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Riemann Sums

Let f : [a, b] → R be a bounded function and P = {x1, . . . , xn} of [a, b]
be a partition of [a, b].
A tag is a choice of points x∗i ∈ (xi−1, xi ) for each i = 1, . . . , n.
A tagged partition P∗ is a partition P along with a tag.
Each tagged partition creates a Riemann sum

R(f ,P∗) =
n∑

i=1

f (x∗i )(xi − xi−1),

which we view as an approximation to the integral of f over [a, b].

x0 x1 x2 x3 x4x∗1 x∗2 x∗3 x∗4

A Riemann Sum
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Riemann Sums and Integrals

Theorem 1

Let f be integrable on [a, b]. Then for every ϵ > 0 there is a partition Pϵ

such that for every refinement Q of Pϵ and for every tag of Q we have

|
∫ b

a
f (x) dx − R(f ,Q∗)| < ϵ.

Proof. By the Riemann Condition, we have step functions s, t which

satisfy s ≤ f ≤ t on [a, b] and
∫ b

a
t(x) dx −

∫ b

a
s(x) dx < ϵ.

Let Pϵ be a partition which is adapted to s and t. □
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Riemann Sums and Integrals

Theorem 2

Suppose f : [a, b] → R is integrable, I ∈ R, and every partition P of [a, b]
has been allotted a tag such that the tagged partitions P∗ satisfy the
following: For every ϵ > 0 there is a partition P ′

ϵ such that for every

refinement P of P ′
ϵ we have |I − R(f ,P∗)| < ϵ. Then I =

∫ b

a
f (x) dx.

Proof. Fix ϵ > 0. Let Pϵ be the corresponding partition obtained from
the previous theorem.
Let P = Pϵ ∪ P ′

ϵ.
Let P∗ be the tagged partition obtained from the current hypothesis.

Then we have |I − R(f ,P∗)| < ϵ and |
∫ b

a
f (x) dx − R(f ,P∗)| < ϵ.

It follows that |I −
∫ b

a
f (x) dx | < 2ϵ. Since this is true for every ϵ > 0, we

must have I =
∫ b

a
f (x) dx . □
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Riemann Sums and Products

The following result is useful in dealing with products. We’ll need it when
we discuss surface area.

Theorem 3

Consider continuous functions f , g : [a, b] → R. For any ϵ > 0 we can
choose a partition P = {x1, . . . , xn} of [a, b] such that for every choice of
points ui , vi ∈ [xi−1, xi ] we have∣∣∣ ∫ b

a

f (x)g(x) dx −
n∑

i=1

f (ui )g(vi )(xi − xi−1)
∣∣∣ < ϵ.

(Proof on next slide)
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Riemann Sums and Products
Proof. Choose a partition Pϵ/2 such that every tag of every refinement Q

satisfies
∣∣∣ ∫ b

a

f (x)g(x) dx − R(fg ,Q∗)
∣∣∣ < ϵ/2.

Let M be an upper bound of |g | over [a, b]. By the Small Span Theorem,
there is a refinement P = {x1, . . . , xn} of Pϵ/2 such that
|f (ui )− f (vi )| < ϵ/2M(b − a) whenever ui , vi ∈ [xi−1, xi ].
Let the vi be considered as a tag of P. Then∣∣∣R(fg ,P∗)−

n∑
i=1

f (ui )g(vi )(xi − xi−1)
∣∣∣

=
∣∣∣ n∑
i=1

f (vi )g(vi )(xi − xi−1)−
n∑

i=1

f (ui )g(vi )(xi − xi−1)
∣∣∣

=
∣∣∣ n∑
i=1

(f (vi )− f (ui ))g(vi )(xi − xi−1)
∣∣∣

≤
n∑

i=1

ϵ

2M(b − a)
M(xi − xi−1) = ϵ/2.

□
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Arc Length

We shall define the length of the curve formed by the graph of a function
f : [a, b] → R. Let P = {x0, . . . , xn} be a partition of [a, b], and set
yi = f (xi ). The total length of the line segments between successive
points (xi , yi ) on the graph is

S(f ,P) =
n∑

i=1

((xi − xi−1)
2 + (yi − yi−1)

2)1/2.

