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Preface

The manual provides solutions to the problems that are found at the end of each

chapter in the accompanying textbook, as well as a set of computer exercises. The

problems are intended to encourage students to achieve a deeper, quantitative grasp

of the key concepts in the book, rather than only a superficial understanding from

reading alone. For some of the problems, the solutions will require a synthesis of

material from earlier chapters in the book. Symbols, Equation and Figure number-

ing used in this manual are the same as those in the book. For ease of reference,

the problems are repeated in the manual and are set in italic font.

Computer exercises are provided for some chapters, along with sample Matlab

programs and datasets. Matlab is a high-performance language for technical com-

puting; many excellent introductory books and online articles are available to pro-

vide tutorials. The focus of the software is practical, with the aim of demonstrating

concepts outlined in the book by performing simple calculations or processing sam-

ple datasets on a single-user desktop or laptop system. The software has been tested

with Matlab version R2012a, although newer versions of Matlab may also work.
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1 Chapter 1

1.1 Problem 1

Evaluate the following.

a) What is Poisson’s ratio for a Poisson solid (i.e. a material with λ = µ)?

Using the formula in Table 1.1, ν = 0.25 in the case where λ = µ.

b) Given Young’s modulus E = 8×1010 Pa and Poisson’s ratio ν = 0.28, determine

K,λ and µ.

Using formulae in Table 1.1, K = 6.1×1010 Pa, λ = 4.0×1010 Pa and µ = 3.1×1010

Pa.

c) Assuming that these parameters correspond to an isotropic elastic solid, write the

stiffness matrix in Voigt form (as in Equation 1.11).

In Voigt form, the symmetric stiffness matrix may be written in units of 1010 Pa

as:

10.2 4.0 4.0 0 0 0

10.2 4.0 0 0 0

10.2 0 0 0

3.1 0 0

3.1 0

3.1



d) How would the stiffness matrix change after applying an arbitrary rotation?

No change would occur, as the stiffness matrix is isotropic.

e) What is the value of the elastic stiffness c1111?

c1111 = λ+ 2µ = 10.2× 1010 Pa.
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1.2 Problem 2

Consider a hypothetical granitic material that can be approximated as a 6-phase

assemblage of minerals, as tabulated below.

Mineral Volume Fraction (%) K [GPa] µ [GPa]

quartz 30 36 42

orthoclase 30 40 24

plagioclase 25 65 39

muscovite 5 45 27

biotite 5 40 24

amphibole 5 100 60

Determine the bulk modulus, K, of the polycrystalline aggregate using the following

methods.

a) Voigt averaging.

Using Equation 1.22, KV = 48.3 GPa.

b) Reuss averaging.

Using Equation 1.23, KR = 44.4 GPa

c) Voigt-Reuss-Hill (VRH) averaging.

The Voigt-Reuss-Hill average is simply the average of KV and KR, or 46.3 GPa.

d) Hashin-Shtrikman extremal bounds (calculate upper and lower bounds).

Using Equations 1.24 to 1.26 with K0 = 36 GPa and µ0 = 42 GPa, K−HS = 46.2

GPa. Quartz is used for the 0th phase as it has the smallest value of K.

Using Equations 1.27 to 1.29 with KN = 100 GPa and µN = 60 GPa, K+
HS =

46.5 GPa. Amphibole is used for the Nth phase (N = 5) as it has the largest value

of K.
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1.3 Problem 3

In Voigt notation, the stiffness matrix of an isotropic solid can be written in terms

of Lamé parameters as

C̃ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


.

Suppose that the elastic properties of an unfractured granite can be approximated

by the following stiffness matrix:

C̃ =



80 20 20 0 0 0

20 80 20 0 0 0

20 20 80 0 0 0

0 0 0 30 0 0

0 0 0 0 30 0

0 0 0 0 0 30


[GPa] .

Now, suppose that the granite contains fractures with a transverse fracture com-

pliance ZT = 3.0× 10−12 Pa−1. Determine the stiffness matrix for the case of:

a) penny-shaped fractures that are well drained (Equation 1.46);

b) smooth fractures filled with an incompressible fluid.

a) To solve this problem, first use λ = 20 GPa and µ = 30 GPa to determine

Poisson’s ratio, ν = 0.2. Using this, Equation 1.46 yields ZN = 2.7 × 10−12 Pa−1.

