
2 Biomass

Here we introduce the case where the resource itself reproduces, occupying Quad-

rants 3 and 4 simultaneously. We begin with a single resource stock: biomass B. It

is necessary to account for its growth rate and for the harvest. Steady states are pos-

sible when these two are in balance, Quadrant 3; but the descent into Quadrant 4,

“resource mining,” occurs when harvest continuously exceeds growth, leading to

extinction: no S, therefore no Q. This would be the analog of resource exhaustion for

the sterile resource. It is irreversible.

These resources are local in that they live within a regional ecosystem with finite

carrying capacity. The market for the harvest, however, is presumed exogenous,

dependent on many things other than this particular resource. The application to

fishery management is used throughout to fix ideas.

The base case here uses the logistic function for the growth rate. As the resource

(e.g., fish) is fugitive, harvesting requires effort (fishers) as well as fish availablility.

The formulation needs to add fishing effort E at a fundamental level. The economic

interaction of growth and harvesting is commonly referred to as “bioeconomic.”

From a sustainability perspective, there needs to be attention to (a) avoiding the

“mining” phenomenon associated with Quadrant 4 extinction; (b) regulating the

effort directed at the resource harvesting; and (c) respecting the conditions required

for maintenance of the reproducing stock (the ecological carrying capacity).

2.1 GROWTH AND HARVESTING

In the case of sterile resources, we have only one consideration: the rate of its

exhaustion and the time frame of complete exhaustion. Exhaustion can be “phys-

ical” exhaustion, as in the case of costless production. More realistically, “economic”

exhaustion would indicate that the resource can no longer be produced economi-

cally – the cost of production exceeds its value. “Political” exhaustion occurs when

the resource cannot be produced legally.

By contrast, living systems present the possibility of sustained resource usage,

indefinitely. We will therefore be concerned with the possibility of steady states,

42
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reflecting a balance between nature and the economy, and the stability of those

states. We will start with a simple situation where the living system is characterized

by a single descriptor, the biomass B.

The basic natural dynamic for this system is

dB
dt

= G − H (2.1)

with

• B(t) = amount of biomass

• G(t) = biological growth rate

• H (t) = harvesting rate

To close this system, we need relations for both growth and harvesting rates.

2.1.1 Growth

A candidate growth rate function is the logistic function

G(B) = gB
(

1 − B
K

)
(2.2)

with K the carrying capacity of the system. This growth rate depends on B only. There

is positive growth at all positive levels of B, up to the carrying capacity, beyond which

G is always negative.

At low B, G � gB and in the absence of harvesting, dB/dt = gB, and we expect

exponential growth, B = B0 exp(gt). This would be a frontier situation, characteristic

of, for example, an invasive species in its early history.

At intermediate B, G increases with B, reaching a peak at B∗ = K /2. Higher B leads

to decline in G. The proportional rate of growth G/B declines monotonically with B:

G
B

= g
(

1 − B
K

)
(2.3)

This might occur due to crowding, habitat restrictions, food limitation, or attraction

of predators.

As B → K , growth shuts off. The simple substitution ε = K − B gives, in the

absence of harvesting and near carrying capacity, dε/dt = −gε. At carrying capacity,

B is stable. Departures from K will decay exponentially as exp(−gt).

Logistic Growth

Figure 2.1 illustrates the logistic growth of B over time and the attendant G history,

beginning at very low B and approaching K in the absence of harvesting. The steepest

growth occurs midway in the trajectory, at intermediate B.
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Figure 2.1. Time evolution of B and growth rate G in the absence of harvesting. Logistic growth
G = B(1 − B).

The governing equation is

dB
dt

= gB
(

1 − B
K

)
(2.4)

and its solution is

B(t) = K
1 + Ae−gt (2.5)

A = K − B0

B0
(2.6)

where B0 is the initial condition at time t = 0. If initial conditions are small, then A is

big. Peak growth occurs at B = K /2, at time Tp:

Ae−gTp = 1 (2.7)

and therefore

gTp = ln(A) = ln
(

K
B0

− 1
)

(2.8)

In the limit of small B0/K ,

gTp � ln
(

K
B0

)
(2.9)

As an example, suppose an invasive species with g = 0.1/yr is observed at 1% of

carrying capacity. The waiting time to peak G would be Tp = 46 years.
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Figure 2.2. Growth and harvesting rates. The case of constant harvest is shown, with logistic growth
function G = B(1 − B). There are two intersections where G = H ; the one on the left, B−, is unstable.

Steady State

For steady state, we need G = H . The highest harvest possible occurs at B = B∗, with

H∗ = G∗ = gK /4. This is the maximum sustainable yield (MSY). For any fixed value

of harvest H < H∗, there are two equilibria, B+ and B−, symmetrically situated about

B∗ (Figure 2.2). If harvesting were arranged to be constant, then the right-most of this

pair, B+, would be stable to small perturbations in B; while the left-most B− would

be unstable. Negative perturbations about B− would result in extinction; positive

perturbations would result in growth toward the stable equilibrium at B+. Harvesting

in excess of H∗ also results in extinction, as no growth could ever keep up. Thus, we

have two recipes for extinction: Operate at low biomass, B < B−, or harvest above

MSY, H > H∗. And there are two conditions for a stable, sustainable harvest: Harvest

below MSY, and avoid the possibility of large negative disturbances to B, such that B

falls below B−.

