
Corrections and clarifications in
J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory,
CUP, 1995.

• 4.3.10, p.40, the proof of Claim 2: The induction really goes on a part
of a proof consisting of ancestors of the end-sequent of the original σ.
Hence the induction assumption should rather say: Let any formula in σ
either have depth ≤ d or be an ancestor of an identical formula in the
end-sequent.

• 4.4.8: Factor k is obviously missing in part 2.

• 4.6 (pp.57-58): In Def.4.6.2 no variable occurring free in B should become
bounded in A(B). Alternatively one could allow only quantifier-free B.
Another alternative is to introduce bound and free variables in formulas
and to allow only formulas with all occurrences of a bound variable inside
the scope of a quantifier.

• 4.6: The proof of L. 4.6.3 uses Πq
1-formulas although only Σq

1-formulas
are allowed by the definition. Modify the proof of the first part of L.
4.6.3 to use only Σq

1-formulas. Namely, simulate EF-proof θ1, . . . by G∗

1-
proofs of ¬θ1 →, . . . rather than by proofs of → θ1, . . .. In particular, the
substitution rule is simulated as follows:

¬θ(p) →

∃x¬θ(x) →

and derive
¬θ(φ) → ¬θ(φ)

and from it
¬θ(φ) → ∃x¬θ(x)

and get the wanted sequent
¬θ(φ) →

by a cut. Another option (better perhaps): allow in the definition (Def.
4.6.2) of Gi and G∗

i not only Σb
i -formulas but also Πb

i -formulas; that is
equivalent (w.r.t. p-simulation).

• p.83, l.5: The term |y| in formula B(s) means cardinality of the set y
codes. This should be properly Numones(y, |y|). The LENGTH-MAX
principle still obviously applies.

• L. 5.5.7, p.88: In the proof the scheme Σ1,b
1 -PIND should be Σ1,b

i -PIND.

• 7.1, on p.103 I left out the equality axiom x = x.

• In Lemma 7.1.3 the sequents BASICLK must include all substitution
instances of BASIC (unless one wants to allow cuts on their universal
closures).
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• 7.1, p.104: The definition of free formula should be dual. E.g.: a formula is
free iff it has no ancestor that is either a principal formula of an induction
inference or in an initial sequent.

A cut inference is free iff both occurrences of the cut formula in the upper
sequents are free.

• In Lemma 7.2.2 (a): ... in Si
2 should be ... in S1

2 .

• p.110, the proof of the witnessing theorem: In the case of the PIND rule
one needs to attach to the construction of g a test that looks after each
round if a witness to a side formula in the succedent has been found, and
if so it stops. This takes care of the case when even the witness for ∆ in
function g1 depends on the eigenvariable (which can happen even if the
eigenvariable does not appear in ∆).

• In the proof of Corollary 7.2.6, p.112, I should appeal first to Parikh’s
theorem to get rid of unbounded ∃ and only then to Theorem 7.2.3. Or
extend the witnessing to handle unbounded ∃ on the right.

• The provability of ∆b
i+1-IND in T i

2 is stated in Cor. 7.2.7. However, during
the cross-referencing I have created a vicious circle. Namely: 6.1.3 follows
from 7.2.7, 7.2.7 follows from 5.2.9 and 7.2.4 but 6.1.3 is used (together
with 7.2.3) in the proof of 7.2.4.

One way out is to deduce 6.1.3 directly using Thm. 6.1.2 (and the idea of
its proof). One proceeds in two steps:

1. Show that for all f.symbols f of PVi+1 the atomic formula f(x) = y
is definable in T i

2 in the form

∃(u,w) ≤ t; Comp(x,w, u) ∧Output(x, u) = y ∧

u correctly encodes the answers of oracle φ

where φ is a Σb
i -oracle.

2. Having a PVi+1 f.symbol f defining the predicate

A(x) ≡df (f(x) = 0)

such that A(0) and ¬A(a) hold, use a binary search to find x < a
such that A(x) ∧ ¬A(x+ 1).