If Q is a refinement of P, the triangle inequality in the plane implies that
S(f ,P) ≤ S(f ,Q). Therefore it is reasonable to define the arc length of
the graph of f by

S(f ) = sup{S(f ,P) | P is a partition of [a, b] }.

2 4

−1

2 4

−1
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Arc Length

The existence of the arc length S(f ) is not guaranteed. It is possible,
even with f continuous, that the collection S(f ,P) is unbounded.

An example of non-existence of S(f ) is provided by the function
x cos(π/2x).

We call f rectifiable if S(f ) exists.

The following observation is useful in arranging calculations:

Theorem 4 (Additivity of Arc Length)

Suppose f : [a, b] → R and g : [b, c] → R are rectifiable and f (b) = g(b).
Define h : [a, c] → R by h(x) = f (x) if x ≤ b and h(x) = g(x) if x ≥ b.
Then h is rectifiable and S(h) = S(f ) + S(g).

Proof. Similar to the additivity of integrals over intervals. □
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Rectifiability of Differentiable Functions

Theorem 5

Let f : [a, b] → R be continuously differentiable. Then f is rectifiable and
the arc length of its graph is given by

S(f ) =

∫ b

a

√
1 + f ′(x)2 dx .

Proof. Given a partition P = {x0, . . . , xn} of [a, b], let us write
yi = f (xi ), △xi = xi − xi−1 and △yi = yi − yi−1. Then we have

S(f ,P) =
n∑

i=1

((△xi )
2 + (△yi )

2)1/2 =
n∑

i=1

(
1 +

(△yi
△xi

)2
)1/2

△xi .

The Mean Value Theorem gives x∗i ∈ (xi−1, xi ) such that
f ′(x∗i ) = △yi/△xi .
(continued . . . )

Amber Habib Calculus



Riemann Sums Mensuration Numerical Integration

Rectifiability of Differentiable Functions

Theorem 5

Let f : [a, b] → R be continuously differentiable. Then f is rectifiable and
the arc length of its graph is given by

S(f ) =

∫ b

a

√
1 + f ′(x)2 dx .

Proof. Given a partition P = {x0, . . . , xn} of [a, b], let us write
yi = f (xi ), △xi = xi − xi−1 and △yi = yi − yi−1. Then we have

S(f ,P) =
n∑

i=1

((△xi )
2 + (△yi )

2)1/2 =
n∑

i=1

(
1 +

(△yi
△xi

)2
)1/2

△xi .

The Mean Value Theorem gives x∗i ∈ (xi−1, xi ) such that
f ′(x∗i ) = △yi/△xi .
(continued . . . )

Amber Habib Calculus



Riemann Sums Mensuration Numerical Integration

Rectifiability of Differentiable Functions

Theorem 5

Let f : [a, b] → R be continuously differentiable. Then f is rectifiable and
the arc length of its graph is given by

S(f ) =

∫ b

a

√
1 + f ′(x)2 dx .

Proof. Given a partition P = {x0, . . . , xn} of [a, b], let us write
yi = f (xi ), △xi = xi − xi−1 and △yi = yi − yi−1. Then we have

S(f ,P) =
n∑

i=1

((△xi )
2 + (△yi )

2)1/2 =
n∑

i=1

(
1 +

(△yi
△xi

)2
)1/2

△xi .

The Mean Value Theorem gives x∗i ∈ (xi−1, xi ) such that
f ′(x∗i ) = △yi/△xi .
(continued . . . )

Amber Habib Calculus



Riemann Sums Mensuration Numerical Integration

Rectifiability of Differentiable Functions

(. . . continued)
Taking these x∗i as tags, the S(f ,P) become Riemann sums:

S(f ,P) =
n∑

i=1

√
1 + f ′(x∗i )

2 △xi = R(
√

1 + (f ′)2,P∗).

The function
√
1 + (f ′)2 is continuous and hence integrable. By

Theorem 1 there is a partition P1 such that every refinement Q of P1

satisfies |
∫ b

a

√
1 + f ′(x)2 dx − S(f ,Q)| =

|
∫ b

a

√
1 + f ′(x)2 dx − R(

√
1 + (f ′)2,Q∗)| < 1. Hence, for an arbitrary

partition P,

S(f ,P) ≤ S(f ,P ∪ P1) <

∫ b

a

√
1 + f ′(x)2 dx + 1.