Next, determine the compliance matrix of the unfractured rockmass by computing

the inverse of the stiffness matrix (this can be done numerically). Then, form the

compliance perturbation matrix using Equation 1.45. The compliance of the frac-

tured rock is given by Equation 1.44. Taking the inverse yields the stiffness matrix

of the fractured rockmass (in units of GPa):

65.7 16.4 16.4 0 0 0

79.1 19.1 0 0 0

79.1 0 0 0

30 0 0

27.5 0

27.5


b) In this case, ZN = 0. The stiffness matrix of the fractured rock mass is the same

as the unfractured rock mass, except that C55 = C66 = 27.5 GPa.
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1.4 Problem 4

Consider a binary sequence of shale and coal layers, where the shale is characterized

by Lamé parameters λ = 8.0 GPa and µ = 9.0 GPa, while the coal is characterized

by Lamé parameters λ = 4.0 GPa and µ = 2.0 GPa. Using Backus averaging,

determine the Voigt matrix for the equivalent TI medium based on the following

relative abundances:

a) equal-thickness layers of coal and shale;

b) coal layers that are 10% of the thickness of shale layers, on average.

a) To solve this problem, use Equations 1.36 - 1.40. Note that the expected value

is simply the arithmetic average for coal and shale. Then fill in the stiffness matrix

using Equation 1.20 and the formula below it for C12. This yields the following

stiffness matrix, in units of GPa.

16.8 5.8 4.9 0 0 0

16.8 4.9 0 0 0

12.2 0 0 0

3.3 0 0

3.3 0

5.5


b) This is the same as in part (a), except that a weighted average is used (10%

coal, 90% shale). This yields the following stiffness matrix, in units of GPa.

24.1 7.5 6.9 0 0 0

24.1 6.9 0 0 0

21.2 0 0 0

6.7 0 0

6.7 0

8.3



1.5 Problem 5

Given the poroelastic parameters in the Table below, use Equations 1.52-1.54 to

perform fluid-substitution calculations, based on Gassmann’s formula, to determine

the saturated bulk modulus and bulk density of a porous rock that is initially sat-

urated with brine and then becomes fully saturated (after fluid substitution) with

supercritical CO2.
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Property Symbol Value

Initial fluid density (brine) ρF0 1230 kg/m3

Substituted fluid density (CO2) ρF1 625 kg/m3

Matrix density ρM 2650 kg/m3

Matrix bulk modulus KM 38.8 GPa

Initial fluid bulk modulus (brine) KF0 3.8 GPa

Substituted fluid bulk modulus (CO2) KF1 0.25 GPa

Initial saturated bulk modulus KS0 22.0 GPa

Porosity φ 18%

In order to solve this problem, begin by using the quantities in the table with

Equation 1.54 to determine the dry frame modulus, KD = 16.1 GPa. With this, all

of the quantities on the right hand side of Equation 1.52 are known and the bulk

modulus of the saturated medium can be determined, KS = 16.5 GPa. Finally, use

Equation 1.53 to determine the density of the saturated medium, ρ = 2286 kg/m3.
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1.6 Problem 6

Given a pore-pressure gradient of 1.5 ×105 Pa/m, a medium permeability of 1

×10−14 m2 (0.01 Darcy) and viscosity values of 10−3 Pa-s for fluid 1 (brine) and

10−4 Pa-s for fluid 2 (a supercritical fluid), determine the following.

a) Estimate the fluid velocity using Darcy’s Law (Equation 1.63).

Using Equation 1.63 with the parameters specified above, the fluid velocity is 1.5

×10−6 m/s for brine and 1.5 ×10−5 m/s for a supercritical fluid, respectively.

b) For a porosity of 18%, what is the seepage velocity?

The seepage velocity is 8.3 ×10−6 m/s for brine and 8.3 ×10−5 m/s for a super-

critical fluid, respectively.

c) Determine Reynolds numbers for these parameters, assuming a grain size of 0.1

mm and fluid density values from question 5.

