
Hints and Solutions to “Semigroups of Linear Operators with
Applications to Analysis, Probability and Physics”, by David

Applebaum

Chapter 1

1. (a) For all t ∈ [0, T ],M,N ∈ N,M < N∣∣∣∣∣
∣∣∣∣∣
N∑

n=M

tn

n!
An

∣∣∣∣∣
∣∣∣∣∣ ≤

N∑
n=M

tn

n!
||A||n.

From this we see that the series of interest is uniformly Cauchy,
hence uniformly convergent on [0, T ]. Absolute convergence fol-
lows from the fact that

∑∞
n=0

tn

n!
||A||n = et||A||.

(b) (S2) is obvious and (S1) is proved in the same way as ea+b = eaeb

for a, b ∈ R. For norm continuity

||Tt − I|| ≤
∞∑
n=1

tn

n!
||A||n = et||A| − 1→ 0 as t→ 0.

(c) Spectral theory defines etA =
∫
R e

tλdE(λ), where (E(λ), λ ∈ R)
is a resolution of the identity. Then for all φ, ψ ∈ E, by Fubini’s
theorem,

〈etAφ, ψ〉 =

∫
R
etλd〈E(λ)φ, ψ〉

=

∫
R

∞∑
n=0

tnλn

n!
d〈E(λ)φ, ψ〉

=
∞∑
n=0

tn

n!

∫
R
λnd〈E(λ)φ, ψ〉

=
∞∑
n=0

tn

n!
〈Anφ, ψ〉

=

〈
∞∑
n=0

tnAn

n!
φ, ψ

〉
,

and the result follows. With suitable domain restrictions, a similar
argument holds in the case where A is unbounded and self–adjoint.
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2. (RI1) In the definition of the integral, just observe that if a = t0 < t1 <
· · · < tn < tn+1 = b is a partition of [a, b], then a+ c = t0 + c < t1 + c <
· · · < tn + c < tn+1 + c = b+ c is a partition of [a+ c, b+ c].

(RI2) Choose a partition in which c is one of the points.

(RI3) For any ε > 0 there exists a partition a = t0 < t1 < · · · < tn <
tn+1 = b so that∣∣∣∣∣

∣∣∣∣∣
∫ b

a

Φ(s)ds−
n+1∑
j=1

Φ(uj)(tj − tj−1)

∣∣∣∣∣
∣∣∣∣∣ < ε/2,

where tj−1 < uj < tj, for all j = 1, . . . , n + 1. Since the mapping
t→ ||Φ(t)|| is continuous, there exists a partition a = s0 < s1 < · · · <
sm < sm+1 = b so that∣∣∣∣∣

∫ b

a

||Φ(s)||ds−
m+1∑
j=1

||Φ(vj)||(sj − sj−1)

∣∣∣∣∣ < ε/2,

where sj−1 < vj < sj, for all j = 1, . . . ,m + 1. Taking the common
partition, we can then assert that there exists a partition a = r0 < r1 <
· · · < rn < rN+1 = b so that∣∣∣∣∣∣∣∣∫ b

a

Φ(s)ds

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣
N+1∑
j=1

Φ(uj)(rj − rj−1)

∣∣∣∣∣
∣∣∣∣∣+ ε/2

≤
N+1∑
j=1

||Φ(uj)||(rj − rj−1) + ε/2

≤
∫ b

a

||Φ(s)||ds+ ε,

and the result follows.

(RI4) By continuity, given any ε > 0 there exists δ > 0 so that if
t < s < t + δ, then ||Φ(s)− Φ(t)|| < ε. Define F (t) :=

∫ t
0

Φ(s)ds, then

if 0 < h < δ, F (t+ h)− F (t) =
∫ t+h
t

Φ(s)ds,∣∣∣∣∣∣∣∣F (t+ h)− F (t)

h
− Φ(t)

∣∣∣∣∣∣∣∣ ≤ 1

h

∫ t+h

t

||Φ(s)− Φ(t)||ds < ε,

and the result follows.
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(1.3.6) follows by using partitions, and the fact that

X
n+1∑
j=1

Φ(uj)(tj − tj−1) =
n+1∑
j=1

XΦ(uj)(tj − tj−1).

3. Suppose that D is a dense subspace of E, and limt→0 ||Ttψ − ψ|| = 0
for all ψ ∈ D. Now given any φ ∈ E, and ε > 0 there exists ψ ∈ D so
that ||φ− ψ|| < ε. Then for t ≤ 1 (using (1.2.4)

||Ttφ− φ|| ≤ ||Ttφ− Ttψ||+ ||Ttψ − ψ||+ ||ψ − φ||
≤ (||Tt||+ 1)||ψ − φ||+ ||Ttψ − ψ||
≤ C||ψ − φ||+ ||Ttψ − ψ||,

where C := M(ea ∨ 1) + 1, and the result follows.

