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1 Introduction and objectives

Problem 1. (Probabilities of basic events)
Assume that X1 and X2 are independent random variables that are uniformly dis-

tributed in the interval [0, 1]. Compute the probability of the following events.
Hint: For each event, identify the corresponding region inside the unit square.

(a) 0 ≤ X1 −X2 ≤ 1
3

(b) X3
1 ≤ X2 ≤ X2

1

(c) X2 −X1 = 1
2

(d)
(
X1 − 1

2

)2
+
(
X2 − 1

2

)2 ≤ (1
2

)2
(e) Given that X1 ≥ 1

4
, compute the probability that

(
X1 − 1

2

)2
+
(
X2 − 1

2

)2 ≤ (1
2

)2

Problem 2. (Basic probabilities)

(a) A box contains m white and n black balls. Suppose k balls are drawn. Find the
probability of drawing at least one white ball.

(b) We have two coins; the first is fair and the second is two-headed. We pick one of the
coins at random, toss it twice and obtain heads both times. Find the probability that
the coin is fair.

Problem 3. (Conditional distribution)
Assume that X and Y are random variables with joint density function

fX,Y (x, y) =

{
A, 0 ≤ x < y ≤ 1

0, otherwise

(a) Are X and Y independent?

(b) Find the value of A.

(c) Find the density function of Y . Do this first by arguing informally using a sketch of
fX,Y (x, y), then compute the density formally.

(d) Find E [X|Y = y].
Hint: Try to find it from a sketch of fX,Y (x, y).

(e) The E [X|Y = y] found in part (d) is a function of y, call it f(y). Find E [f(Y )].

(f) Find E [X] (from the definition) and compare it to the E [E [X|Y ]] = E [f(Y )] that you
have found in part (e).
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Problem 4. (Playing darts)
Assume that you are throwing darts at a target. We assume that the target is one-

dimensional, i.e. that the darts all end up on a line. The “bull’s eye” is in the center of
the line, and we give it the coordinate 0. We assume that the position X1 of a dart that
lands on the target is a random variable that has a Gaussian distribution with variance
σ2
1 and mean 0. Assume now that there is a second target, which is further away. If you

throw a dart to that target, the position X2 has a Gaussian distribution with variance σ2
2

(where σ2
2 > σ2

1) and mean 0. You play the following game: You toss a “coin” which gives
you Z = 1 with probability p and Z = 0 with probability 1 − p for some fixed p ∈ [0, 1].
If Z = 1, you throw a dart onto the first target. If Z = 0, you aim for the second target
instead. Let X be the relative position of the dart with respect to the center of the target
that you have chosen.

(a) Write down X in terms of X1, X2 and Z.

(b) Compute the variance of X. Is X Gaussian?

(c) Let S = |X| be the score, which is given by the distance of the dart to the center of
the target (that you picked using the coin). Compute the average score E [S].

Problem 5. (Uncorrelated vs. independent random variables)

(a) Let X and Y be two continuous real-valued random variables with joint probability
density function fXY . Show that if X and Y are independent, they are also uncorre-
lated.

(b) Consider two independent and uniformly distributed random variables U ∈ {0, 1} and
V ∈ {0, 1}. Assume that X and Y are defined as follows: X = U+V and Y = |U−V |.
Are X and Y independent? Compute the covariance of X and Y . What do you
conclude?

Problem 6. (Monty Hall)
Assume you are participating in a quiz show. You are shown three boxes that look

identical from the outside, except they have labels 0, 1, and 2, respectively. Only one of
them contains one million Swiss francs, the other two contain nothing. You choose one box
at random with a uniform probability. Let A be the random variable that denotes your
choice, A ∈ {0, 1, 2}.

(a) What is the probability that the box A contains the money?

(b) The quizmaster of course knows which box contains the money. He opens one of the
two boxes that you did not choose, being careful not to open the one that contains the
money. Now, you know that the money is either in A (your first choice) or in B (the
only other box that could contain the money). What is the probability that B contains
the money?

(c) If you are now allowed to change your mind, i.e. choose B instead of sticking with A,
would you do it?
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2 Receiver design for discrete-time observations: First

layer

Problem 1. (Hypothesis testing: Uniform and uniform)
Consider a binary hypothesis testing problem in which the hypotheses H = 0 and H = 1

occur with probability PH(0) and PH(1) = 1−PH(0), respectively. The observable Y takes
values in {0, 1}2k, where k is a fixed positive integer. When H = 0, each component of Y
is 0 or 1 with probability 1

2
and components are independent. When H = 1, Y is chosen

uniformly at random from the set of all sequences of length 2k that have an equal number
of ones and zeros. There are

(
2k
k

)
such sequences.

(a) What is PY |H(y|0)? What is PY |H(y|1)?

(b) Find a maximum-likelihood decision rule for H based on y. What is the single number
you need to know about y to implement this decision rule?

(c) Find a decision rule that minimizes the error probability.

(d) Are there values of PH(0) such that the decision rule that minimizes the error proba-
bility always chooses the same hypothesis regardless of y? If yes, what are these values,
and what is the decision?

Problem 2. (The “Wetterfrosch”)
Let us assume that a “weather frog” bases his forecast of tomorrow’s weather entirely

on today’s air pressure. Determining a weather forecast is a hypothesis testing problem.
For simplicity, let us assume that the weather frog only needs to tell us if the forecast for
tomorrow’s weather is “sunshine” or “rain”. Hence we are dealing with binary hypothesis
testing. Let H = 0 mean “sunshine” and H = 1 mean “rain”. We will assume that both
values of H are equally likely, i.e. PH(0) = PH(1) = 1

2
. For the sake of this exercise,

suppose that on a day that precedes sunshine, the pressure may be modeled as a random
variable Y with the following probability density function:

fY |H(y|0) =

{
A− A

2
y, 0 ≤ y ≤ 1

0, otherwise

Similarly, the pressure on a day that precedes a rainy day is distributed according to

fY |H(y|1) =

{
B + B

3
y, 0 ≤ y ≤ 1

0, otherwise

The weather frog’s purpose in life is to guess the value of H after measuring Y .

(a) Determine A and B.

(b) Find the a posteriori probability PH|Y (0|y). Also find PH|Y (1|y).

(c) Show that the implementation of the decision rule Ĥ(y) = arg maxi PH|Y (i|y) reduces
to

Ĥθ(y) =

{
0, if y ≤ θ

1, otherwise

for some threshold θ and specify the threshold’s value.
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(d) Now assume that the weather forecaster does not know about hypothesis testing and
arbitrarily chooses the decision rule Ĥγ(y) for some arbitrary γ ∈ R. Determine, as a

function of γ, the probability that the decision rule decides Ĥ = 1 given that H = 0.
This probability is denoted Pr{Ĥ(Y ) = 1|H = 0}.

(e) For the same decision rule, determine the probability of error Pe(γ) as a function of γ.
Evaluate your expression at γ = θ.

(f) Using calculus, find the γ that minimizes Pe(γ) and compare your result to θ.

Problem 3. (Hypothesis testing in Laplacian noise)
Consider the following hypothesis testing problem between two equally likely hypothe-

ses. Under hypothesis H = 0, the observable Y is equal to a + Z where Z is a random
variable with Laplacian distribution

fZ(z) =
1

2
e−|z|

Under hypothesis H = 1, the observable is given by −a + Z. You may assume that a is
positive.

(a) Find and draw the density fY |H(y|0) of the observable under hypothesis H = 0, and
the density fY |H(y|1) of the observable under hypothesis H = 1.

(b) Find the decision rule that minimizes the probability of error.

(c) Compute the probability of error of the optimal decision rule.

Problem 4. (Poisson parameter estimation)
Two hypotheses H = 0 and H = 1 occur with probabilities PH(0) = p0 and PH(1) =

1 − p0, respectively. The observable Y takes values in the set of non-negative integers.
Under hypothesis H = 0, Y is distributed according to a Poisson law with parameter λ0,
i.e.

PY |H(y|0) =
λy0
y!
e−λ0

Under hypothesis H = 1,

PY |H(y|1) =
λy1
y!
e−λ1

This is a model for the reception of photons in optical communication.

(a) Derive the MAP decision rule by indicating likelihood and log-likelihood ratios.
Hint: The direction of an inequality changes if both sides are multiplied by a negative number.

(b) Derive an expression for the probability of error of the MAP decision rule.

(c) For p0 = 1
3
, λ0 = 2 and λ1 = 10, compute (using a computer) the probability of error

of the MAP decision rule.

(d) Repeat (c) with λ1 = 20 and comment.
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Problem 5. (Lie detector)
You are asked to develop a “lie detector” and analyze its performance. Based on the

observation of brain-cell activity, your detector has to decide if a person is telling the
truth or is lying. For the purpose of this exercise, the brain cell produces a sequence of
spikes. For your decision you may use only a sequence of n consecutive inter-arrival times
Y1, Y2, . . . , Yn. Hence Y1 is the time elapsed between the first and second spike, Y2 the
time between the second and third, etc. We assume that, a priori, a person lies with some
known probability p. When the person is telling the truth, Y1, . . . , Yn is an i.i.d. sequence
of exponentially distributed random variables with intensity α, (α > 0), i.e.

fYi(y) = αe−αy, y ≥ 0

When the person lies, Y1, . . . , Yn is i.i.d. exponentially distributed with intensity β, (α < β).

(a) Describe the decision rule of your lie detector for the special case n = 1. Your detector
should be designed so as to minimize the probability of error.

(b) What is the probability PL|T that your lie detector says that the person is lying when
the person is telling the truth?

(c) What is the probability PT |L that your test says that the person is telling the truth
when the person is lying.

(d) Repeat (a) and (b) for a general n.
hintWhen Y1, . . . , Yn is a collection of i.i.d. random variables that are exponentially
distributed with parameter α > 0, then Y1 + · · · + Yn has the probability density
function of the Erlang distribution, i.e.

fY1+···+Yn(y) =
αn

(n− 1)!
yn−1e−αy, y ≥ 0

Problem 6. (Fault detector)
As an engineer, you are required to design the test performed by a fault detector for a

“black-box” that produces a sequence of i.i.d. binary random variables . . . , X1, X2, X3, . . . .
Previous experience shows that this “black-box” has an a priori failure probability of 1

1025
.

When the “black-box” works properly, pXi(1) = p. When it fails, the output symbols are
equally likely to be 0 or 1. Your detector has to decide based on the observation of the
past 16 symbols, i.e. at time k the decision will be based on Xk−16, . . . , Xk−1.

(a) Describe your test.

(b) What does your test decide if it observes the sequence 0101010101010101? Assume
that p = 0.25.

Problem 7. (Multiple choice exam)
You are taking a multiple choice exam. Question number 5 allows for two possible

answers. According to your first impression, answer 1 is correct with probability 1
4

and
answer 2 is correct with probability 3

4
. You would like to maximize your chance of giving

the correct answer and you decide to have a look at what your neighbors on the left and
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right have to say. The neighbor on the left has answered ĤL = 1. He is an excellent
student who has a record of being correct 90% of the time when asked a binary question.
The neighbor on the right has answered ĤR = 2. He is a weaker student who is correct
70% of the time.

(a) You decide to use your first impression as a prior and to consider ĤL and ĤR as
observations. Formulate the decision problem as a hypothesis testing problem.

(b) What is your answer Ĥ?

Problem 8. (MAP decoding rule: Alternative derivation)
Consider the binary hypothesis testing problem where H takes values in {0, 1} with

probabilities PH(0) and PH(1). The conditional probability density function of the obser-
vation Y ∈ R given H = i, i ∈ {0, 1} is given by fY |H(·|i). Let Ri be the decoding region

for hypothesis i, i.e. the set of y for which the decision Ĥ = i, i ∈ {0, 1}.

(a) Show that the probability of error is given by

Pe = PH(1) +

∫
R1

(
PH(0)fY |H(y|0)− PH(1)fY |H(y|1)

)
dy

Hint: Note that R = R0 ∪R1 and
∫
R fY |H(y|i)dy = 1 for i ∈ {0, 1}.

(b) Argue that Pe is minimized when

R1 =
{
y ∈ R : PH(0)fY |H(y|0) < PH(1)fY |H(y|1)

}
i.e. for the MAP rule.

Problem 9. (Independent and identically distributed vs. first-order Markov)
Consider testing two equally likely hypotheses H = 0 and H = 1. The observable

Y = (Y1, . . . , Yk)
T is a k-dimensional binary vector. Under H = 0 the components of

the vector Y are independent uniform random variables (also called Bernoulli
(
1
2

)
random

variables). Under H = 1, the component Y1 is also uniform, but the components Yi,
2 ≤ i ≤ k, are distributed as follows:

PYi|Y1,...,Yi−1
(yi|y1, . . . , yi−1) =

{
3/4, if yi = yi−1

1/4 otherwise

(a) Find the decision rule that minimizes the probability of error.
Hint: Write down a short sample sequence (y1, . . . , yk) and determine its probability under each

hypothesis. Then generalize.

(b) Give a simple sufficient statistic for this decision. (For the purpose of this question,
a sufficient statistic is a function of y with the property that a decoder that observes
y can not achieve a smaller error probability than a MAP decoder that observes this
function of y.)
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(c) Suppose that the observed sequence alternates between 0 and 1 except for one string
of ones of length s, i.e. the observed sequence y looks something like

y = 0101010111111 . . . 111111010101

What is the least s such that we decide for hypothesis H = 1?

Problem 10. (SIMO channel with Laplacian noise)
One of the two signals c0 = −1, c1 = 1 is transmitted over the channel shown in

Figure 1a. The two noise random variables Z1 and Z2 are statistically independent of the
transmitted signal and of each other. Their density functions are

fZ1(α) = fZ2(α) =
1

2
e−|α|

X ∈ {c0, c1}

+

Z1

+

Z2

Y1

Y2

(a)

y1

y2

(y1, y2)

(1, 1)
b

a

(b)

Figure 1

(a) Derive a maximum likelihood decision rule.

(b) Describe the maximum likelihood decision regions in the (y1, y2) plane. Describe also
the “either choice” regions, i.e. the regions where it does not matter if you decide for
c0 or for c1.
Hint: Use geometric reasoning and the fact that for a point (y1, y2) as shown in Figure 1b, |y1 − 1|+
|y2 − 1| = a+ b.

(c) A receiver decides that c1 was transmitted if and only if (y1 + y2) > 0. Does this
receiver minimize the error probability for equally likely messages?

(d) What is the error probability of the receiver in (c)?
Hint: One way to do this is to use the fact that if W = Z1 +Z2, then fW (w) = e−ω

4 (1 + ω) for ω > 0

and fW (−ω) = fW (ω).
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x1

x2

−2 1

(a)

x1

x2
2

2

(b)

x1

x2

2

1

(c)

Figure 2

Problem 11. (Q function on regions)
Let X ∼ N (0, σ2I2). For each of the three diagrams shown in Figure 2, express the

probability that X lies in the shaded region. You may use the Q function when appropriate.

Problem 12. (Properties of the Q function)
Prove properties (a) through (d) of the Q function defined in Section 2.3.

Hint: For property (d), multiply and divide inside the integral by the integration variable and integrate by

parts. By upper- and lower-bounding the resulting integral, you will obtain the lower and upper bound.

Problem 13. (16-PAM vs. 16-QAM)
The two signal constellations shown below are used to communicate across an additive

white Gaussian noise channel. Let the noise variance be σ2. Each point represents a
codeword ci for some i. Assume each codeword is used with the same probability.

x
0

a

x1

x2
b

(a) For each signal constellation, compute the average probability of error Pe as a function
of the parameters a and b, respectively.
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(b) For each signal constellation, compute the average energy per symbol E as a function
of parameters a and b, respectively:

E =
16∑
i=1

PH(i)‖ci‖2

In the next chapter it will become clear in what sense E relates to the energy of the
transmitted signal (see Example 3.2 and the discussion that follows).

(c) Plot Pe versus E
σ2 for both signal constellations and comment.

Problem 14. (QPSK decision regions)
Let H ∈ {0, 1, 2, 3} as assume that when H = i you transmit the codeword ci shown

below. Under H = i, the receiver observes Y = ci + Z.

y1

y2

c0

c1

c2

c3

(a) Draw the decoding regions assuming that Z ∼ N (0, σ2I2) and that PH(i) = 1/4,
i ∈ {0, 1, 2, 3}.

(b) Draw the decoding regions (qualitatively) assuming Z ∼ N (0, σ2I2) and PH(0) =
PH(2) > PH(1) = PH(3). Justify your answer.

(c) Assume again that PH(i) = 1/4, i ∈ {0, 1, 2, 3} and that Z ∼ N (0, K), where K =(
σ2 0
0 4σ2

)
. How do you decode now?

Problem 15. (Antenna array)
The following problem relates to the design of multi-antenna systems. Consider the

binary equiprobable hypothesis testing problem:

H = 0 : Y1 = A+ Z1, Y2 = A+ Z2

H = 1 : Y1 = −A+ Z1, Y2 = −A+ Z2

where Z1, Z2 are independent Gaussian random variables with different variances σ2
1 6= σ2

2,
that is, Z1 ∼ N (0, σ2

1) and Z2 ∼ N (0, σ2
2). A > 0 is a constant.
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(a) Show that the decision rule that minimizes the probability of error (based on the
observable Y1 and Y2) can be stated as

σ2
2y1 + σ2

1y2
0

≷
1

0

(b) Draw the decision regions in the (Y1, Y2) plane for the special case where σ1 = 2σ2.

(c) Evaluate the probability of the error for the optimal detector as a function of σ2
1, σ2

2

and A.

