
8

Feedback Circuits

8.1 Small Regulatory Sub-networks

8.2 Negative Feedback

8.2.1 If total concentration of a transcriptional regulator R is partitioned
between the part that is free, Rfree, and the part that is bound to a metabolite,
then argue for conditions where Rfree = R/(1 + (s/Ks)

h), and identify the
meaning of h and Ks.

Answer Assume that the metabolite concentration s << R, where R is
total concentration of regulator:

R = Rfree + [Rsh]

where Rsh is the regulator R binding h molecules. The concentration of R
with attached s is:

Kh
s =

Rfree · (s− [Rsh])
h

[Rsh]
∼ Rfree · sh

[Rsh]
=

Rfree · sh
R−Rfree

⇒

Kh
s · (R−Rfree) = Rfree · sh ⇒

Rfree =
Kh

s ·R
Kh

s + sh
=

R

1 + (s/Ks)h

where h is the number of s molecules that bind simultaneously to R, and Kh
s

is the binding constant for the h+1 order reaction (Ks is in units of molar).
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Figure 8.1 Feedback that aims to stabilize the internal concentration of a
metabolite. The orange curve shows the concentration of free R.

8.2.2 Simulate Eqs. (8.2) and (8.3) with γ = 100, Ks = 100 h = 2, R = 10
and “source” changing from 10 000 to 1 000 000 per time unit (parameters for
which s >> R). Hint: start by simulating the equations until steady state is
reached, then change “source” and follow the time development of E and s.
Repeat the simulation for h = 1, and γ = 1000.

Answer The equations read:

dE

dt
=

1

1 +R2
free

− E

ds

dt
= source− γ · E · s

Rfree =
R

1 + s/Ks

The equations start at E = 1 and s = 100 at t = −10, and simulated in
time-steps of dt = 0.001 until time t = 0, where the source is increased to
1 000 000 per time unit. Results for the various options is shown in Fig. 8.1.
Notice that the flux through the system in all steady states is constant, given
by ds/dt = 0 ⇒ flux = source.

8.2.3 Simulate the repressilator: dA/dt = ε+1/(1+(C/0.2)h)−A, dB/dt =
ε + 1/(1 + (A/0.2)h) − B, dA/dt = ε + 1/(1 + (B/0.2)h) − C with h = 3,
ε = 0.01 and using simple integration with dt = 0.005.
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Figure 8.2 Repressilator simulations with binding constant to operators
K = 0.2. The lower panel compares to stronger binding case.

Answer Start simulation at a = 1, b = 0 and c = 0. Results are shown
in Fig. 8.2, where we also investigate the effect of stronger binding, where
oscillations show higher contrast.

8.2.4 Simulate the above repressilator using event-based simulation (Gillespie
algorithm), updating A,B,C in units of u = 1/N with N = 100, according
to production and decay events for each protein type, i.e. for A according to
A → A + u with rate r = (ε + 1/(1 + (C/0.2)h)) ×N , and A → A − u with
rate r = A×N . Study the obtained oscillations for other N values.

Answer The standard Gillespie algorithm with six different moves: a chang-
ing up or down, b changing up or down and c changing up or the down. Rates
are calculated on the basis of the values of a, b, c, potential updating times
are selected and the system updated. Notice that one should always secure
that none of the variables can become < 0. Results can be seen in Fig. 8.4.
As N is increased the system approaches the deterministic behavior shown
in Figure 8.2, upper panel.

8.2.5 Simulate the idealized Goodwin model [361, 365]: dm/dt = 1/(1+r9)−
km ·m, dp/dt = m− km · p and dr/dt = p− kr · r using km = kp = kc = 0.5
a degradation rates of mRNA, protein and the regulator, respectively. The
regulator r represses production of m, closing the negative feedback loop.

Answer Start the simulation at t = −50 with m = 1, p = 0, r = 0 and
simulate with time steps dt = 0.05. Dynamics for the time window t ∈ [0 : 35]
is shown in Fig. 8.5.
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Figure 8.3 Repressilator simulations with binding constant to operators K =
0.2, using a random update with changes in a,b,c of size 1/N .

8.2.6 Simulate the simple time-delay equation:

dx

dt
= −x(t− τ)

and convince yourself that it either gives exponentially damped, or exponen-
tially amplified oscillations.