4. In C0(R) this follows immediately by the fact that all functions therein
are uniformly continuous. In Lp, we choose D = Cc(R) and f ∈ Cc(R)
with supp(f) = K. Then K is bounded so there exists A ≥ 0 such that
|x| ≤ A for all x ∈ K. Hence if 0 ≤ t ≤ 1, |x+ t| ≤ A+ 1 for all x ∈ K.
Since all functions in Cc(R) are uniformly continuous we have

||Ttf − f ||pp =

∫
R
|f(x+ t)− f(x)|pdx

≤ 2 sup
x∈R
|f(x+ t)− f(x)|(A+ 1)→ 0 as t→ 0.

5. For the case of S + T , let (ψn, n ∈ N) be a sequence in DT which
converges to ψ ∈ E, and such that the sequence ((S + T )ψn, n ∈ N)
converges to φ ∈ E. Now S is bounded and so Sψn → Sψ as n→∞.
Hence Tψn → φ − Sψ, But T is closed, and so ψ ∈ DS+T = DT and
φ = (S + T )ψ. The result follows.

For the case of ST , let (ψn, n ∈ N) converge to ψ, as before and as-
sume that (STψn, n ∈ N) converges to χ ∈ E. If S = 0 the result is
obvious, so assume this is not the case. The sequence (STψn, n ∈ N)
is Cauchy, hence given any ε > 0, there exists N ∈ N such that if
m,n > N, ||ST (ψm − ψn)|| < ε. But then ||T (ψm − ψn)|| < ε/||S||.
So (Tψn, n ∈ N) is Cauchy, hence convergent to ξ ∈ E (say). Now
T is closed, hence ψ ∈ DT and ξ = Tψ. But S is bounded and so
(STψn, n ∈ N) converges to STψ, and we are done.

If T is closable, then so are S + T and ST . TS only has meaning if
Ran(S) ⊆ Dom(T ). In that case, if T is closed, then TS is closed, by a
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similar argument to that given above. But Dom(TS) =Dom(T ) = E,
and so TS is bounded by the closed graph theorem. A variation on
the same argument establishes that TS is bounded, even if T is only
closable.

6. (a) (S1) and (S2) are easy. (S3)′ follows from writing, for ψ ∈ E,

||T (1)
t T

(2)
t ψ − ψ|| ≤ ||T (1)

t ||||T
(2)
t ψ − ψ||+ ||T (1)

t ψ − ψ||,

and using ||T (1)
t || ≤M1e

tc1 within the first term.

(b) For ψ ∈ DA1+A2 , use∣∣∣∣∣
∣∣∣∣∣T (1)

t T
(2)
t ψ − ψ
t

− A1ψ − A2ψ

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣T (1)
t

(
T

(2)
t ψ − ψ

t
− A2ψ

)∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣T (1)

t ψ − ψ
t

− A1ψ

∣∣∣∣∣
∣∣∣∣∣+ ||T (1)

t A2ψ − A2ψ||,

and again apply ||T (1)
t || ≤M1e

tc1 within the first term.

7. As (e−ct, t ≥ 0) is a C0–semigroup in R, then (e−ctI, t ≥ 0) is a C0–
semigroup in E and the fact that (Tt, t ≥ 0) is a C0–semigroup is a
direct consequence of Problem 6. The generator is A− cI with domain
DA.

8. (a) Let (fn) is any sequence in D converging to f ∈ E. For m,n ∈ N,

||Afm − Afm|| ≤ K||fn − fm||,

from which we deduce that the sequence (Afn) is Cauchy, hence
convergent. Let h = limn→∞Afn. We define the required exten-
sion by Ãf = h. It is clearly well–defined, for if (gn) is any other
sequence in D converging to f then

||Afn − Agn|| ≤ K||fn − gn|| → 0 as n→∞.

It is bounded as

||Ãf || = lim
n→∞

||Afn|| ≤ K lim
n→∞

||fn|| = K||f ||.

Finally it is straightforward to check that Ã is linear.
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(b) If A is densely defined, then DA = E, but if DA is closed then
DA = DA.

(c) If the semigroup is norm continuous, then its generatorA is bounded
and hence DA = E which is closed. Conversely if DA is closed,
then DA = E by (b). But A is closed, so its graph GA =
{(ψ,Aψ);ψ ∈ E} is closed. Hence by the closed graph theorem,
A is bounded, and so generates a norm continuous semigroup.