2.1.2 Harvest

In considering the harvest rate, we need the concept of harvesters’ effort: the number

of jobs, machines, etc. involved in active harvesting and their relative employment,

activity, or utilization (e.g., number of days per year spent harvesting). We will lump

all these factors into a single effort variable E .

The harvest depends on the effort and the biomass. A simple relation is

H (B, E) = hEB (2.10)



46 Biomass

wherein h represents the harvesting technology. Increases in effort, biomass, or

technology increase the harvest, linearly in this case. Absence of any of these factors

guarantees zero harvest.

With this closure, we can describe the steady state in which H = G:

hEB = gB
(

1 − B
K

)
(2.11)

and thus,

E = g
h

(
1 − B

K

)
(2.12)

or equivalently,

hE
g

+ B
K

= 1 (2.13)

So for this fishery in steady state, E is linear in B. We may operate at any combination

of B and E (fish and fishers) on this line; at one extreme, (E , B) = (0, K ), and we

have the natural carrying capacity with no effort and no harvest; while at the other

extreme, (E , B) =
( g

h , 0
)
, we have a system at infinitesimal biomass, essentially no

harvest, and much effort devoted to keeping it there. In the middle, we have the MSY

point (E , B) = ( g
2h , K /2

)
with H = H∗. If effort were able to be controlled, we could

choose among these equilibria or any other (E , B) pairs along the line represented by

Equation 2.12.

Figures 2.3 and 2.4 illustrate logistic and depensatory growth, with harvesting as

in Equation 2.10.
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Figure 2.3. Gowth and harvesting rates with H =
hEB , for a representative value hE = .2. The logis-
tic growth function is compensatory at low B ; the
unstable intersection is absent.
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Figure 2.4. Growth and harvesting rates. H =
hEB as in Figure 2.3, but G = B2(1 − B). This
growth curve is depensatory at low B , with an
unstable descent to extinction in that low B range.
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2.1.3 Rent

Next, introduce rent as the net profit resulting from the harvest. We will take the

sales price for the harvest, p, to be constant and the wage or cost of effort, c, also as

constant.1 So, rent R is given by

π = pH − cE (2.14)

In the steady state, H = G and E is given by Equation 2.12, so

π(B) = pgB
(

1 − B
K

)
− c

g
h

(
1 − B

K

)
(2.15)

Now we can characterize three interesting steady-state points above by the four

descriptors B, H , E , and R (fish, food, effort, and money).

Point 0: (resource extinction)

B = 0

H = 0

E = g/h

π = −cg/h

(2.16)

Point MSY: (maximum sustainable yield)

B = K /2

H = gK /4 = H∗

E = g/2h

π = pgK /4 − cg/2h

(2.17)

Point K: (carrying capacity)

B = K

H = 0

E = 0

π = 0

(2.18)

It is interesting to notice that the MSY point may produce either positive or negative

rent; it is not characterized by an economic criterion, but rather by a biological one.

Point K is also an exclusively biological one, with no harvesting effort and no rent.

1 Here we assume large external markets in food (p) and effort (c). This resource is on the margin of a large

economy, which it does not affect; p and c are constants.
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Point 0, however, requires maximal effort to maintain the level B = 0. Many other

equilibria are possible, between points B = 0 and B = K , with an implied steady-state

trade-off between E and B.

Aside: It is interesting to reexpress rent in terms of B and H . When H = hEB, we

always have

E = H
hB

(2.19)

and therefore,

π = pH − cE ≡
(
p − c

hB

)
H (2.20)

(This does not assume a steady harvest.) Immediately, we have π = π(H , B), and

the “cost of harvest” is c/hB – that is, dependent on B. This is a “stock effect.”

We also identify B = c/hp as the condition of zero rent; this parameter B0 is used

extensively below:

B0 ≡ c
hp

(2.21)

The general rent formula is as above, π = π(H , B). In the steady state, with

G = H ,

πs = π(G, B) (2.22)

=
(
p − c

hB

)
G (2.23)

dπs

dB
=
(
p − c

hB

) ∂G
∂B

+
( c

hB2

)
G (2.24)

This formulation of π is a useful alternative to that formulated explicitly in terms

of effort, π = pH − cE .

Which equilibrium is likely to occur? That depends on the conditions under which

the fishery is operated and the criterion on which that is based.

2.2 ECONOMIC DECISION RULES

Here we will assume that harvesting can be made profitable over some range of B, as

in Figure 2.5. The opposite is easy to envision – for example, when c is very large and

rent is always negative.2 Under these conditions, the resource is economically extinct;

economic actors would abandon all harvesting, and the steady state would be at the

carrying capacity, point K , with no economic effort, harvest, or rent. A steady harvest

does not pay.

Assuming harvesting is profitable over some range, we have two interesting steady

states.

2 This occurs in this fishery when c/ph > K , that is, B0 > K .
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Figure 2.5. Income pH and expenses cE (left) and rent π (right), as a function of B , in steady state for
logistic growth G = gB(1 − B/K ) and H = hEB . Parameters: (g , h, K ) = 1; p = 10; c = 3.

