_2^l point: k = (0,0,0)

 $\delta E^{(000)} = \Xi_d^{(000)} \left(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \right)$

This point is only influenced by the dilation due to the strain. Distortion of angles (off diagonal terms) have no influence on Γ_2 .

Points along (100) and equivalent directions: There are six equivalent bands along these directions for fcc lattice based materials. $\delta E^{(100)} = \delta E^{(\bar{1}00)} = \Xi_d^{(100)} (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \Xi_u^{(100)} \varepsilon_{xx}$ $\delta E^{(010)} = \delta E^{(\bar{0}10)} = \Xi_d^{(100)} (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \Xi_u^{(100)} \varepsilon_{yy}$ $\delta E^{(001)} = \delta E^{(00\bar{1})} = \Xi_d^{(100)} (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \Xi_u^{(100)} \varepsilon_{zz}$ If ε_{xx} , ε_{yy} , ε_{zz} are unequal, the six valleys can be split.

Points along (111) and equivalent directions:

$$\begin{split} \delta E^{(111)} &= D_{xx}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + 2D_{xy}(\varepsilon_{xy} + \varepsilon_{yz} + \varepsilon_{zx}) \\ \delta E^{(11\bar{1})} &= D_{xx}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + 2D_{xy}(\varepsilon_{xy} - \varepsilon_{yz} - \varepsilon_{zx}) \\ \delta E^{(1\bar{1}1)} &= D_{xx}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + 2D_{xy}(-\varepsilon_{xy} - \varepsilon_{yz} + \varepsilon_{zx}) \\ \delta E^{(\bar{1}11)} &= D_{xx}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + 2D_{xy}(-\varepsilon_{xy} + \varepsilon_{yz} - \varepsilon_{zx}) \end{split}$$

STRAIN EFFECTS ON VALENCE BAND STATES

The top of the valence band is described by p_x, p_y, p_z states. The non-zero elements of the deformation potential tensor are:

$$D_{xx}^{xx} = l; D_{yy}^{xx} = m; D_{xy}^{xy} = n$$

where l,m,n are three independent valence band deformation potentials. Usually results are given in terms of another set of deformation potentials, a,b, and d where:

$$a = \frac{l+2m}{3}$$
; $b = \frac{l-m}{3}$; $d = \frac{n}{\sqrt{3}}$

The strain Hamiltonian for a 4x4 set of basis (i.e., $|3/2, \pm 3/2\rangle$ and $|3/2, \pm 1/2\rangle$ is:

[H_{hh}^{ε}	H_{12}^{ε}	H_{13}^{ϵ}	0	3/2,3/2>
$H_{c}\Psi =$	$H_{12}^{\varepsilon*}$	H_{lh}^{ϵ}	0	H_{13}^{ε}	3/2,1/2>
ε	$H_{13}^{\epsilon*}$	0	H_{lh}^{ϵ}	$-H_{12}^{\varepsilon}$	3/2,-1/2>
	0	$H_{13}^{\epsilon*}$	$-H_{12}^{\epsilon*}$	H_{hh}	3/2,-3/2>

.....

where the matrix elements are given by

$$H_{hh}^{\varepsilon} = a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) - b\left[\varepsilon_{zz} - \frac{1}{2}(\varepsilon_{xx} + \varepsilon_{yy})\right]$$

$$H_{lh}^{\varepsilon} = a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + b\left[\varepsilon_{zz} - \frac{1}{2}(\varepsilon_{xx} + \varepsilon_{yy})\right]$$

$$H_{12}^{\varepsilon} = -d(\varepsilon_{xz} - i\varepsilon_{yz})$$

$$= \left\langle\frac{3}{2}, \frac{3}{2}\right|H_{\varepsilon}|\frac{3}{2}, \frac{1}{2}\right\rangle$$

$$H_{13}^{\varepsilon} = \frac{\sqrt{3}}{2}b(\varepsilon_{yy} - \varepsilon_{xx}) + id\varepsilon_{xy}$$

$$= \left\langle\frac{3}{2}, \frac{3}{2}\right|H_{\varepsilon}|\frac{3}{2}, \frac{-1}{2}\right\rangle$$

VALENCE BAND EDGES FOR COHERENTLY STRAINED GROWTH ALONG (001)

The consequence of pseudomorphic strain on the bandedges of a direct bandgap semiconductor. The valence band degeneracy at k = 0 is lifted as the HH and LH states are split, as shown.

STRAIN EFFECTS: CONDUCTION AND VALENCE BANDS OF SiGe ON Si

• Bulk Si and Si_xGe_{1-x} (x > 0.15) have conduction bands which are 6-fold degenerate and *X*-like.

• If SiGe is grown on Si (100) the six bands are split into a 2-fold band and a 4-fold band.

• The valence band HH, LH degeneracy is also lifted.

Splittings of the conduction band and valence band are shown as a function of alloy composition.

UCB: unstrained conduction band, HH: heavy hole, LH: light hole, SH: split-off hole.