Using Equation 1.65, we obtain a local Reynolds number of Re = 1.8×108 for brine

and Re = 9.4× 1010 for supercritical fluid, respectively.

d) Do these values of Reynolds number meet the assumptions for Darcy’s Law?

Darcy’s Law assumes Re � 1. Clearly, tthese values of Reynolds number do not

meet the assumptions for Darcy’s Law.
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1.7 Online Exercise

Recent studies have highlighted the potential significance of pore-fluid pressure

as a factor that may control the onset, termination and distribution of seismicity

induced by fluid injection into the subsurface. In a porous medium, the diffusion of

pore-fluid pressure is described by Equation 1.56.

The Coulomb Failure Function (CFF) is a commonly used criterion to character-

ize failure on pre-existing or incipient fault planes (King et al., 1994; Lin and Stein,

2004; Toda et al., 2005). For a given fault orientation defined by a surface normal

n̂, CFF is defined as

CFF = |τ(n)| − µf (σn(n)−P),

where τ(n̂) is the shear stress acting on the plane, µf is the effective coefficient of

friction, σ(n̂) is the normal stress on the fault and P is the pore-fluid pressure. If

stress conditions are changed, ∆CFF is considered as a fault failure index; hence,

if ∆CFF > 0, it indicates that the fault plane has moved closer to failure, whereas

if ∆CFF < 0, it indicates that a fault plane has moved farther from failure.

During hydraulic fracturing, one of the ways in which CFF can change is due

to a change to pore pressure. Recent studies have highlighted the potential signifi-

cance of pore-fluid pressure as a factor that may control the onset, termination and

distribution of seismicity induced by fluid injection into the subsurface. Here, a sim-

ple Matlab tool is provided to visualize pore-pressure diffusion and to investigate

parameter sensitive, including:

• Permeability of the background medium.

• Viscosity of the injected fluid.

• Injection duration.

• Fracture orientation.

• Injection pressure.
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1.7.1 Procedure

Open the file frac mod in a Matlab window. When you run this, you are prompted

to enter input values using a series of dialog boxes, as shown below.

The default parameters shown above are based on Langenbruch and Shapiro (2010).

The viscosity is for slickwater at a depth of 2 km.
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These parameters are meant to be representative of a typical treatment stage. The

frac height cannot be too much larger without interference with the edge of the

computational grid, which is 500m high and 2000m wide. Here n denotes the normal

to pre-existing fractures, which in this case are vertical since the z-component is

set to zero.

The first step in program execution is to calculate pore-pressure diffusion for

the case of an expanding tensile fracture in a homogeneous, isotropic poroelastic

medium.

This is a purely illustrative snapshot of the pore pressure (in units of Pa) at

41.67 minutes after initiation of injection. The fracture has grown to its full height

of 100m. The x- and y-units are metres.

Once the program has finished execution, three plots are generated showing the

CFF change due to a) pore pressure changes alone; b) stress change alone; c) both

pore pressure and stress change. Examples of these plots are given below.
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Try experimenting with parameters, including:

• Permeability of the background medium and viscosity of the fluid; in a more

permeable medium, the pore pressure will diffuse farther within the time-frame

of the frac treatment.

• Duration of the treatment. Try capturing the results right at the end of the

treatment, rather than 30 minutes later as in the default settings.

• Normal directions for pre-existing fractures.

• Net injection pressure.

Be forewarned that some choices of parameters will render the execution of the

program numerically unstable. Also, note that the growth of the hydraulic fracture

depicted in these examples is imposed here based on an assumed growth rate and

does not reflect a numerical simulation of physical fracture growth.
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2.1 Problem 1

Consider a tensile (mode-I) crack as depicted in Figure 2.3.

a) Given KI/
√

2πr = 1.0 MPa, calculate the 2D stress tensor at θ = 0◦, 30◦ and

90◦ from the tip of a mode-I fracture (using Equations 2.3 - 2.5)

Using Equations 2.3 - 2.5, the corresponding 2D stress tensors are:

For θ = 0, σ =

[
1.0 0

0 1.0

]
MPa

For θ = 30◦, σ =

[
0.79 0.18

0.18 1.14

]
MPa

For θ = 90◦, σ =

[
0.35 − 0.35

−0.35 1.06

]
MPa

b) Assuming KI/
√

2πr = 1.0 MPa, what is the normal stress for each of the values

of θ, for a planar surface that is oriented 30◦ from the fracture plane? What is

the shear stress?

