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Figure 9.23. Snapshots of temperature showing development of a localized high-velocity upwelling in
two-dimensional thermal convection with temperature- and stress-dependent viscosity, from calcula-
tions by Larsen and Yuen (1997a). Time increases from bottom to top at approximately 1 Myr
intervals. Peak fluid velocities are 0.7, 1.5, 0.54, and 0.14 m yr", respectively.

Figure 9.29. Snapshots of residual temperatures
(relative to the horizontally averaged tempera-
ture) in two-dimensional, thermochemical con-
vection with an initial dense basal layer. The
thin solid line is the boundary between extra
dense material and background material. (a) «
is constant and B =1, (b) « is increased by a
factor of 2 in the extra dense material and
B=1, (c) « is constant and B= 0.6, (d) « is
increased by a factor of 2 in the extra dense
material and B =0.6. After Montague et al.
(1998).




Figure 10.15. Constant temperature sur-
faces (dimensionless temperatures 0.25
and 0.75) in steady hexagonal cell convec-
tion at Ra = 10° in a bottom- heated rec-
tangular box with dimensions 3 x 3 x 1
(normalized by depth). After Travis et
al. (1990a).

Figure 10.17. Constant temperature sur-
faces (dimensionless temperatures 0.25
and 0.75) in steady three-dimensional rec-
tangular cell convection in a 3 x 3 x 1
rectangular box heated from below at
Ra = 10°. After Travis et al. (1990a).

Figure 10.19. Isothermal surfaces (dimen-
sionless temperatures 0.25 and 0.75) in
three-dimensional bimodal convection in
a  bottom-heated rectangular  box
(1.7x 1 x 1) at Ra=10°. The depth of
the box is unity. After Travis et al
(1990a).



Figure 10.21. Isothermal surfaces
(dimensionless temperatures 0.25
and 0.75) in steady bimodal con-
vection in a bottom-heated rec-
tangular box (1.96 x 1.41 x 1) at
Ra =4 x 10*. The depth of the
box is unity. After Travis et al.
(1990a).

Figure 10.26. Unsteady hexagonal convection in a 3.5 x 3.5 x 1 rectangular box with stress-free boundaries
heated from below at Ra = 10°. Isothermal surfaces (dimensionless temperatures 0.25 and 0.75) are shown at
dimensionless times (a) 1 = 0.5260, (b) = 0.5277, (¢) t = 0.5294, and (d) t = 0.5311 during one cycle of a
variable downflow plume. After Travis et al. (1990a).
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Figure 10.29. Contours of radial velocity in the calculation of Figure 10.28 for different depths at a
given instant of time (a) and for different times at one depth (midway through the shell). (b) After
Bercovici et al. (1989¢).

Figure 10.30. Temperature variations due to convection in a 4 x 4 x 1 internally heated rectangular box
of constant viscosity Boussinesq fluid. The upper and lower boundaries are stress free and the bottom
surface is insulated. Color indicates temperatures: the average temperature of the box is red, grading to
white for colder fluid and black for hotter fluid. The square horizontal section in the middle is at a depth
of 0.25 and the vertical sections to either side are 0.25 from opposite sides of the box (up is inward for
the vertical sections). The different panels correspond to different dimensionless times: (a) 0.0911,
(b) 0.1327, (c) 0.1630, and (d) 0.1945. After Houseman (1988).
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Figure 10.33. Contours of radial velocity in the calculation of Figure 10.32 for different depths at a
given instant of time (a) and for different times midway through the shell (b). After Bercovici et al.
(1989c¢).
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Figure 10.35. Equatorial cross-sections of
convective velocities and thermal anomalies
in the flow of Figure 10.34. Time increases
from top to bottom (the time steps are at
intervals of 200 Myr). The thermal anomalies
are temperatures relative to the radially depen-
dent adiabatic temperature profile with a con-
tour increment of 50 K. Reds and yellows
represent hot fluid (maximum 300 K) and
blues represent cold fluid (minimum of
—750 K). The arrows represent velocities in
the cross-sectional plane and are scaled as in
Figure 10.34. After Glatzmaier et al. (1990).



Figure 10.37. Styles of three-dimensional convection in a spherical shell of compressible fluid heated both
from within and from below. The planforms on the left are for 50% internal heating, while those on the
right are for 80% internal heating. The panels show radial velocity contours on an equal-area projection of
a spherical surface at different depths for one time (top) and at different times for one depth (r/r\,, = 0.77)
(bottom). Colors represent equal intervals of velocity (reds and yellows are upflows, blues are downflows).
The Rayleigh numbers in both cases are about 100 times the critical Ra for the onset of convection. After
Bercovici et al. (1989c).