9. Suppose that (ψn, Xψn) is a Cauchy sequence under the graph norm
where ψn ∈ DX for all n ∈ N. Then it is easy to see that (ψn) and
(Xψn) are both Cauchy sequences in E. But then ψn → ψ ∈ E and
Xψn → φ ∈ E as n → ∞. However X is closed and so ψ ∈ DX and
φ = Xψ. But then (ψn, Xψn) converges to (ψ,Xψ) ∈ GX as n → ∞
(with respect to the graph norm), and the result follows.

10. The result holds for n = 1 by Theorem 1.5.1 (2). Suppose it is true for
some n ∈ N, then for f ∈ E, by (1.3.6) and Fubini’s theorem

Rn+1
z f =

∫ ∞
0

e−zsTs

∫ ∞
0

tn−1

(n− 1)!
e−ztTtfdtds

=

∫ ∞
0

∫ ∞
0

tn−1

(n− 1)!
e−z(s+t)Ts+tfdtds

=

∫ ∞
0

tn−1

(n− 1)!

∫ ∞
t

e−zuTufdudt

=

∫ ∞
0

tn

n!
e−ztTtfdt,

where we used integration by parts to obtain the final line.

Chapter 2

1. (a) By Lemmas 2.1.1 and 2.1.2, we have

||λRλx− x|| = ||ARλx|| → 0 as λ→∞.

(b) This is true for n = 1. Now assume it holds for some n ∈ N. Now
if x ∈ DAn−1 , Rλx ∈ DAn for

AnRλx = ARλA
n−1x = An−1x+ λRλA

n−1x.

Now given any y ∈ E and ε > 0, by hypothesis there exists x ∈
DAn−1 such that ||x−y|| < ε/2, and by (a), for sufficiently large λ,
||λRλx−x|| < ε/2. Hence by the triangle inequality, ||λRλx−y|| <
ε, and the result follows.
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2. Recall the definition of the dissipativity set EX . We will show that if
(f, φ) ∈ EX then φ = f . Let φ ∈ H = V ⊕ V ⊥, where V :=linspan{f},
so φ = λf +ψ, where ψ ∈ V ⊥. We must have 〈f, φ〉 = 1, which holds if
and only if λ = 1. We must also have ||φ||2 = ||f ||2 + ||ψ||2 = 1, which
holds if and only if ψ = 0. The result follows.

3. (a) ⇒ (b). First observe that

<〈(λI −X)f, f〉 = −<〈Xf, f〉+ <(λ)||f ||2 ≥ <(λ)||f ||2.

Then by the Cauchy–Schwarz inequality,

||(λI −X)f ||||f || ≥ <〈(λI −X)f, f〉
≥ <(λ)||f ||2.

(b) ⇒ (c) is obvious.

(c) ⇒ (a).

λ2||f ||2 ≤ ||(λI −X)f ||2

= λ2||f ||2 − 2λ<〈Xf, f〉+ ||Xf ||2

and so for all λ > 0, ||Xf ||2 ≥ 2λ<〈Xf, f〉. If <〈Xf, f〉 > 0, we can
just take λ > ||Xf ||2/2λ<〈Xf, f〉 to obtain a contradiction.

4. ||(X + I)f || ≤ ||(X− I)f || if and only if ||(X + I)f ||2 ≤ ||(X− I)f ||2 if
and only if (after expanding) 2<〈Xf, f〉 ≤ −2<〈Xf, f〉, and the result
follows.

5. (a) This follows from VtV−t = V−tVt = I.

(b) The fact that (T+
t , t ≥ 0) and (T−t , t ≥ 0) are C0–semigroups

is easy. We only compute the generator of (T−t , t ≥ 0), as the
argument for (T+

t , t ≥ 0) is similar. For all ψ ∈ DB,

lim
t→0

T−t ψ − ψ
t

= lim
t→0

V−tψ − ψ
t

= − lim
t→0

V−tψ − ψ
−t

= −Bψ.

For all s, t ≥ 0,

T+
s T

−
t = VsV−t = V−tVs = T−t T

+
s .
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(c) Applying the Feller–Miyadera–Phillips theorem to (T+
t , t ≥ 0), we

have {λ ∈ C;<(λ > a} ⊆ ρ(B) and for all λ > a,

||Rλ(B)||n ≤ M

(λ− a)n
.