Answer The simulation requires that one remembers x for a window τ in the
past. Set dt = 0.01, and define x(i), for i ∈ [−τ/dt, 100/dt], set x(i) = −i/τ
for i ∈ [−τ/dt, 0]. Update for j > i, x(j) = x(j − 1) − x(j − τ/dt) · dt for
j = 1, 2, ...100/dt. Dynamics for the time window t ∈ [0 : 35] are shown in
Fig. 8.6. One observes damped oscillations for τ < 1.5, whereas larger τ leads
to oscillations and exponential amplification.

8.2.7 Simulate the time-delay equation:

dp

dt
=

1

1 + (p(t− τ)/0.1)2
− p(t)

for τ = 1, τ = 2 and τ = 5.
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Figure 8.6 Time delay simulated for τ = 1, τ = 1.5 and τ = 2.

Answer The simulation requires that one remembers x for a window τ in the
past. Set dt = 0.01, and define p(i), for i ∈ [−τ/dt, 100/dt] set p(i) = −i/τ
for i ∈ [−τ/dt, 0]. Update for j > i:

p(j) = p(j − 1) +

(
1

1 + (p(j − τ/dt)/0.1)2
− p(j)

)
· dt

for j = 1, 2, ...100/dt Dynamics for the time window t ∈ [0 : 35] are shown in
Fig. 8.7. One observes damped oscillations for τ < 2, whereas larger τ leads
to stable oscillations.

8.2.8 Simulate the time-delay equation:

dp

dt
=

1

1 + (pold/0.1)2
− p(t)

where pold at time t is the proteins produced from time t′ ∈ [t − 3 · τ, t − τ ]
weighted by w ∝ exp(−(t−t′)/τ), i.e. production takes at least τ to contribute,
but after this time the delivery time is smeared out with a characteristic time
τ . The time-delay equation should be simulated for τ = 1, 2 and 5.

Answer The simulation requires that one remembers x for a window τ
in the past. Set dt = 0.01, and define p(i), for i ∈ [−3τ/dt, 100/dt] set
p(i) = −i/(3τ) for i ∈ [−3τ/dt, 0] (arbitrary start conditions). Update for
j > i:
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Figure 8.7 Time delay for feedback to protein production, simulated for τ = 1,
τ = 2 and τ = 5.

p(j) = p(j − 1) +

(
1

1 + (pold/0.1)2
− p(j)

)
· dt

pold(j) =

∑j−3τ/dt
i=j−τ/dt p(i)e

−(j−i)/(dt·τ)∑j−3τ/dt
i=j−τ/dt e

−(j−i)/(dt·τ)

for j = 1, 2, ...100/dt. Notice that the last equation represents a normalized
sum of contributions from the past, stretching out to three times the decay
time τ . Dynamics for the time window t ∈ [0 : 35] are shown in Fig. 8.8. One
observes damped oscillations for small τ , whereas larger τ leads to stable
oscillations.

8.2.9 Maintenance of homeostasis is essential for health, and degenerative
processes associated with diseases should be be counteracted by cellular repair.
An example may be Parkinson’s disease [30] where growth of fibrils F may be
counteracted by cellular (protease) proteins P:

dF

dt
=

m

1 + P
− P · F (8.1)

dC

dt
= P · F − ν · C (8.2)

dP

dt
= 1− P − P · F + ν · C (8.3)
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Figure 8.8 Time delay for feedback to protein production, simulated for τ = 5,
starting from t = τb in the past, with τb = 0.5, = 1 and = 2 (red and most
oscillating).
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Figure 8.9 Simulation of free proteasome concentration in idealized model of
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Here m parameterizes the influx of new potential fibrils, an influx that is
partially repressed by P. 1/ν is the lifetime of the complex between mature
fibrils and the cellular repair machinery P. Draw the implied network, and
identify positive and a negative feedback. Simulate the equations for ν = 1
and m = 10, and m = 25, respectively.

Answer See simulation result in Fig. 8.9. For discussion, references and
variations of the model, the reader may consult Kim Sneppen et al. Phys.
Biol. 6, 036005 (2009).

8.3 Positive Feedback

8.3.1 Model the sequestering switch between two proteins A and B produced
according to dA/dt = PA/(1 + B2

f )− A, dB/dt = PB − B, and where A and
B form a complex with binding constant K = 0.01 = AfBf/[AB]. Here free
concentrations are Af = A− [AB] and Bf = B − [AB] binding to each other
with KAB = 0.01, whereas basal production rates are, respectively, PA = 10
and PB = 5. Show that the system is bistable, by starting the simulation
from two different initial conditions (one may also perform 100 simulations,
starting at points where both A and B are between 0 and 10).