The normal and shear stress can be determined from the traction T = n̂ ·σ, where

the normal to the surface is n̂ = (− sin 30◦, cos 30◦). The normal stress acting on

this surface is:

σn = T · n̂′ = 0.90 MPa.

The magnitude of the shear stress is given by (|T|2 − σ2
n)1/2 = 0.24 MPa.

c) Repeat the above calculations for a surface that is parallel to the main model-I

fracture.

In this case, the normal stress is σn = 1.0 MPa and the shear stress is zero.

d) Which regions in the vicinity of the fracture tip are in tension? Which regions

have elevated shear stress?

13
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The region directly in front of the fracture tip is in tension, whereas the region

oblique to the fracture tip (e.g. point P in Figure 2.3) has elevated shear stress.

2.2 Problem 2

A set of laboratory measurements on a sample of dolomite indicates that the un-

confined (or uniaxial) compressive strength (S) is 250 MPa.

a) Determine the cohesion, for µi = 1.0.

Using Equation 2.9, the cohesion is given by C = 51.8 MPa.

b) Assuming σ3 = 15 MPa, determine σ1 at the point of failure, based on the Mohr-

Coulomb criterion.

The maximum principal stress at the point of failure is given by

σ1 =
[
(µ2
i + 1)1/2 + µi

]2
σ3 + 2C

[
(µ2
i + 1)1/2 + µi

]
= 337.4 MPa .

c) Calculate σ1 at the point of failure based on the Hoek-Brown criterion for an

intact rock, using the mean value of the material constant m for dolomite given

in Table 2.1.

Using m = 6.5 and s = 1 (for intact rock), Equation 2.11 gives σ1 = 309.7 MPa.

d) Calculate σ1 at the point of failure using the modified Lade criterion, assuming

that σ2 is the mean of the maximum and minimum principal stresses.

Recalling that φi = tan−1(µi), σ1 can be determined numerically through an iter-

ative process, by evaluating Equations 2.13 - 2.15 until Equation 2.12 is satisfied.

An approximate solution obtained using this approach is σ1 = 622.4 MPa. Clearly,

the Lade criterion predicts considerably greater rock strength than the previous

methods.

2.3 Problem 3

Consider a point in the subsurface at a depth of 3000 m. Assuming a linear density

gradient given by ρ(z) = 2200 + 0.14z, where ρ is in kg/m3 and z is in m, calculate

the following.
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a) Determine SV .

The vertical stress at depth z is given by SV = g
∫ z
0
ρ(z)dz. For a linear density

gradient ρ(z) = ρ0 +kz, we have SV =
∫ z
0

(ρ0 +kz)dz = g(ρ0z+ kz2

2 ). Based on the

parameters given above and g = 9.8 m/s2, SV = 70.9 MPa.

b) If the pore-pressure gradient is 15 kPa/m and the Biot coefficient (α) is 0.5,

determine S′V .

The pore pressure at depth z is P (z) = kP z, where kP is the pore-pressure gradient.

At z = 3000m, the pore pressure is 45 MPa for kP = 15 kPa/m. For a Biot coefficient

of α = 0.5, the effective vertical stress is S′V = SV − αP = 48.4 MPa.

c) For a critically stressed state in an extensional faulting regime with µs = 0.6,

what is S′Hmin?

Using Equation 2.17, S′Hmin = SHmin − αP = 15.5 MPa.

d) For a critically stressed state in a strike-slip faulting regime with µs = 0.6, what

is S′Hmin assuming that S′V is the average of S′Hmax and S′Hmin?

In this scenario, S′V =
S′Hmax + S′Hmin

2
. Therefore S′Hmax = 2S′V −S′Hmin. Substi-

tuting this into Equation 2.18 and solving gives S′Hmin = 23.5 MPa.