2.2.1 Free-Access Equilibrium

In a laissez-faire system, with free access to the fishery, we hypothesize that new

effort (fishers) will enter the business as long as the value of the harvest exceeds the

cost of its production – essentially, as long as π > 0. (Recall that “cost” includes the

cost of all inputs to production, including reasonable/necessary return on investment

in equipment; positive rent implies a windfall situation where all of these costs are

paid, including all returns on captital invested or borrowed; and there is still income

left over.) The condition of vanishing steady rent (Equation 2.15) characterizes this

equilibrium:

π(B) = pgB
(

1 − B
K

)
− c

g
h

(
1 − B

K

)
= 0 (2.25)

Setting π(B) = 0 gives the equilibrium at B = c
ph ≡ B0; we identify this equilibrium

value as B0 for convenience. This is the “open-access,” or “free-entry,” point. Because

positive rent is possible at lower effort, this point is sometimes characterized as the

“rent dissipation” point, arrived at by increasing E freely until π is driven to zero. Key

quantities at this point are

Point R0: (free entry)

B = B0 = c
ph

H = gB0

(
1 − B0

K

)

E = E0 ≡ g
h

(
1 − B0

K

)

π = 0

(2.26)

The point R0 is stable under these conditions. Effort may not increase without

encountering negative rent, and vice versa.
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There is another point where rent vanishes, at B = K . It is economically unstable

under open access; E = 0 there, but positive rent at E > 0 would encourage entry of

effort, such that the stable equilibrium R0 is approached, with B < K and E > 0.3

2.2.2 Controlled-Access Equilibrium

In a monopoly-operated system, effort may be controlled. It is visually apparent that

more rent may be earned by reducing effort relative to the open-system equilibrium

(B0). The controlled-access equilibrium is defined by the condition of rent maxima-

tion. Taking the derivative of Equation 2.15 with respect to B gives us the extremum

condition:

dπ(B)

dB
= pg − 2

pg
K

B + cg
hK

= 0 (2.27)

Solving for B gives the equilibrium:

Point R∗: (maximum rent, controlled access)

B = K + B0

2

H = gK
(
1 − [B0/K ]2) /4

E = E0/2 = 1
2

g
h

(
1 − B0

K

)

π = πMSY + (pg/4K )B2
0

(2.28)

This point requires monopoly control of effort.4 Compared with the open-access

case, we have less effort, more (positive) rent, and higher B. A standard characteriza-

tion is that there is less work being done, more money made, and a higher biomass.

The effect on harvest H is ambiguous and depends on the parameters.

Table 2.1 summarizes the five steady states discussed so far.

Table 2.1. Steady-state operating options for H = hEB ; G = gB(1 − B/K ). B0 ≡ c/ph is the
open-access (free-entry) equilibrium. When B0 > K , the resource is economically extinct.

B H E π

0 Extinction 0. 0. g/h −cg/h
MSY Maximum harvest K/ 2 gK/ 4 = H ∗ g/ 2h pgK/ 4 − cg/ 2h
K Carrying capacity K 0. 0. 0.
R0 Free entry B0 ≡ c/ph gB0(1 − B0/K ) E 0 ≡ g(1 − B0/K )/h 0.
R∗ Maximum rent (K + B0)/2 gK

(
1 − [B0/K ]2) /4 E 0/2 πMSY + (pg/4K )B2

0

3 As above, this assumes B0 ≡ c/ph < K ; otherwise, the resource is economically extinct.
4 Notice that for the costless case, point R∗ is the same as point MSY.
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Control of harvesting is often conceived as one or more measures aimed at effort

control, harvest control, technology control, market control, or political control. All

are normally achieved by a permitting/inspection process. There are several generic

forms:

• Effort at harvesting

◦ Days at sea

◦ Vessel licensing

• Harvest control

◦ Count landed harvest

◦ Inspection at sea

◦ Quotas

• Technology control

◦ Information technology

◦ Vesssel size, speed

◦ Method of capture/storage

• Market control

◦ Tax the product

◦ Tax the landed harvest

◦ Tax the effort

• Political control

◦ Penalties for violation: civil, criminal, economic

2.3 EFFORT DYNAMICS

It is easy to extend a formal description of effort adjustment. The discussion above

describes this in terms of rent: When π > 0, effort in the open-access system increases;

and when π < 0, effort diminishes. We formalize this with a first-order rate νπ .

Together with the system described so far, we have the dynamic system

dB
dt

= G − H (2.29)

H = hEB (2.30)

G = gB
(

1 − B
K

)
(2.31)

π = pH − cE (2.32)

dE
dt

= νπ (2.33)

There are two dynamic state variables (B, E) and three constitutive relations defining

the auxiliary variables (H , G, π). Fixed parameters include ν, h, g , K , p, and c. As a

second-order nonlinear system, we have the potential for extravagant behavior, and

the parameter ν remains to be explored.
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Figure 2.6. Dynamics of the free-access solution as a function of ν, as indicated. Logistic growth G =
gB(1 − B/K ) and H = hEB . Parameters: (g , h, K ) = (2, 1, 1); (p, c) = (5, 3). Euler (explicit forward)
integration, �t = 0.1. Equilibrium values are (B , E , H , π) = (0.6, 0.8, 0.48, 0.0).

The program fish1_4.m (Fish1.4.xls) illustrates this; results appear in Figure 2.6.

Equilibrium values are B = 0.6, E = 0.8, H = 0.48, and π = 0.0. There is an orderly

approach to equilibrium at low ν; during this approach, rent rises, peaks, and returns

toward zero as the equilibrium is approached. Exploitation during this period is

lucrative. Increasing ν to 0.3 speeds up the process but otherwise adds little to the

dynamic. ν = 0.5 and 0.7 continue this trend; in addition, an overshoot is introduced,

following which rent becomes negative, E reduces (an employment layoff), and H

recovers, all in an orderly approach to the same equilibrium.