Problem 16. (Multi-antenna receiver)
Consider a communication system with one transmitter and n receiver antennas. The

receiver observes the n-tuple Y = (Y1, . . . , Yn)T with

Yk = Bgk + Zk, k = 1, 2, . . . , n

where B ∈ {±1} is a uniformly distributed source bit, gk models the gain of antenna k
and Zk ∼ N (0, σ2). The random variables B,Z1, . . . , Zn are independent. Using n-tuple
notation the model becomes

Y = Bg + Z,

where Y , g, and Z are n-tuples.

(a) Suppose that the observation Yk is weighted by an arbitrary real number wk and com-
bined with the other observations to form

V =
n∑
k=1

Ykwk = 〈Y,w〉,

where w is an n-tuple. Describe the ML receiver for B given the observation V . (The
receiver knows g and of course knows w.)

(b) Give an expression for the probability of error Pe.

(c) Define β = |〈g,w〉|
‖g‖‖w‖ and rewrite the expression for Pe in a form that depends on w only

through β.

(d) As a function of w, what are the maximum and minimum values for β and how do you
choose w to achieve them?

(e) Minimize the probability of error over all possible choices of w. Could you reduce the
error probability further by doing ML decision directly on Y rather than of V ? Justify
your answer.

(f) How would you choose w to minimize the error probability if Zk had variance σ2
k,

k = 1, . . . , n?
Hint: With a simple operation at the receiver you can transform the new problem into the one you

have already solved.
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Problem 17. (Signal constellation)
The signal constellation shown below is used to communicate across the AWGN channel

of noise variance σ2. Assume that the six signals are used with equal probability.

x1

x2
b

a

(a) Draw the boundaries of the decision regions.

(b) Compute the average probability of error, Pe, for this signal constellation.

(c) Compute the average energy per symbol for this signal constellation.

Problem 18. (Hypothesis testing and fading)
Consider the following communication problem where there are two equiprobable hy-

potheses. When H = 0, we transmit c0 = −b, where b is an arbitrary but fixed positive
number. When H = 1, we transmit c1 = b. The channel is as shown below, where
Z ∼ N (0, σ2) represents noise, A ∈ {0, 1} represents a random attenuation (fading) with
PA(0) = 1

2
, and Y is the channel output. The random variables H, A, and Z are indepen-

dent.

X ∈ {c0, c1} × + Y

A Z

(a) Find the decision rule that the receiver should implement to minimize the probability
of error. Sketch the decision regions.

(b) Calculate the probability of error Pe, based on the above decision rule.

Problem 19. (MAP decoding regions)
To communicate across an additive white Gaussian noise channel, an encoder uses the

codewords ci, i = {0, 1, 2}, shown below:

c0 = (1, 0)T

c1 = (−1, 0)T

c2 = (−1, 1)T

13



(a) Draw the decoding regions of an ML decoder.

(b) Now assume that codeword i is used with probability PH(i), where PH(0) = PH(1) = 1
4
,

PH(2) = 1
2

and that the receiver performs a MAP decision. Adjust the decoding regions
accordingly. (A qualitative illustration suffices.)

(c) Finally, assume that the noise variance increases (same variance in both components).
Update the decoding regions of the MAP decision rule. (Again, a qualitative illustration
suffices.)

Problem 20. (Sufficient statistic)
Consider a binary hypothesis testing problem specified by:

H = 0 :

{
Y1 = Z1

Y2 = Z1Z2

H = 1 :

{
Y1 = −Z1

Y2 = −Z1Z2,

where Z1, Z2, and H are independent random variables. Is Y1 a sufficient statistic?

Problem 21. (More on sufficient statistic)
We have seen that if H → T (Y ) → Y , then the probability of error Pe of a MAP

decoder that decides on the value of H upon observing both T (Y ) and Y is the same as
that of a MAP decoder that observes only T (Y ). It is natural to wonder if the contrary
is also true, specifically if the knowledge that Y does not help reduce the error probability
that we an achieve with T (Y ) implies H → T (Y ) → Y . Here is a counter-example. Let
the hypothesis H be either 0 or 1 with equal probability. (The distribution of H is critical
in this example.) Let the observable Y take four values with conditional probabilities

PY |H(y|0) =


0.4 if y = 0

0.3 if y = 1

0.2 if y = 2

0.1 if y = 3

PY |H(y|1) =


0.1 if y = 0

0.2 if y = 1

0.3 if y = 2

0.4 if y = 3

and T (Y ) is the function

T (y) =

{
0 if y = {0, 1}
1 if y = {2, 3}

(a) Show that the MAP decoder Ĥ(T (y)) that decides based on T (y) is equivalent to the
MAP decoder Ĥ(y) that operates based on y.

(b) Compute the probabilities Pr {Y = 0|T (Y ) = 0, H = 0} and Pr {Y = 0|T (Y ) = 0, H = 1}.
Is it true that H → T (Y )→ Y ?
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Problem 22. (Fisher–Neyman factorization theorem)
Consider the hypothesis testing problem where the hypothesis is H ∈ {0, 1, . . . ,m− 1},

the observable is Y , and T (Y ) is a function of the observable. Let fY |H(y|i) be given for all
i ∈ {0, 1, . . . ,m − 1}. Suppose that there are positive functions g0, g1, . . . , gm−1, h so that
for each i ∈ {0, 1, . . . ,m− 1} one can write

fY |H(y|i) = gi(T (y))h(y) (1)

(a) Show that when the above conditions are satisfied, a MAP decision depends on the
observable Y only through T (Y ). In other words, Y itself is not necessary.
Hint: Work directly with the definition of a MAP decision rule.

(b) Show that T (Y ) is a sufficient statistic, that is H → T (Y )→ Y .
Hint: Start by observing the following fact: Given a random variable Y with probability density
function fY (y) and given an arbitrary event B, we have

fY |Y ∈B =
fY (y)1 {y ∈ B}∫
B fY (y)dy

(2)

Proceed by defining B to be the event B = {y : T (y) = t} and make use of (2) applied to fY |H(y|i) to

prove that fY |H,T (Y )(y|i, t) is independent of i.

(c) (Example 1) Under hypothesis H = i, let Y = (Y1, Y2, . . . , Yn), Yk ∈ {0, 1}, be an
independent and identically distributed sequence of coin tosses such that PYk|H(1|i) =
pi. Show that the function T (y1, y2, . . . , yn) =

∑n
k=1 yk fulfills the condition expressed

in equation (1). Notice that T (y1, y2, . . . , yn) is the number of 1s in y.

(d) (Example 2) Under hypothesis H = i, let the observable Yk be Gaussian distributed
with mean mi and variance 1; that is

fYk|H(y|i) =
1√
2π
e−

(y−mi)
2

2 ,

and Y1, Y2, . . . , Yn be independently drawn according to this distribution. Show that
the sample mean T (y1, y2, . . . , yn) = 1

n

∑n
k=1 yk fulfills the condition expressed in (1).

Problem 23. (Irrelevance and operational irrelevance)
Let the hypothesis H be related to the observables (U, V ) via the channel PU,V |H and

for simplicity assume that PU |H(u|h) > 0 and PV |U,H(v|u, h) > 0 for every h ∈ H, v ∈ V ,
and u ∈ U . We say that V is operationally irrelevant if a MAP decoder that observes
(U, V ) achieves the same probability of error as one that observes only U , and this is true
regardless of PH . We now prove that irrelevance and operational irrelevance imply one
another. We have already proved that irrelevance implies operational irrelevance. Hence it
suffices to show that operational irrelevance implies irrelevance or, equivalently, that if V
is not irrelevant, then it is not operationally irrelevant. We will prove the latter statement.
We begin with a few observations that are instructive. By definition, V irrelevant means
H → U → V . Hence V irrelevant is equivalent to the statement that, conditioned on U , the
random variables H and V are independent. This gives us one intuitive explanation about
why V is operationally irrelevant when H → U → V . Once we observe that U = u, we can
restate the hypothesis testing problem in terms of a hypothesis H and an observable V that
are independent (conditioned on U = u) and because of independence, from V we learn
nothing about H. But if V is not irrelevant, then there is at least a u, call it u?, for which
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H and V are not independent condition on U = u?. It is when such a u is observed that we
should be able to prove that V affects the decision. This suggests that the problem we are
trying to solve is intimately related to the simpler problem that involves the hypothesis H
and the observable V and the two are not independent. We begin with this problem and
then we generalize.

(a) Let the hypothesis be H ∈ H (of yet unspecified distribution) and let the observable
V ∈ V be related to H via an arbitrary but fixed channel PV |H . Show that if V is
not independent of H then there are distinct elements i, j ∈ H and distinct elements
k, l ∈ V such that

PV |H(k|i) > PV |H(k|j)
PV |H(l|i) < PV |H(l|j)

Hint: For every h ∈ H,
∑
v∈V PV |H(v|h) = 1.

(b) Under the condition of part (a), show that there is a distribution PH for which the
observable V affects the decision of a MAP decoder.

(c) Generalize to show that if the observables are U and V , and PU,V |H is fixed so that
H → U → V does not hold, then there is a distribution on H for which V is not
operationally irrelevant.
Hint: Argue as in parts (a) and (b) for the case U = u?, where u? is as described above.

Problem 24. (Antipodal signaling)
Consider the signal constellation shown below:

x1

x2

c1

c0

a

−a

a−a

Assume that the codewords c0 and c1 are used to communicate over the discrete-time
AWGN channel. More precisely:

H = 0 : Y = c0 + Z,

H = 1 : Y = c1 + Z,

where Z ∼ N (0, σ2I2). Let Y = (Y1, Y2)
T.

(a) Argue that Y1 is not a sufficient statistic.

(b) Give a different signal constellation with two codewords c̃0 and c̃1 such that, when used
in the above communication setting, Y1 is a sufficient statistic.
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Problem 25. (Is it a sufficient statistic?)
Consider the following hypothesis testing problem:

H = 0 : Y = c0 + Z,

H = 1 : Y = c1 + Z,

where c0 = −c1 = (1, 1)T and Z ∼ N (0, σ2I2).

(a) Can the error probability of an ML decoder that observes Y = (Y1, Y2)
T be lower than

that of an ML decoder that observes Y1 + Y2?

(b) Argue whether or not H → (Y1 + Y2)→ Y forms a Markov chain.
Hint: Y is in a one-to-one relationship with (Y1 + Y2, Y1 − Y2).

Hint: Argue that the random variables Z1 + Z2 and Z1 − Z2 are statistically independent.

Problem 26. (Union bound)
Let Z ∼ N (c, σ2I2) be a random vector that takes values in R2, where c = (2, 1)T. Find

a non-trivial upper bound to the probability that Z is in the shaded region of the figure
below.

z1

z2

1

1

c

Problem 27. (QAM with erasure)
Consider a QAM receiver that outputs a special symbol δ (called erasure) whenever the

observation falls in the shaded area shown in the figure below, and does minimum-distance
decoding otherwise. (This is neither a MAP nor an ML receiver.)

y1

y2

b− a

b
c0c1

c2 c3
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Assume that c0 ∈ R2 is transmitted and that Y = c0+N is received where N ∼ N (0, σ2I2).
Let P0i, i = {0, 1, 2, 3} be the probability that the receiver outputs Ĥ = i and let P0δ be
the probability that it outputs δ. Determine P00, P01, P02, P03, and P0δ.
Comment: If we choose b− a large enough, we can make sure that the probability of error is very small

(we say that an error occured if Ĥ = i, i ∈ {0, 1, 2, 3} and H 6= Ĥ). When Ĥ = δ, the receiver can ask

for a retransmission of H. This requires a feedback channel from the receiver to the transmitter. In most

practical applications, such a feedback channel is available.

Problem 28. (Repeat codes and Bhattacharyya bound)
Consider two equally likely hypotheses. Under hypothesis H = 0, the transmitter sends

c0 = (1, . . . , 1)T and under H = 1 it sends c1 = (−1, . . . ,−1)T, both of length n. The
channel model is AWGN with variance σ2 in each component. Recall that the probability
of error for an ML receiver that observes the channel output Y ∈ Rn is

Pe = Q

(√
n

σ

)
Suppose now that the decoder has access only to the sign of Yi, 1 ≤ i ≤ n, i.e. it observes

W = (W1, . . . ,Wn) = (sign(Y1), . . . , sign(Yn))

(a) Determine the MAP decision rule based on the observable W . Give a simple sufficient
statistic.

(b) Find the expression for the probability of error P̃e of the MAP decoder that observes
W . You may assume that n is odd.

(c) Your answer to (b) contains a sum that cannot be expressed in closed form. Express
the Bhattacharyya bound on P̃e.

(d) For n = 1, 3, 5, 7, find the numerical values of Pe, P̃e, and the Bhattacharyya bound on
P̃e.

Problem 29. (Tighter union Bhattacharyya bound: Binary case)
In this problem we derive a tighter version of the union Bhattacharyya bound for binary

hypotheses. Let

H = 0 : Y ∼ fY |H(y|0)

H = 1 : Y ∼ fY |H(y|1)

The MAP decision rule is

Ĥ(y) = arg max
i
PH(i)fY |H(y|i),

and the resulting probability of error is

Pe = PH(0)

∫
R1

fY |H(y|0)dy + PH(1)

∫
R0

fY |H(y|1)dy
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(a) Argue that

Pe =

∫
y

min
{
PH(0)fY |H(y|0), PH(1)fY |H(y|1)

}
dy

(b) Prove that for a, b ≥ 0, min(a, b) ≤
√
ab ≤ a+b

2
. Use this to prove the tighter version

of the Bhattacharyya bound, i.e.

Pe ≤
1

2

∫
y

√
fY |H(y|0)fY |H(y|1)dy

(c) Compare the above bound to (2.19) when there are two equiprobable hypotheses. How
do you explain the improvement by a factor 1

2
?

Problem 30. (Tighter union Bhattacharyya bound: M-ary case)
In this problem we derive a tight version of the union bound for M -ary hypotheses. Let

us analyze the following M -ary MAP detector:

Ĥ(y) = min

{
i : PH(i)fY |H(y|i) = max

j

{
PH(j)fY |H(y|j)

}}
Let

Bi,j =

{
y : PH(j)fY |H(y|j) ≥ PH(i)fY |H(y|i), j < i

y : PH(j)fY |H(y|j) > PH(i)fY |H(y|i), j > i

(a) Verify that Bi,j = Bcj,i.

(b) Given H = i, the detector will make an error if and only if y ∈
⋃
j:j 6=i Bi,j. The

probability of error Pe =
∑M−1

i=0 Pe(i)PH(i). Show that:

Pe ≤
M−1∑
i=0

∑
j>i

[Pr {Y ∈ Bi,j|H = i}PH(i) + Pr {Y ∈ Bj,i|H = j}PH(j)]

=
M−1∑
i=0

∑
j>i

[∫
Bi,j

fY |H(y|i)PH(i)dy +

∫
Bci,j

fY |H(y|j)PH(j)dy

]

=
M−1∑
i=0

∑
j>i

[∫
y

min
{
fY |H(y|i)PH(i), fY |H(y|j)PH(j)

}
dy

]
To prove the last part, go back to the definition of Bi,j.

(c) Hence show that:

Pe ≤
M−1∑
i=0

∑
j>i

[(
PH(i) + PH(j)

2

)∫
y

√
fY |H(y|i)fY |H(y|j)dy

]
Hint: For a, b ≥ 0, min(a, b) ≤

√
ab ≤ a+b

2 .
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Problem 31. (Applying the tight Bhattacharyya bound)
As an application of the tight Bhattacharyya bound (Exercise 29), consider the following

binary hypothesis testing problem

H = 0 : Y ∼ N
(
−a, σ2

)
H = 1 : Y ∼ N

(
+a, σ2

)
,

where the two hypotheses are equiprobable.

(a) Use the tight Bhattacharyya bound to derive a bound on Pe.

(b) We know that the probability of error for this binary hypothesis testing problem is

Q
(
a
σ

)
≤ 1

2
exp

(
− a2

2σ2

)
, where we have used the result Q(x) ≤ 1

2
exp

(
−x2

2

)
. How do

the two bounds compare? Comment on the result.

Problem 32. (Bhattacharyya bound for DMCs)
Consider a discrete memoryless channel (DMC). This is a channel model described by

an input alphabet X , an output alphabet Y , and a transition probability1 PY |X(y|x). When
we use this channel to transmit an n-tuple x ∈ X n, the transition probability is

PY |X(y|x) =
n∏
i=1

PY |X(yi|xi)

So far, we have come across two DMCs, namely the BSC (binary symmetric channel) and
the BEC (binary erasure channel). The purpose of this problem is to see that for DMCs, the
Bhattacharyya bound takes a simple form, in particular when the channel input alphabet
X contains only two letters.

(a) Consider a transmitter that sends c0 ∈ X n and c1 ∈ X n with equal probability. Justify
the following chain of (in)equalities:

Pe
(a)

≤
∑
y

√
PY |X(y|c0)PY |X(y|c1)

(b)
=
∑
y

√√√√ n∏
i=1

PY |X(yi|c0,i)PY |X(yi|c1,i)

(c)
=

∑
y1,...,yn

n∏
i=1

√
PY |X(yi|c0,i)PY |X(yi|c1,i)

(d)
=
∑
y1

√
PY |X(y1|c0,1)PY |X(y1|c1,1)

· · ·
∑
yn

√
PY |X(yn|c0,n)PY |X(yn|c1,n)

(e)
=

n∏
i=1

∑
y

√
PY |X(y|c0,i)PY |X(y|c1,i)

(f)
=

∏
a∈X ,b∈X ,a 6=b

(∑
y

√
PY |X(y|a)PY |X(y|b)

)n(a,b)

,

1Here we are assuming that the output alphabet is discrete. Otherwise we use densities instead of
probabilities.
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where n(a, b) is the number of positions i in which c0,i = a and c1,i = b.