2.4 Problem 5

Assuming that a slip surface is in a critically stressed state before and after rupture

as shown in Figure 2.15, calculate the stress drop if σ1 = 40 MPa, σ3 = 15 MPa,

µs = 0.6, mur = 0.4 and C = 5 MPa.

In the initial, critically stressed state, the angle θ between the fault normal and the

maximum principal stress axis is given by (see Figure 1.2):

θ =
π
2 + tan−1 µs

2
.

For a co-ordinate system in which the axes are aligned with the principal stress

directions, the fault normal vector is n̂ = (cos θ, 0, sin θ). Given σ1 and σ3 above,

the normal stress acting on this plane is 33.9 MPa. From Equation 2.24, the stress

drop is therefore ∆τ = 11.8 MPa.
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2.5 Problem 6

Suppose that the Voigt model depicted in Figure 2.16a is subject to an abrupt in-

crease in applied stress, σ. As outlined by Courtney (2000), the parallel configuration

of the spring and dashpot in this model means that strain is equal for both elements,

but the stress is partitioned such that the total stress is σ = σsp + σd, where the

subscripts sp and d denote the spring and dashpot, respectively. At the instant the

stress is applied, the stress is carried entirely by the dashpot; over time, the stress

is gradually transferred to the spring. Find analytical expressions for the temporal

behaviour of σsp, σd, ε and ε̇.

Let t = 0 denote the time at which the stress is applied. The constitutive (stress-

strain) behaviour of the two elements of the Voigt solid are σsp = Eε for the spring,

and σd = ηε̇ for the dashpot. Since the applied stress is constant for t > 0 and is

represented by the sum of the stress in each of the elements, the time derivative of

the stress is

Eε̇+ ηε̈ = 0.

Integrating this expression over time leads to

ε̇ = ε̇0e
−Eη t,

where ε̇0 denotes the strain rate at t = 0. At the instant the stress is applied, all of

the stress is carried by the dashpot; hence

ε̇0 =
σ

η
.

Given the constitutive relationships for the dashpot, we then have

σd = σe−
E
η t.

To obtain the stress in the spring, we need to integrate a second time using the

initial strain rate. This leads to

ε =
σ

E

(
1− e−

E
η t
)
.

Hence the stress in the spring is σsp = σ(1− e−
E
η t). The stress is therefore initially

carried entirely by the dashpot, but over time it shifts to the spring. Thus, as the

t→∞, the strain approaches σ
E .
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2.6 Online Exercise

Mohr diagrams are useful for visualizing the state of stress in addition to various

forms of failure criteria. A Matlab tool is provided to depict 3D Mohr diagrams

under varying stress conditions, including the stress acting on fractures with random

orientation.

2.6.1 Procedure

1 Open Matlab and ensure that your path is properly configured, as described in the

getting started documentation. From the Matlab prompt, type open Mohr tool.

A new window will open showing the Matlab code.

2 Run the script using default values. To run the script, press the green arrow at

the top of the screen.

3 Make the intact rock fail in shear slip, by adjusting the fracture parameters

(cohesion and fraction) so that they are the same as the intact medium, and

adjusting the stress parameters and pore pressure as needed to cause failure.

4 Induce tensile failure in the intact rock, using the same process as described

above.

5 Experiment with a stress state that has low differential stress, σ2 ' σ3.
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3.1 Problem 1

Find a rotation operator that transforms the diagonal form of the double-couple

moment tensor in Equation 3.62 into a tensor form with two shear couples.

An operator that applies a clockwise rotation about the x2 axis of θ = −45◦ (see

Box 1.1), or equivalently a counter-clockwise rotation of 45◦, will transform the

moment tensor in Equation 3.62 into a tensor form with two shear couples. The

rotation matrix has the form:

R =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 .
The transformed moment tensor is given by

M =

 0 0 1

0 0 0

1 0 0

 .

3.2 Problem 2

Within Anderson’s classification scheme, what type of event is represented by the

double-couple (DC) solution in Figure 3.15?