Figure 2.7 presents the high ν extension of this case. The equilibrium solutions are

unchanged, yet all hope for monotone solutions is gone in these rapid-response-to-

rent scenarios. The overshoot trend identified above at low ν is here amplified, and

(ultimately) wild oscillations are evident in B, E , π (i.e., economy, employment, and

ecology). A complex periodicity of about two years is apparent. Amplitude increases

with ν; the damping rate decreases with ν. High ν clearly is producing boom-or-bust

cycling in this system.
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Figure 2.7. Continuation of Figure 2.6, for larger values of ν.

Program Fish1.4-RAND.xls adds independent stochastic disturbances to this

dynamic, through G and dE/dt . These are autocorrelated as in the Appendix.

Program Fish1.4-Cubic.xls uses cubic growth function, with depensation exagger-

ated by the incorporation of a minimum viable biomass B:

G(B) = gB(B − B)(1 − B/K ) (2.34)

Either depensatory growth, or the entry of stochastic disturbances, can exaggerate

the negative effects of rapid effort dynamics (high ν).

2.4 INTERTEMPORAL DECISIONS: THE INFLUENCE OF r

In previous analyses, we ignored the effect of r, the growth rate of money invested

in a productive economy. We have concentrated solely on the sustainable harvest,

correct for r = 0. Here we will reinstate the effect of r > 0.

We imagine a situation where a harvester discovers a resource in the unexploited

state B = K . Faced with the option to establish a steady-state harvest, B must be
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reduced to some level B < K . That initial harvest, assumed instantaneous for the

moment, would be profitable and the proceeds invested at interest rate r.

2.4.1 Costless Harvesting

The sale of the initial harvest is p(K − B), which is invested at interest rate r. The

harvest at B is then sustained, and its sale value is pG(B). Annual income π is thus

the sum of the sale of the sustainable harvest plus the investment earnings from the

initial harvest:

π = pG(B) + rp(K − B) (2.35)

Its maximum is found by differentiating

dπ

dB
= p

dG
dB

− rp = 0 (2.36)

and the optimal point is at

dG
dB

= r (2.37)

For the logistic growth curve

G(B) = gB
(

1 − B
K

)
(2.38)

we have

dG
dB

= g
(

1 − 2B
K

)
(2.39)

Figure 2.8 illustrates this balance. The steady B will always be below the MSY point, as

dG/dB is negative above that. The maximum growth rate is g ; when r > g , extinction

is the “rational” solution. Otherwise, the sustainable solution is between extinction

and the MSY point.

It is clear that the scenario given initially can be relaxed; starting from any initial

B, we arrive by the same reasoning at the desired equilibrium: balancing the annual

yield of the initial harvest against the annual yeild of steady harvesting.

The consequence of this is striking: Such a “rational economic actor” with guaran-

teed and exclusive access to the resource would always find the steady equilibrium B

and H on the rising limb of the growth curve, below the MSY point.5 For slow-growing

resources, where dG/dB < r irrespective of abundance B, such an approach would

result in extinction; the resource growth cannot equal financial investments. Money

grows faster than the resource under all conditions!

5 Under costless harvesting, point MSY is also the maximum rent equilibrium R∗ identified above.
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Figure 2.8. Growth curve indicating the intertemporal equilibrium where dG/dB = r , for costless
harvesting. The equilibrium is at B � .28 in this illustration.

It would appear from this analysis that a strictly financial criterion for a “renew-

able” resource is dG/dB > r; resources with slower growth would be exploited as if

they were sterile and exhaustible under free access.

Notice that here we have no explanation for r, unlike the biology that cre-

ates G. A fuller examination of this balance would need to develop the relationship

between the growth rate of money invested and the existence and growth of natural

resources.

Notice, too, that we have now developed two different criteria for economic

extinction:

• When there is B but it is too costly to harvest, then B → K .

• When G is too slow, it is attractive to harvest all of B and invest it in the economy

at growth rate r, presumed sustainable.

These are dramatically different situations!

2.4.2 Costly Case

The same exercise with costly harvesting can be done. Consider operating at the

harvest rate H = hBE , with sustainable annual rent πs = πs(B), as in Figure 2.5.

We contemplate an instantaneous surge in effort �E for a small period of time �t

(Figure 2.9); with a related instantaneous surge in harvest �H over the same small �t :

�H = hB�E (2.40)
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Figure 2.9. Illustration of an instantaneous surge in E and the resulting change in B . Both levels of B are
to be harvested sustainably.

The instant, one-time rent quantum would be

�πi = (p�H − c�E)�t (2.41)

=
(
p − c

hB

)
�H�t (2.42)

As a result of this change, all future harvests will be based on a decreased B:

�B = −�H�t (2.43)

and the sustainable rent πs(B) would change by the amount

�πs = dπs

dB
�B (2.44)

The two effects from the instantaneous change are: �πi , the instant, one-time rent

quantum in the bank (due to the instantaneous �E and �H ); and the changed sus-

tainable rent �πs (due to the permanent change in �B). On an annual basis, the net
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change is

�π = �πs + r�πi (2.45)

=
[

dπs

dB
+ r

(
−p + c

hB

)]
�B (2.46)

=
[

dπs

dB
− rp

(
1 − B0

B

)]
�B (2.47)

(Earlier we introduced the open-access equilibrium B0 ≡ c/ph.) Indifference about

this trade-off must characterize the equilibrium point; �π = 0:

dπs

dB
= rp

(
1 − B0

B

)
(2.48)

When costs are zero, we recover the costless case above (Equation 2.37), withπs = pG.