It follows that the collection of all S(f ,P) is bounded above and f is
rectifiable.
(continued . . . )
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Rectifiability of Differentiable Functions

(. . . continued)

Given any ϵ > 0 there is a partition P ′
ϵ such that S(f )− S(f ,P ′

ϵ) < ϵ.

If P is a refinement of P ′
ϵ, then

S(f )− R(
√

1 + (f ′)2,P∗) = S(f )− S(f ,P) ≤ S(f )− S(f ,P ′
ϵ) < ϵ.

By Theorem 2, S(f ) =
∫ b

a

√
1 + f ′(x)2 dx . □
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Example: Catenary

Example 6

Consider the hyperbolic cosine function cosh x =
ex + e−x

2
.

We have 1 + (cosh′ x)2 = 1 + (sinh x)2 = cosh2 x .

Therefore the length of the graph over an interval [0, a] is∫ a

0

√
1 + (cosh′ x)2 dx =

∫ a

0

cosh x dx = sinh a.
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Example: Parabola

Example 7

Let f (x) = x2. The length of the graph over [0, a] is

S =

∫ a

0

√
1 + (2x)2 dx =

1

2

∫ 2a

0

√
1 + x2 dx .

One option is to substitute x = tan θ. This leads to the integral of sec3 θ,
which we have carried out earlier and is quite complicated. More pleasant
results are obtained by substituting x = sinh t. Then we have√
1 + x2 = cosh t and dx = cosh t dt. This gives

S =
1

2

∫ b

0

cosh2 t dt =
1

2

∫ b

0

1 + cosh 2t

2
dt (b = sinh−1 2a)

=
1

4

(
b +

sinh 2b

2

)
=

b + sinh b cosh b

4
=

sinh−1 2a+ 2a
√
1 + 4a2

4
.
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Example: Circular Arcs

Example 8

A semicircle of radius R is obtained as the graph of f (x) =
√
R2 − x2

with x ∈ [−R,R]. We have

f ′(x) =
−x√

R2 − x2
and

√
1 + f ′(x)2 =

R√
R2 − x2

.

Note that f is not differentiable at x = ±R so we cannot apply the
integral formula in one go for the length of the semicircle.
Let us begin with the length of an arc whose central angle θ is less than
π/2. The arc is obtained as the graph of f restricted to [0,R sin θ].
Hence its length is∫ R sin θ

0

√
1 + f ′(x)2 dx =

∫ R sin θ

0

R√
R2 − x2

dx = R

∫ sin θ

0

1√
1− x2

dx

= R arcsin x
∣∣∣sin θ
0

= Rθ.
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Example: Circular Arcs

Any circular arc can be cut into congruent pieces each of which has
central angle less than π/2.

Combined with the additivity of arc length, this extends the formula Rθ
to arbitrary θ.

In particular, we recover the description of π as the ratio of a circle’s
circumference to its diameter. (Recall that we defined π as the ratio of a
circle’s area to its squared radius.)
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Example: Ellipse

Consider an ellipse, given by
x2

a2
+

y2

b2
= 1 (a > b > 0). An arc of the

ellipse can be viewed as the graph of the function

f (x) =
b

a

√
a2 − x2.

This leads to the integral

∫ √
1 + f ′(x)2 dx =

∫ √
a2 + (b/a2 − 1)x2

a2 − x2
dx

= a

∫ √
1 + e2w2

1− w2
dw (w = x/a)

where e = (a2 − b2)1/2/a is called the eccentricity of the ellipse and
measures its deviation from a circle. This integral turns out to be
inexpressible in terms of any combination of our standard functions. We
have to treat it as a new function!
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Surface of Revolution

A surface of revolution is obtained by taking a curve in the xy -plane
and rotating it about the x-axis in three dimensions. The diagram given
below shows the result of rotating the graph of y = x2.

The surfaces of revolution include many of our familiar shapes such as
cylinders, cones and spheres.
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Surface Area

We shall use frustums of cones to describe the surface area of a surface of
revolution. Given the graph of a function y = f (x) we first approximate
it by line segments. Then we rotate these line segments around the x-axis
to create frustums of cones that approximate the surface of revolution.