The DC solution in Figure 3.15 can be described as an approximately strike-slip

event, with a component of reverse motion. This hybrid mechanism is sometimes

called oblique slip.

18



19 Problem 3

3.3 Problem 3

By solving Equation 3.25, determine the fundamental-mode Love-wave velocity at

frequencies of 10 Hz and 20 Hz, for a simple model with a 12 m thick layer with vS
= 250 m/s and ρ = 1800 kg/m3 overlying a half space with vS = 1250 m/s and ρ

= 2250 kg/m3.

By numerical solution of Equation 3.25 (see Figure 3.2) the fundamental-mode

Love-wave velocity is found to be 291.3 m/s at 10 Hz and 258.8 m/s at 20 Hz.

3.4 Problem 4

Suppose that phase velocity within the frequency band 0 < f < π is given by v =

v1 + A cos(f/B). Use Equation 3.26 to find an expression for the group velocity

within this band.

By applying the chain rule, Equation 3.26 can be rewritten as

vg = v + ω ∂v
∂ω .

Substituting the above expression for phase velocity leads to

vg = v1 +A cos(f/B)− Aω
2πB sin(f/B).

3.5 Problem 5

Consider a planar interface between two isotropic elastic half spaces characterized

by vP1 = 2100 m/s, vS1 = 1000 m/s and ρ1 = 2200 kg/m3 in the upper half space,

with vP2 = 4600 m/s, vS2 = 2600 m/s and ρ2 = 2200 kg/m3 in the lower half space.

Determine all of the critical angles for incident plane waves (P , SV and SH) in

the upper medium. Discuss how the post-critical reflections might impact wide-angle

recordings using a downhole microseismic array.

For an incident P wave, there are two critical angles corresponding to the refracted

P and SV waves in the lower medium; using Snell’s Law, these angles are 27.2◦

and 53.9◦, respectively. For an incident SV wave, there are also two critical angles

corresponding to the refracted P and SV waves in the lower medium; these angles

are 12.6◦ and 22.6◦, respectively. In the case of an incident SH wave, there is only

one critical angle that corresponds with the refracted SH wave in the lower medium.

The critical angle is 22.6◦.
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For downhole microseismic monitoring the raypaths are usually close to horizontal,

leading to common grazing incidence at horizontal boundaries. This geometry will

produce an abundance of post-critical reflections for the scenario considered here.

3.6 Problem 6

Using QP = 100, 500, QS = 50, 250, plot Brune and a Boatwright spectra at t = 5

s for all Q values, for a source with a corner frequency of f = 5.0 Hz.

The following graphs were computed in Matlab for the set of Q values specified

above. The top row shows S-wave spectra, while the bottom row shows P -wave

spectra. As expected, the Boatwright spectra are characterized by a sharper corner.
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3.7 Problem 7

Consider a fault with strike of 30◦, dip of 70◦ and rake of 10◦.

a) Calculate the vectors corresponding to the d̂, n̂, t̂, b̂, and p̂ axes.

Using Equations 3.69 - 3.71, these unit vectors have the following values:
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d̂ = (0.88,0.44,-0.16)

n̂ = (-0.47,0.81,-0.34)

t̂ = (0.29,0.89,-0.36)

b̂ = (0.02,-0.38,-0.93)

p̂ = (-0.96,0.26,-0.13)

f) Write the moment tensor using geographic coordinates

Using Equation 3.67, the moment tensor can be written in geographic coordinates

as

M = µA

 −0.83 0.51 −0.23

0.72 −0.28

0.11

 .
g) Write the moment tensor in diagonalized form.

The diagonalized moment tensor has the same form as Equation 3.62, multiplied

by the factor µA.

3.8 Problem 8

The surface projection of the rupture zone for a 30◦-dipping reverse fault is 3 km

long and 0.25 km in width. The slip function on the fault can be approximated

a three fault segments that occupy 50%, 30% and 20% of the fault surface area,

with uniform slip of 40 cm, 30 cm and 20 cm (respectively) within each of these

ruptures zones. Assuming that the shear modulus is µ = 10 GPa, what is the seismic

moment? What is the corresponding moment magnitude?