Encode the answers to the binary search queries (e.g. A(a/2)? etc.)
by some v. Now combine the query-answers in v together with
the strings u encoding the query-answers used in the computation
of A(a/2)?, etc. into one string (u1, u2, ..., uℓ, v) (actually v is not
needed).

By the same reasoning as in the proof of Thm. 6.1.2 (MAX princi-
ple) there is, provably in T i

2, a string encoding everything correctly,
and hence the x < a thsi process finds witnesses the failure of the
induction assumption.
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• 7.3, p.119: The last but one paragraph of the proof of Thm.7.3.7 needs a
modification.

For an easier calculation assume that we want to witness by h(a) that f
does not map a onto a3 (this is w.l.o.g. as we may iterate the original f).

Put bi := 22
i

, i = 0, 1, . . . , t such that bt ∈ [2p(n), 22p(n)), i.e. t = O(log n).
In particular, h(a) =? will be ever queried by M only for a ≤ bt.

At the beginning of the computation pick from each interval Ii := [bi, 3bi]
uniformly at random a representant ci. Start the computation of M and
whenever h(a) =? is queried for a ∈ (bi−1, bi] answer it with h(a) = ci.

Now, a ≤ bi = |Ii|/2 so ci /∈ Rng(f ↓ a) with probability ≥ 1/2 (on
the other hand ci ≤ 3bi ≤ b3i−1 ≤ a3). So with probability ≥ 2−t all
oracle queries are answered correctly. Hence the probability that M fails
to output a correct answer is ≤ (1− 1

2p(n) ).

Repeat the whole computation 4p(n) - times, always choosing new random
collection of ci’s. the probability that all of these computations fail is at

most (1− 1
2p(n) )

4p(n) ≤ e−
4p(n)
2p(n) = e−2 < 1/4.

Note that if the theorem were stated for PV1 + WPHP rather than for
S1
2+WPHP the Σb

1(h)-formula in the proof would be witnessed by a term
(involving h). Evaluating the term one needs to find only constantly many
values h(a); in this case it is not necessary to use the interval Ii but simply
pick a random value ≤ 2a. The probability of failure of one computation
is then ≤ 1 − Ω(1), i.e. it is enough to repeat the whole process O(1) -
times.

• 7.4: p.120 (7th line of the proof of 7.4.1): ”... of ∃zη(a, x, y, z)” should be

”... of ∃x∀y∃zη(a, x, y, z)”.

• In 7.4.2: The function should not be Σb
i+2-definable but ∃∀Σb

i -definable
(as one would need some BB-scheme, not apparently available, to get it
into the sΣb

i+2-form).

• L. 8.2.3: One needs to assume i > 0. This prevents using the lemma
in the proof of the case i = 0 in Thm.8.2.4 about a relation of U1

2 and
PSPACE (other cases are OK). This case is proved via a direct witnessing
argument.

• p.152, proof of Thm.9.2.5: In this proof one needs that quantified propo-
sitional proof systems Gi and G∗

i (for i > 0) allow the substitution rule. I
refer to L.4.6.3 where this is shown for G∗

1. However, in the current proof
one needs to shown that the quantifier complexity of the simulation does
not increase (it does in L.4.6.3).

The argument is almost the same but a bit more careful with the use of
quantifiers. Assume we want to substitute A (which is q.free!) for p in
sequent
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(1) U(p) −→ V (p),

where U, V are Σq
i . Proceed as follows. First derive sequents

(2) p ≡ A, V (p), U(A) −→ V (A)

and

(3) p ≡ A,U(A) −→ V (A), U(p),

both by p-size proofs. Also derive

(4) −→ ∃x, x ≡ A.

Apply cut to (1) and (3) to get

(5) p ≡ A,U(A) −→ V (A), V (p).

Another cut of (5) and (2) yields:

(6) p ≡ A,U(A) −→ V (A).