You may recall that the surface area of a right circular cone with radius r
and slant height ℓ is πrℓ. This formula is obtained by cutting the cone
along a generator and flattening it into a sector of a circle.
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Surface Area of Frustum of a Cone

Consider the frustum of a cone with end radii r1, r2 and slant height ℓ.
Visualise the full cone of which the frustum is a part.

r1
r2

ℓ

ℓ′

Let ℓ′ be the slant height of the conical cap that completes the frustum.
Using similar triangles, we get

ℓ+ ℓ′

ℓ′
=

r2
r1
, hence ℓ′ =

r1
r2 − r1

ℓ.

And now we compute the surface area F of the frustum:

F = πr2(ℓ+ ℓ′)− πr1ℓ
′ = π(r1 + r2)ℓ.

This includes the limiting case of a cylinder, when r1 = r2.
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Area of Surface of Revolution
Consider a continuously differentiable f : [a, b] → [0,∞). Let
P = {x0, . . . , xn} be a partition of [a, b]. On each [xi−1, xi ] we
approximate the graph of y = f (x) by the line segment joining its
endpoints, and the surface of revolution by the frustum of a cone with
end radii f (xi−1) and f (xi ). We add up the areas of these frustums to get

A(f ,P) =
n∑

i=1

π(f (xi−1) + f (xi ))
√
(△xi )2 + (△yi )2,

where △xi = xi − xi−1 and △yi = f (xi )− f (xi−1). For each [xi−1, xi ]:

• Use IVT to get a ui ∈ (xi−1, xi ) such that
f (ui ) = (f (xi−1) + f (xi ))/2.

• Use MVT to get a vi ∈ (xi−1, xi ) such that f ′(vi ) = △yi/△xi .

This gives A(f ,P) = 2π
n∑

i=1

f (ui )
√
1 + f ′(vi )2 △xi . By Theorem 3 the

numbers A(f ,P) approach A(f ) = 2π

∫ b

a

f (x)
√

1 + f ′(x)2 dx .
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Example: Sphere

Example 9

A sphere of radius R can be obtained by rotating the graph of the
function f : [−R,R] → [0,R] defined by f (x) =

√
R2 − x2. We have

1 + f ′(x)2 = 1 +
x2

R2 − x2
=

R2

R2 − x2
.

We see that
√
1 + f ′(x)2 is unbounded on [−R,R] and so we cannot use

the integral formula to find the area of the entire sphere directly. But we
can use it to find the area of the part lying over any interval [a, b] with
−R < a < b < R:

2π

∫ b

a

√
R2 − x2

R√
R2 − x2

dx = 2π(b − a)R.

To get the area of the entire sphere we now let a → −R and b → R,
giving 4πR2.
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Example: Catenoid

Example 10

The surface created by rotating a catenary is called a catenoid. We can
compute its surface area:

2π

∫ a

0

cosh x
√
1 + (cosh′ x)2 dx = 2π

∫ a

0

cosh2 x dx

= π

∫ a

0

(1 + cosh 2x) dx = π(a+
sinh 2a

2
).

The catenoid turns out to be the surface of minimal area between two
rings centred on the same axis. Let us at least see an example where a
catenoid has less area than the frustum of a cone between two rings.
Consider the catenoid obtained by rotating the catenary over [0, 1]. Its
area is π(1 + sinh(2)/2) ≈ 8.8. Now consider the frustum of a cone
between the same circles. Its area is

π(1 + cosh 1)
√
1 + (cosh 1− 1)2 ≈ 9.1.
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Solid of Revolution
The region enclosed by a surface of revolution is called a solid of
revolution. We shall obtain its volume by approximating it by a bunch of
cylinders.
We take define the volume of a cuboid to be the product of its three
dimensions, i.e., base area times height. Let us fit a cuboid inside a
cylinder whose height is h and base radius is r .

x

y

z

h

r

If we stack several cuboids in this way inside the cylinder, their total
volume is their total base area times the height h. As we fill the cylinder
with thinner cuboids, the total volume of the cuboids approaches πr2h.
This gives πr2h as the volume of the cylinder.
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Volume of a Solid of Revolution
Consider a continuous f : [a, b] → R with f ≥ 0. Let s be a step function
such that 0 ≤ s(x) ≤ f (x) on [a, b]. Let P = {x0, . . . , xn} be a partition
adapted to s. Rotating the graph of f around the x-axis creates a solid
of revolution. Rotating the graph of s creates a collection of coaxial
cylinders. If si is the value of s on (xi−1, xi ), then the total volume of the
cylinders,

∑n
i=1 πs

2
i △xi , is an underestimate for the volume.

