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BANDSTRUCTURE MODIFICATION
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In bulk crystals the electronic properties 
(bandstructure) are determined by the nature of the 
atoms forming the crystal. We would like to modify 
the bandstructure for a variety of reasons, depending 
upon technology needs. There are three important 
ways of modifying bandstructure.

ALLOYS QUANTUM WELLS STRAIN FIELD

• By combining 
two or more 
materials, a new 
lattice constant 
and bandgap can 
be produced.

• 2-dimensional 
or even lower 
dimensional 
electronic 
systems can be 
produced.
• Effective 
bandgap can be 
altered.

• Degeneracies 
can be removed.
• Character of 
bandedge 
wavefunctions 
can be altered.
• Bandedge 
density of states 
can be altered.



ALLOYS: LATTICE CONSTANT
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Lattice constant of an alloy AxB1–x is given by 
Vegard's Law

aalloy = x aA + (1 – x)aB
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Composition of an alloy is usually chosen to produce 
lattice matching with a substrate.



ALLOYS: BANDGAP
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In bulk crystals the electronic properties (bandstructure) 
are determined by the nature of the atoms forming the 
crystal. We would like to modify the bandstructure for a 
variety of reasons, depending upon technology needs. 
There are three important ways of modifying 
bandstructure.

Direct Energy Gap 
Compound           Eg (eV)

AlxIn1-x P 1.351 + 2.23x

AlxGa1-x As 1.424 + 1.247x

AlxIn1-x As 0.360 + 2.012x + 0.698x2

AlxGa1-x Sb 0.726 + 1.129x + 0.368x2

AlxIn1-x Sb 0.172 + 1.621x + 0.43x2

GaxIn1-x P 1.351 + 0.643x + 0.786x2

GaxIn1-x As 0.36 + 1.064x

GaxIn1-x Sb 0.172 + 0.139x + 0.415x2

GaPxAs1-x 1.424 + 1.150x + 0.176x2

GaAsxSb1-x 0.726 + 0.502x + 1.2x2

InPxAs1-x 0.360 + 0.891x + 0.101x2

InAsxSb1-x 0.18 + 0.41x + 0.58x2



ALLOYS: BANDGAPS AND LATTICE CONSTANTS
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LATTICE CONSTANTS AND BADGAPS OF SEMICONDUCTORS AT ROOM TEMPERATURE.
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Electron affinity rule 
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Band lineups are usually determined from experiments, 
eg., in AlGaAs/GaAs: Ec = 0.65     Eg∆ ∆
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SEMICONDUCTOR HETEROSTRUCTURES: 
HOW DO BANDS LINE UP?
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An extremely important issue in the properties of a quantum well is the bandedge discontinuity, 
                which defines the confining potential. The electron affinity rule suggests that the 

conduction band discontinuity is determined by the electron affinity difference. Unfortunately, the 
rule does not work.

Ec (and    Ev)∆ ∆



Ψ = ψxψyψz

= Exψx

= Eyψy
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BANDSTRUCTURE IN QUANTUM WELLS: SUBBANDS
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What is the electronic spectra in a 2-dimensional quantum well? Electrons are confined in the 
z-direction and are free to move in the x-plane.
     The Schrödinger equation for the quantum well in which the confinement is along the z-axis 
can be separated into equations in the x and y direction and in the z-direction as follows:
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Schematic of a quantum well and the sub-band levels. Note that in a semiconductor quantum 
well, one has a quantum well for the conduction band and one for the valence band. In the 
infinite barrier model, the barriers are chosen to have an infinite potential, as shown.

; n = 1, 2, 3



 SUBBAND STRUCTURE IN QUANTUM WELLS
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In an infinite square well, the electron energies are

π2h2n2    

2m*W2E(n,kx,ky) =
h2kx
2m*

2
+

h2ky
2m*

2
+ ; n = 1,2,3...  (subband number)

In an finite barrier, an iterative method is to be used to solve the following 
transcendental equations. The solutions give the subband levels.

α = 2m*E
h2

αW
2

αtan (   ) = β

αW
2

αcot (   ) = –β β = 2m*(Vo – E)

h2

where:
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Schematic of a quantum well and the subband levels. In the x-y plane, the subbands can be 
represented by parabolas. Subbands are produced in the conduction band and the valence 
band.



LOW-DIMENSIONAL STRUCTURES: DENSITY OF STATES
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One of the most important motivations for low-dimensional systems is the ability they offer to 
modiy the density of statees.
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BANDSTRUCTURE IN A MOSFET CHANNEL
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MOSFET is the most important electronic device. In the device electrons are confined (in inversion) 
in a triangular quantum well. A subband structure is formed for each of the six conduction band 
valleys.
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One has to be careful to use ml, mt or an appropriate combination for the mass in the 
confinement direction.
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QUANTUM WELLS: VALENCE BANDSTRUCTURE

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

Due to the strong coupling between the heavy hole (HH) and light hole (LH) bands, the 
bandstructure in the valence band is quite non-parabolic.
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BANDSTRUCTURE MODIFICATION BY STRAIN
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Strain changes the relative positions of atoms in a material.
causes changes in bandstructure.
degeneracies can be lifted.
selection rules for optical transitions can be altered.

By external means: 
pressure, biaxial or uniaxial
strain by diamond anvils.

Strain values are small 
(ε < 0.1%).~

Used in characterizing the effect 
of strain on bandstructure.

Studying symmetry of 
electronic levels.

By epitaxy of lattice 
mismatched layers on a thick 
substrate.

Strain values can be large
ε ~ 3% or even larger.

Strain induced changes can be 
exploited in high performance 
devices.