Finally existentially quantify p in the antecedent of (6) and cut it out with
(4).

• p.155 and other places: Argument is restricted to (strict) sΣ1,b
1 -PIND and

does not apply to all PIND axioms of U1
2 . This is in order to avoid a

cumbersome notation in more complex witnessing. To justify this we can
add suitable Skolem functions (functionals) to the language and axioms
about them - these are universal closures of first-order bounded formulas
and easily witnessable. Modulo these axioms we get Σ1,b

1 -AC and hence
justify the restriction to the strict class.

For V 1
2 this AC is directly proved from induction axioms for sΣ1,b

1 -formulas.

• L.9.3.2 (b), p.164: The closure properties of the proof system should be
provable in S1

2 .

• L.9.3.4, p.165: . . .) bracket is missing before the implication.

• 9.3, p.166, in the Claim: The sign ≡ (twice) should be =, and the claim
should end with a half-sentence:

”... thinking of formulas as of Boolean functions and, in particular, of Aj

as abbreviating also the value of Aj(p) on p.”

• 9.4.1, Claim 6, p.174: Item (b) should be stated for u bounded by any
element (universally quantified) of the cut and not by the cut itself - this
violates the required definability of the sets in the forcing notion (the
partial ordering P).

• 9.4.2, p.175: The extension (M ′,X ′) is not only Σ1,b
0 -elementary but also

a model of V 1
1 .

• Proof of Lemma 10.2.2:

- on p.187, line -3: add as conjunct g(h(|v|), v) ≤ v (the function g(u, v)
actually constructed obviously has this property),
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- on p.189: the last sentence in the proof is redundant (and, in fact, a bit
confusing).

• p.212, item (ii): Fuction fj should depend also on tj .

Lemma 11.1.2: This lemma appears to be incorrect (in the proof I im-
plicitely use a universal quantifier over functions h).

• Thm. 11.2.4, p.215: The amplification of G : 2a → a to F : a2 → a works
if a is a power of 2. If it is not combine (using G) such an F from maps
G(k) : a× 2k → a, for the values k occurring in the binary expansion of a.

• 11.3.1: Machine gets as the input only a and not the whole structure
([0, a], R). So the time is (log a)O(1).

• Thm. 11.4.6: Should be stated only for i = 2, not for i ≥ 2.

• 11.5: p.231: Pudlak (1992a) in the first paragraph should be Pudlak
(1992b).

• 12.1, Thm.12.1.3: Ramsey theorem is provable already in T 4
2 (R), by the

same argument: on p.235 bottom note that a Σb
2(H)-formula for H being

a boolean combination of Σb
2(R)-formulas is Σb

4(R) and not only Σb
5(R).

• 12.2: p.239 (last line): R(−1)(j) should be r(−1)(j)

• 12.3.1, p.244,l.6: α = ∅ ought to be γ = ∅

• p.304, line 2: ||0−RFN(Q)|| should be just 0−RFN(Q).

• 15.1: The proof of Thm. 15.1.4 contains few typos and inaccuracies.

In particular:

– In Claim 1 the size of U is 2n(t+1). Also, in the second line in its
proof the number of Ms s.t. Mx = My is 2(n−1)(t+1). The needed
estimate is, however, correct with these new values too.

– Redefine the function F on the bottom of p.310 as follows: F (x) :=
(i,Mix), where i is the unique s.t. x ∈ Bi+1 \Bi.

• In L 15.2.2: Should be: ”... refines Hρ
ℓ ” and not just ”... refines Hℓ”.

• 15.3.9 and 15.3.10: One should either have strict Σb
1 and Πb

1 formulas, or
use S1

2 in the place of PV . The point is that L. 9.3.12, which both state-
ments utilize, uses S1

2 and that is essential as one needs sharply bounded
Σb

1-collection scheme. The scheme is available in S1
2 but not in PV unless

factoring is easy (by Cook-Thapen 2004).

J.K.
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