We have λ ∈ −ρ(B) if and only if −λ ∈ ρ(B) since

R−λ(B) = (−λI −B)−1 = −(λI +B)−1 = −Rλ(B),

so {λ ∈ C : <(λ) < −a} ⊆ ρ(−B) = −ρ(B) and for λ < −a,

||Rλ(B)||n = ||R−λ(−B)||n ≤ M

(−λ− a)n
=

M

(|λ| − a)n
.

6. (a) As stated in the question, this is just the proof of Theorem 2.2.1.

(b) This follows by a (careful) limiting argument from the easily checked
fact that for all s, t ≥ 0,

esBλet(−B)λ = et(−B)λesBλ .

(c) We obtain a C0 semigroup by Problem 1.6, and the action of the
generator on DB is B+−B = 0. It then follows that for all t ≥ 0,

T+
t T

−
t = T−t T

+
t = I,

as required.

(d) This is now straightforward, for example to establish the group
property in the case where t ≥ 0, s < 0, t+ s > 0, observe that

VtVs = T+
t T

−
−s = T+

t+sT
+
−sT

−
−s = T+

t+s = Vt+s.

7. Using the Cauchy–Schwarz inequality for both sums and integrals, we
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get

|B[u, v]|

≤
∫
U

d∑
i,j=1

|aij(x)||∂iu(x)||∂jv(x)|dx+

+

∫
U

d∑
i=1

|b′i(x)||∂iu(x)||v(x)|dx+

∫
U

|c(x)|u(x)||v(x)|dx

≤
∫
U

(
d∑

i,j=1

|aij(x)|2
) 1

2
(

d∑
i=1

|∂iu(x)|2
) 1

2
(

d∑
j=1

|∂jv(x)

) 1
2

dx+

+

∫
U

(
d∑
i=1

|b′i(x)|2
) 1

2
(

d∑
i=1

|∂iu(x)|2
) 1

2

|v(x)|dx

+

∫
U

|c(x)|u(x)||v(x)|dx

≤

(
d∑

i,j=1

||aij||2∞

) 1
2
(∫

U

d∑
i=1

|∂iu(x)|2dx

) 1
2
(∫

U

d∑
j=1

|∂jv(x)|2dx

) 1
2

+

+

(
d∑
i=1

||b′i||2∞

) 1
2
(∫

U

d∑
i=1

|∂iu(x)|2dx

) 1
2 (∫

U

|v(x)|2dx
) 1

2

+ ||c||∞
(∫

U

|u(x)|2dx
) 1

2
(∫

U

|v(x)|2dx
) 1

2

,

and the result follows from here, essentially by replacing each term
involving u and v with its Sobolev norm.

8. I am not going to write out the solution to this. There are plenty of
hints in the question, and of course, the proof can be found in full
details in Evans’ book, which is widely available. I might change my
mind if there are howls of anguish from readers!

Chapter 3

1. For y = (y1, . . . , yd) ∈ Rd, we have

Φt(y) =
1

(4πt)
d
2

∫
Rd
eix·ye−

|x|2
4t dx

= φt(y1) · · ·φt(yd),
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where φt(yj) = 1

(4πt)
1
2

∫
Rd e

ixjyje−
x2j
4t dx. Writing x = xj and y = yj for

convenience we have, on differentiating with respect to y and using
dominated convergence,

φ′t(y) =
2it

(4πt)
1
2

∫
Rd
eixy

x

2t
e−

x2

4t dx,

and after integration by parts, we get the differential equation,

φ′t(y) = −2ty, with initial condition φt(0) = 1.

The unique solution is φt(y) = e−ty
2
, and the result follows.

2. If y < 0, we integrate over the contour (−R,R) ∪ ∆R, where ∆R is a
circle of radius R in the lower half plane. We need to reverse orientation
to proceed in a clockwise direction, and this introduces a factor of −1
to keep track of. Bearing that in mind, we must take account of the
residue at z = −it, and so the required result is obtained by calculating

−2πi lim
z→−it

t

π

eiyz

z2 + t2
= ety = e−t|y|.

By continuity, we find that

Φt(0) = lim
y→0

Φt(y) = 1,

and so
∫
R ct(x)dx = Φt(0) = 1. Of course, this last fact is also easy to

verify directly using elementary calculus.

3. For associativity, for all f ∈ Bb(Rd) it is an easy calculation to see that∫
Rd
f(x)((µ1 ∗ µ2) ∗ µ3)(dx) =

∫
Rd

∫
Rd

∫
Rd
f(x+ y + z)µ1(dx)µ2(dy)µ3(dz)

=

∫
Rd
f(x)(µ1 ∗ (µ2 ∗ µ3))(dx).