(b) The Hamming distance dH(c0, c1) is defined as the number of positions in which c0 and
c1 differ. Show that for a binary input channel, i.e. when X = {a, b}, the Bhattacharyya
bound becomes

Pe ≤ zdH(c0,c1),

where

z =
∑
y

√
PY |X(y|a)PY |X(y|b)

Notice that z depends only on the channel, whereas its exponent depends only on c0
and c1.

(c) Evaluate the channel parameter z for the following.

(i) The binary input Gaussian channel described by the densities

fY |X(y|0) = N
(
−
√
E, σ2

)
fY |X(y|1) = N

(√
E, σ2

)
(ii) The binary symmetric channel (BSC) with X = Y = {±1} and transition prob-

abilities described by

PY |X(y|x) =

{
1− δ, if y = x

δ, otherwise

(iii) The binary erasure channel (BEC) with X = {±1}, Y = {−1, E, 1}, and transi-
tion probabilities given by

PY |X(y|x) =


1− δ, if y = x,

δ, if y = E,

0, otherwise

Problem 33. (Bhattacharyya bound and Laplacian noise)
Assuming two equiprobable hypotheses, evaluate the Bhattacharyya bound for the fol-

lowing (Laplacian noise) setting:

H = 0 : Y = −a+ Z

H = 1 : Y = +a+ Z,

where a ∈ R+ is a constant and Z is a random variable of probability density function
fZ(z) = 1

2
exp (−|z|), z ∈ R.

Problem 34. (Dice tossing)
You have two dice, one fair and one biased. A friend tells you that the biased die pro-

duces a 6 with probability 1
4
, and produces the other values with uniform probabilities. You

do not know a priori which of the two is a fair die. You choose with uniform probabilities
one of the two dice, and perform n consecutive tosses. Let Yi ∈ {1, . . . , 6} be the random
variable modeling the ith experiment and let Y = (Y1, . . . , Yn).
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(a) Based on the observable Y , find the decision rule to determine whether the die you
have chosen is biased. Your rule should maximize the probability that the decision is
correct.

(b) Identify a sufficient statistic S ∈ N.

(c) Find the Bhattacharyya bound on the probability of error. You can either work with
the observable (Y1, . . . , Yn) or with (Z1, . . . , Zn), where Zi indicates whether the ith
observation is a 6 or not. Yet another alternative is to work with S.
Hint: Depending on the approach, the following may be useful:

∑n
i=0

(
n
i

)
xi = (1 + x)n for n ∈ N.

Problem 35. (ML receiver and union bound for orthogonal signaling)
Let H ∈ {1, . . . ,m} be uniformly distributed and consider the communication problem

described by:
H = i : Y = ci + Z, Z ∼ N

(
0, σ2Im

)
,

where c1, . . . , cm, ci ∈ Rm, is a set of constant-energy orthogonal codewords. Without loss
of generality we assume

ci =
√
Eei,

where ei is the ith unit vector in Rm, i.e. the vector that contains 1 at position i and 0
elsewhere, and E is some positive constant.

(a) Describe the maximum-likelihood decision rule.

(b) Find the distances ‖ci − cj‖, i 6= j.

(c) Using the union bound and the Q function, upper bound the probability Pe(i) that the
decision is incorrect when H = i.

Problem 36. (Uniform polar to Cartesian)
Let R and Φ be independent random variables. R is distributed uniformly over the unit

interval, Φ is distributed uniformly over the interval [0, 2π).

(a) Interpret R and Φ as the polar coordinates of a point in the plane. It is clear that the
point lies inside (or on) the unit circle. Is the distribution of the point uniform over
the unit disk? Take a guess !

(b) Define the random variables

X = R cos Φ

Y = R sin Φ

Find the joint distribution of the random variables X and Y by using the Jacobian
determinant.

(c) Does the result of part (b) support or contradict your guess from part (a)? Explain.
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Problem 37. (Real-valued Gaussian random variables)
For the purpose of this exercise, two zero-mean real-valued Gaussian random variables

X and Y are called jointly Gaussian if and only if their joint density is

fX,Y (x, y) =
1

2π
√

det Σ
exp

(
−1

2
(x, y)Σ−1(x, y)T

)
,

where (for zero-mean random vectors) the so-called covariance matrix Σ is

Σ = E
[
(X, Y )T(X, Y )

]
=

(
σ2
X σXY

σXY σ2
Y

)
(a) Show that if X and Y are zero-mean jointly Gaussian random variables, then X is a

zero-mean Gaussian random variable, and so is Y .

(b) Show that if X and Y are independent zero-mean Gaussian random variables, then X
and Y are zero-mean jointly Gaussian random variables.

(c) However, if X and Y are Gaussian random variables but not independent, then X and
Y are not necessarily jointly Gaussian. Give an example where X and Y are Gaussian
random variables, yet they are not jointly Gaussian.

(d) Let X and Y be independent Gaussian random variables with zero mean and variance
σ2
X and σ2

Y , respectively. Find the probability density function of Z = X + Y .

Observe that no computation is required if we use the definition of jointly Gaussian
random variables given in Appendix 2.10.

Problem 38. (Correlation vs. independence)
Let Z be a random variable with probability density function

fZ(z) =

{
1/2, −1 ≤ z ≤ 1

0, otherwise

Also, let X = Z and Y = Z2.

(a) Show that X and Y are uncorrelated.

(b) Are X and Y independent?

(c) Now let X and Y be jointly Gaussian, zero mean, uncorrelated with variances σ2
X and

σ2
Y , respectively. Are X and Y independent? Justify your answer.

Problem 39. (Data-storage channel)
The process of storing and retrieving binary data on a thin-film disk can be modeled

as transmitting binary symbols across an additive white Gaussian noise channel where the
noise Z has a variance that depends on the transmitted (stored) binary symbol X. The
noise has the following input-dependent density:

fZ(z) =


1√
2πσ2

1

e
− z2

2σ21 if X = 1

1√
2πσ2

0

e
− z2

2σ20 if X = 0,

where σ1 > σ0. The channel inputs are equally likely.
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(a) On the same graph, plot the two possible output probability density functions. Indicate,
qualitatively, the decision regions.

(b) Determine the optimal receiver in terms of σ0 and σ1.

(c) Write an expression for the error probability Pe as a function of σ0 and σ1.

Problem 40. (A simple multiple-access scheme)
Consider the following very simple model of a multiple-access scheme. There are two

users. Each user has two hypotheses. Let H1 = H2 = {0, 1} denote the respective set of
hypotheses and assume that both users employ a uniform prior. Further, let X1 and X2

be the respective signals sent by user one and two. Assume that the transmissions of both
users are independent and that X1 ∈ {±1} and X2 ∈ {±2} where X1 and X2 are positive
if their respective hypotheses is zero and negative otherwise. Assume that the receiver
observes the signal Y = X1 + X2 + Z, where Z is a zero-mean Gaussian random variable
with variance σ2 and is independent of the transmitted signal.

(a) Assume that the receiver observes Y and wants to estimate both H1 and H2. Let Ĥ1

and Ĥ2 be the estimates. What is the generic form of the optimal decision rule?

(b) For the specific set of signals given, what is the set of possible observations, assuming
that σ2 = 0? Label these signals by the corresponding (joint) hypotheses.

(c) Assuming now that σ2 > 0, draw the optimal decision regions.

(d) What is the resulting probability of correct decision? That is, determine the probability

Pr
{
Ĥ1 = H1, Ĥ2 = H2

}
.

(e) Finally, assume that we are interested only by the transmission of user two. Describe

the receiver that minimizes the error probability and determine Pr
{
Ĥ2 = H2

}
.

Problem 41. (Data-dependent noise)
Consider the following binary Gaussian hypothesis testing problem with data-dependent

noise. Under hypothesis H = 0 the transmitted signal is c0 = −1 and the received signal
is Y = c0 + Z0, where Z0 is zero-mean Gaussian with variance one. Under hypothesis
H = 1 the transmitted signal is c1 = 1 and the received signal is Y = c1 + Z1, where Z1 is
zero-mean Gaussian with variance σ2. Assume that the prior is uniform.

(a) Write the optimal decision rule as a function of the parameter σ2 and the received
signal Y .

(b) For the value σ2 = e4 compute the decision regions.

(c) Give expressions as simple as possible for the error probabilities Pe(0) and Pe(1).
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Problem 42. (Correlated noise)
Consider the following communication problem. The message is represented by a uni-

formly distributed random variable H, that takes values in {0, 1, 2, 3}. When H = i we
send ci, where c0 = (0, 1)T, c1 = (1, 0)T, c2 = (0,−1)T, c3 = (−1, 0)T (see figure below).
When H = i, the receiver observes the vector Y = ci+Z, where Z is a zero-mean Gaussian

random vector of covariance matrix Σ =

(
4 2
2 5

)
.

c0

c1

c2

c3

1

1

−1

−1
x1

x2

(a) In order to simplify the decision problem, we transform Y into Ŷ = BY = Bci + BZ,
where B is a 2-by-2 invertible matrix, and use Ŷ as a sufficient statistic. Find a B
such that BZ is a zero-mean Gaussian random vector with independent and identically
distributed components.

Hint: If A = 1
4

(
2 0
−1 2

)
, then AΣAT = I, with I =

(
1 0
0 1

)
.

(b) Formulate the new hypothesis testing problem that has Ŷ as the observable and depict
the decision regions.

(c) Give an upper bound to the error probability in this decision problem.
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3 Receiver design for the continuous-time AWGN chan-

nel: Second layer

Problem 1. (Gram–Schmidt procedure on tuples)
By means of the Gram–Schmidt orthonormalization procedure, find an orthonormal

basis for the subspace spanned by the four vectors β1 = (1, 0, 1, 1)T, β2 = (2, 1, 0, 1)T,
β3 = (1, 0, 1,−2)T, and β4 = (2, 0, 2,−1)T.

Problem 2. (Gram–Schmidt procedure on two waveforms)
Use the Gram–Schmidt procedure to find an orthonormal basis for the vector space

spanned by the functions shown below.

w0(t)

t
T

1

w1(t)

t

2

T
2

Problem 3. (Gram–Schmidt procedure on three waveforms)

β0(t)

t

1

2

1

β1(t)

t

1

2

1 2

β2(t)

t

1

2

1 2 3

(a) By means of the Gram–Schmidt procedure, find an orthonormal basis for the space
spanned by the above waveforms.

(b) In your chosen orthonormal basis, let w0(t) and w1(t) be represented by the codewords
c0 = (3,−1, 1)T and c1 = (−1, 2, 3)T respectively. Plot w0(t) and w1(t).

(c) Compute the (standard) inner products 〈c0, c1〉 and 〈w0, w1〉 and compare them.

(d) Compute the norms ‖c0‖ and ‖w0‖ and compare them.
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Problem 4. (Orthonormal expansion)

w0(t)

t

1

1

w1(t)

t

1
2

w2(t)

t

1
3

w3(t)

t

1

3

For the signal set shown above, do the following.

(a) Use the Gram–Schmidt (GS) procedure to find an orthonormal basis ψ1(t), . . . , ψn(t).
Hint: No need to work out the intermediary steps of the GS procedure. The purpose of this exercise

is to check, with hardly any calculation, your understanding of what the GS procedure does.

(b) Find the codeword ci ∈ Rn that describes wi(t) with respect to your orthonormal basis.
(No calculation needed.)

Problem 5. (Noise in regions)
Let N(t) be white Gaussian noise of power spectral density N0

2
and g1(t), g2(t), g3(t) be

the waveforms shown below:

g1(t)

t

1

−1

T

g2(t)

t

1

−1

T

g3(t)

t

1

−1

T

For i = 1, 2, 3, let Zi =
∫
N(t)g∗i (t)dt, Z = (Z1, Z2)

T, and U = (Z1, Z3)
T.

(a) Determine the norm ‖gi‖, i = 1, 2, 3.

(b) Are Z1 and Z2 independent? Justify your answer.

(c) Find the probability Pa that Z lies in the square of Figure 3a.

(d) Find the probability Pb that Z lies in the square of Figure 3b.

(e) Find the probability Qa that U lies in the square of Figure 3a.

(f) Find the probability Qb that U lies in the square of Figure 3c.

Problem 6. (Two-signals error probability)
The two signals shown below are used to communicate one bit across the continuous-

time AWGN channel of power spectral density N0

2
= 6 W

Hz
. Write an expression for the error

probability of an ML receiver.
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Z1

Z2 or Z3

1

1

2

2

(a)

Z1

Z2

−
√

2

−2
√

2

(b)

Z1

Z2 or Z3

−1

1

−2

2

(c)

Figure 3

t

w0(t)√
1
T

2T
t

w1(t)√
1
T

T

3T

Problem 7. (On-off signaling)
Consider the binary hypothesis testing problem specified by:

H = 0 : R(t) = w(t) +N(t)

H = 1 : R(t) = N(t),

where N(t) is additive white Gaussian noise of power spectral density N0

2
and w(t) is the

signal shown in Figure 4a.

t

w(t)

1

−1

T

3T

(a)

t

h(t)

1

2T

(b)

Figure 4

(a) Describe the maximum likelihood receiver for the received signal R(t), t ∈ R.

(b) Determine the error probability for the receiver you described in (a).
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(c) Sketch a block diagram of your receiver of part (a) using a filter with impulse response
h(t) (or a scaled version thereof) shown in Figure 4b.

Problem 8. (QAM receiver)
Let the channel output be

R(t) = W (t) +N(t),

where W (t) has the form

W (t) =

{
X1

√
2
T

cos 2πfct+X2

√
2
T

sin 2πfct 0 ≤ t ≤ T

0 otherwise,

2fcT ∈ Z is a constant known to the receiver, X = (X1, X2) is a uniformly distributed
random vector that takes values in{√

E(1, 1),
√
E(−1, 1),

√
E(−1,−1),

√
E(1,−1)

}
for some known constant E , and N(t) is white Gaussian noise of power spectral density N0

2
.

(a) Specify a receiver that, based on the channel output R(t), decides on the value of the
vector X with least probability of error.

(b) Find the error probability of the receiver you have specified.

Problem 9. (Signaling scheme example)
Let the messageH be uniformly distributed over the message setH =

{
0, 1, 2, . . . , 2k − 1

}
.

When H = i ∈ H, the transmitter sends wi(t) = w(t− i T
2k

), where w(t) is shown below:

w(t)

t

A

T
2k

The channel output is R(t) = wi(t) + N(t), where N(t) denotes white Gaussian noise of
power spectral density N0

2
.

Sketch a block diagram of a receiver that, based on R(t), decides on the value of H with
least probability of error.

Problem 10. (Matched filter implementation)
In this problem, we consider the implementation of matched filter receivers. In partic-

ular, we consider frequency-shift keying (FSK) with the following signals:

wj(t) =

{√
2
T

cos 2π
nj
T
t 0 ≤ t ≤ T

0 otherwise,

where nj ∈ Z and 0 ≤ j ≤ m− 1. Thus, the communication scheme consists of m signals
wj(t) of different frequencies

nj
T

.
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(a) Determine the impulse response hj(t) of a causal matched filter for the signal wj(t).
Plot hj(t) and specify the sampling time.

(b) Sketch the matched filter receiver. How many matched filters are needed?

(c) Sketch the output of the matched filter with impulse response hj(t) when the input is
wj(t).

Problem 11. (Matched filter intuition)
In this problem, we develop further intuition about matched filters. You may assume

that all waveforms are real-valued. Let R(t) = ±w(t) +N(t) be the channel output, where
N(t) is additive white Gaussian noise of power spectral density N0

2
and w(t) is an arbitrary

but fixed pulse. Let φ(t) be a unit-norm but otherwise arbitrary pulse, and consider the
receiver operation

Y = 〈R, φ〉 = 〈w, φ〉+ 〈N, φ〉
The signal-to-noise ratio (SNR) is defined as

SNR ,
|〈w, φ〉|2

E[|〈N, φ〉|2]

Notice that the SNR remains the same if we scale φ(t) by a constant factor. Notice also
that

E[|〈N, φ〉|2] =
N0

2

(a) Use the Cauchy–Schwarz inequality to give an upper bound on the SNR. What is the
condition for equality in the Cauchy–Schwarz inequality? Find the φ(t) that maximizes
the SNR. What is the relationship between the maximizing φ(t) and the signal w(t)?

(b) Let us verify that we would get the same result using a pedestrian approach. Instead
of waveforms we consider tuples. So let c = (c1, c2)

T ∈ R2 and use calculus (instead of
the Cauchy–Schwarz inequality) to find the φ = (φ1, φ2)

T ∈ R2 that maximizes 〈c, φ〉
subject to the constraint that φ has unit norm.

(c) Verify with a picture (convolution) that the output at time T of a filter with input
w(t) and impulse response h(t) = w(T − t) is indeed 〈w,w〉 =

∫∞
−∞w

2(t)dt.

Problem 12. (Two receive antennas)
Consider the following communication problem. The message is represented by a uni-

formly distributed random variable X ∈ {±1}. The transmitter sends Xw(t) where w(t) is
a unit-energy pulse known to the receiver. There are two channels with output R1(t) and
R2(t) such that

R1(t) = Xβ1w(t− τ1) +N1(t)

R2(t) = Xβ2w(t− τ2) +N2(t),

where β1, β2, τ1, τ2 are constants known to the receiver and N1(t) and N2(t) are white Gaus-
sian noise of power spectral density N0

2
. We assume that N1(t) and N2(t) are independent

of each other and independent of X. We also assume that
∫
w(t−τ1)w(t−τ2)dt = γ, where

−1 ≤ γ ≤ 1.
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(a) Describe an ML receiver for X that observes both R1(t) and R2(t). Determine its
probability of error in terms of the Q function, β1, β2, γ, and N0

2
.