Answer The two equations are simulated in discrete time steps dt = 0.01,
at each point calculating the complex concentration:

[AB] =
1

2
(A+B −KAB)−

√
0.25 · (A+B +KAB)2 − A ·B

where KAB = 0.01. Bf = B − [AB] is inserted into

A(t+ dt) = A(t) + dt ·
(

PA

1 +B2
f

− A

)

whereas B = PB = 5 is kept at a fixed value. Results is shown in Fig. 8.10.
The left panel highlight that concentration in free b is very different between
two fixed points.
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Figure 8.10 Trajectories starting from various points with A = 0, 1, 1...10 and
B = 0, 1, 2...10 and showing values of A and B at 0.1 time unit intervals.

8.4 Combining Feedback in small molecule

regulation

8.4.1 Simulate the “consumer motif” where the small molecule activates the
regulator. The concentration of the complex [Rs] is given by:

Kh =
(Rtot − [Rs]) · (s− h[Rs])h

[Rs]
=

(Rtot − [Rs])sh

[Rs]
⇒ [Rs] =

Rtot · (s/K)

1 + (s/K)

for h = 1, where we use R = Rtot as the total R, and assume R to be much
smaller than s. Ks sets the binding strength of the {Rs} complex.1

1If multiple s bind to R, the concentration of free R (not sequestered by s) is Rfree =
Rtot − hs[Rshs

] = Rtot(1 + (1− hs)(s/K)hs)/(1 + (s/K)hs).
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Figure 8.11 Internal metabolite as a function of external resource. In the
upper-left panel we show the standard case with equal regulation of T and E,
the other panels have a weaker regulated E. In each case we also investigate
behavior where either E = 1 is fixed, or T = 1 is fixed. The yellow dots in
the upper left-hand panel also shows the trajectory until a steady state is
reached.

Assume that Rs is the concentration of the active form of R. Consider
the consumer motif:

dE

dt
= ε+

[Rs]2

[Rs]2 +K2
E

− E ;
dT

dt
= ε+

[Rs]2

[Rs]2 +K2
T

− T

with R = 1, γ = 1000, ε = 0.001, K = 10 and KE = KT = 0.1. Simulate
the system until steady state is reached for a range of values of the source σ
between 1 and 1 000 000 (i.e. set σ = 2i, i = 0, 1, 2 . . . 20). For each value of
E and T , s is determined from the flux Eq. (8.14).

Answer For each value of σ we start simulations at four different initial
values of E, T = (1, 1), (0, 1), (1, 0) and (0, 0) and set s = σ · T/(γ · E + 1)

c© K. Sneppen



89

Consumer motif:

R s activator:
100

R free repressor:

10

1s

0.1

0.01

100

10

1s

0.1

0.01

100

Source

10 000 1000 000 100

Source

10 000 1000 000

Figure 8.12 Internal metabolite as a function of external source, with Rs as
an activator, and Rfree as a repressor.

initially. Simulate equations in small timesteps dt = 0.001 (small because γ
is large, and thus the fastest change very fast). Simulate until steady state E,
T and s are reached. Plot s as function of σ. Results are shown in Fig. 8.11.

Notice that in the figure, s is sometimes smaller than R = 1, which in
principle requires a better treatment of the complex formation that we use
here. However, if both s and K is rescaled by the same factor, all the above
results is repeated.

Notice in particular that as we remove negative feedback by maintaining
a constant high metabolism of the metabolite (E = 1), there are two stable
fixed points, signalling bistability and hysteresis. Also notice that if E is
more weakly regulated than T , the s versus σ curve exhibits ultra-sensitive
behavior and even bi-stability.

8.4.2 Simulate the “consumer motif” above, but using Rfree as a repressor
instead of Rs as an activator, and compare the steady-state plot in the two
cases. Use R = 1, γ = 1000, ε = 0.001, K = 10 and KT = 0.1, but KE = 0.8.
Simulate the motifs for various values of the source σ between 1 and 1 000 000
(i.e. set σ = 2i, i = 0, 1, 2 . . . 20).

Answer Same procedure as in the previous question, with results shown in
Fig. 8.12.

8.4.3 Simulate the “consumer motif” above if Rs regulates itself as activator
and repressor, and compare the steady-state plot in the two cases. Use R = 1,
γ = 1000, ε = 0.001, K = 10 and KT = 0.1, but KE = 0.8. Set KR = 0.1 and
use the same equation for R as for T . Simulate the motifs for various values
of the source σ between 1 and 1 000 000 (i.e. set σ = 2i, i = 0, 1, 2 . . . 20).
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Figure 8.13 Internal metabolite as a function of external resource, with Rs

regulating itself in the same way as it regulates T. R is regulated more weakly
(K = E = 0.8 whereas KR = KT = 0.1) as a repressor.