This result generalizes that. Clearly, the controlled access point has

dπs

dB
= 0 (2.49)

and assuming profitable harvesting, then here we have

dπs

dB
> 0 (2.50)

and we can see that we are moving to lower B in Figure 2.5. The intertemporal

consideration has required sustainable operation at a lower B than we had before: It

is profitable to cut back on B once, invest the proceeds in the economy, and harvest

the interest plus the remaining G(B) sustainably thereafter. When r = 0, we recover

the previous equilibrium R∗ (the rent-maximizing controlled access point).

Base Case: Logistic Growth

For the base case

G = gB
(

1 − B
K

)
(2.51)

H = hEB (2.52)

we have from Equations 2.15 and 2.27

π(B) = pgB
(

1 − B
K

)
− c

g
h

(
1 − B

K

)
(2.53)

dπ(B)

dB
= pg − 2

pg
K

B + cg
hK

(2.54)

Assembling Equation 2.48, we obtain

1 − 2
B
K

+ B0

K
= r

g

(
1 − B0

B

)
(2.55)
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A little algebra gives the quadratic equation

β2 − β
(1 + β0 − ρ)

2
− ρβ0

2
= 0 (2.56)

where we have introduced the normalized variables

β ≡ B/K (2.57)

ρ ≡ r/g (2.58)

β0 ≡ B0/K ≡ c/phK (2.59)

The roots of this are6

β =
[

1 + β0 − ρ

4

]
±
√[

1 + β0 − ρ

4

]2

+ ρβ0

2
(2.60)

This result reproduces earlier results:

• In the costless case (β0 = 0), β = 1−ρ
2

• In the no-interest case (ρ = 0), β = 1+β0
2

In the interesting intermediate cases, β0 < β <
1+β0

2 . In the limit of vanishing ρ, we

get the closed-access equilibrium case identified above. As ρ increases, β is reduced
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Figure 2.10. Equilibrium β ≡ B/K versus ρ ≡ r/g from Equation 2.60. This is the intemporal, rent-
maximizing equilibrium for the base case (logistic) fishery. B0 ≡ c/ph is the open-access equilibrium.

6 The positive option is correct here; the negative option is useless, returning β < 0.
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toward its open-access counterpart β0. Programs Fish1.6.xls and Fish1_6.m simulate

this. Figure 2.10 illustrates this.

2.4.3 Costly Case: A General Expression

An alternative, and equivalent, view of the intertemporal case is useful and common.

Here we note that with H = hEB, we always have

E = H
hB

(2.61)

and thus the sustainable rent is

π = pH − cE (2.62)

=
[
p − c

hB

]
H (2.63)

= π(H , B) (2.64)

The cost term c/hB has a dependence on the resource “stock” B as well as the harvest

H . In this formulation, the cost of harvesting increases as the biomass is reduced.7

The partial derivatives are

∂π

∂B
= cH

hB2 > 0 (2.65)

∂π

∂H
= p − c

hB
(2.66)

More general harvesting rate functions H (E , B) are possible and the form

π = π(H , B) (2.67)

is quite general. In these general terms, the intertemporal trade-off is as before:

r
∂π

∂H
�H�t + �π = 0 (2.68)

with the first term coming from the one-time harvest and the second term coming

from the reduced sustainable harvest. Expanding the second term, we have both the

harvest and stock effects:

�π = ∂π

∂B
�B + ∂π

∂H
dH
dB

�B (2.69)

= ∂π

∂B
�B + ∂π

∂H
dG
dB

�B (2.70)

(We assume the steady balance H = G.) Adding the fact �B = −�H�t , the result is

r
∂π

∂H
= ∂π

∂B
+ ∂π

∂H
dG
dB

(2.71)

7 The “stock effect” on cost of production was seen in the nonrenewable case earlier, C(S) in Chapter 1.
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and a little rearrangement gives

dG
dB

= r −
[

∂π/∂B
∂π/∂H

]
(2.72)

This relation is quite general; it does not depend on the specific closures for G(B) and

H (E , B) introduced above. It recovers the simple costless case, Equation 2.37, when

c and therefore ∂π/∂B vanishes. Otherwise, ∂π/∂B > 0 and the equilibrium moves

toward smaller dG/dB, higher B.

When r = 0, this point recovers the equilibrium R∗ (the peak sustainable rent for

controlled access), as there is no value in financial investment and the trade-off is

reduced to dπ/dB = 0.

Equation 2.72 is referred to by several authors as the “fundamental equation of

renewable resources” (e.g., Conrad (1999), Equations 1.16 and 3.5).

From the three demonstrations here, we can see that the general case puts the

optimal intertemporal trade-off in between the simple closed-access optimum R∗

(valid when r = 0) and the costless limit dG/dB = r.

2.5 TECHNOLOGY

The technology of harvesting has been assumed constant up to now. It clearly figures

in our formulation of harvest rate, via the parameter h:

H = hEB (2.73)

Advances in technology plainly amplify effort and make possible harvesting at lower

biomass or effort or both. On what do h and dh/dt depend? A realistic treatment of

technology is needed for a full theory of natural resource dynamics; here we simply

speculate on the form it might take.

We denote by I (t) the innovation rate:

dh
dt

= I (2.74)

Necessity is the mother of invention; and in a crude way, the purpose of entrepreneur-

ship is to create rent where currently there is none. So we suppose that π drives

innovation. That might take a form such as

I = I0e−βπ (2.75)

At low rent, there is incentive to innovate; but as rent rises, there is less urgency.