(b) Repeat part (a) assuming that the receiver has access only to the sum-signal R(t) =
R1(t) +R2(t).

Problem 13. (Receiver)
The signal set

w0(t) = sinc2(t)

w1(t) =
√

2sinc2(t) cos(4πt)

is used to communicate across the AWGN channel of noise power spectral density N0

2
.

(a) Sketch a block diagram of an ML receiver for the above signal set. (No need to worry
about filter causality.)

(b) Determine the error probability of your receiver assuming that w0(t) and w1(t) are
equally likely.

(c) If you keep the same receiver, but use w0(t) with probability 1
3

and w1(t) with proba-
bility 2

3
, does the error probability increase, decrease, or stay the same?

Problem 14. (ML receiver with single causal filter)
Let w1(t) be as shown below and let w2(t) = w1(t−Td), where Td ≥ T is a fixed number

known to the receiver.

w1(t)

t

A

T

One of the two pulses is selected at random and transmitted across the AWGN channel of
noise power spectral density N0

2
.

(a) Describe an ML receiver that decides which pulse was transmitted. The n-tuple former
must contain a single causal matched filter. Finally, draw the matched filter impulse
response.

(b) Express the error probability of the receiver in (a) in terms of A, T, Td, N0. Consider
both cases Td ≥ T and Td < T .
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Problem 15. (Delayed signals)
One of the two signals shown below is selected at random and is transmitted over the

additive white Gaussian noise channel of power spectral density N0

2
.

t

w0(t)√
1
T

2T
t

w1(t)√
1
T

T

3T

Draw a block diagram of a maximum likelihood receiver that uses a single matched filter
and express its error probability.

Problem 16. (ML decoder for AWGN channel)
The signal R(t) is fed to an ML receiver designed for a transmitter that uses the four

signals {w0(t), w1(t), w2(t), w3(t)} shown below to communicate across the AWGN channel.
Determine the receiver output Ĥ.

R(t)

t

1

2

w0(t)

t

1

1

w1(t)

t

1
2

w2(t)

t

1
3

w3(t)

t

1

3

Problem 17. (AWGN channel and sufficient statistic)
LetW = {w0(t), w1(t)} be the signal constellation used to communicate an equiprobable

bit across an additive Gaussian noise channel. In this exercise, we verify that the projection
of the channel output onto the inner product space V spanned by W is not necessarily a
sufficient statistic, unless the noise is white.
Let ψ1(t), ψ2(t) be an orthonormal basis for V . We choose the additive noise to be N(t) =
Z1ψ1(t) + Z2ψ2(t) + Z3ψ3(t) for some normalized ψ3(t) that is orthogonal to ψ1(t) and
ψ2(t), and choose Z1, Z2, Z3 to be zero-mean jointly Gaussian random variables of identical
variance σ2. Let ci = (ci,1, ci,2, 0)T be the codeword associated to wi(t) with respect to
the extended orthonormal basis ψ1(t), ψ2(t), ψ3(t). There is a one-to-one correspondence
between the channel output R(t) and Y = (Y1, Y2, Y3)

T, where Yi = 〈R,ψi〉. In terms of Y ,
the hypothesis testing problem is

H = i : Y = ci + Z, i = {0, 1},

where we have defined Z = (Z1, Z2, Z3)
T.

(a) As a warm-up exercise, let us first assume that Z1, Z2, Z3 are independent. Use the
Fisher–Neyman factorization theorem to show that (Y1, Y2)

T is a sufficient statistic.
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(b) Now assume that Z1 and Z2 are independent, but Z3 = Z2. Prove that in this case
(Y1, Y2)

T is not a sufficient statistic.

(c) To check a specific case, consider c0 = (1, 0, 0)T and c1 = (0, 1, 0)T. Determine the error
probability of an ML receiver that observes (Y1, Y2)

T and that of another ML receiver
that observes (Y1, Y2, Y3)

T.

Problem 18. (Mismatched receiver)
Let a channel output be

R(t) = cXw(t) +N(t), (3)

where c > 0 is some deterministic constant, X is a uniformly distributed random variable
that takes values in {−3,−1, 1, 3}, w(t) = 1[0,1)(t), and N(t) is white Gaussian noise of
power spectral density N0

2
.

(a) Describe the receiver that, based on the channel output R(t), decides on the value of
X with least probability of error.

(b) Find the error probability of the receiver in part (a).

(c) Suppose now that you still use the receiver in part (a), but that the received signal is
actually

R(t) =
3

4
cXw(t) +N(t),

i.e. you were unaware that the channel was attenuating the signal. What is the
probability of error now?

(d) Suppose now that you still use the receiver in part (a) and that R(t) is according to
(3), but that the noise is colored. In fact, N(t) is a zero-mean stationary Gaussian
noise process of auto-covariance function

KN(τ) =
1

4α
e−|τ |/α,

where 0 < α < ∞ is some deterministic real parameter. What is the probability of
error now?
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4 Signal design trade-offs

Problem 1. (Signal translation)
Consider the signals w0(t) and w1(t) shown below, used to communicate 1 bit across

the AWGN channel of power spectral density N0

2
.

t

w0(t)

1

−1

2T
t

w1(t)

1

−1

2T

(a) Determine an orthonormal basis {ψ0(t), ψ1(t)} for the space spanned by {w0(t), w1(t)}
and find the corresponding codewords c0 and c1. Work out two solutions, one obtained
via Gram–Schmidt and one in which ψ1(t) is a delayed version of ψ0(t). Which of the
two solutions would you choose if you had to implement the system?

(b) Let X be a uniformly distributed binary random variable that takes values in {0, 1}.
We want to communicate the value of X over an additive white Gaussian noise channel.
When X = 0, we send w0(t), and when X = 1, we send w1(t). Draw the block diagram
of an ML receiver based on a single matched filter.

(c) Determine the error probability Pe of your receiver as a function of T and N0.

(d) Find a suitable waveform v(t) such that the signals w̃0(t) = w0(t) − v(t) and w̃1(t) =
w1(t)− v(t) have minimum energy. Plot the resulting waveforms.

(e) What is the name of the signaling scheme that uses signals such as w̃0(t) and w̃1(t)?
Argue that one obtains this kind of signaling scheme independently of the initial choice
of w0(t) and w1(t).

Problem 2. (Orthogonal signal sets)
Consider a set W = {w0(t), . . . , wm−1(t)} of mutually orthogonal signals with squared

norm E , each used with equal probability.

(a) Find the minimum-energy signal set W̃ = {w̃0(t), . . . , w̃m−1(t)} obtained by translating
the original set.

(b) Let Ẽ be the average energy of a signal picked at random within W̃ . Determine Ẽ and
the energy saving E − Ẽ .

(c) Determine the dimension of the inner product space spanned by W̃ .
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Problem 3. (Suboptimal receiver for orthogonal signaling)
This exercise takes a different approach to the evaluation of the performance of block-

orthogonal signaling (Example 4.6). Let the message H ∈ {1, . . . ,m} be uniformly dis-
tributed and consider the communication problem described by

H = i : Y = ci + Z, Z ∼ N (0, σ2Im),

where Y = (Y1, . . . , Ym)T ∈ Rm is the received vector and {c1, . . . , cm} ⊂ Rm is the code-
book consisting of constant-energy codewords that are orthogonal to each other. Without
loss of essential generality, we can assume

ci =
√
Eei,

where ei is the ith unit vector in Rm, i.e. the vector that contains 1 at position i and 0
elsewhere, and E is some positive constant.

(a) Describe the statistic of Yj for j = 1, . . . ,m given that H = 1.

(b) Consider a suboptimal receiver that uses a threshold t = α
√
E where 0 < α < 1. The

receiver declares Ĥ = i if i is the only integer such that Yi ≥ t. If there is no such i
or there is more than one index i for which Yi ≥ t, the receiver declares that it cannot
decide. This will be viewed as an error. Let Ei = {Yi ≥ t} and describe, in words, the
meaning of the event

E1 ∩ Ec
2 ∩ Ec

3 ∩ · · · ∩ Ec
m

(c) Find an upper bound to the probability that the above event does not occur when
H = 1. Express your result using the Q function.

(d) Now let m = 2k and let E = kEb for some fixed energy per bit Eb. Prove that the error
probability goes to 0 as k → ∞, provided that Eb

σ2 >
2 ln 2
α2 . (Notice that because we

can choose α2 as close to 1 as we wish, if we insert σ2 = N0

2
, the condition becomes

Eb
N0

> ln 2, which is a weaker condition than the one obtained in Example 4.6.)

Hint: Use m− 1 < m = elnm and Q(x) < 1
2e
− x2

2 .

Problem 4. (Receiver diagrams)
For each signaling method discussed in Section 4.4, draw the block diagram of an ML

receiver.

Problem 5. (Bit-by-bit on a pulse train)
A communication system uses bit-by-bit on a pulse train to communicate at 1 Mbps

using a rectangular pulse. The transmitted signal is of the form∑
j

Bj1[0,Ts)(t− jTs),

where Bj ∈ {±b}. Determine the value of b needed to achieve bit-error probability Pb =
10−5 knowing that the channel corrupts the transmitted signal with additive white Gaussian
noise of power spectral density N0

2
= 10−2 W/Hz.
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Problem 6. (Bit-error probability)
A discrete memoryless source produces bits at a rate 106 bps. The bits, which are

uniformly distributed and i.i.d., are grouped into pairs. Each pair is mapped into a distinct
waveform and sent over the AWGN channel of noise power spectral density N0

2
. Specifically,

the first two bits are mapped into one of the four waveforms shown below with Ts = 2×10−6

seconds, the next two bits are mapped onto the same set of waveforms delayed by Ts, etc.

w0(t)

t

1

−1

Ts

w2(t)

t

1

−1

Ts

w1(t)

t

1

−1

Ts

w3(t)

t

1

−1

Ts

(a) Describe an orthonormal basis for the inner product space W spanned by wi(t), i =
0, . . . , 3 and plot the signal constellation in Rn, where n is the dimensionality of W .

(b) Determine an assignment between pairs of bits and waveforms such that the bit-error
probability is minimized and derive an expression for Pb.

(c) Draw a block diagram of the receiver that achieves the above Pb using a single causal
filter.

(d) Determine the energy per bit Eb and the power of the transmitted signal.

Problem 7. (m-ary frequency-shift keying)
m-ary frequency-shift keying (m-FSK) is a signaling method that uses signals of the

form

wi(t) =

√
2E
T

cos (2π (fc + i∆f) t)1[0,T )(t), i = 0, . . . ,m− 1,

where E , T, fc,∆f are fixed parameters, with ∆f � fc.

(a) Determine the average energy E . (You can assume fcT ∈ N.)

(b) Assuming fcT ∈ N, find the smallest value of ∆f that makes wi(t) orthogonal to wj(t)
when i 6= j.
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(c) In practice the signals wi(t), i = 0, . . . ,m − 1 can be generated by changing the fre-
quency of a single oscillator. In passing from one frequency to another, a phase shift
θ is introduced. Again, assuming fcT ∈ N, determine the smallest value of ∆f that
ensures orthogonality between cos (2π (fc + i∆f) t+ θi) and cos (2π (fc + j∆f) t+ θj)
whenever i 6= j, regardless of θi and θj.

(d) Sometimes we do not have complete control over fc either, in which case it is not
possible to set fcT ∈ N. Argue that if we choose fcT � 1, then for all practical
purposes the signals will be orthogonal to one another if the condition found in part
(c) is met.

(e) Give an approximate value for the bandwidth occupied by the signal constellation.
How does the WT product behave as a function of k = log2(m)?

Problem 8. (Packing rectangular pulses)
This exercise is an interesting variation to Example 4.9. Let ψ(t) = 1√

Ts
1[−Ts2 ,

Ts
2 ](t) be

a normalized rectangular pulse of duration Ts and let ψF(f) =
√
Ts sinc(Tsf) be its Fourier

transform. The collection {ψl(t)}nl=1, where ψl(t) = ψ(t − lTs), forms an orthonormal set.
(This is obvious from the time domain.) It has dimension n by construction.

(a) For the set G spanned by the above orthonormal basis, determine the relationship
between n and WT .

(b) Compare with Example 4.9 and explain the difference.

Problem 9. (Time- and frequency-limited orthonormal sets)
Complement Example 4.9 and Problem 8 with similar examples in which the shifts occur

in the frequency domain. The corresponding time-domain signals can be complex-valued.

Problem 10. (Root-mean-square bandwidth)
The root-mean-square bandwidth (abbreviated rms bandwidth) of a finite-energy low-

pass signal g(t) is defined by

Brms =

[∫
R f

2|gF(f)|2df∫
R |gF(f)|2df

] 1
2

,

where |gF(f)|2 is the energy spectral density of the signal. Correspondingly, rms duration
of the signal is defined by

Trms =

[∫
R t

2|g(t)|2dt∫
R |g(t)|2dt

] 1
2

We want to show that, with the above definitions and assuming that |g(t)| → 0 faster than
1/
√
|t| as |t| → ∞, the time-bandwidth product satisfies

TrmsBrms ≥
1

4π
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(a) Use the Cauchy–Schwarz inequality and the fact that for any c ∈ C, c+ c∗ = 2<{c} ≤
2|c| to prove that{∫

R
[g∗1(t)g2(t) + g1(t)g

∗
2(t)] dt

}2

≤ 4

∫
R
|g1(t)|2dt

∫
R
|g2(t)|2dt

(b) Insert g1(t) = tg(t) and g2(t) = dg(t)
dt

in the inequality above to show that[∫
R
t
d

dt
[g(t)g∗(t)] dt

]2
≤ 4

∫
R
t2|g(t)|2dt

∫
R

∣∣∣∣dg(t)

dt

∣∣∣∣2 dt
(c) Integrate the left-hand side by parts and use the fact that |g(t)| → 0 faster than 1/

√
|t|

as |t| → ∞ to obtain[∫
R
|g(t)|2dt

]2
≤ 4

∫
R
t2|g(t)|2dt

∫
R

∣∣∣∣dg(t)

dt

∣∣∣∣2 dt
(d) Argue that the above is equivalent to∫

R
|g(t)|2dt

∫
R
|gF(f)|2df ≤ 4

∫
R
t2|g(t)|2dt

∫
R

4π2f 2|gF(f)|2df

(e) Complete the proof to obtain TrmsBrms ≥ 1
4π

.

(f) As a special case, consider a Gaussian pulse defined by g(t) = e−πt
2
. Show that for this

signal TrmsBrms = 1
4π

, i.e. the above inequality holds with equality.

Hint: e−πt
2 F←→ e−πf

2

Problem 11. (Real basis for complex space)
Let G be a complex inner product space of finite-energy waveforms with the property

that g(t) ∈ G implies g∗(t) ∈ G.

(a) Let GR be the subset of G that contains only real-valued waveforms. Argue that GR is
a real inner product space.

(b) Prove that if g(t) = a(t) + jb(t) is in G, then both a(t) and b(t) are in GR.

(c) Prove that if {ψ1(t), . . . , ψn(t)} is an orthonormal basis for the real inner product space
GR, then it is also an orthonormal basis for the complex inner product space G.

Comment: In this exercise we have shown that we can always find a real-valued orthonormal basis for an

inner product space G such that g(t) ∈ G implies g∗(t) ∈ G. An equivalent condition is that if g(t) ∈ G, then

also the inverse Fourier transform of g∗F (−f) is in G. The set G of complex-valued finite-energy waveforms

that are strictly time-limited to
(
−T2 ,

T
2

)
and bandlimited to (−B,B) (for any of the bandwidth definitions

given in Appendix 4.9) fulfills the stated conjugacy condition.

38



Problem 12. (Average energy of PAM)
Let U be a random variable uniformly distributed in [−a, a] and let S be a discrete

random variable independent of U and uniformly distributed over the PAM constellation
{±a,±3a, . . . ,±(m− 1)a}, where m is an even integer. Let V = S + U .

(a) Find the distribution of V .

(b) Find the variance of U and that of V .

(c) Use part (b) to determine the variance of S. Justify your steps.
Comment: By finding the variance of S, we have found the average energy of the PAM constellation

used with uniform distribution.

Problem 13. (Bandwidth)
Verify the following statements.

(a) The absolute bandwidth of sinc
(

t
Ts

)
is B = 1

2Ts
.

(b) The 3-dB bandwidth of an RC lowpass filter is B = 1
2πRC

.
Hint: The impulse response of an RC lowpass filter is h(t) = 1

RC exp
(
− t
RC

)
1R+(t). The squared

magnitude of its Fourier transform is |hF (f)|2 = 1
1+(2πRCf)2

.

(c) The η-bandwidth of an RC lowpass filter is B = 1
2πRC

tan
(
π
2
(1− η)

)
.

(d) The zero-crossing bandwidth of 1[−Ts2 ,
Ts
2 ](t) is B = 2

Ts
.

(e) The equivalent noise bandwidth of an RC lowpass filter is B = 1
4RC

.

(f) The RMS bandwidth of h(t) = e−πt
2

is B = 1√
4π

.

Hint: hF (f) = e−πf
2

.