For commutativity, by Fubini’s theorem∫
Rd
f(x)(µ1 ∗ µ2)(dx) =

∫
Rd

∫
Rd
f(x+ y)µ1(dx)µ2(dy)

=

∫
Rd

∫
Rd
f(y + x)µ2(dy)µ1(dx)

=

∫
Rd
f(x)(µ2 ∗ µ1)(dx).
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4. For all g ∈ Bb(Rd), by Fubini’s theorem,∫
Rd
g(x)(µ1 ∗ µ2)(dx) =

∫
Rd

∫
Rd
g(x+ y)µ1(dx)µ2(dy)

=

∫
Rd

∫
Rd
g(x+ y)f1(x)f2(y)dxdy

=

∫
Rd
g(x)

(∫
Rd
f1(x− y)f2(y)dy

)
dx

=

∫
Rd
g(x)(f1 ∗ f2)(x)dx,

and the result follows.

If µ2 is not absolutely continuous, but µ1 remains so, a variant on the
above argument yields∫

Rd
g(x)(µ1 ∗ µ2)(dx) =

∫
Rd
g(x)

∫
Rd
f1(x− y)µ2(dy)dx,

and so µ1 ∗µ2 is absolutely continuouus with respect to Lebesgue mea-
sure, with density

(f1 ∗ µ2)(x) :=

∫
Rd
f1(x− y)µ2(dy).

5. Write η = η1 + η2 + η3, where for all y ∈ Rd,

η1(y) = ib · y − ay · y

,

η2(y) =

∫
B1

(eix·y − 1− ix · y)ν(dx),

η3(y) =

∫
Bc1

(eix·y − 1)ν(dx).

We have
|η1(y)| ≤ |b · y|+ |ay · y|,

and |b·y| ≤ |b||y| ≤ |b|
2

(1+|y|2). By repeated use of Cauchy’s inequality
for sums, we get

|ay · y| ≤
d∑

i,j=1

|aij||yi||yj| ≤

(
d∑

i,j=1

|aij|2
) 1

2

|y|2.
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Using the hint we obtain

|eix·y − 1− ix · y| = θ

2
|x · y|2 ≤ 1

2
|x|2|y|2,

and so

|η2(y)| ≤
(

1

2

∫
B1

|x|2ν(dx)

)
|y|2.

Finally, an easy estimate yields

|η3(y)| ≤ 2ν(Bc
1),

and the required result follows from combining the estimates for η1, η2

and η3.

6.

Af(x) = − 1

(2π)d/2

∫
Rd
eix·y(

√
a2 + y2 − a)f̂(y)dy

= −(
√
a−∆− aI).

When a = 0, we return to the Cauchy process/Poisson kernel world.

7. Since x→ (1 + |x|)|f(x)| is bounded, there exists K ≥ 0 such that for
all x ∈ Rd,

|f(x)| ≤ K

1 + |x|
.

Hence lim sup|x|→∞ |f(x)| = 0, and so f ∈ C0(Rd).

For the Lp case, observe that for all m ∈ Z+, supx∈Rd(1 + |x|m)|f(x)| <
∞, and

||f ||pp ≤
(

sup
x∈Rd

(1 + |x|m)|f(x)|
)p ∫

Rd

1

(1 + |x|m)p
dx.

The integral is finite. Indeed, when d = 1, choose m = 2 and the result
is straightforward. When d > 1, standard results on integrals of radial
functions yield∫

Rd

1

(1 + |x|m)p
dx = ωd−1

∫ ∞
0

rd−1

(1 + rm)p
dr,

where ωd−1 = 2πd/2

Γ(d/2)
is the surface area of the (d − 1) sphere. As the

mapping r → rd−1

(1+rm)p
is continuous on [0, 1], its sufficient to consider∫ ∞

1

rd−1

(1 + rm)p
dr ≤

∫ ∞
1

rd−1−mpdr,

which is finite provided we choose m > d/p.
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8. (a)

Uλ(Rd) =

∫ ∞
0

e−λtdt =
1

λ
.

(b) By Fubini’s theorem,

Rλf(x) =

∫ ∞
0

e−λtTtf(x)dt

=

∫ ∞
0

e−λt
∫
Rd
f(x+ y)µt(dy)dt

=

∫
Rd
f(x+ y)

(∫ ∞
0

e−λtµt(dy)dt

)
=

∫
Rd
f(x+ y)Uλ(dy).

(c) By Fubini’s theorem again,

Uλ(A) =

∫ ∞
0

e−λt
∫
A

ρt(x)dxdt

=

∫
A

∫ ∞
0

e−λtρt(x)dtdx

=

∫
A

uλ(x)dx.