INCORPORATION OF STRAIN



SYMMETRIES AND DEFORMATION POTENTIALS
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It is possible to predict which elements of the tensor Dij  are non-zero by 
examining the symmetry of the problem.

  DIRECT INDIRECT
(k = 0) (k = X-point)

Conduction
Band States

s-type states s + p mixture (longitudinal)
      p  (transverse)

Valence
Band States

Heavy Hole: |3/2, ±3/2 >
Light Hole : |3/2, ±1/2 >

Split off Hole  : |1/2, ±1/2 >

In fcc based structures it is useful to examine the following points:

Γ2: bottom of the conduction band in direct gap material.
∆1: direction along (100) and equivalent directions.
L1: direction along (111) and equivalent directions.
Γ15: top of the valence band.

1

αβ



DEFORMATION POTENTIAL THEORY
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WHAT DOES STRAIN DO? DEFORMATION POTENTIAL THEORY

Deformation potential theory relates strain to changes in bandstructure 
(usually within first order perturbation theory).

Hε     =    Σ  Dij  εijij

αβ αβ

ij: x,y,z indices defining the strain tensor εij.

α,β: basis functions describing the electronic states 
(eg., s,px,pxy,pz).
Hε: perturbation due to strain.

D: deformation potentials (usually determined from pressure-
dependent optical measurements.



STRAIN EFFECTS ON CONDUCTION BAND EDGES
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Points along (100) and equivalent directions:
There are six equivalent bands along these directions for fcc lattice 
based materials.

 δE(100) = δE(100) = Ξ(100) (εxx + εyy + εzz) + Ξ(100)εxx 

δE(010) = δE(010) = Ξ(100) (εxx + εyy + εzz) + Ξ(100)εyy

δE(001) = δE(001) = Ξ(100) (εxx + εyy + εzz) + Ξ(100)εzz

If εxx, εyy, εzz are unequal, the six valleys can be split. 

d

d

d u

u

u

Points along (111) and equivalent directions:

δE(111) = Dxx(εxx + εyy + εzz) + 2Dxy(εxy + εyz + εzx) 

δE(111) = Dxx(εxx + εyy + εzz) + 2Dxy(εxy –εyz – εzx)

δE(111) = Dxx(εxx + εyy + εzz) + 2Dxy(–εxy – εyz + εzx)

δE(111) = Dxx(εxx + εyy + εzz) + 2Dxy(–εxy + εyz – εzx)

δE(000) = Ξ(000) (εxx + εyy + εzz)

This point is only influenced by the dilation due to the strain. Distortion of 
angles (off diagonal terms) have no influence on Γ2.

d

Direct gap conduction band: Γ2 point: k = (0,0,0)1



STRAIN EFFECTS ON VALENCE BAND STATES
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The strain Hamiltonian for a 4x4 set of basis (i.e., |3/2,+ 3/2    and |3/2,+ 1/2   is:

The top of the valence band is described by px,py,pz states. The non-zero elements of 
the deformation potential tensor are:

Dxx = l; Dyy = m; Dxy = nxx xx xy

where  l,m,n are three independent valence band deformation potentials. Usually 
results are given in terms of another set of deformation potentials, a,b, and d 
where:

a = ; b =    ; d =l+2m
3

l–m
3

n
 3

HεΨ = 

Hhh H12 H13 0 |3/2,3/2
H12 Hlh 0 H13 |3/2,1/2
H13 0 Hlh –H12 |3/2,–1/2
0 H13 –H12 Hhh |3/2,–3/2

ε
ε∗

ε ε

ε∗
ε∗ ε∗

ε
ε

ε
ε

where the matrix elements are given by

Hhh = a(εxx + εyy + εzz) – b   εzz –    (εxx + εyy) 1
2

ε

1
2

εHlh = a(εxx + εyy + εzz) + b   εzz –    (εxx + εyy) 

εH12 = –d(εxz – iεyz)
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2
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VALENCE BAND EDGES FOR COHERENTLY 
STRAINED GROWTH ALONG (001)
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STRAIN TENSOR:

εxx = εyy = ε 

εzz =             ε

εxy = εxz = εyz = 0 

–2c12
c11

(     )
Hhh = a(εxx + εyy + εzz) – b   εzz –    (εxx + εyy) ε 1

2

= 2a ε + b ε
c11–c12

c11 (      )c11+2c12
c11

Hlh = a(εxx + εyy + εzz) + b   εzz –    (εxx + εyy) ε 1
2

(     )= 2a ε – b ε
c11–c12

c11 (      )c11+2c12
c11

ε  =       –1
aS
aL

Tensile strain in 
growth plane

Unstrained Compressive strain in 
growth plane

LH on top HH on topHH
LH

Degenerate
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|3/2, ± 3/2>

|3/2, ± 3/2>

|3/2, ±1/2>

|3/2, ± 3/2>

The consequence of pseudomorphic strain on the bandedges of a direct bandgap 
semiconductor. The valence band degeneracy at k = 0 is lifted as the HH and LH 
states are split, as shown.



STRAIN EFFECTS: 
CONDUCTION AND VALENCE BANDS OF SiGe ON Si
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• Bulk Si and SixGe1–x (x > 0.15) have conduction bands which are 6-fold 
degenerate and X-like.
• If SiGe is grown on Si (100) the six bands are split into a 2-fold band and a 4-fold 
band.
• The valence band HH, LH degeneracy is also lifted.
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Splittings of the  conduction band and  valence band are shown as a 
function of alloy composition. 

UCB: unstrained conduction band, 
HH: heavy hole, 
LH: light hole, 
SH: split-off hole.