Problem 14. (Antipodal signaling and Rayleigh fading)
Consider using antipodal signaling, i.e. w0(t) = −w1(t), to communicate 1 bit across a

Rayleigh fading channel that we model as follows. When wi(t) is transmitted the channel
output is

R(t) = Awi(t) +N(t),

where N(t) is white Gaussian noise of power spectral density N0

2
and A is a random variable

of probability density function

fA(a) = 2ae−a
2

1R+(a)

We assume that, unlike the transmitter, the receiver knows the realization of A. We also
assume that the receiver implements a maximum likelihood decision, and that the signal’s
energy is Eb.

(a) Describe the receiver.

(b) Determine the error probability conditioned on the event {A = a}.
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(c) Determine the unconditional error probability Pf . (The subscript stands for fading.)

(d) Compare Pf to the error probability Pe achieved by an ML receiver that observes
R(t) = mwi(t) +N(t), where m = E[A]. Comment on the different behavior of the two
error probabilities. For each of them, find the Eb

N0
value necessary to obtain the error

probability 10−5.
Hint: Use 1

2 exp
(
− 1

2x
2
)

as an approximation of Q(x).

Problem 15. (Non-white Gaussian noise)
Consider the following transmitter/receiver design problem for an additive non-white

Gaussian noise channel.

(a) Let the hypothesis H be uniformly distributed in H = {0, . . . ,m−1} and when H = i,
i ∈ H, let wi(t) be the channel input. The channel output is then

R(t) = wi(t) +N(t),

where N(t) is Gaussian noise of power spectral density G(f), where we assume that
G(f) 6= 0 for all f . Describe a receiver that, based on the channel output R(t), decides
on the value of H with least probability of error.
Hint: Find a way to transform this problem into one that you can solve.

(b) Consider the setting as in part (a), except that now you get to design the signal set
with the restrictions that m = 2 and that the average energy cannot exceed E . We also
assume that |G(f)|2 is constant in the interval [a, b], a < b, where it also achieves its
global minimum. Find two signals that achieve the smallest possible error probability
under an ML decoding rule.

Problem 16. (Continuous-time AWGN capacity)
To prove the formula for the capacity C of the continuous-time AWGN channel of noise

power spectral density N0

2
when signals are power-limited to P and frequency-limited to(

−W
2
, W

2

)
, we first derive the capacity Cd for the discrete-time AWGN channel of noise vari-

ance σ2 and symbols constrained to average energy not exceeding Es. The two expressions
are:

Cd =
1

2
log2

(
1 +
Es
σ2

)
[bits per channel use]

C =
W

2
log2

(
1 +

P

W N0

2

)
[bps]

To derive Cd we need tools from information theory. However, going from Cd to C using
the relationship n = WT is straightforward. To do so, let Gη be the set of all signals that
are frequency-limited to

(
−W

2
, W

2

)
and time-limited to

(
−T

2
, T
2

)
at level η. We choose η

small enough that for all practical purposes all signals of Gη are strictly frequency-limited
to
(
−W

2
, W

2

)
and strictly time-limited to

(
−T

2
, T
2

)
. Each waveform in Gη is represented by

an n-tuple and as T → ∞, n → WT . Complete the argument assuming n = WT and
without worrying about convergence issues.
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Problem 17. (Energy efficiency of single-shot PAM)
This exercise complements what we have learned in Example 4.3. Consider using the

m-PAM constellation
{±a,±3a,±5a, . . . ,±(m− 1)a}

to communicate across the discrete-time AWGN channel of noise variance σ2 = 1. Our
goal is to communicate at some level of reliability, say with error probability Pe = 10−5.
We are interested in comparing the energy needed by PAM versus the energy needed by a
system that operates at channel capacity, namely at 1

2
log2

(
1 + Es

σ2

)
bits per channel use.

(a) Using the capacity formula, determine the energy per symbol ECs (k) needed to transmit
k bits per channel use. (The subscript C stands for channel capacity.) At any rate below
capacity, it is possible to make the error probability arbitrarily small by increasing
the codeword length. This implies that there is a way to achieve the desired error
probability at energy per symbol ECs (k).

(b) Using single-shot m-PAM, we can achieve an arbitrarily small error probability by
making the parameter a sufficiently large. As the size m of the constellation increases,
the edge effects become negligible, and the average error probability approaches 2Q

(
a
σ

)
,

which is the probability of error conditioned on an interior point being transmitted.
Find the numerical value of the parameter a for which 2Q

(
a
σ

)
= 10−5.

Hint: Use 1
2 exp

(
− 1

2x
2
)

as an approximation of Q(x).

(c) Having fixed the value of a, we can use equation (4.1) to determine the average energy
EPs (k) needed by PAM to send k bits at the desired error probability. (The superscript
P stands for PAM.) Find and compare the numerical values of EPs (k) and ECs (k) for
k = 1, 2, 4.

(d) Find limn→∞
ECs (k+1)
ECs (k)

and limn→∞
EPs (k+1)
EPs (k)

.

(e) Comment on PAM’s efficiency in terms of energy per bit for small and large values of
k. Comment also on the relationship between this exercise and Example 4.3.
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5 Symbol-by-symbol on a pulse train: Second layer

revisited

Problem 1. (Sampling and reconstruction)
Here we use the picket fence miracle to investigate practical ways to approximate sam-

pling and/or reconstruction. We assume that for some positive B, s(t) satisfies sF(f) = 0
for f /∈ [−B,B]. Let T be such that 0 < T ≤ 1

2B
.

(a) As a reference, review Example 5.15 of Appendix 5.15.

(b) To generate the intermediate signal s(t)ET (t) of Example 5.15, we need an electrical
circuit that produces δ Diracs. Such a circuit does not exist. As a substitute for
δ(t), we use a rectangular pulse of the form 1

Tw
1[−Tw

2
,Tw

2
)(t), where 0 < Tw ≤ T and

the scaling by 1
Tw

is to ensure that the integral over the substitute pulse and that
over δ(t) give the same result, namely 1. The intermediate signal at the input of
the reconstruction filter is then [s(t)ET (t)] ? [ 1

Tw
1[−Tw

2
,Tw

2
)(t)]. (We can generate this

signal without passing through ET (t).) Express the Fourier transform yF(f) of the
reconstruction filter output.

(c) In the so-called zero-order interpolator, the reconstructed approximation is the step-
wise signal [s(t)ET (t)] ? 1[−T

2
,T
2
)(t). This is the intermediate signal of part (b) with

Tw = T . Express its Fourier transform.
Comment: There is no interpolation filter in this case.

(d) In the first-order interpolator, the reconstructed approximation consists of straight
lines connecting the values of the original signal at the sampling points. This can be
written as [s(t)ET (t)] ? p(t), where p(t) is the triangular-shape waveform

p(t) =

{
T−|t|
T
, t ∈ [−T, T ]

0, otherwise

Express the Fourier transform of the reconstructed approximation.

Compare sF(f) to the Fourier transform of the various reconstructions you have obtained.

Problem 2. (Sampling and projections)
We have seen that the reconstruction formula of the sampling theorem can be rewritten

in such a way that it becomes an orthonormal expansion (expression (5.3)). If ψj(t) is the
jth element of an orthonormal set of functions used to expand w(t), then the jth coefficient
cj equals the inner product 〈w,ψj〉. Explain why we do not need to explicitly perform an
inner product to obtain the coefficients used in the reconstruction formula (5.3).

Problem 3. (Properties of the self-similarity function)
Prove the following properties of the self-similarity function (5.5). Recall that the self-

similarity function of an L2 pulse ξ(t) is Rξ(τ) =
∫
ξ(t+ τ)ξ∗(t)dt.

(a) Value at zero:
Rξ(τ) ≤ Rξ(0) = ‖ξ‖2, τ ∈ R
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(b) Conjugate symmetry:
Rξ(−τ) = R∗ξ(τ), τ ∈ R

(c) Convolution representation:

Rξ(τ) = ξ(τ) ? ξ∗(−τ), τ ∈ R

Comment: The convolution between a(t) and b(t) can be written as (a ? b)(t) or as a(t) ? b(t). Both

versions are used in the literature. We prefer the first version, but in the above case the second version

does not require the introduction of a name for ξ∗(−τ).

(d) Fourier relationship:

Rξ(τ) is the inverse Fourier transform of |ξF(f)|2

Comment: The fact that ξF (f) is in L2 implies that |ξF (f)|2 is in L1. The Fourier inverse of an L1

function is continuous. Hence Rξ(τ) is continuous.

Problem 4. (Power spectrum: Manchester pulse)
Derive the power spectral density of the random process

X(t) =
∑
i∈Z

Xiψ(t− iT −Θ),

where {Xi}i∈Z is an i.i.d. sequence of uniformly distributed random variables taking val-
ues in {±

√
E}, Θ is uniformly distributed in the interval [0, T ], and ψ(t) is the so-called

Manchester pulse shown below:

t

ψ(t)

1√
T

− 1√
T

T

The Manchester pulse guarantees that X(t) has at least one transition per symbol, which
facilitates the clock recovery at the receiver.

Problem 5. (Nyquist’s criterion)
For each function |ψF(f)|2 in Figure 5, indicate whether the corresponding pulse ψ(t)

has unit norm and/or is orthogonal to its time-translates by multiples of T . The function
in Figure 5d is sinc2(fT ).
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|ψF(f)|2

f

T

1
2T

(a)

|ψF(f)|2

f

T
2

1
T

(b)

|ψF(f)|2

f

T

1
T

(c)

|ψF(f)|2

f

1

1
T

(d)

Figure 5

Problem 6. (Nyquist pulse)
A communication system uses signals of the form∑

l∈Z

slp(t− lT ),

where {sl}l∈Z takes values in some symbol alphabet and p(t) is a finite-energy pulse. The
transmitted signal is first filtered by a channel impulse response h(t) and then corrupted
by additive white Gaussian noise of power spectral density N0

2
. The receiver front end is a

filter of impulse response q(t).

(a) Neglecting the noise, show that the front-end filter output has the form

y(t) =
∑
l∈Z

slg(t− lT ),

where g(t) = (p ? h ? q)(t) and ? denotes convolution.

(b) The necessary and sufficient (time-domain) condition that g(t) has to fulfill so that the
samples of y(t) satisfy y(lT ) = sl, l ∈ Z, is

g(lT ) = δl

A function that fulfills this condition is called a Nyquist pulse of parameter T . Prove
the following theorem:

Theorem 1. (Nyquist criterion for Nyquist pulses) The L2 pulse g(t) is a Nyquist pulse
(of parameter T ) if and only if its Fourier transform gF(f) fulfills Nyquist’s criterion
(with parameter T ), i.e.,

l. i.m.
∑
l∈Z

gF

(
f − l

T

)
= T, t ∈ R
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(c) Prove Theorem 5.6 as a corollary to the above theorem.
Hint: δl =

∫
ψ(t − lT )ψ∗(t)dt if and only if the self-similarity function Rψ(τ) is a Nyquist pulse of

parameter T .

(d) Let p(t) and q(t) be real-valued with Fourier transform as shown below, where only
positive frequencies are plotted (both functions being even). The channel frequency
response is hF(f) = 1. Determine y(kT ), k ∈ Z.

pF(f)

f
1
T

T

qF(f)

f
1
T

1

Problem 7. (Pulse orthogonal to its T -spaced time translates)
The figure below shows part of the plot of a function |ψF(f)|2, where ψF(f) is the

Fourier transform of some pulse ψ(t).

f

|ψF(f)|2

T

− 1
T

− 1
2T

0 1
2T

1
T

Complete the plot (for positive and negative frequencies) and label the ordinate, knowing
that the following conditions are satisfied:

• For every pair of integers k, l,
∫
ψ(t− kT )ψ(t− lT )dt = δk−l;

• ψ(t) is real-valued;

• ψF(f) = 0 for |f | > 1
T

.

Problem 8. (Nyquist criterion via picket fence miracle)
Give an informal proof of 5.6 (Nyquist criterion for orthonormal pulses) using the picket

fence miracle (Appendix 5.15).
Hint: A function p(t) is a Nyquist pulse of parameter T if and only if p(t)ET (t) = δ(t).
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Problem 9. (Peculiarity of Nyquist’s criterion)
Let

g
(0)
F (f) = T1[− 1

3T
, 1
3T

](f)

be the central rectangle in the figure below, and for every positive integer n, let g
(n)
F (f)

consist of g
(0)
F (f) plus 2n smaller rectangles of height T

2n
and width 1

3T
, each placed in the

middle of an interval of the form [ l
T
, l+1
T

], l = {−n, . . . , n − 1}. The figure below shows

g
(3)
F (f).

g
(3)
F (f)

f

T

1
3T

2
3T

1
T

2
T

3
T

(a) Show that for every n ≥ 1, g
(n)
F (f) fulfills Nyquist’s criterion with parameter T .

Hint: It is sufficient that you verify that Nyquist’s criterion is fulfilled for f ∈ [0, 1
T ]. Towards that end,

first check what happens to the central rectangle when you perform the operation
∑
l∈Z g

(n)
F (f − l

T ).

Then see how the small rectangles fill in the gaps.

(b) As n goes to infinity, g
(n)
F (f) converges to g

(0)
F (f). (It converges for every f and it

converges also in L2, i.e. limn→∞ ‖g(n)F (f)−g(0)F (f)‖2 = 0.) Peculiar is that the limiting

function g
(0)
F (f) fulfills Nyquist’s criterion with parameter T (0) 6= T . What is T (0)?

(c) Suppose that we use symbol-by-symbol on a pulse train to communicate across the

AWGN channel. To do so, we choose a pulse ψ(t) such that |ψF(f)|2 = g
(n)
F (f) for

some n, and we choose n sufficiently large that T
2n

is much smaller than the noise
power spectral density N0

2
. In this case, we can argue that our bandwidth B is only

1
3T

. This means a 30% reduction with respect to the minimum absolute bandwidth
1
2T

. This reduction is non-negligible if we pay for the bandwidth we use. How do you
explain that such a pulse is not used in practice?
Hint: What do you expect ψ(t) to look like?

(d) Construct a function gF(f) that looks like the figure above in the shown interval except
for the heights of the rectangles. Your function should have infinitely many smaller
rectangles on each side of the central rectangle and (like g

(n)
F (f)) shall satisfy Nyquist’s

criterion.
Hint: One such construction is suggested by the infinite geometric series

∑
i≥1 2−i, which adds to 1.

Problem 10. (Raised-cosine expression)
Let T be a positive integer. Following the steps below, derive the raised-cosine function

|ψF(f)|2 of roll-off factor β ∈ (0, 1]. (It is recommended to plot the various functions.)

(a) Let p(f) = cos(f), defined over the domain f ∈ [0, π], be the starting point for what
will become the right-hand side roll-off edge.
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(b) Find constants c and d so that q(f) = cp(f) +d has range [0, T ] over the domain [0, π].

(c) Find a constant e so that r(f) = q(ef) has domain [0, β
T

].

(d) Find a constant g so that s(f) = r(f − g) has domain [ 1
2T
− β

2T
, 1
2T

+ β
2T

].

(e) Write an expression for the function |ψF(f)|2 that has the following properties:

• it is T for f ∈ [0, 1
2T
− β

2T
);

• it equals s(f) for f ∈ [ 1
2T
− β

2T
, 1
2T

+ β
2T

];

• it is 0 for f ∈ ( 1
2T

+ β
2T
,∞);

• it is an even function.

Problem 11. (Peculiarity of the sinc pulse)
Let {Uk}nk=0 be and i.i.d. sequence of uniformly distributed bits taking value in {±1}.

Prove that for certain values of t and for n sufficiently large, s(t) =
∑n

k=0 Uksinc(t− k) can
become larger than any given constant.
Hint: The series

∑
k≥1

1
k diverges, and so does

∑
k≥1

1
k−a for any given constant a ∈ (0, 1).

Comment: This implies that the eye diagram of s(t) is closed.

Problem 12. (Matched filter basics)
Let

w(t) =
K∑
k=1

dkψ(t− kT )

be a transmitted signal where ψ(t) is a real-valued pulse that satisfies∫
ψ(t)ψ(t− kT )dt =

{
0, k ∈ Z∗

1, k = 0,

and dk ∈ {±1}.

(a) Suppose that w(t) is filtered at the receiver by the matched filter with impulse response
ψ(−t). Show that the filter output y(t) sampled at mT,m ∈ Z, yields y(mT ) = dm,
for 1 ≤ m ≤ K.

(b) Now suppose that the (noiseless) channel outputs the input plus a delayed and scaled
replica of the input. That is, the channel output is w(t) + ρw(t − T ) for some T and
some ρ ∈ [−1, 1]. At the receiver, the channel output is filtered by ψ(−t). The resulting
waveform ỹ(t) is again sampled at multiples of T . Determine the samples ỹ(mT ), for
1 ≤ m ≤ K.

(c) Suppose that the kth received sample is Yk = dk + αdk−1 + Zk, where Zk ∼ N (0, σ2)
and 0 ≤ α < 1 is a constant. Note that dk and dk−1 are realizations of independent
random variables that take on the values {±1} with equal probability. Suppose that the
receiver decides d̂k = 1 if Yk > 0, and decides d̂k = −1 otherwise. Find the probability
of error for this receiver.
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Problem 13. (Communication link design)
Specify the block diagram for a digital communication system that uses twisted copper

wires to connect devices that are 5 km apart from each other. The cable has an attenuation
of 16 dB/km. You are allowed to use the spectrum between −5 and 5 MHz. The noise at the
receiver input is white and Gaussian, with power spectral density N0

2
= 4.2× 10−21 W/Hz.

The required bit-rate is 40 Mbps (megabits per second) and the bit-error probability should
be less that 10−5. Be sure to specify the symbol alphabet and the waveform former of the
system you propose. Give precise values or bounds for the bandwidth used, the power of
the channel input signal, the bit rate, and the error probability. Indicate which bandwidth
definition you use.