(d) u0(x) =
∫∞

0
1

(2πt)
d
2
e−
|x|2
2t dt. Substitute s = |x|2/2t to obtain, after

some cancellation,

u0(x) =
1

2(π)
d
2 |x|d−2

∫ ∞
0

sd/2−2e−sds,

and the result follows from the definition of the gamma function.

Chapter 4

1. (a) Let x be the corresponding eigenvector, and normalise it so that
||x|| = 1. Then

λ = λ||x||2 = 〈Tx, x〉 == 〈x, T ∗x〉 = λ||x||2 = λ,

and so λ ∈ R.
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(b) We show that there exists no non–zero φ ∈ DT such that Tφ =
±iφ. For convenience, we just work with the case Tφ = iφ, as
the argument in the other case is the same. Assume that such a
φ exists. Arguing as in (a) we have

i〈φ, φ〉 = 〈Tφ, φ〉 = 〈φ, Tφ〉 = −i〈φ, φ〉.

Hence 2i||φ||2 = 0, which implies φ = 0, and we have the desired
contradiction.

(c) Let x = (T − λI)u and y = (T − λI)v, then a straightforward
calculation shows that

〈Ux, Uy〉 = 〈(T−λI)u, (T−λI)v〉 = 〈(T−λI)u, (T−λI)v〉 = 〈x, y〉.

2. (a) ⇒ (b) is proved in Problem 4 1(b) above (noting that every self–
adjoint operator is closed, as the adjoint of a densely defined operator
in a Hilbert space is always closed).

For (b)⇒ (c), we begin by assuming that Ran(T−iI) is not dense in H.
Then there exists a non–zero ψ ∈ Ran(T − iI)⊥. Hence for all φ ∈ DT

we have 〈ψ, Tφ − iφ〉 = 0. But then ψ ∈ DT ∗ , and 〈T ∗ψ + iψ, φ〉 = 0.
But since DT is dense in H, it follows that ψ ∈ Ker(T ∗ + iI) and
we have our desired contradiction. Next we show that Ran(T − iI) is
closed. First observe that for all φ ∈ DT , by an easy calculation

||(T − iI)φ||2 = ||Tφ||2 + ||φ||2.

Now let (φn) be a sequence in DT such that the sequence ((T − iI)φn)
converges to f ∈ H. From the identity in the last display, it follows
that (φn) converges to some g ∈ H and (Tφn) converges to some h ∈ H.
But T is closed, and so g ∈ DT and h = Tg. It follows f = (T − iI)g,
and so Ran(T − iI) is closed. Since it is also dense, we must have
Ran(T − iI) = H. The result for Ran(T + iI) is proved in the same
way.

For (c) ⇒ (a). Let φ ∈ DT ∗ . Since Ran(T − iI) = H, there exists
ψ ∈ DT such that

Tψ − iψ = T ∗φ− iφ.

Now T is symmetric and so DT ⊆ DT ∗ . Then it follows from the last
display that (T ∗ − iI)(φ− ψ) = 0. But Ran(T + iI) = H implies that
Ker(T ∗ − iI) = {0} and so φ = ψ ∈ DT . Hence DT ∗ ⊆ DT and so T is
self–adjoint.

13



3. By the essential criterion for self–adjointness Ran(T ± iI) = H and
so by the result of Problem 1(c), U is an isometry mapping H onto
H. Hence it is bijective, and so unitary. The same holds for all pure
imaginary λ, as a straightforward generalisation of the last problem
shows that T is self–adjoint if and only if Ran(T ±λI) = H for all such
λ. The converse is valid, i.e. if the Cauchy transform of T is unitary
for λ = i, then T is self–adjoint. For this, see Akheizer and Glazman,
pp.266–9. It is possible to go further, and show that T is self–adjoint if
and only if Ran(T ± λI) = H for all λ ∈ C \R, but we will not pursue
that here (see e.g. Akheizer and Glazman, Volume II, pp. 351–4).

4. We must show that the graph GT is closed. Let ((φn, Tφn)), n ∈ N) be
a sequence in GT converging to (φ, ψ) ∈ H ×H. Fix f ∈ H.

〈ψ, f〉 = lim
n→∞
〈Tφn, f〉

= lim
n→∞
〈φn, T f〉

= 〈φ, Tf〉
= 〈Tφ, f〉.

Since f is arbitrary, we deduce that ψ = Tφ. Hence GT is closed, and
the result follows.