(Recall this is a rate of innovation.) Naturally, negative innovation and/or negative

rent is not meaningful here, so we limit ourselves to the first quadrant of this plot

(Figure 2.11). Implied is that I = 0 for π ≤ 0.
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Figure 2.11. Candidate innovation rate functions. I 0 = 1; β = 1.

We can do better for low π . The abrupt termination there would be better modeled

with a gentler approach to the origin. A candidate with the correct shape is

I = I0βπe−βπ (2.76)

This form is also plotted in Figure 2.11. It contains the idea that if π is small,

there is little reinvestment in harvesting technology. As rising π attracts innovation

investment, whether from within the harvesting industry or from without. But it is

self-extinguishing at very high π as in the previous form.

Finally, there is the possibility of technical saturation: a ceiling h that limits I:

I = I0βπe−βπ

(
h − h

h

)
(2.77)

or a similar effect without the absolute ceiling:

I = I0βπe−βπ

(
h
h

)
(2.78)

The ultimate form suggested here has three parameters (I0, β, h) and two state

variables (h, π):

dh
dt

= I0βπe−βπ

(
h − h

h

)
(2.79)

Program Fish1.5.xls simulates this. The technology grows during exploitation.

Technology growth amplifies human effort, frees it to work on other things, and

compensates for scarcity. But ultimately, we must confront its effect on the growing

resource B. At constant E , for example, we find that increasing h eventually causes
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resource extinction in a free-entry system. Effectively, unbounded h brings us to the

costless harvesting limit that, in a free entry system, drives B → 0 (Figure 2.12). Some

form of effort and/or technology control is needed on the part of the owner if this

scenario is to be avoided.

The dynamics of this system are illustrated in Figure 2.13 for a case studied earlier

(Figure 2.6). Clearly, the addition of innovation here has resulted in enhanced cycling

of the fishery and a general trajectory toward lower biomass.
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Figure 2.12. Growth (G = gB[1−B ]) and harvesting (H = hEB ) rates. Increasing technology h moves the
equilibrium toward the left (lower B ) unless compensated for by decreasing effort E . Extinction is reached
when hE > g for these rates.
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Figure 2.13. Dynamic adjustment as in Figure 2.6 for ν = 0.5, but with innovation parameters (I 0, β, h) =
(1, 0.5, 5) and initial h = 1.
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Other forms of technological saturation functions S(h) are useful. Above, we used

the form

S(h) = 1 − h

h
(2.80)

This has the anomaly that exceeding the ceiling h results in negative innovation.

A better form is common:

S(h) = 1

1 + h
h

(2.81)

In this form, h is called the “half-saturation constant,” as S = .5 when h = h. In this

form, S is positive for all positive values of h, decreasing monotonically.

2.6 RECAP

This chapter has developed many basic bioeconomic interactions among fish and

fishers – more generally, prey and predator or resource and people. The basic bioe-

conomic model can be recognized as the “Gordon-Scott fishery” [32, 80]. It is used

in many expositions, including resource economics generally – for example, Conrad

[12], and in fisheries treatments specifically: Clark [9], van den Bergh [90], Grafton

et al [34], and Mangel [59]. These works and many other typically go much further

into the description of biological populations, resonating well with the subsequent

Chapters 3 and 4 herein.

Critical issues reveal the necessity of sustaining the ecosystem; the biological pop-

ulations hosted; and the economic interactions with people. Achieving this set of

outcomes will require a high degree of practicality in diverse cases. A realistic view of

local/private incentives, ownership, and the common object is needed, as is a careful

assessment of individual objectives and motivations. The simple model used here

illumines the multiplicity of criteria that might be relevant: the biomass, the harvest,

the rent, the jobs. All have found their their place in practical systems.

Several works address operational issues encountered in fisheries management.

Included are Walters and Martell [91], Hillborn and Walters [39], and Clark [10].

As used here, fisheries represent a case study of the more general class of living

renewables.

The critical issue of management of common-pool resources is fundamental to the

considerations introduced here. The reader is referred to the important contributions

of Ostrom et al. [71, 70] and Sandler [79], for a blend of theory and experiment. These

are important contributions to natural resource management, touching fundamental

social science issues broadly.

2.7 PROGRAMS

The following programs illustrate the ideas in these lectures:

Fish1.4.xls (fish1_4.m) simulates the dynamics of B and E under open-access

conditions.
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Fish1.4-RAND.xls adds independent stochastic disturbances to G and dE/dt . Both

time series are autocorrelated.

Fish1.4-Cubic.xls adds depensation to G and a minimum viable biomass

parameter B.

Fish1.5-RAND.xls adds dynamics of technological innovation to Fish1.4-RAND.xls.

Fish1.6.xls (fish1_6.m) computes the equilibrium for the costly harvesting of logistic

growth, with intertemporal considerations of interest rate, as in Section 2.4.2.

2.8 PROBLEMS

1 Logistic growth function:

(a) Express the logistic growth function, Equation 2.2, in terms of the departure

from carrying capacity ε ≡ K − B.