Problem 14. (Differential encoding)
For many years, telephone companies built their networks on twisted pairs. This is a

twisted pair of copper wires invented by Alexander Graham Bell in 1881 as a means to
mitigate the effect of electromagnetic interference. In essence, an alternating magnetic field
induces an electric field in a loop. This applies also to the loop created by two parallel wires
connected at both ends. If the wire is twisted, the electric field components that build up
along the wire alternate polarity and tend to cancel out one another. If we swap the two
contacts at one end of the cable, the signal’s polarity at one end is the opposite of that on
the other end. Differential encoding is a technique for encoding the information in such a
way that the decoding process is not affected by polarity. The differential encoder takes
the data sequence {Di}ni=1, here assumed to have independent and uniformly distributed
components taking value in {0, 1}, and produces the symbol sequence {Xi}ni=1 according
to the following encoding rule:

Xi =

{
Xi−1, Di = 0

−Xi−1, Di = 1,

where X0 =
√
E be convention. Suppose that the symbol sequence is used to form

X(t) =
n∑
i=1

Xiψ(t− iT ),

where ψ(t) is normalized and orthogonal to its T -spaced time-translates. The signal is sent
over the AWGN channel of power spectral density N0

2
and at the receiver is passed through

the matched filter of impulse response ψ∗(−t). Let Yi be the filter output at time iT .

(a) Determine RX [k], k ∈ Z, assuming an infinite sequence {Xi}i∈Z.

(b) Describe a method to estimate Di from Yi and Yi−1, such that the performance is
the same if the polarity of Yi is inverted for all i. We ask for a simple decoder, not
necessarily ML.

(c) Determine (or estimate) the error probability of your decoder.

Problem 15. (Mixed questions)

(a) Consider the signal x(t) = cos(2πt)sinc2(t). Assume that we sample x(t) with sampling
period T . What is the maximum T that guarantees signal recovery?

48



(b) You are given a pulse p(t) with spectrum pF(f) =
√
T (1− |f |T ), |f | ≤ 1

T
. What is

the value of
∫
p(t)p(t− 3T )dt?

Problem 16. (Properties of the Fourier transform)

Prove the following properties of the Fourier transform. The sign
F⇐⇒ relates Fourier

transform pairs, with the function on the right being the Fourier transform of that on the
left. The Fourier transforms of v(t) and w(t) are denoted vF(f) and wF(f) respectively.

(a) Linearity:

αv(t) + βw(t)
F⇐⇒ αvF(f) + βwF(f)

(b) Time-shifting:

v(t− t0)
F⇐⇒ vF(f)e−j2πft0

(c) Frequency-shifting:

v(t)ej2πf0t
F⇐⇒ vF(f − f0)

(d) Convolution in time:

(v ? w)(t)
F⇐⇒ vF(f)wF(f)

(e) Time scaling by α 6= 0:

v(αt)
F⇐⇒ 1

|α|
vF

(
f

α

)
(f) Conjugation:

v∗(t)
F⇐⇒ v∗F(−f)

(g) Time-frequency duality:

vF(t)
F⇐⇒ v(−f)

(h) Parseval’s relationship: ∫
v(t)w∗(t)dt

F⇐⇒
∫
vF(f)w∗F(f)df

Comment: As a mnemonic, notice that the above can be written as 〈v, w〉 = 〈vF , wF 〉.

(i) Correlation: ∫
v(λ+ t)w∗(λ)dλ

F⇐⇒ vF(f)w∗F(f)

Hint: Use Parseval’s relationship on the expression on the right and interpret the result.
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6 Convolutional coding and Viterbi decoding: First

layer revisited

Problem 1. (Power spectral density)
Consider the random process

X(t) =
∑
i∈Z

Xi

√
Esψ(t− iTs − T0),

where Ts and Es are fixed positive numbers, ψ(t) is some unit-energy function, T0 is a
uniformly distributed random variable taking values in [0, Ts), and {Xi}i∈Z is the output
of the convolutional encoder described by

X2n = BnBn−2

X2n+1 = BnBn−1Bn−2

with i.i.d. input sequence {Bi}i∈Z taking values in {±1}.

(a) Express the power spectral density of X(t) for a general ψ(t).

(b) Plot the power spectral density of X(t) assuming that ψ(t) is a unit-norm rectangular
pulse of width Ts.

Problem 2. (Power spectral density: Correlative encoding)
Repeat Problem 1 using the encoder

Xi = Bi −Bi−1

Compare this exercise to Exercise 4 of Chapter 5.

Problem 3. (Viterbi algorithm)
An output sequence (x1, . . . , x10) from the convolutional encoder shown below is trans-

mitted over the discrete-time AWGN channel. The initial and final state of the encoder
is (1, 1). Using the Viterbi algorithm, find the maximum likelihood information sequence
(b̂1, b̂2, b̂3, 1, 1), knowing that b1, b2, b3 are drawn independently and uniformly from {±1}
and that the channel output (y1, . . . , y10) = (1, 2,−1, 4,−2, 1, 1,−3,−1,−2). (It is for
convenience that we are choosing integers rather than real numbers.)

bj ∈ {±1} bj−1

×

bj−2

×

× x2j−1

x2j
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Problem 4. (Inter-symbol interference)
From the decoder’s point of view, inter-symbol interference (ISI) can be modeled as

follows:

Yi = Xi + Zi (4)

Xi =
L∑
j=0

Bi−jhj, i ∈ N (5)

where Bi is the ith information bit, h0, . . . , hL are coefficients that describe the inter-symbol
interference, and Zi is zero-mean, Gaussian, of variance σ2, and statistically independent
of everything else. Relationship (5) can be described by a trellis, and the ML decision rule
can be implemented by the Viterbi algorithm.

(a) Draw the trellis that describes all sequences of the form X1, . . . , X6 resulting from
information sequences of the form B1, . . . , B5, 0, Bi ∈ {0, 1}, assuming

hi =


1, i = 0

−2, i = 1

0, otherwise

To determine the initial state, you may assume that the preceding information sequence
terminated with 0. Label the trellis edges with the input/output symbols.

(b) Specify a metric f(x1, . . . , x6) =
∑6

i=1 f(xi, yi) whose minimization or maximization
with respect to the valid x1, . . . , x6 leads to a maximum likelihood decision. Specify if
your metric needs to be minimized or maximized.

(c) Assume y1, . . . , y6 = {2, 0,−1, 1, 0,−1}. Find the maximum likelihood estimate of the
information sequence B1, . . . , B5.

Problem 5. (Linearity)
In this exercise, we establish in what sense the encoder of Figure 6.2 in the book is

linear.

(a) For this part you might want to review the axioms of a field. Consider the set F0 =
{0, 1} with the following addition and multiplication tables.

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

(The addition in F0 is the usual addition over R with the result taken modulo 2.
The multiplication is the usual multiplication over R and there is no need to take
the modulo 2 operation since the result is automatically in F0.) (F0,+,×) form a
binary field denoted by F2. Now consider F− = {±1} and the following addition and
multiplication tables.

+ 1 −1
1 1 −1
−1 −1 1

× 1 −1
1 1 1
−1 1 −1
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(The addition in F− is the usual multiplication over R.) Argue that (F−,+,×) form a
binary field as well.
Hint: The second set of operations can be obtained from the first set via the transformation T :

F0 → F− that sends 0 to 1 and 1 to −1. Hence, by construction, for a, b ∈ F0, T (a+ b) = T (a) +T (b)

and T (a× b) = T (a)× T (b). Be aware of the double meaning of + and × in the previous sentence.

(b) For this part you might want to review the notion of a vector space. Let (F0,+,×)
be as defined in (a). Let V = F∞0 be the set of infinite sequences taking values in F0.
Does (V ,F0,+,×) form a vector space? (Addition of vectors and multiplication of a
vector with a scalar is done component-wise.) Repeat using F−.

(c) For this part you might want to review the notion of linear transformation. Let f :
V → V be the transformation that sends an infinite sequence b ∈ V to an infinite
sequence x ∈ V according to

x2j−1 = bj−1 + bj−2 + bj−3

x2j = bj + bj−2,

where + is the one defined over the field of scalars implicit in V . Argue that this f is
linear.
Comment: When V = F∞− , this encoder is the one used throughout Chapter 6, with the only

difference that in the chapter we multiply over R rather than adding over F−, but this is just a matter

of notation, the result of the two operations on the elements of F− being identical. The standard way

to describe a convolutional encoder is to choose F0 and the corresponding addition, namely addition

modulo 2. See Problem 12 for the reason we opt for a non-standard description.

Problem 6. (Independence of the distance profile from the reference path)
We want to show that a(i, d) does not depend on the reference path. Recall that in

Section 6.4.1 we define a(i, d) as the number of detours that leave the reference path at
some arbitrary but fixed trellis depth j and have input distance i and output distance d
with respect to the reference path.

(a) Let b and b̄, both in {±1}∞, be two infinite-length input sequences to the encoder of
Figure 6.2 and let f be the encoding map. The encoder is linear in the sense that
componentwise product over the reals bb̄ is also a valid input sequence and the corre-
sponding output sequence is f(bb̄) = f(b)f(b̄) (see Problem 5). Argue that the distance
between b and b̄ equals the distance between bb̄ and the all-one input sequence. Simi-
larly, argue that the distance between f(b) and f(b̄) equals the distance between f(bb̄)
and the all-one output sequence (which is the output to the all-one input sequence).

(b) Fix an arbitrary reference path and an arbitrary detour that splits from the reference
path at time 0. Let b and b̄ be the corresponding input sequences. Because the detour
starts at time 0, bi = b̄i for i < 0 and b0 6= b̄0. Argue that b̄ uniquely defines a detour
b̃ that splits from the all-one path at time 0 and such that:

(i) the distance between b and b̄ is the same as that between b̃ and the all-one input
sequence;

(ii) the distance between f(b) and f(b̄) is the same as that between f(b̃) and the
all-one output sequence.
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(c) Conclude that a(i, d) does not depend on the reference path.

Problem 7. (Rate 1/3 convolutional code)

bn ∈ {±1} bn−1 bn−2

× x3n = bnbn−2

× x3n+1 = bn−1bn−2

× x3n+2 = bnbn−1bn−2

For the convolutional encoder shown above, do the following:

(a) Draw the state diagram and the detour flow graph.

(b) Suppose that the serialized encoder output symbols are scaled so that the resulting
energy per bit is Eb and are sent over the discrete-time AWGN channel of noise variance
σ2 = N0

2
. Derive an upper bound to the bit-error probability assuming that the decoder

implements the Viterbi algorithm.

Problem 8. (Rate 2/3 convolutional code)
The following equations describe the output sequence of a convolutional encoder that

in each epoch takes k0 = 2 input symbols from {±1} and outputs n0 = 3 symbols from the
same alphabet.

x3n = b2nb2n−1b2n−2

x3n+1 = b2n+1b2n−2

x3n+2 = b2n+1b2nb2n−2

(a) Draw an implementation of the encoder based on delay elements and multipliers.

(b) Draw the state diagram.

(c) Suppose that the serialized encoder output symbols are scaled so that the resulting
energy per bit is Eb and are sent over the discrete-time AWGN channel of noise variance
σ2 = N0

2
. Derive an upper bound to the bit-error probability assuming that the decoder

implements the Viterbi algorithm.

Problem 9. (Convolutional encoder, decoder, and error probability)
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−1| − 1,−1

State Labels

t = (−1,−1)

l = (−1, 1)

r = (1,−1)

b = (1, 1)

For the convolutional code described by the state diagram shown above:

(a) draw the encoder;

(b) as a function of the energy per bit Eb, upper bound the bit-error probability of the
Viterbi algorithm when the scaled encoder output sequence is transmitted over the
discrete-time AWGN channel of noise variance σ2 = N0

2
.

Problem 10. (Viterbi for the binary erasure channel)
Consider the convolutional encoder shown below with inputs and outputs over {0, 1}

and addition modulo 2. Its output is sent over the binary erasure channel described by

PY |X(0|0) = PY |X(1|1) = 1− ε
PY |X(?|0) = PY |X(?|1) = ε

PY |X(1|0) = PY |X(0|1) = 0,

where 0 < ε < 1
2
.

bj bj−1

⊕

bj−2

⊕ x2j−1

⊕ x2j

(a) Draw a trellis section that describes the encoder map.

(b) Derive the branch metric and specify whether a maximum likelihood decoder chooses
the path with largest or smallest path metric.

(c) Suppose that the initial encoder state is (0, 0) and that the channel output is {0, ?, ?, 1, 0, 1}.
What is the most likely information sequence?
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(d) Derive an upper bound to the bit-error probability.

Problem 11. (Bit-error probability)
In the process of upper bounding the bit-error probability, in Section 6.4.2 we make the

following step:

E[Ωj] ≤
∞∑
i=1

∞∑
d=1

i Q

(√
Esd
σ2

)
a(i, d)

≤
∞∑
i=1

∞∑
d=1

izda(i, d)

(a) Instead of upper bounding the Q function as done above, use the results of Section
6.4.1 to substitute a(i, d) and d with explicit functions of i and get rid of the second
sum. You should obtain

Pb ≤
∞∑
i=1

i Q

(√
Es(i+ 4)

σ2

)
2i−1

(b) Truncate the above sum to the first five terms and evaluate it numerically for Es
σ2

between 2 and 6 dB. Plot the results and compare to Figure 6.8 of the book.

Problem 12. (Standard description of a convolutional encoder)
Consider the two encoders of Figure 6, where the map T : F0 → F− sends 0 to 1 and 1

to −1. Show that the two encoders produce the same output when their inputs are related
by bj = T (b̄j).
Hint: For a, b ∈ F0, T (a+ b) = T (a)× T (b), where addition is modulo 2 and multiplication is over R.

Comment: The encoder of Figure 6b is linear over the field F− (see Problem 5), whereas the encoder of

Figure 6a is linear over F0 only if we omit the output map T . The comparison of the two figures should

explain why in this chapter we have opted for the description of 6b even though the standard description

of a convolutional encoder is as in 6a.

Problem 13. (Trellis with antipodal signals)
Figure 7a shows a trellis section with the output symbols x2j−1, x2j of a convolutional

encoder. Notice how branches that are mirror-images of each other have antipodal output
symbols (symbols that are the negative of each other). The purpose of this exercise is to
see that when the trellis has this particular structure and codewords are sent through the
discrete-time AWGN channel, the maximum likelihood sequence detector further simplifies
(with respect to the Viterbi algorithm).

Figure 7b shows two consecutive trellis sections labeled with the branch metric. Notice
that the mirror symmetry of 7a implies the same kind of symmetry for 7b. The maximum
likelihood path is the one that has the largest path metric. To avoid irrelevant complications
we assume that there is only one path that maximizes the path metric.

(a) Let σj ∈ {±1} be the state visited by the maximum likelihood path at depth j. Suppose
that a genie informs the decoder that σj−1 = σj+1 = 1. Write down the necessary and
sufficient condition for the maximum likelihood path to go through σj = 1.
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b̄j ∈ F0 b̄j−1

+

b̄j−2

+ T

+ T

x̄2j−1

x̄2j

(a) Conventional description. Addition is modulo 2.

bj ∈ F− bj−1

×

bj−2

× x2j−1

× x2j

(b) Description used in the book. Multiplication is over R.

Figure 6

(b) Repeat for the remaining three possibilities of σj−1 and σj+1. Does the necessary and
sufficient condition for σj = 1 depend on the value of σj−1 and σj+1?

(c) The branch metric for the branch with output symbols x2j−1, x2j is

x2j−1y2j−1 + x2jy2j,

where yj is xj plus noise. Using the result of the previous part, specify a maximum
likelihood sequence decision for σj = 1 based on the observation y2j−1, y2j, y2j+1, y2j+2.

−1

+1

j − 1 j
−1,−1
−

1, 1

1,
−1

1, 1

(a)

−1

+1

j − 1 j j + 1
a

b

−b

−a

c

−c

d

−d

(b)

Figure 7

Problem 14. (Timing error)
A transmitter sends

X(t) =
∑
i

Biψ(t− iT ),
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where {Bi}i∈Z, Bi ∈ {±1}, is a sequence of independent and uniformly distributed bits
and ψ(t) is a centered and unit-energy rectangular pulse of width T . The communication
channel between the transmitter and the receiver is the AWGN channel of power spectral
density N0

2
. At the receiver, the channel output Z(t) is passed through a filter matched to

ψ(t), and the output is sampled, ideally at times tk = kT , k ∈ Z.

(a) Consider that there is a timing error, i.e. the sampling time is tk = kT − τ where
τ
T

= 1
4
. Ignoring the noise, express the matched filter output observation wk at time

tk = kT − τ as a function of the bit values bk and bk−1.

(b) Extending to the noisy case, let rk = wk + zk be the kth matched filter output ob-
servation. The receiver is not aware of the timing error. Compute the resulting error
probability.

(c) Now assume that the receiver knows the timing error τ (same τ as above) but it
cannot correct for it. (This could be the case if the timing error becomes known
once the samples are taken.) Draw and label four sections of a trellis that describes
the noise-free sampled matched filter output for each input sequence b1, b2, b3, b4. In
your trellis, take into consideration the fact that the matched filter is “at rest” before
x(t) =

∑4
i=1 biψ(t− iT ) enters the filter.

(d) Suppose that the sampled matched filter output consists of {2, 0.5, 0,−1}. Use the
Viterbi algorithm to decide on the transmitted bit sequence.