Similarly, a step function t which lies above f , creates cylinders with total
volume

∑n
i=1 πt

2
i △xi and this is an overestimate for the volume of the

solid of revolution. The integral
∫ b

a
πf (x)2 dx is the unique number lying

above all the underestimates and below all the overestimates. We take it
as the volume of the solid of revolution. This approach is called the discs
method as it visualizes the solid as made of thin coaxial discs.
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Examples: Sphere and Cone

Example 11

A solid sphere of radius R can be obtained as the solid of revolution
obtained by rotating the graph of f (x) =

√
R2 − x2, −R ≤ x ≤ R. Its

volume is especially easy to calculate:∫ R

−R

π(R2 − x2) dx =
(
R2x − x3

3

)∣∣∣R
−R

=
4

3
πR3.

Example 12

A solid cone of base radius R and height h can be obtained as the solid

of revolution obtained by rotating the graph of f (x) =
R

h
x , 0 ≤ x ≤ h.

Its volume is ∫ h

0

π

(
R

h
x

)2

dx = π
R2x3

3h2

∣∣∣h
0
=

1

3
πR2h.
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Example: Torus

Example 13

A torus is obtained by rotating a disc of radius r around a circle of larger
radius R:

It can be generated by rotating the region lying between the graphs of
y = R +

√
r2 − x2 and y = R −

√
r2 − x2, −r ≤ x ≤ r .

Volume =

∫ r

−r

π(R +
√

r2 − x2)2 dx −
∫ r

−r

π(R −
√
r2 − x2)2 dx

= π

∫ r

−r

(
(R +

√
r2 − x2)2 − (R −

√
r2 − x2)2

)
dx

= 4πR

∫ r

−r

√
r2 − x2 dx = 2π2Rr2.
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Gabriel’s Horn

Consider the function f (x) = 1/x with x ≥ 1. Rotate its graph about the
x-axis.

The volume enclosed by the horn is

∫ ∞

1

π
1

x2
dx = −π lim

b→∞

1

x

∣∣∣b
1
= π.

S =

∫ ∞

1

2π
1

x

√
1 + (−1/x2)2dx ≥

∫ ∞

1

2π
1

x
dx = 2π lim

b→∞
log x

∣∣∣b
1
= ∞.

The surface area is infinite. This is often presented as a paradox. Since
the horn has infinite area, we need an infinite amount of paint to paint it.
But its volume is finite! Do you agree?
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Shells Method

A solid of revolution can also be created by rotating a region in the
xy -plane about the y -axis.

If we attempt to find the volume of such a
solid by the discs method, we have to use
horizontal discs, and finding their radii in-
volves inverting the function y = f (x) whose
graph bounds the rotated region.

It is usually easier to view the solid as made of concentric cylindrical
shells:
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Shells Method

Suppose we rotate the region lying under the graph of the function
y = f (x) over the interval [a, b] with 0 ≤ a < b. Let P = {x0, . . . , xn} be
a partition of [a, b] with a tag x1∗, . . . , x∗n . Consider the cylindrical shell
with height f (x∗i ), inner radius xi−1 and outer radius xi . The volume of
this shell is

πx2i f (x
∗
i )− πx2i−1f (x

∗
i ) = 2πx∗∗i f (x∗i )△xi , where x∗∗i =

xi−1 + xi
2

.

The total volume of the cylindrical shells is

n∑
i=1

2πx∗∗i f (x∗i )△xi .

By Theorem 3, these approach
∫ b

a
2πxf (x) dx as we take finer partitions.

Amber Habib Calculus



Riemann Sums Mensuration Numerical Integration

Example

Example 14

The volcano shaped solid we have been using to illustrate the shell
method is generated by the region lying under the graph of y = x2 − x4

with 0 ≤ x ≤ 1.