Based on the information given above, the fault area is:

A = 3000× 250/ cos 30◦ = 8.66× 105 m2.

The average slip d̄ is an area-weighted average of the slip in each of the rupture

zones, 0.33 m. The seismic moment is given by Equation 3.66 and is the product

of the average slip, rupture area and shear modulus, 2.86 ×1015 N-m. The moment

magnitude can be determined from Equation 3.81 and is 4.3.
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3.9 Problem 9

After a large earthquake, the number of recorded aftershocks per day after 1, 4 and

20 days is 80, 18 and 3 per day. Using Equation 3.98 (generalized Omori’s law),

estimate the parameters k, c and p.

Through a process of trial and error, the aftershock rate, ra(t), can be approximated

using parameters k = 105, c = 0.26 days and p = 1.2, where t is in days.

3.10 Online Exercises

a) The Zoeppritz equations can be solved numerically to visualize the amplitude

and phase of reflected and transmitted plane waves at a planar interface between

two elastic half spaces that are in welded contact. A Matlab tool is provided that

facilitates graphical exploration of P − SV energy partitioning at an interface.

b) Source-type diagrams developed by Hudson et al. (1989) provide a convenient way

to classify the type of rupture (double couple, tensile crack opening, compensated

linear vector dipole, etc.), irrespective of geometry of the source. A visualization

tool is provided to project an arbitrary moment tensor into this diamond-shaped

graph.

3.10.1 Procedure

Open Matlab and ensure that your path is properly configured, as described in the

getting started documentation. From the Matlab prompt, type zprtz tool. This will

open a dialog box as illustrated below.
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Apart from the last two, most of the input parameters are self-explanatory. The

incident wave type (medium 1) is denoted as incw and takes the values 1 for an

incident P wave and 2 for an incident S waves. The scattered wave type is denoted

as scwt and takes the following values:

1. Reflected P wave

2. Reflected SV wave

3. Transmitted P wave

4. Transmitted SV wave

The graph generated by the program using default parameters is shown below.

The top panel shows the amplitude of the reflection/transmission coefficient, while

the lower panel shows the phase. In this case, the critical angle angle for the P −
P reflection is about 42◦. Try experimenting with different values for the input

parameters.
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Next, type stp tool to bring up the following dialog box for the source-type plotting

program:

Input parameters are the components of a moment tensor. The program prompts

to enter additional moment tensors, each of which is projected into a Hudson plot

as illustrated below.
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4.1 Problem 1

SHmin = 44.0 MPa has been estimated based on observation of the fracture closure

pressure (FCP) from an extended leakoff test (XLOT).

a) Use Equation 4.6 to estimate SHmax, neglecting the generated hoop stress ∆σθθ
and assuming ∆Θ (angular breakout width) = 20◦ and S (unconfined compressive

strength) = 150 MPa.

Using Equation 4.6 and the parameters given above, SHmax = 65.6 MPa.

b) If PR = 49 MPa, use this estimate for SHmax to estimate the pore pressure, P .

Equation 4.9 gives P = 17.5 MPa.

c) Why is it not possible to infer SHmax in a reverse faulting environment?

The XLOT test provides an estimate of the minimum principal stress. In a reverse

faulting environment, the minimum principal stress is vertical; hence, it is not

possible to infer the minimum horizontal stress.

4.2 Problem 2

Using the same model for density and pore-pressure gradient as in question 3 from

chapter 2, and assuming the generalized strain model, calculate the effective prin-

cipal stresses S′V , S
′
Hmax and S′Hmin given a Biot parameter of α = 0.5, tectonic

strains of εH = 10−3 and εh = 10−4, and a shear modulus of µ = 10 GPa. Assume

a Poisson solid (ν = 0.25). This approach is sometimes called a mechanical Earth

model.

As outlined in the solution for problem 3 in chapter 2, we have SV = 70.9 MPa at

3.0 km depth. For a pore-pressure gradient of 15 kPa/m, this leads to an effective

vertical stress of S′V = 48.4 MPa. The generalized strain model is represented by

26
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Equations 4.19 - 4.20. Based on these expressions, S′Hmax = 43.5 MPa and S′Hmin
= 25.5 MPa.