(b) Show that for small ε,

dε

dt
= −gε (2.82)

2 Logistic growth, no harvesting. Find the waiting time Tp until peak growth rate occurs

for the following:

(a) g = .08/yr, B0/K = 5%

(b) An endangered species with slow growth, g = .04/yr, and low abundance

B0/K = 10%

(c) An invasive species at low initial abundance B0/K = 7%, and a doubling time

of 20 years

3 For the steady-state fishery:

G = gB(1 − B/K ) (2.83)

H = hEB (2.84)

π = pH − cE (2.85)

Plot harvest as a function of price p, for the open-access (Rent = 0) and for the closed-

access (Rent-maximizing) cases. Use these parameters: (K , c, g , h) = 1. Explain your

results.

4 Consider a fishery with growth given as G = g(1 − B/K ) and all other relations

unchanged from the case in Problem 3. (Be careful about G here; it is not hard, just

different.)

(a) Solve for B, H , E , and rent under open access.

(b) Repeat for the closed-access case.

(c) Plot H versus p as in Problem 3.

(d) Compare the two management regimes.
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5 Simulation exercises with the FISH1.4 model. This model solves the simple logistic

fishery

G = gB(1 − B/K ) (2.86)

H = hEB (2.87)

π = pH − cE (2.88)

with dynamics

dB
dt

= G − H (2.89)

dE
dt

= νπ (2.90)

The standard parameter setup is

Time dt 1

Growth g 2

K 1

Harvesting h 1

ν 0.5

Value p 5

c 3

Confirm: With all other parameters fixed, what values of ν lead to (a) orderly (mono-

tonic) approach to equilibrium; (b) oscillatory approach to equilibrium; (c) eternal

ocsillations; and (d) instability or extinction.

6 Repeat the simulations from Problem 5, with a stochastic disturbance ε affecting the

growth function:

G = gB(1 − B/K ) (1 + ε) (2.91)

with ε a random number with zero mean, variance σ 2. Use the three values of ν found

in Problem 5 and values of autocorrelation ρ = 0, .50, .75, .90, and .95. Study and

report the effect of disturbance size σ in each of the cases.

7 Add depensation to Problem 5 by altering the growth function to be

G = g(1 − B/K )(B − 0.25) (2.92)

Restudy Problem 5. Are your conclusions about parameter ranges, extinction

possibility, etc. altered?

8 Repeat the simulations from Problem 7, with a stochastic disturbance ε affecting the

growth function:

G = g(1 − B/K )(B − 0.25) (1 + ε) (2.93)
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with ε a random number with zero mean, variance σ 2. Use the three values of ν found

above (Problem 7) and values of autocorrelation ρ = 0, .50, .75, .90, and .95. Study

and report the effect of disturbance size σ in each case.

9 For the standard fishery:

G = gB(1 − B/K ) (2.94)

H = hEB (2.95)

π = pH − cE (2.96)

with parameters g = 1, h = 1, K = 1, p = 5, c = 3. Currently, this fishery is open

access and at steady state. There are numerous small fishing businesses. It is decided

to change to a controlled-access regime and to maximize rent. The essence of the

problem is reducing fishing effort – that is, all fishers will not continue to fish at the

same rate.

(a) One proposal is to sell permits that allow access to the fishery. One permit

would allow .01 unit of fishing effort per year. How many permits need to be

sold each year, and what is their price?

(b) Instead, fish will be taxed at the dock, with fishers paying a tax, t, per unit of

harvest. What value of tax is needed?

(c) Instead, the government will do the fishing and issue no permits. Current

fishers will be offered government jobs, either fishing or teaching ecology

courses in the local high school. Both will be paid the same wage, that of a

current fisher. What proportion of the current fishers will become teachers?

10 Consider the following fishery:

G = gB2(1 − B/K ) (2.97)

H = hEB (2.98)

π = pH − cE (2.99)

This is the standard model except that the growth function G is different. (Be careful

about this before starting!) Parameters are g = 2, h = 1, K = 1, p = 5, c = 3.

(a) Sketch the growth function G versus B. Pay attention to the slope and

curvature near the origin.

(b) Is there depensation?

(c) What is the maximum sustainable yield? And what is the associated

value of B?

(d) Find B, H , and E under controlled-access conditions.

11 Given the usual harvesting and rent relations

H = hEB (2.100)

π = pH − cE (2.101)
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Consider the following growth functions:

(i) G = 1
B

(ii) G = 1
B − 1

K

(iii) G = 1 − e−B

(iv) G = √
B

(v) G = Be−B

(vi) G = g sin
(

B
K 	

)
(Here 	 is the geometry constant 3.1416, as distinct from π ,

which indicates rent.)

(vii) G = gB/
(
1 + B

K

)
For each case, find B, E , H , π for

(a) the open-access equilibrium.

(b) the closed-access equilibrium.

(c) the closed-access intertemporal equilibrium for r = 0 and c = 0.

(d) the closed-access intertemporal equilibrium for r > 0 and c = 0.

(e) the closed-access intertemporal equilibrium for r > 0 and c �= 0.

Express your answers in terms of the parameters p, c, g , h, K , r, and, where useful,

B0 ≡ c/ph.

12 A fishery is characterized by

G = gBe−B

H = hEB

Parameters: (g , h, p, c) = (2, 3, 5, 2).

(a) Find the open-access steady state: E , B, H , π .

(b) Find the closed-access steady state: E , B, H , π .

(c) Find the MSY steady state: E , B, H , π .

13 For the standard fishery,

G = gB
(

1 − B
K

)

H = hEB

Parameters: (g , h, p, c, K ) = (1, 1, 4, 1, 1). This fishery is now operating in open-access

steady state. It is a concern that the level of B is too low, risking extinction. Therefore,

it is desired to (i) close the access and keep the effort constant; and simultaneously,

(ii) restrict the harvesting technology.