Therefore, its volume is∫ 1

0

2πx(x2 − x4) dx = 2π
(x4
4

− x6

6

)∣∣∣1
0
=

π

6
.
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Midpoint Rule

To approximate
∫ b

a
f (x) dx we shall partition [a, b] into n equal parts and

let ci be the midpoint of the ith subinterval. The Midpoint rule

approximates
∫ b

a
f (x) dx by the Riemann sum

Mb
a (f ) =

n∑
i=1

f (ci )△x , where △x =
b − a

n
.

c1 c2 c3

△x

Any estimate needs error bounds if it is to be useful. If we have some
control over how much f deviates from being straight, we may hope to
bound the error from approximating it by straight lines.
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Midpoint Rule: Error Estimates

Let f be twice continuously differentiable on [a, b]. Let us consider the
accuracy of each rectangle as an approximation to the corresponding
portion of the integral. For simplicity, let the rectangle have base [−h, h].

−h h

△x

−h h

△x

Rotating the top edge of the rectangle through its midpoint gives a
trapezium with the same area. So we rotate it until it becomes the
tangent line ℓ to the graph of f . By the Remainder Theorem, the gap
between f and ℓ at any point is

f (x)− ℓ(x) =
f ′′(tx)

2
x2,

for some tx ∈ (−h, h).
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Midpoint Rule: Error Estimates

Note that the value f ′′(tx) must change continuously with x . By the
Mean Value Theorem for Weighted Integration, we get∫ h

−h

f (x) dx −
∫ h

−h

ℓ(x) dx =

∫ h

−h

f ′′(tx)

2
x2 dx

= f ′′(t)

∫ h

−h

x2

2
dx =

h3

3
f ′′(t) =

(△x)3

24
f ′′(t),

for some t ∈ [−h, h]. We apply this result to each rectangle in the
midpoint method to obtain:∫ b

a

f (x) dx −Mb
a (f ) =

(△x)3

24

n∑
i=1

f ′′(ti )

=
(△x)3

24
nf ′′(t) =

(△x)2

24
(b − a)f ′′(t),

for some t ∈ [a, b].
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Example

Example 15

We have used the Midpoint rule earlier, without naming it, to estimate∫ 3

0
e−x2

dx . We set n = 6 and obtained∫ 3

0

e−x2

dx ≈ 0.886213 . . .

while the precise value of this integral is 0.88620734 . . . . Thus, we had
accuracy to 4 decimal places.
Let us gauge the accuracy through our own calculations. We have
f ′(x) = −2xe−x2

and f ′′(x) = (−2 + 4x2)e−x2

. This gives the bound
M = 2, and hence

∣∣ ∫ 3

0

e−x2

dx − 0.886213 . . .
∣∣ ≤ 3× 2

24
(0.5)2 = 0.06.

This is a correct bound, but it clearly plays too safe and fails to convey
how well the calculation has actually worked.
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Simpson’s Rule

The Midpoint rule is based on linear approximations to the integrand.
We can hope to get better results by using a quadratic approximation.

We first fit a polynomial of degree at most 2 to any three data points.
To simplify calculations, suppose the values y0, y1 and y2 of a function f
are known at x = −h, 0, h respectively.

We wish to find a quadratic function q(x) such that q(−h) = y0,
q(0) = y1 and q(h) = y2. It must have the form q(x) = y1 + xp(x)
where p(x) is linear. Then p has to satisfy y0 = y1 − hp(−h) and
y2 = y1 + hp(h). This implies

p(−h) =
y1 − y0

h
, p(h) =

y2 − y1
h

and p(0) =
y2 − y0
2h

.

From these values we obtain the following expressions for p and q:

p(x) =
y2 − y0
2h

+
y0 − 2y1 + y2

2h2
x ,

q(x) = y1 +
y2 − y0
2h

x +
y0 − 2y1 + y2

2h2
x2.
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Simpson’s Rule

This gives the following approximation for the integral of f :∫ h

−h

f (x) dx ≈
∫ h

−h

q(x) dx =
(
y0 + 4y1 + y2

)h
3
.