Problem 15. (Simulation)
The purpose of this exercise is to determine, by simulation, the bit-error probability

of the communication system studied in Chapter 6. For the simulation, we recommend
using MATLAB, as it has high-level functions for the various tasks, notably for generating a
random information sequence, for doing convolutional encoding, for simulating the discrete-
time AWGN channel, and for decoding by means of the Viterbi algorithm. Although the
actual simulation is on the discrete-time AWGN channel, we specify a continuous-time
setup. It is part of your task to translate the continuous-time specifications into what you
need for the simulation. We begin with the uncoded version of the system of interest.

(a) By simulation, determine the minimum obtainable bit-error probability Pb of bit-by-bit
on a pulse train transmitted over the AWGN channel. Specifically, the channel input
signal has the form

X(t) =
∑
j

Xjψ(t− jT ),

where the symbols are i.i.d. and take value in {±
√
Es}, the pulse ψ(t) has unit norm

and is orthogonal to its T -spaced time translates. Plot Pb as a function of Es
σ2 in the

range from 2 to 6 dB, where σ2 is the noise variance. Verify your results with Figure 6.8
of the book.

(b) Repeat with the symbol sequence being the output of the convolutional encoder of
Figure 6.2 multiplied by

√
Es. The decoder shall implement the Viterbi algorithm.

You can once again verify your results with Figure 6.8 of the book.
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7 Passband communication via up/down conversion:

Third layer

Problem 1. (Lifting up)
Let p(t) be real-valued and frequency-limited to [−B,B], where 0 < B < fc for some

fc. Without making any calculations, argue that p(t)
√

2 cos(2πfct) and p(t)
√

2 sin(2πfct)
are orthogonal to each other and have the same norm as p(t).

Problem 2. (Bandpass filtering in baseband)
We want to implement a passband filter of impulse response h(t) =

√
2<{hE(t)ej2πfct}

using baseband filters, where hE(t) is frequency-limited to [−B,B] and 0 < B < fc.

(a) Draw the block diagram of an implementation of the filter of impulse response h(t),
based on a filter of impulse response hE(t) (possible scaled). Your implementation
can use an up-converter, a down-converter, and shall behave like the filter of impulse
response h(t) for all (passband) input signals of bandwidth not exceeding 2B and center
frequency fc.

(b) Draw the box diagram of an implementation that uses only real-valued signals.

Problem 3. (Equivalent representations)
A real-valued passband signal x(t) can be written as x(t) =

√
2<{xE(t)ej2πfct}, where

xE(t) is the baseband-equivalent signal (complex-valued in general) with respect to the
carrier frequency fc. Also, a general complex-valued signal xE(t) can be written in terms
of two real-valued signals, either as xE(t) = u(t) + jv(t) or as xE(t) = α(t) exp(jβ(t)).

(a) Show that a real-valued passband signal x(t) can always be written as

xEI(t) cos(2πfct)− xEQ(t) sin(2πfct)

and relate xEI(t) and xEQ(t) to xE(t).
Comment: This formula can be used at the sender to produce x(t) without doing complex-valued

operations. The signals xEI(t) and xEQ(t) are called the in-phase and the quadrature components

respectively.

(b) Show that a real-valued passband signal x(t) can always be written as

a(t) cos(2πfct+ θ(t))

and relate a(t) and θ(t) to xE(t).
Comment: This explains why sometimes people make the claim that a passband signal is modulated

in amplitude and in phase.

(c) Use part (b) to find the baseband-equivalent of the signal

x(t) = A(t) cos(2πfct+ ϕ),

where A(t) is a real-valued lowpass signal. Verify your answer with Example 7.9 where
we assumed ϕ = 0.
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Problem 4. (Passband)
Let fc be a positive carrier frequency and consider an arbitrary real-valued function

w(t) whose Fourier transform is shown below:

f

|wF(f)|

−fc fc

(a) Argue that there are two different functions, a1(t) and a2(t), such that, for i = {1, 2},

w(t) =
√

2<{ai(t) exp(j2πfct)}

This shows that, without some constraint on the input signal, the operation performed
by the circuit of Figure 7.4b is not reversible, even in the absence of noise. This was
already pointed out in the discussion preceding Lemma 7.8.

(b) Argue that if we limit the input of Figure 7.4b to signals a(t) such that aF(f) = 0 for
f < −fc, then the circuit of Figure 7.4a will retrieve a(t) when fed with the output of
Figure 7.4b.

(c) Find an example showing that the condition of part (b) is necessary. (Can you find
and example with a real-valued a(t)?)

(d) Argue that if we limit the input of Figure 7.4b to signals a(t) that are real-valued, then
the input of Figure 7.4b can be retrieved from the output.
Comment: We are not claiming that the circuit of Figure 7.4a will retrieve a(t).

Hint: You may argue in the time domain or in the frequency domain. If you argue in the time domain,

you can assume that a(t) is continuous. If you argue in the frequency domain, you can assume that

a(t) has finite bandwidth.

Problem 5. (From passband to baseband via real-valued operations)
Let the signal xE(t) be bandlimited to [−B,B] and let x(t) =

√
2<{xE(t)ej2πfct}, where

0 < B < fc. Show that the circuit shown below recovers the real and imaginary part of
xE(t) when fed with x(t). (The two boxes are ideal lowpass filters of cutoff frequency B.)
Comment: The circuit uses only real-valued operations.
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x(t)

×

√
2 cos(2πfct)

1[−B,B](f) <{xE(t)}

×

−
√

2 sin(2πfct)

1[−B,B](f) ={xE(t)}

Problem 6. (Reverse engineering)

w(t)

t [ms]

4

1 Ts 2Ts 3Ts 4Ts

The figure above shows a toy passband signal. (Its carrier frequency is unusually low
with respect to its symbol rate.) Specify the three layers of a transmitter that generates
the given signal, namely the following:

(a) The carrier frequency fc used by the up-converter.

(b) The orthonormal basis used by the waveform former to produce the baseband-equivalent
signal wE(t).

(c) The symbol alphabet, seen as a subset of C.

(d) An encoding map, the encoder input sequence that leads to w(t), the bit rate, the
encoder output sequence, and the symbol rate.

Problem 7. (AM receiver)
Let x(t) = (1+mb(t))

√
2 cos(2πfct) be an AM modulated signal as described in Example

7.10. We assume that 1+mb(t) > 0, that b(t) is bandlimited to [−B,B], and that fc > 2B.
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(a) Argue that the envelope of |x(t)| is (1 +mb(t))
√

2 (a drawing will suffice).

(b) Argue that with a suitable choice of components, the output of the figure below is
essentially b(t).
Hint: Draw, qualitatively, the voltage on top of R1 and that on top of R2.

C1 R1

C2

R2x(t) output

(c) As an alternative approach, prove that if we pass the signal |x(t)| through an ideal
lowpass filter of cutoff frequency f0, we obtain 1+mb(t) scaled by some factor. Specify
a suitable interval for f0.
Hint: Expand | cos(2πfct)| as a Fourier series. No need to find explicit values for the Fourier series

coefficients.

Problem 8. (Alternative down-converter)
Assuming all the ψl(t) are bandlimited to [−B,B] and that 0 < B < fc, show that the

n-tuple former output remains unchanged if we substitute the down-converter of Figure
7.8b with the block diagram of Figure 7.4a.

Problem 9. (Real-valued implementation)
Draw a block diagram for the implementation of the transmitter and receiver of Figure

7.8 by means of real-valued operations. Unlike in Figure 7.9, do not assume that the
orthonormal basis is real-valued.

Problem 10. (Circular symmetry)

(a) Suppose X and Y are real-valued i.i.d. random variables with probability density func-
tion fX(s) = fY (s) = c exp(−|s|α), where α is a parameter and c = c(α) is the
normalizing factor.

(i) Draw the contour of the joint density function for α = 1
2
, α = 1, α = 2, and

α = 3.
Hint: For simplicity, draw the set of points (x, y) for which fX,Y (x, y) = c2(α)e−1.

(ii) For which value of α is the joint density function invariant under rotation? What
is the corresponding distribution?

(b) In general we can show that if X and Y are i.i.d. random variables and fX,Y (x, y) is
circularly symmetric, then X and Y are Gaussian. Use the following steps to prove
this.

(i) Show that if X and Y are i.i.d. and fX,Y (x, y) is circularly symmetric, then

fX(x)fY (y) = ψ(r) where ψ is a univariate function and r =
√
x2 + y2.
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(ii) Take the partial derivative with respect to x and y to show that

f ′X(x)

xfX(x)
=
ψ′(r)

rψ(r)
=

f ′Y (y)

yfY (y)

(iii) Argue that the only way for the above equalities to hold is that they be equal to

a constant value, i.e.
f ′X(x)

xfX(x)
= ψ′(r)

rψ(r)
=

f ′Y (y)

yfY (y)
= − 1

σ2 .

(iv) Integrate the above equations and show that X and Y should be Gaussian random
variables.

Problem 11. (Real-valued versus complex-valued constellation)
Consider 2-PAM and 4-QAM. The source produces i.i.d. and uniformly distributed

source bits taking value in {±1}, and the constellations are {±1} and {±1±j} respectively.
For 2-PAM, the mapping between the source bits and the channel symbols is the obvious
one, i.e. bit bi is mapped into symbol si =

√
Esbi. For the 4-QAM constellation, pairs of

bits are mapped into a symbol according to

b2i, b2i+1 → si =
√
Es(b2i + jb2i+1)

The symbols are mapped into a signal via symbol-by-symbol on a pulse train, where the
pulse is real-valued, normalized, and orthogonal to its shifts by multiples of T . The channel
adds white Gaussian noise of power spectral density N0

2
. The receiver implements an ML

decoder. For the two systems, determine (if possible) and compare the following.

(a) The bit-error rate Pb.

(b) The energy per symbol Es.

(c) The variance σ2 of the noise seen by the decoder.
Comment: When the symbols are real-valued, the decoder disregards the imaginary part of Y . In

this case, what matters is the variance of the real part of the noise.

(d) The symbol-to-noise power ratio Es
σ2 . Write them also as a function of the power P and

N0.

(e) The bandwidth.

(f) The expression for the signals at the output of the waveform former as a function of
the bit sequence produced by the source.

(g) The bit rate R.

Summarize, by comparing the two systems from a user’s point of view.

Problem 12. (Smoothness of bandlimited signals)
We show that a continuous signal of small bandwidth cannot vary much over a small

interval. (This fact is used in Problem 13.) Let w(t) be a finite-energy continuous-time
passband signal and let wE(t) be its baseband-equivalent signal. We assume that wE(t) is
bandlimited to [−B,B] for some positive B.
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(a) Show that the baseband-equivalent of w(t−τ) can be modeled as wE(t−τ)ejφ for some
φ.

(b) Let hF(f) be the frequency response of the ideal lowpass filter, i.e. hF(f) = 1[−B,B](f).
Show that

wE(t+ τ)− wE(t) =

∫
wE(ξ) [h(t+ τ − ξ)− h(t− ξ)] dξ

(c) Use the Cauchy–Schwarz inequality to prove that

|wE(t+ τ)− wE(t)|2 ≤ 2Ew [Eh −Rh(τ)] ,

where

Rh(τ) =

∫
h(ξ + τ)h(ξ)dξ

is the self-similarity function of h(t), Eh = Rh(0) is the energy of h(t), and Ew = Rw(0)
is the energy of w(t).

(d) Show that Rh(τ) = (h ? h)(τ).

(e) Show that Rh(τ) = h(τ).

(f) Put things together to derive the upper bound

|wE(t+ τ)− wE(t)| ≤
√

2Ew [Eh − h(τ)] =
√

4BEw (1− sinc(2Bτ))

Verify that the bound is tight for τ = 0.

(g) Using part (a) and (f), conclude that if τ is small compared to 1
B

, the baseband-
equivalent of w(t− τ) can be modeled as wE(t)ejφ.

Problem 13. (Antenna array)
Assume that a transmitter uses an L-element antenna array as shown below for L = 5:

5 4 3 2 1

α

d

The receiving antenna is located in the direction pointed by the arrows, far enough that
we can approximate the wavefront as being a straight line. Let βiwE(t) be the baseband-
equivalent signal transmitted at antenna element i ∈ {1, . . . , L} with respect to some
carrier frequency fc. We assume that each antenna element irradiates isotropically. (More
realistically, you can picture each dot as a dipole seen from above and we are interested in
the radiation pattern in the plane perpendicular to the dipoles.)
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(a) Argue that the received baseband-equivalent signal (at the matched filter input) can
be written as

rE(t) =
L∑
i=1

wE(t− τi)βiαi,

where αi = e−j2πfcτi with τi = T + iτ for some T and τ . Express τ as a function of the
the antenna array’s geometric parameters α and d.

(b) We assume that wE(t) is a continuous bandlimited signal, which implies that for a
sufficiently small τi, wE(t− τi) is essentially wE(t) (see Problem 12). We assume that
all τi are small enough to satisfy this condition, but that |fcτi| is not negligible with
respect to 1, where fc is the carrier frequency. Under these assumptions, we model the
received baseband-equivalent signal as

rE(t) =
L∑
i=1

wE(t)βiαi

plus noise. Choose the vector β = (β1, . . . , βL)T that maximizes the energy
∫
|rE(t)|2dt,

subject to the constraint ‖β‖ = 1.
Hint: Use the Cauchy–Schwarz inequality.

(c) Let E be the energy of wE(t). Determine the energy of rE(t) as a function of L when
β is selected as in part (b).

(d) In the above problem the received energy grows monotonically with L although ‖β‖ = 1
implies that the transmitted energy is constant. Does this violate energy conservation
or some other fundamental law of physics?

Problem 14. (Bandpass pulses)
Let p(t) be the pulse whose Fourier transform is shown below:

f

pF(f)

1

−f0 − B
2

−f0 + B
2

f0 − B
2

f0 + B
2

(a) What is the expression for p(t)?

(b) Determine the constant c so that ψ(t) = cp(t) has unit energy.

(c) Assume that f0 − B
2

= B and consider the infinite set of functions {ψ(t− lT )}l∈Z. Do
they form an orthonormal set for T = 1

2B
? (Explain.)

(d) Determine all possible values of f0 − B
2

so that {ψ(t − lT )}l∈Z forms an orthonormal
set for T = 1

2B
.
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Problem 15. (Bandpass sampling)
The Fourier transform of a real-valued signal w(t) satisfies the conjugacy constraint

wF(f) = w∗F(−f). Hence if wF(f) is nonzero in some interval (fL, fH), 0 ≤ fL < fH , then
it is nonzero also in the interval (−fH ,−fL). This fact adds a complication to the exten-
sion of the sampling theorem to real-valued bandpass signals. Let D+ = (fL, fH),D− =
(−fH ,−fL), and let D = D− ∪D+ be the passband frequency range of interest. Define W
to be the set of L2 signals w(t) that are continuous and for which wF(f) = 0 for f /∈ D.

(a) Assume T > 0 such that { n

2T

}
n∈Z
∩ D = ∅ (6)

The above means that D+ ⊂ [ l
2T
, l+1

2T
] for some integer l. Define

hF(f) = 1{|f |∈[ l
2T
, l+1
2T ]}(f) and w̃F(f) =

∑
k∈Z

wF

(
f − k

T

)
,

where the latter is the periodic extension of wF(f). Prove that for all f ∈ R,

wF(f) = w̃F(f)hF(f)

Hint: Write wF (f) = w−F (f) + w+
F (f) where w−F (f) = 0 for f ≥ 0 and w+

F (f) = 0 for f < 0 and

consider the support of w+
F (f − k

2T ) and that of w−F (f − k
2T ), k ∈ Z.

(b) Prove that when (6) holds, we can write

w(t) =
∑
k∈Z

Tw(kT )h(t− kT ),

where

h(t) =
1

T
sinc

(
t

2T

)
cos(2πfct)

is the inverse Fourier transform of hF(f) and fc = l
2T

+ 1
4T

is the center frequency of

the interval [ l
2T
, l+1

2T
].

Hint: Neglect convergence issues, use the Fourier series to write

w̃F (f) = l. i.m.
∑
k

Ake
j2πfTk

and use the result of part (a).

(c) Argue that if (6) is not true, then we can find two distinct signals a(t) and b(t) in W
such that a(nT ) = b(nT ) for all integers n. Hence (6) is necessary and sufficient to
guarantee reconstruction from samples taken every T seconds.
Hint: Show that we can choose a(t) and b(t) in W such that ãF (f) = b̃F (f), where tilde denotes

periodic extension as in the definition of w̃F (f).

(d) As an alternative characterization, show that (6) is true if and only if

b2TfLc+ 1 = d2TfHe

(e) Show that the largest T , denoted Tmax, that satisfies (6) is

Tmax =
b fH
fH−fL

c
2fH

Hence 1
Tmax

is the smallest sampling rate that permits the reconstruction of the bandpass
signal from its samples.
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(f) As an alternative characterization, show that h(t) can be written as

h(t) =

(
l + 1

T

)
sinc

(
(l + 1)t

T

)
− l

T
sinc

(
lt

T

)
Hint: Rather than manipulating the right side of

h(t) =
1

T
sinc

(
t

2T

)
cos(2πfct),

start with a suitable description of hF (f).

(g) As an application to (6), let w(t) be a continuous finite-energy signal at the output of
a filter of impulse response hF(f) as shown below:

f [MHz]

hF(f)

−15 −10 10 15

For which of the following sampling frequencies fs is it possible to reconstruct w(t)
from its samples taken every T = 1

fs
seconds: fs = {12, 14, 16, 18, 24} MHz?
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8 Additional exercises

8.1 Introduction and objectives

Problem 1. (Gaussian to unit circle)
Let Z1 and Z2 be i.i.d. zero-mean Gaussian random variables, i.e., the pdf of Zi, i =

{1, 2} is

fZ(z) =
1

σ
√

2π
e−

z2

2σ2

for some σ > 0. Define

X :=
Z1√

Z2
1 + Z2

2

and Y :=
Z2√

Z2
1 + Z2

2

Prove that (X, Y ) is a uniformly chosen point on the unit circle.