(a) What is the open-access status quo, (E , B, H , π)?

(b) What value of h is needed to move this fishery to the desired new steady state

at MSY? (Note that there is no change in effort.)

(c) After making this change in h, what are the new steady-state values of

(E , B, H , π)? Which have changed and in what direction?

(d) The rent will be distributed equally among the fishers. What is the payment

per unit of effort?
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(e) What is the effective compensation per unit of effort?

(f) Comment: The harvest is larger, the technology is cruder, the effort is the

same, but the fishers are getting more money. Is this right, and why?

14 Given

H = hEB

π = pH − cE

and any growth function G = G(B). Show that in steady state the competitive (open-

access) equilibrium biomass is independent of the form of G:

B = c
ph

15 A fishery is described by the growth function

G(B) = g
[
1 − e−αB

]
(2.102)

with constants g and α. Under costless production, what value of interest rate r will

result in extinction?

16 A certain marine mammal population has a doubling time of 20 years in the absence of

harvesting. The prevailing interest rate is 5% per year. Assuming costless production,

is this species endangered?

17 A fishery has

G = g
B

(1 + B/K )
(2.103)

H = hEB (2.104)

with g = .8 and K = 2. If effort is held fixed at E = 5, what value of technology h will

result in extinction?

18 Here is a fishery to be operated in steady state:

G = g(1 − B/K )B2 (2.105)

H = hEB (2.106)

π = pH − cE (2.107)

(Notice that the last term in G is squared; this is depensatory.) Parameters:

(g , h, K , p, c) = (2, 1, 1, 5, 3).

(a) In open-access mode, steady state, what are (B, E , H , π)?

(b) Keeping E fixed from (a): What is the maximum value of technology h beyond

which biological extinction is guaranteed? (Hint: Consider H and G; this is a

biological question, not an economic one.)
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(c) Ignore (b): We wish to add a tax to the price of fish sold in order to achieve

B = 0.9. (This money will be used to support public education.) What value of

tax is needed, and how much total tax is to be collected?

(d) Ignore (b) and (c): The cost of effort will rise due to a new minimum wage law

under study: c becomes c + d. What is the relation between jobs E and the

extra wage d?

(e) What is the maximum value of d above which we will have economic

extinction – that is, unprofitable fishing for all 0 < B < K ?

19 Explorers encountered a new fishery at high abundance a few years ago. After a

brief period of costless mining, they are now operating it sustainably at B = .35K .

Parameters: p = 5, c = 0, r = .05. It is thought that the growth function is

G = g
B

(1 + B/K )
(2.108)

(Notice that B can be higher than K here.)

(a) What is the value of g?

(b) What change in interest rate would lead to extinction?

(c) A worldwide depression causes r to shrink to .03. What will happen to B?

What change in sustainable harvest will occur? (Continue to assume that

c = 0.)

20 Same as Problem 19, except that there is new information about the growth function

G. It is now thought that

G = g
(

1 − B
K

)
B2 (2.109)

(Notice that the last term is squared.)

(a) What is the value of g?

(b) Is this fishery operating in a depensatory regime?

21 A fishery is described by

G = B(1 − B) (2.110)

H = hB
√

E (2.111)

π = 2H − 3E (2.112)

(Notice the
√

E term.) The parameter h represents harvesting technology.

(a) Find the MSY point and the values of H , E , B, π there.

(b) Find the the values of H , E , B, π for an open-access fishery.

(c) Find the maximum sustainable rent possible and the values of H , E , B there.

(d) Plot steady-state rent versus h for both open and closed-access cases.
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22 (See Section 2.4.2.) A fishery is described by

G = gB
(

1 − B
K

)
(2.113)

H = hEB (2.114)

π = pH − cE (2.115)

A pioneer has encountered this fishery at carrying capacity. She proposes a one-time

large harvest, reducing the biomass to B1; investing the proceeds forever at interest

rate r; and thereafter, harvesting sustainably under controlled-access conditions.

(Note: The cost of harvesting is not zero.) Parameters:
[
K , g , h

] = [1, .06, 1];
[
p, c, r

] =
[5, 3, .10].

(a) Compute B1.

(b) This fishery has been operating sustainably at B1 for several years. Suddenly

there is a financial crisis, and r drops permanently to zero. Predict the effect

on the fishery under controlled access. Use mathematical reasoning, Also

explain the result graphically and in common sense terms.

(c) Ignore (b). Is it possible that technological advances will justify extinction in

the controlled-access case? If yes, under what conditions? Are they met here?

23 Consider the fishery as in Problem 4, with H = hEB and G = g(1 − B/K ), unchanged;

but with a minimum viable biomass B such that G = 0 for B < B. (In other words,

G crashes to zero if B falls below B.) Assume the rent-maximixing (closed-access)

solution from Problem 4 and that this fishery is in steady state.

(a) Sketch the growth function G(B). In what range of B is there depensation?

(b) There is a food shortage; fish prices rise. What value of price will cause the

extinction of this fishery?

(c) There is no food shortage, but suddenly there is a stock market boom, and it

is suggested that the fishery regulation board harvest some extra fish, sell

them, and buy industrial stocks with the cash. The expected annual return on

this investment is r. Compute the new optimal level B1. (Hint: First express

steady-state rent πs in terms of B; then use Equation 2.48 from the text.)

(d) At what value of r will the fishery become extinct?