Now, if f has domain [a, b], we take a partition P = {x0, . . . , x2n} where
the subintervals have equal width △x = (b − a)/2n. Let yi = f (xi ). On
each interval [x2i−2, x2i ] we apply the above approximation. This gives
Simpson’s rule: ∫ b

a

f (x) dx ≈ Sb
a (f )

where

Sb
a (f ) =

(
y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2y2n−2 + 4y2n−1 + y2n

)△x

3

=
(
y0 + 2

n−1∑
i=1

y2i + 4
n∑

i=1

y2i−1 + y2n
)△x

3
.

Amber Habib Calculus



Riemann Sums Mensuration Numerical Integration

Simpson’s Rule: Convergence

Simpson’s rule can be expressed in a different way:

Sb
a (f ) =

1

6

(
2△x

n−1∑
i=0

y2i
)
+

1

6

(
2△x

n∑
i=1

y2i
)
+

2

3

(
2△x

n∑
i=1

y2i−1

)
.

Each bracketed term is a Riemann sum and converges to
∫ b

a
f (x) dx ,

hence so does their combination.

Although Simpson’s rule uses a quadratic approximation, it is exact even
for cubics. This is easy to see over [−h, h], since∫ h

−h
x3 dx = Sh

−h(x
3) = 0.

Let q(x) be a cubic which matches f (x) at x = −h, 0, h and also satisfies
q′(0) = f ′(0). Set y0 = f (−h), y1 = f (0), y ′

1 = f ′(0), y2 = f (h). We
have q(x) = y1 + xy ′

1 + x2p(x), where p(x) is linear. We can solve for
p(x) as we did earlier, and the result is

q(x) = y1 + y ′
1x +

y0 − 2y1 + y2
2h2

x2 +
y2 − y0 − 2hy ′

1

2h3
x3.

Integrating q gives us the original Simpson’s formula again.
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Error for Cubic Interpolation

Theorem 16

Let f : [a, b] → R be four times continuously differentiable. Let
a = x0 < x1 < x2 = b. Let q(x) be a polynomial of degree three or less
such that q(x0) = f (x0), q(x1) = f (x1), q

′(x1) = f ′(x1) and
q(x2) = f (x2). Then for every x ∈ [a, b] there is a ξx ∈ (a, b) such that

f (x)− q(x) =
f (4)(ξx)

4!
(x − x0)(x − x1)

2(x − x2).

Proof. We can assume x ̸= xi for i = 0, 1, 2. Define a function g by

g(t) = f (t)− q(t)−M(t − x0)(t − x1)
2(t − x2),

where M is chosen such that g(x) = 0. Then we have four distinct zeroes
of g : g(x0) = g(x1) = g(x2) = g(x) = 0. Rolle’s Theorem gives us three
distinct zeroes of g ′ in the open intervals created by x0, x1, x2 and x . We
also have g ′(x1) = 0. So we again have four distinct zeroes of g ′.
(continued. . . )
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Error for Cubic Interpolation

(. . . continued)

Applying Rolle’s Theorem repeatedly, we get three distinct zeroes of g ′′,
then two of g ′′′, and finally one of g (4) which we shall call ξx .

If we now differentiate g four times using its definition, we obtain
M = f (4)(ξx)/4!. Substituting this in g(x) = 0 gives the result. □
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Simpson’s Rule: Error Formula

Applying this error formula to our cubic approximation to f over [−h, h]
gives

f (x)− q(x) =
f (4)(ξx)

4!
x2(x2 − h2).

Therefore the error for the integral is∫ h

−h

f (x) dx −
∫ h

−h

q(x) dx =

∫ h

−h

f (4)(ξx)

4!
x2(x2 − h2) dx

=
f (4)(ξ)

4!

∫ h

−h

x2(x2 − h2) dx =
f (4)(ξ)

90
h5.

Applying this to the rule for a partition of [a, b] into 2n equal
subintervals, we get the error∫ b

a

f (x) dx − Sb
a (f ) =

n∑
i=1

f (4)(ξi )

90
(△x)5

=
(△x)5n

90
f (4)(ξ) =

(△x)4

180
(b − a)f (4)(ξ).
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Approximation by Polynomials

Example 17

If we apply Simpson’s rule to
∫ 3

0
e−x2

dx by cutting [0, 3] into 6 equal
subintervals, we get the estimate 0.886172 . . . which has similar accuracy
to the midpoint rule with the same number of intervals.