Problem 2. (Point on sphere surface)
Assume you pick a point on the surface of the unit sphere (i.e. the sphere centered at

the origin with radius 1) uniformly at random and (X, Y, Z) denotes its coordinates (in 3D
space). Compute E [X2].

Problem 3. (Bolt factory)
In a bolt factory, machines A,B,C manufacture respectively 25%, 35%, and 40% of the

total production. Machines A,B,C have defect rates of 5%, 4%, and 2% respectively. A
bolt is drawn at random from the produce and is found defective. What are the probabilities
that it was manufactured by each machine?

8.2 Receiver design for discrete-time observations: First layer

Problem 1. (Alternative “Wetterfrosch”)
A TV “weather frog” bases his weather forecast for tomorrow entirely on today’s air

pressure, which is thus his observable Y . Here, we consider an ambitious weather frog
who wants to distinguish three kinds of weather. This means that tomorrow’s weather is
represented by a random variable H which takes on value 0 if the sun shines tomorrow, 1
if it rains or 2 if the weather is unstable. We assume that the three hypotheses are a priori
equally likely, i.e. PH(0) = PH(1) = PH(2) = 1/3.

Measurements over several years have led to the following estimate of the probability
density function of today’s air pressure provided that the sun shines tomorrow,

fY |H(y|0) =

{
A(1− 2y), 0 ≤ y ≤ 0.5

0, otherwise

The estimate of the probability density function of today’s air pressure provided that
it rains tomorrow, is

fY |H(y|1) =

{
B
(
1 + y

2

)
, 0 ≤ y ≤ 1

0, otherwise
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Finally, the estimate of the probability density function of today’s air pressure provided
that the weather is unstable tomorrow, is

fY |H(y|2) =

{
C, 0 ≤ y ≤ 1

0, otherwise

The weather frog’s goal is to guess the value of H after measuring Y .

(a) Determine A, B and C.

(b) Write down the optimal decision rule (i.e. the rule that minimizes the probability of a
wrong forecast) in general terms.

(c) For all values y, draw in one graph fY |H(y|0), fY |H(y|1) and fY |H(y|2). Show on the

graph the decision regions corresponding to the optimal decision rule. If we let Ĥ(y)
denote the frog’s forecast for a value y of the measurement, can the decision rule be
written in the form

Ĥ(y) =


0, if y ≤ θ1

2, if θ1 ≤ y < θ2

1, if y ≥ θ2

where θ1 and θ2 are some thresholds? If so, determine the values θ1 and θ2.

(d) Find the probability of a wrong forecast knowing that tomorrow’s weather is unstable,
i.e., determine the probability that the decision Ĥ is different from 2 knowing that, in
reality, H = 2. This probability is denoted Pe(2).

(e) If we assume that, instead of using the optimal rule, our weather frog always decides
that tomorrow’s weather is sunny, what will be his probability of error (probability of
a wrong forecast)? Explain.

Problem 2. (Football)
Consider four teams A,B,C,D playing in a football tournament. There are two rounds

in the competition. In the first round there are two matches and the winners progress to
play in the final. In the first round A plays against one of the other three teams with
equal probability 1

3
and the remaining two teams play against each other. The probability

of A winning against any team depends on the number of red cards r team A got in the
previous match. The probabilities of winning for A against B,C,D denoted by pb, pc, pd
are pb = 0.5

(1+r)
, pc = pd = 0.6

1+r
. In a match against B, team A will get 1 red card and in a

match against C or D, team B will get 2 red cards.
We assume that initially A has 0 red cards and the other teams receive no red cards in the
entire tournament. Moreover, teams B,C,D have equal chances to win against each other.

Is betting on team A as the winner a good choice?

Problem 3. (Minimum-energy signals)
Consider a given signal constellation consisting of vectors {s1, s2, . . . , sm}. Let signal si

occur with probability pi. In this problem, we study the influence of moving the origin of
the coordinate system of the signal constellation. That is, we study the properties of the
signal constellation {s1 − a, s2 − a, . . . , sm − a} as a function of a.
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(a) Draw a sample signal constellation, and draw its shift by a sample vector a.

(b) Does the average error probability Pe depend on the value of a? Explain.

(c) The average energy per symbol depends on the value of a. For a given signal constel-
lation {s1, s2, . . . , sm} and given signal probabilities pi, prove that the value of a that
minimizes the average energy per symbol is the centroid (the center of gravity) of the
signal constellation, i.e.,

a =
m∑
i=1

pisi

Hint: First prove that if X is a real-valued zero-mean random variable and b ∈ R, then E
[
X2
]
≤

E
[
(X − b)2

]
with equality iff b = 0. Then extend your proof to vectors and consider X = s − E[s] where

s = si with probability pi.

Problem 4. (One-bit over a binary channel with memory)
Consider communicating one bit via n uses of a binary channel with memory. The

channel output Yi at time instant i is given by

Yi = Xi ⊕ Zi i = 1, . . . , n

where Xi is the binary channel input, Zi is the binary noise and ⊕ represents modulo-2
addition. The noise sequence is generated as follows: Z1 is generated from the distribution
Pr {Z1 = 1} = p and for i > 1,

Zi = Zi−1 ⊕Ni

whereN2, . . . , Nn are i.i.d. with Pr {Ni = 1} = p. Let
(
X

(0)
1 , . . . , X

(0)
n

)
and

(
X

(1)
1 , . . . , X

(1)
n

)
denote the codewords (the sequence of symbols sent on the channel) corresponding to the
message being 0 and 1 respectively.

(a) Consider the following operation by the receiver. The receiver creates the vector(
Ŷ1, Ŷ2, . . . , Ŷn

)T
where Ŷ1 = Y1 and for i = 2, 3, . . . , n, Ŷi = Yi⊕ Yi−1. Argue that the

vector created by the receiver is a sufficient statistic.

Hint: Show that (Y1, Y2, . . . , Yn)
T

can be reconstructed from
(
Ŷ1, Ŷ2, . . . , Ŷn

)T
.

(b) Write down
(
Ŷ1, Ŷ2, . . . , Ŷn

)T
for each of the hypotheses. Notice the similarity with

the problem of communicating one bit via n uses of a binary symmetric channel.

(c) How should the receiver choose the codewords
(
X

(0)
1 , . . . , X

(0)
n

)
and

(
X

(1)
1 , . . . , X

(1)
n

)
so as to minimize the probability of error?
Hint: When communicating one bit via n uses of a binary symmetric channel, the probability of error

is minimized by choosing two codewords that differ in each component.

Problem 5. (Gaussian vs. Laplacian noise)
Consider the following binary hypothesis testing problem. The hypotheses are equally

likely and the observable Y = (Y1, . . . , Yn)T is a n-dimensional real vector whose compo-
nents are:

H0 : Yk = Zk versus H1 : Yk = 2A+ Zk, k = 1, . . . , n,
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where A > 0 is a positive constant and Z1, . . . , Zn is an i.i.d. noise sequence. In each of
following cases, show that the MAP decision rule reduces to

Ĥ(y1, . . . , yn) =

{
0 if

∑n
k=1 φ(yi − A) < 0,

1 otherwise,

and find the function φ(·).

(a) If Zk are i.i.d. Gaussian noise samples with zero mean and variance σ2, i.e.

fZk(zk) =
1

σ
√

2π
e−

z2k
2σ2 , k = 1, . . . , n.

(b) If Zk are i.i.d. Laplacian noise samples with variance σ2. That is,

fZk(zk) =
1

σ
√

2
e−
√
2
σ
|zk|, k = 1, . . . , n.

Plot the noise densities for cases (a) and (b) for the same value of σ (take σ = 1 for
convenience). Explain intuitively the difference of the functions φ(·) that you found in (a)
and (b).

Problem 6. (Antipodal signaling)
Consider the binary hypothesis testing problem where the hypotheses are equally likely

and the observable Y = (Y1, . . . , Yn)T is a n-dimensional real vector with components
defined as

H0 : Yk = −A+ Zk versus H1 : Yk = A+ Zk, k = 1, . . . , n,

where A > 0 is a positive constant and Z1, . . . , Zn are i.i.d. Gaussian noise samples with
variance σ2. Find the decision rule that minimizes the probability of error. Compare your
answer with that of Problem 5 part (a). What can you conclude?

Problem 7. (Ternary hypothesis testing)
Consider the ternary hypothesis testing problem

H0 : Y = c0 + Z, H1 : Y = c1 + Z, H2 : Y = c2 + Z,

where Y = [Y1, Y2]
T is the two-dimensional observation vector, c0 =

√
E [1, 0]T, c1 =

1
2

√
E [−1,

√
3]T, c2 = 1

2

√
E [−1,−

√
3]T, and Z = [Z1, Z2]

T ∼ N (0, σ2I2).

(a) Assuming the three hypotheses are equally likely, draw the optimal decision regions in
the (Y1, Y2) plane.

(b) Assume now that the apriori probabilities for the hypotheses are Pr{H = 0} = 1
2
,

Pr{H = 1} = Pr{H = 2} = 1
4
. Draw the decision regions in the (L1, L2) plane where

Li :=
fY |H(Y |i)
fY |H(Y |0)

, i = 1, 2.

70



Problem 8. (Gaussian and uniform distribution)
A symbol X ∈ {+1,−1} with Pr{X = +1} = p is transmitted through two channels

simultaneously. The outputs of the channels are

Y1 = X + Z1

Y2 = X + Z2.

Here Z1 is a random variable that depends on X:

fZ1|X(z1|X = +1) ∼ U [−1, 1]

fZ1|X(z1|X = −1) ∼ U [−2, 2],

(where U [a, b] denotes the uniform distribution on the interval [a, b]). The random variable
Z2 ∼ N (0, 1) is independent of both X and Z1.

(a) Consider a receiver that only observes Y2. Describe the MAP rule this receiver should
implement to estimate X.

(b) Consider now a receiver that observes (Y1, Y2). Show that T = (U, Y2) with

U =


−1 Y1 < 0

0 0 ≤ Y1 ≤ 1

+1 Y1 > 1

is a sufficient statistic to estimate X.

(c) Sketch the decision regions that minimize the probability of error to estimate X on the
(y1, y2) plane.

(d) Express the probability of error in terms of p and the Q function.

Problem 9. (Poisson sufficient statistics)
Consider the hypothesis testing problem where the hypothesis is H ∈ {0, 1, . . . ,m− 1},

and the observable is Y .

(a) Suppose under hypothesis H = i, Y = (Y1, . . . , Yn) is an i.i.d. sequence of Poisson
random variables with parameter λi > 0. That is,

PYk|H(yk|i) =
λyki

(yk)!
e−λi , yk ∈ {0, 1, 2, . . . }

Show that the sample mean T (y1, . . . , yn) = 1
n

∑n
i=1 yi is a sufficient statistic.

(b) Suppose under hypothesis H = i the observable Y = (Y1, . . . , Yn) is described as

Yk = θi + Zk, k = 1, 2, . . . , n,

where Zk, k = 1, 2, . . . , n are i.i.d. Exponential random variables with rate λi > 0, i.e.,

fZk|H(zk|i) =

{
λie
−λizk if zk ≥ 0

0 otherwise.

Show that the two-dimensional vector T (y1, . . . , yn) =
(
min{y1, y2, . . . , yn}, 1

n

∑n
k=1 yk

)
is a sufficient statistic.
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8.3 Receiver design for the continuous-time AWGN channel: Sec-
ond layer

Problem 1. (Phase Shift Keying (PSK))
Consider the four sinusoid waveforms wk(t), k = 0, 1, 2, 3 represented in the figure below.

w0(t)

t

√
E

2

w2(t)

t

−
√
E

2

w1(t)

t

√
E

2

w3(t)

t

−
√
E

2

(a) Determine an orthonormal basis for the signal space spanned by these waveforms.
Hint: No lengthy calculations needed.

(b) Determine the codewords ci, i = 0, 1, 2, 3 representing the waveforms.

(c) Assume a transmitter sends wi to communicate a digit i ∈ {0, 1, 2, 3} across a continuous-
time AWGN channel of power spectral density N0

2
. Write an expression for the error

probability of the ML receiver in terms of E and N0.

Problem 2. (On-Off signaling)
The received signal R(t) in a communication system is given by

R(t) =

{
w(t) +N(t) if 1 is sent

N(t) if 0 is sent,

where N(t) is white Gaussian noise of power spectral density N0

2
and w(t) is as shown in

Figure 8
At the receiver, the signal R(t) is passed through a filter with impulse response h(t) and

the output of the filter is sampled at time t0 to yield a decision statistic Y . A maximum
likelihood decision rule is then used based on Y to decide if 1 or 0 was sent.

(a) For h(t) = w(4− t), find the error probability if t0 = 3.

(b) Can the error probability in part (a) be improved by choosing t0 differently?

72



w(t)

t

1

1

4

Figure 8

(c) Find the error probability using the following filter with t0 = 2:

h(t) =

{
1 0 ≤ t ≤ 2

0 otherwise

(d) Can you reduce the error probability in part (c) by sampling the filter output multiple
times?

8.4 Signal design trade-offs

Problem 1. (Exact-energy of PAM)
In this problem you will compute the average energy E(m) of m-ary PAM. Throughout

the problem, m ∈ 2N (positive even integers).

(a) Let U and V be two uniformly distributed discrete random variables that take values
in U = {1, 3, . . . , (m − 1)} and V = {1, 3, . . . , (m − 1)} respectively. Argue that
E[U2] = E[V 2].

(b) Consider

g(m) =

{∑
i∈U i

2 m ∈ 2N
0 m = 0

The difference p(m) = g(m+ 2)− g(m) is a polynomial in m of degree 2. Find p(m).

(c) Even though we are interested in evaluating g(·) only at positive even integers m, our
aim is to find a function g : R → R. Assuming that such a function exists and has a
second derivative, take the second derivative on both sides of p(m) = g(m+ 2)− g(m)
and find a function g

′′
(m) that fulfills the resulting recursion. Then integrate twice

and find a general expression for g(m). It will depend on two parameters introduced
by the integration.

(d) If you could not solve part (c), you may continue assuming that g(m) has the general
form g(m) = 1

6
m3 + am + b for some real-valued a and b. Determine g(0) and g(2)

directly from the definition of g(m) given in part (b) and use those values to determine
a and b.

(e) Express E[V 2] in terms of the expression you have found for g(m) and verify it for
m = 2, 4, 6.
Hint: Recall that E[V 2] = E[U2].
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(f) More generally, let S be uniformly distributed in {±d,±3d, . . . ,±(m−1)d}, where d is
an arbitrary positive number and define E(d,m) = E[S2]. Use your results found thus
far to determine a simple expression for E(d,m).

(g) Let T be uniformly distributed in [−md,md]. Computing E[T 2] is straightforward, and
one expects E[S2] to be close to E[T 2] when m is large. Determine E[T 2] and compare
the result obtained via this continuous approximation to the exact value of E[S2].

Problem 2. (PAM signals)
Consider using the signal set

si(t) = siφ(t), i = {0, 1, . . . ,m− 1},

where φ(t) is a unit-energy waveform, si ∈ {±1
2
d,±3

2
d, . . . ,±m−1

2
d}, and m ≥ 2 is an even

integer.

(a) Assuming that all signals are equally likely, determine the average energy Es as a
function of m.
Hint:

∑n
i=0 i

2 = 1
3n

3 + 1
2n

2 + 1
6n.

(b) Draw a block diagram for the ML receiver, assuming that the channel is AWGN with
power spectral density N0

2
.

(c) Give an expression for the error probability.

(d) For large values of m, the probability of error is essentially independent of m, but the
energy is not. Let k be the number of bits you send every time you transmit si(t) for
some i, and rewrite Es as a function of k. For large values of k, how does the energy
behave when k increases by 1?

Problem 3. (Shifted signals)
Consider the signal set shown below. Each signal is equally likely to be chosen for

transmission over an AWGN channel with power spectral density N0

2
.

t

w1(t)

2

1 2 3 4
t

w2(t)

2

1 2 3 4

t

w3(t)

2

1 2 3 4
t

w4(t)

2

1 2 3 4

(a) Represent the signal set using the four basis signals given by ψ1(t) = ψ(t), ψ2(t) =
ψ(t− 1), ψ3(t) = ψ(t− 2), ψ4(t) = ψ(t− 3), where

ψ(t) =

{
1 0 ≤ t ≤ 1

0 otherwise
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(b) Use the union bound to find an upper bound to the error probability for the optimal
receiver.

(c) Transform the four signals by a translation in order to obtain a minimum energy signal
set. Sketch the new signal set {w̃1(t), w̃2(t), w̃3(t), w̃4(t)}.

(d) Use the Gram–Schmidt procedure to find an orthogonal basis for {w̃1(t), w̃2(t), w̃3(t),
w̃4(t)}.

(e) Find the exact error probability of an optimal receiver designed for {w̃1(t), w̃2(t), w̃3(t),
w̃4(t)}.

(f) Based on your answer to (e), what can you say about the error probability of the
receiver in (b)?

8.5 Symbol-by-symbol on a pulse train: Second layer revisited

8.6 Convolutional coding and Viterbi decoding: First layer re-
visited

8.7 Passband communication via up/down conversion: Third
layer
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