Figure 10.38. A snapshot of a cold isothermal surface in the model of Tackley et al. (1993). The blue
surface is 110 K lower in temperature than the horizontally averaged temperature at every radius. The
green surface is the lower boundary of the model (the core). A network of interconnected linear
downflows is visible in the upper mantle with three large cylindrical downwellings in the lower mantle
that spread out into pools of cold material above the core—mantle boundary.

Figure 10.39. A hot isothermal surface in the model of Tackley et al. (1993) at the same instant of time
as in Figure 10.38. The red surface shows where the temperature is 110 K higher than the reference state
adiabat at all depths. A single plume from the core—mantle boundary supplies hot material to a region
of the upper mantle. Most broad hot regions of the upper mantle are not directly linked to lower mantle
structures.



Figure 10.40. Different cross-sectional slices of the superadiabatic temperature field in the model of Tackley et
al. (1993) at the same time as in Figures 10.38 and 10.39 (a) and (b). Red is hot and blue is cold with the
temperature scale varying between +350 K and —1,050 K. (c) and (d) show similar cross-sections of super-
adiabatic temperature for a numerical calculation that does not include the endothermic phase change
(Tackley et al., 1993). The temperature scale in (c) and (d) ranges between +220 K and —780 K.
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Figure 10.41. Temperature fields of
two axisymmetric plumes, one that
has passed through an endother-
mic phase change (right) and one
that has not (left). The plume that
went through the phase change is
about 100 K hotter than the other
plume. After Schubert et al. (1995).

Figure 10.43. Cold down-
flows (left) and hot upflows
at three times (at intervals
of about 500 Myr) during
the simulation of mantle
convection by a model con-
taining phase transitions at
depths of 400 km and
670 km (Tackley et al.,
1994). Cold and hot isosur-
faces show where the tem-
perature is 110 K lower and
higher, respectively, than
the horizontal average.
The core-mantle boundary
is shown in green. Time
increases down the figure.



Figure 10.45. Simulations of
three-dimensional convection
with an endothermic phase
change at different values of
the Rayleigh number (Ra
increases downward). At
lower values of Ra the phase
change does not significantly
influence the whole-layer flow
(top). At intermediate values
of Ra (middle) partially
layered, avalanche-modu-
lated convection occurs. At
the highest values of Ra (bot-
tom) the phase change com-
pletely layers the flow and
there are no mantle ava-
lanches. After Yuen et al.
(1994).

Figure 10.46. Temperature distribution in a
model of internally heated convection with
(a) constant viscosity and (b) lower mantle
viscosity = 30 times upper mantle viscosity.
The upper surface of the figure is 250 km
below the isothermal surface of the model.
Red is hot, blue is cold. After Bunge et al.
(1996).
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Figure 10.53. Isosurfaces of dimension-
less temperature at a surface Rayleigh
number of 5 x 10° in the three-dimen-
sional compressible convection model of
Balachandar et al. (1992, 1993). The
T = 0.2 isosurface shows the descending
sheets while the 7 =0.5 isosurface
reveals the upwelling cylindrical plumes.

Figure 10.59. Model results for
velocity, viscosity, horizontal
divergence, and vorticity driven
by a prescribed thermal buoyancy
field in a rectangular box contain-
ing a high-viscosity lithosphere
with strain rate weakening viscos-
ity overlying an isoviscous mantle
with Newtonian rheology. (a)
Temperature isosurfaces (red is
hot, blue is cold), (b) viscosity
(orange is large, violet is small,
viscosity varies between 107!
and 10* times the mantle viscos-
ity) and velocity vectors, and (c)
horizontal divergence/conver-
gence (light and dark purple)
and vertical vorticity (green and
blue). After Tackley (1998a).



Figure 10.60. Similar to Figure 10.59 for a wide box of dimension 8 x 8 x 1. The panels in (d) and (e)
are similar to (b) and (c) but for a viscoplastic rheology. After Tackley (1998a).
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(a) (b)

Figure 10.63. Plate-like behavior in the mantle convection model of Trompert and Hansen (1998).
(a) Horizontal divergence (red) and convergence (blue). The entire top surface of the box is shown.
Narrow zones of divergence and convergence are shown in the upper left corner. The red square outlines
the region shown in more detail in (b), (c), and (d). (b) Velocity vectors and the temperature field slightly
below the surface (blue is cold and green is warm). (c) Horizontal divergence. (d) Vertical vorticity.