Answer Uss the same procedure as in the previous question, with results
shown in Fig. 8.13. When Rs activates itself one can see that the regime
of bistability is increased. With chosen parameters, there is not much effect
from Rs self-repression.

8.4.4 Simulate the “fashion motif” for steady-state values of both internal s
and the flux = σ · T through the system. Use R = 1, γ = 1000, ε = 0.001,
K = 10 and KT = KE = 0.1 and let Rs act as a repressor. Simulate the
motifs for various values of the source σ between 50 and 1 000 000 (i.e. set
σ = 2i, i = 0, 1, 2 . . . 20).

Answer Use the same procedure as in the previous questions, with results
shown in Fig. 8.14. One can see that the flux drops or remains near constant
for a large range of external sources.

8.4.5 The fashion motif is so named so one may view s as a product, T as
producer, and E as consumer. The positive feedback around E reflects the
tendency of consumers to want what is scarce. Adding the additional positive
feedback of R being activated by itself (Rs) may then reflect a tendency of
consumers to communicate and enhance their common fashions. Simulate
the “fashion motif” with Rs activating production included. Plot state values
of both interval s and the flux = σ · T through the system. Use R = 1, γ =
1000, ε = 0.001, K = 10, KT = KE = KR = 0.1 and let Rs act as a repressor,
except for itself. Simulate the motifs for various values of the source σ between
50 and 1 000 000 (i.e. set σ = 2i, i = 0, 1, 2 . . . 20).
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Fashion motif, with Rs activating production of R :
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Figure 8.15 Fashion motif with Rs activating production of R.

Answer Same procedure as in the previous question, with results shown
in Fig. 8.15. When Rs activates itself one can see that a small region of
bistability, reflecting the potential for a market to collapse when production
exceeds a certain threshold.

8.5 Combining Feedback & Spatial order

8.5.1 Simulate the model in Fig. 8.13, that is, update the following equations
by using a timestep dt = 0.001, for x = 1, 2, 3 . . . 100:
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Figure 8.16 Simulation with low and high levels of stress, S = 1, S = 2,
respectively. In both cases using positive feedback strength P = 10. The red
surface marks the cytokine T , whereas the yellow surface is the level of the
repressor R. The blue line marks S > 0 excitation.

ΔT (x) = S(x) +
p · T (x)2
1 + T (x)2

− R(x) · T (x)
0.1 + T (x)

− T (x)

+D · (T (x− 1) + T (x+ 1)− 2T (x))

ΔR(x) = T (x)−R(x)/τ

T (x) = T (x) + ΔT (x) · dt and R(x) = R(x) + ΔR(x) · dt

where one should remember to update all ΔT and ΔR before finally updating T
and R. The inflammation is introduced through a persistent S = 1 at position
x = 50, whereas S = 0 otherwise. Use parameters p = 10, D = 1, τ = 5.
Explore the behavior for other values of S.

Answer The equations are simulated by simple integration in time steps
dt = 0.001 in Fig. 8.16. One can see that increasing inflammation S increases
response from one wave to a sequence of waves, initiated at regular intervals.

8.5.2 Simulate the model from Question 8.5.1 for various values for the
strength of the positive feedback p.

Answer The equations are simulated by simple integration in timesteps
dt = 0.001 in Fig. 8.17. One can see that increasing positive feedback P ,
the system is first non-responsive to inflammation, then responsive, finally
settling in the fully excited state that cannot transmit any information.

8.5.3 Simulate the model in the previous questions for parameters p = 50
and S = 1 at x = 0, for different values of the degradation time of R, τ = 5
to τ = 20.
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Figure 8.17 Simulation with fixed S = 1, varying positive feedback strength
P = 5 to P = 40. The red surface marks the cytokine T , whereas the yellow
surface is the level of the repressor R. The blue line marks S > 0 excitation.

Answer The equations are simulated by simple integration in time steps
dt = 0.001 in Fig. 8.18. One can see that short lifetimes prevent waves.
Increasing the lifetime beyond a threshold value initiates traveling excitable
waves at time intervals that grow with the lifetime of the repressor (the cell
needs to reduce the repressor level before a new wave can propagate).

8.5.4 We have not described how a cell can chemotax through a series of
waves. The main idea is that it should be more sensitive to the positive gradi-
ent than the negative. This is obtained by a chemotaxing cell that is sensitive
at low concentrations, and insensitive when the concentration is higher. To
propagate, the cell should remember extreme positive changes for some time.
Make a model for the random walk of a chemotaxing cell, assuming this
behavior.