5. It is clearly symmetric and its domain is the whole of H. Hence by
the Hellinger–Toeplitz theorem, it is bounded and self–adjoint. By
Theorems 4.1.2 and 4.1.3, Mf will generate a self–adjoint contraction
semigroup if and only if Mf = −B where M ≥ 0. This holds if and
only if for all ψ ∈ H, 〈Bψ,ψ〉 ≥ 0, i.e −

∫
Rd f(x)|ψ(x)|2dx ≥ 0, i.e. if

and only if f = −g where g ≥ 0.

6. This follows directly from Theorem 4.2.1 (iv).

7. We have for all n ∈ N, X1, . . . , Xn, Y1, . . . , Yn ∈ L(H),

n∑
i,j=1

Y ∗i UtXiX
∗
jU
∗
t Yj =

(
n∑
i=1

Y ∗i UtXi

)(
n∑
i=1

X∗jU
∗
t Yj

)
.

The term on the right hand of the display is of the form A∗A and so is
positive, as required.

Chapter 5
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1. Let X ∈ K(H), T ∈ L(H). Let (fn) be a bounded sequence in H. Then
(Xfn, n ∈ N) has a convergent subsequence, and so (TXfn, n ∈ N) also
has a convergent subsequence, hence TX ∈ K(H). Furthermore (Tfn)
is a bounded sequence in H. So (XTfn) has a convergent subsequence.
Thus XT ∈ K(H).

2. (a) Let t = t0 + h where h > 0. Then since Th is bounded, we have
Tt = Tt0Th is compact by Problem 5.1.

(b) Let C be any closed interval in [0,∞) and let B be the unit ball in
E. then since Tt0 is compact, the set Tt0(B) is compact. Applying
the hint, for all t ∈ C we get

lim
s→t
||Ttf − Tsf || = lim

s→t
||(Tt−t0f − Ts−t0)Tt0f || = 0,

uniformly for f ∈ B. Hence

lim
s→t
||Tt − Ts|| = lim

s→t
sup
f∈B
||Ttf − Tsf || = 0.

3. (a) Let (fn) be another such basis. Since T is a positive self–adjoint
operator, it has a positive self–adjoint square–root S. Then by
Parseval’s identity, and Fubini’s theorem∑

n∈N

〈Tfn, fn〉 =
∑
n∈N

||Sfn||2

=
∑
n∈N

∑
m∈N

|〈Sfn, em〉|2

=
∑
m∈N

∑
n∈N

|〈fn, Sem〉|2

=
∑
m∈N

||Sem||2

=
∑
m∈N

〈Tem, em.〉
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(b) If (fn) is another basis, as above, then by Fourier expansion,∑
n∈N

〈Ten, en〉 =
∑
n∈N

∑
m∈N

〈Ten, fm〉〈fm, en〉

=
∑
m∈N

∑
n∈N

〈fm, en〉〈en, T ∗fm〉

=
∑
m∈N

〈fm, T ∗fm〉

=
∑
m∈N

〈Tfm, fm〉.

The interchange of the two infinite series is a consequence of Fu-
bini’s theorem, using the facts that any trace–class operator may
be written as the product of two Hilbert–Schmidt operators, and
that the adjoint of a Hilbert–Schmidt operator is itself Hilbert–
Schmidt.

4. (a) If A ∈ L(H), write A = A1 + iA2, where A1 = 1
2
(A + A∗) and

A2 = 1
2i

(A− A∗).

(b) If U = A ± i
√
I − A2 then U∗ = A ± i

√
I − A2 and it is easy to

check that UU∗ = U∗U = I.

(c) Write

A =
||A1||

2

(
A1

||A1||
+ i

√(
I − A2

1

||A2
1||

))
+
||A1||

2

(
A1

||A1||
− i

√(
I − A2

1

||A2
1||

))

+ i
||A2||

2

(
A2

||A2||
+ i

√(
I − A2

2

||A2
2||

))
+ i
||A2||

2

(
A2

||A2||
− i

√(
I − A2

2

||A2
2||

))
.

(d) First assume that A is trace–class and B is unitary, We have

tr(AB) =
∑
n∈N

〈ABen, en〉.

We obtain another complete orthonormal basis by defining fn =
Ben for all n ∈ N, and then we have
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tr(AB) =
∑
n∈N

〈ABB∗fn, B∗fn〉

=
∑
n∈N

〈Afn, B∗fn〉

=
∑
n∈N

〈BAfn, fn〉

= tr(BA).

The result extends to arbitrary bounded B by using (c).