The difference becomes visible when we increase the number of intervals
by a factor of 10. Simpson’s rule now gives 0.88620734 . . . which is
accurate to 8 decimal places. With the same number of function
evaluations the Midpoint rule was accurate to 6 decimal places.
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Gaussian Quadrature

The Midpoint and Simpson’s rules are weighted averages of certain
function values. We can create new rules by varying the points where we
sample the function as well as the weight attached to each sampling
location.

In the Gaussian quadrature method we attempt to fix the sampling
locations and the weights so as to get exact results for polynomials of as
high a degree as possible.

If we use n sampling points, we also have n weights to play with, and can
hope to get exact results for polynomials up to degree 2n − 1.
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Gaussian Quadrature: n = 1, 2

Let us see how this works for small n and over an interval [−h, h].

First consider n = 1. We hope to get exact results for linear polynomials.
This is already achieved by the Midpoint rule.

Now let n = 2. Let the sample points be a, b with corresponding weights
wa,wb. We get four equations by matching with 1, x , x2 and x3:

wa + wb = 2h waa+ wbb = 0 (1)

waa
2 + wbb

2 =
2

3
h2 waa

3 + wbb
3 = 0 (2)

The equations in the second column give waa(b
2 − a2) = 0 and hence

a = 0 or −b. Now a = 0 is ruled out by the second equation, so we have
a = −b ̸= 0. But then the second equation gives wa = wb and the first
one gives wa = wb = h. Substituting all this in the third equation gives
a = −h/

√
3 and b = h/

√
3. Thus, the rule is∫ h

−h

f (x) dx ≈ G2(f ) = h(f (−h/
√
3) + f (h/

√
3)).
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Example

Example 18

Let us apply the basic integration rules to
∫ π/2

0

√
x cos x dx = 0.704.

Write g(x) =
√
x cos x .

The Midpoint rule uses one function value and gives the value

g(π/4) · π/2 = 0.984.

Simpson’s rule uses three function values and gives

(g(0) + 4g(π/4) + g(π/2)) · π/12 = 0.656.

Gaussian quadrature uses two function values and gives(
g((1− 1/

√
3)π/4) + g((1 + 1/

√
3)π/4)

)
· π/4 = 0.712.
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Gaussian Quadrature: Error Formula for n = 2

Suppose q(x) is a cubic polynomial such that q(h/
√
3) = f (h/

√
3),

q(−h/
√
3) = f (−h/

√
3), q′(h/

√
3) = f ′(h/

√
3) and

q′(−h/
√
3) = f ′(−h/

√
3).

Task 1

Suppose a ̸= b and ya, yb, y
′
a, y

′
b are given real numbers. Show that there

is a unique polynomial of degree at most three such that q(a) = ya,
q(b) = yb, q

′(a) = ya and q′(b) = yb.

Since q is cubic, and matches f on ±h/
√
3, we have∫ h

−h
q(x) dx = G (q) = G (f ). Therefore,∫ h

−h

f (x) dx −G2(f ) =

∫ h

−h

f (x) dx −
∫ h

−h

q(x) dx =

∫ h

−h

(f (x)− q(x)) dx .
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Error for Interpolation in Gaussian Quadrature

Theorem 19

Let f : [a, b] → R be four times continuously differentiable. Let
a ≤ x1 < x2 ≤ b. Let q(x) be a polynomial of degree three or less such
that q(x1) = f (x1), q

′(x1) = f ′(x1), q(x2) = f (x2) and q′(x2) = f ′(x2).
Then for every x ∈ [a, b] there is a ξx ∈ (a, b) such that

f (x)− q(x) =
f (4)(ξx)

4!
(x − x1)

2(x − x2)
2.

Proof. Exercise. Similar to Theorem 16. □
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Gaussian Quadrature: Error Formula for n = 2

Integrate this error formula to get∫ h

−h

f (x) dx − G2(f ) =

∫ h

−h

(f (x)− q(x)) dx

=
f (4)(ξ)

4!

∫ h

−h

(x + h/
√
3)2(x − h/

√
3)2 dx

=
f (4)(ξ)

4!
h5

∫ 1

−1

(x2 − 1/3)2 dx =
f (4)(ξ)

135
h5.

So Gaussian quadrature achieves similar accuracy to Simpson’s rule,
while using two function values instead of three.
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