Answer Model the cytokine waves as in Question 8.5.1, using P = 20 and
τ = 5. Define a chemotaxing walker as a walker that can be in two states:

In state 1 it does a random walk +1 or -1 with equal probability.
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Figure 8.18 Simulation with fixed S = 1, positive feedback strength p = 50
and increasing value of the lifetime of the repressor.

If the T-field changes to T > T threshold = 5 units, the walker is switched
to state 2. It measures the gradient and its direction and remembers this
direction.

The walker remembers the state 2 for a time τ , during which it always
walk in the remembered direction.

After this relaxation time τ , the walker switches back to state 1.

The result is shown in Fig. 8.19.

8.5.5 Explore timescales for remembering the large positive changes in T in
previous questions.

c© K. Sneppen



95

t =5
P =20

t =10
P =40

Chemotaxing walker: sense gradient when extreme and positive,

         remember and move in its direrction for time t,
         after this walk in a random direction

sense 
T>Tr=5

sense 
T>Tr=10

10
0

Time

0
50

0

50

100

Space

T

10
0

Time

0
50

0

50

100

Space

T

Figure 8.19 Simulation with chemotaxing walker in a field of travelling
cytokine waves.
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Figure 8.20 Simulation with chemotaxing walker in a field of travelling
cytokine waves. The two simulations are for two different values of the mem-
ory of chemotaxing cell.

Answer Model cytokine waves as in Question 8.5.1 using P = 20 and τ = 5.
Define a chemotaxing walker as a walker that can be in two states:

In state 1 it does a random walk +1 or −1 with equal probability.
If the T-field change to T > T threshold = 5 units during one time unit,

the walker is switched to state 2. It measures the gradient and its direction
and remembers this direction.

The walker remembers the state 2 for a time τchemo, during which it always
walks in the remembered direction.

After this relaxation time τ , the walker switches back to state 1.
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Figure 8.21 Stripe formation with local positive feedback coupled to a diffus-
ing inhibitor. The left-hand panel starts with a = b = 0.01; the right-hand
panel starts with a = b = 0.1, in both cases a(20) = 1.

The result is shown in Fig. 8.20, with the left-hand panel showing
τchemo = 2, whereas the right-hand panel shows for τchemo = 20. One can
see that small τchemo gives a smaller drift, whereas a large value can give an
overshoot. In practice, the assumed desensitization of the walker to negative
gradients may give additional constraints.

8.5.6 Simulate the model in Fig. 8.15 and Eq. (8.21) on a one-dimensional
line (1, 2, 3, . . . , 20) with D = 1. First use initial conditions a = b = 0.01,
except a(20) = 1, then use initial conditions a = b = 0.1, except a(20) = 1.

Answer The equations reads:

da

dt
=

a(x)2

b(x)
− a(x)

db

dt
= a(x)2 − b(x) + (b(x+ 1)− 2 · b(x) + b(x+ 1))

for x = 1, 2, ...20 with periodic boundary conditions. It is simulated using
time step dt = 0.002 in Fig. 8.21.

8.4.7 Repeat the previous question for initial conditions a = b = 0.01, except
a(20) = 1, but with half, and then a third of production/decay rates for the
dynamics of b.
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Figure 8.22 Stripe formation simulation using b timescale set by τ = 2 (top
panel) and τ = 3 (bottom panel). In both cases one starts with a = b = 0.01,
and a(20) = 1.

Answer The equations read:

da

dt
=

a(x)2

b(x)
− a(x)

db

dt
=

1

τ
(a(x)2 − b(x)) + (b(x+ 1)− 2 · b(x) + b(x+ 1))

with dynamics for τ = 2 and τ = 3.x = 1, 2, ...20 shown in Fig. 8.22.
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8.5.8 Estimate the wavelength for the fastest-growing wave of the linear part
of the KS equation.

Answer Test the growth of a simple wave h(x, t) = hq(t) · sin(qx) with wave
number q. Inserting this into the linear part of the KS equation one obtains:

dh

dt
= −d2h

dx2
− d4h

dx4
⇒

dhq

dt
= q2 · hq − q4hq = q2 · (1− q2)

an equation which has maximal growth at wavenumber q2 = 1/2 or q = 1/
√
2.

The corresponding wavelength λ = 2π/q = 2π
√
2 = 2 · 3.14 · 1.4 ∼ 9, which

is indeed close to the lateral extension of the tip-splitting bulges of the front.
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