5. (a) Let µ 6= λ ∈ ρ(X). The the resolvent identity yields

Rµ = Rλ + (λ− µ)RλRµ,

and this is compact by the ideal property (see Problem 5.1).

(b) If X is bounded, then so is λI −X. But then I = (λI −X)(λI −
X)−1 = (λI −X)Rλ is compact, by the ideal property, and this is
only possible if dim(E) <∞.

6. The resolvent (λI−A)−1 is compact and self–adjoint, so it has a discrete
spectrum by the Hilbert–Schmidt theorem (Theorem 5.1.1). But then
λI −A has a discrete spectrum (indeed its eigenvalues are the inverses
of those of the resolvent), and it follows that A has a discrete spectrum
too.

7. For all f, g ∈ L2(S1), t ≥ 0,

〈T̃tf, g〉 =

∫
S1

T̃tf([x])g([x])d[x]

=

∫
R
Tt(f ◦ \)(x), (g ◦ \)(x)dx

=

∫
R
(f ◦ \)(x), Tt(g ◦ \)(x)dx

=

∫
S1

f([x])T̃tg([x])d[x]

= 〈f, T̃tg〉.

Chapter 6
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1. Since ||R1/t|| ≤ t for all t > 0, it is clear that F (t) is a contraction. For
all ψ ∈ DA we have, using the fact that R1/tψ =

∫∞
0
e−s/tTsψds, and

dominated convergence,

lim
t→0

1
t
R1/tψ − ψ

t
= lim

t→0

1

t2

∫ ∞
0

e−s/t(Tsψ − ψ)ds

= lim
t→0

1

t

∫ ∞
0

eu(Ttuψ − ψ)du

=

∫ ∞
0

ueu lim
t→0

1

tu
(Ttuψ − ψ)du

=

(∫ ∞
0

ueudu

)
Aψ = Aψ,

and the result follows when Chernoff’s product formula is applied.

2. We have Ttg = limn→∞ F (t/n)ng for all g ∈ D, where D is dense in
E. Let f ∈ E, then given any ε > 0, there exists g ∈ D so that
||f − g|| < ε/3. Then for sufficiently large n,

||Ttf − F (t/n)nf ||
≤ ||Ttf − Ttg||+ ||Ttg − F (t/n)ng||+ ||F (t/n)ng − F (t/n)nf ||
≤ 2||f − g||+ ||Ttg − F (t/n)ng||
≤ 2ε/3 + ε/3 = ε,

where we have used the fact that Tt and F (t/n)n are contractions.

3. Since B is relatively bounded with respect to A, we have for all f ∈ DA,

||Af || = ||(A+B)f −Bf ||
≤ ||(A+B)f ||+ ||Bf ||
≤ ||(A+B)f ||+ a||Af ||+ b||f ||

It follows that

−b||f ||+(1−a)||Af || ≤ ||(A+B)f || ≤ ||Af ||+||Bf || ≤ (a+1)||Af ||+b||f ||,

and so

b||f ||+(1−a)||Af || ≤ ||(A+B)f ||+2b||f || ≤ ||Af ||+||Bf || ≤ (a+1)||Af ||+3b||f ||.

The result follows since the graph norm of A+B is itself equivalent to
that given by f → ||(A+B)f ||+ 2b||f ||.
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4. (a) First note that since A is self–adjoint, −iλ ∈ ρ(A) and so A+ iλI
is invertible. We compute

||(A+ iλI)φ||2 = ||Aφ||2 + λ2||φ||2.

Now take φ = (A+ iλI)−1ψ, to get

||ψ||2 = ||A(A+ iλI)−1ψ||2 + λ2||(A+ iλI)−1ψ||2,

and the required estimates follow easily from here.

(b) Since B is relatively bounded with respect to A, we have

||Bφ|| ≤ a||Aφ||+ b||φ||,

and taking φ = (A+ iλI)−1ψ as before we get

||Xψ|| ≤ a||A(A+ iλI)−1ψ||+ b||(A+ iλI)−1ψ||
≤ (a+ b/λ)||ψ||,

using the estimates of (a).

(c) Take λ > 2b/(1 − 2a) and then we get ||Xψ|| < 1
2
||ψ|| for all

ψ ∈ H and so ||X|| < 1. Then the spectral radius r(X) =
limn→∞ ||Xn||1/n ≤ ||X|| < 1, so −1 /∈ σ(X).

(d) As −1 ∈ ρ(X), then I +X is invertible and so Ran(I +X) = H.

(e) This follows from the identity, as both I + X and A + iλI are
invertible. Hence Ran((I +X)(A+ iλI)) = H.
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