4.3 Problem 3

Consider a hydraulic fracture of fixed height hf = 30 m. Assuming a Perkins-

Kern-Nordgren (PKN) model, calculate the following at time t = 30 minutes, given

a constant injection rate of qi = 8 m3/min, dynamic viscosity η = 10−3 Pa-s

and an average fracture width (or aperture) of 2 mm. Assume that the medium is

characterized by a Young’s modulus of E = 20.0 GPa, a Poisson’s ratio of ν = 0.3

and a leakoff coefficient given by CL = 0.002 m min−1/2.

a) The fracture area as a function of time, Af (t).

Using Equation 4.27, at t = 30 minutes Af (t) = 7.28 × 103 m3.

b) The fracture length, for a simple case of a fracture with a rectangular cross sec-

tion.

For a vertical fracture of rectangular shape, the length is the area divided by the

height or 242.5 m.

c) The net pressure, Pnet.

Based on Equation 4.23, Pnet = 1.2 MPa. Be mindful of units and note that the

plane-strain modulus (E′) must be calculated.

d) The fracture width (also known as fracture aperture) at the x = 0.5L, using

Equation 4.24. Compare this with the assumed average width given above.

The calculated value for the fracture aperture is 0.0028 m. This is somewhat greater

than the average width of 2.0 mm given above, but is reasonable considering that

the fracture aperture is reduced near the tip.
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4.4 Problem 4

Use the Khristianovich-Geertsma-de Klerk (KGD) model with the parameters given

in the previous question to compute the following.

a) The fracture length (L).

Using Equation 4.29, the approximate fracture length is given by L ≈ 116.2 m.

b) The net pressure.

Using Equation 4.28, Pnet = 5.3 MPa.

4.5 Problem 5

Calculate the terminal proppant settling velocity based on Stoke’s Law (Equation

4.31) using the dynamic viscosity given in question 3. Assume the maximum grain

diameter at 90% probability for a 20/40 mesh, and a density contrast of 1500 kg/m3

between the proppant grains and the fluid.

From Table 4.1, the maximum grain diameter at 90% probability for a 20/40 mesh

is 850 µm. Given the other parameters listed above, the terminal proppant settling

velocity is 0.59 m/s.

4.6 Problem 6

The hydraulic injected energy is given by E =
∫ t2
t1
PR dt, where P is the injection

pressure and R is the injection rate. For a constant bottomhole injection pressure

of P = 50 MPa and a uniform injection rate of R = 8 m3/min, calculate the

total hydraulic injected energy from t1 = 0 to t2 = 30 minutes. Use Equation 3.87

to calculate the magnitude of an earthquake with the equivalent radiated seismic

energy.

Since the pressure and rate are assumed constant, the above integral reduces to

a simple product, yielding E = 1.2 ×1010 J. From Equation 3.87, the equivalent

earthquake has a moment magnitude of 3.52.
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5.1 Problem 1

Use Equations 5.1-5.3 to estimate the minimum magnitude for a locatable event,

at a distance of r = 500 m and a frequency of f0 = 15 Hz. Start by calculating

the seismic moment, assuming that the amplitude with 10% probability of detection

(A10) is 0.1 µm; then calculate the corresponding moment magnitude using Equa-

tion 5.3. Use the following parameters: vP = 4000 m/s, vS = 2000 m/s, ρ = 2500

kg/m3, QP = 200 and QS = 100.

From Equation 5.1, MP
0 = 5.0 × 107 N-m and from Equation 5.2, MS

0 = 1.1 ×
107 N-m. In order to locate an event, both the P and S wave must be above the

detection limit. We therefore use the P wave to determine the magnitude, yielding

MW = -0.9.

5.2 Problem 2

Design a linear geophone array using Equation 5.4, for which the first notch rejects

horizontally propagating waves such as ground roll with a frequency f = 10 Hz and

an apparent horizontal velocity of 500 m/s.

The reader may notice that the number of elements in the linear array is not

specified; this is because it is the effective array length (L = n∆x) that is important

in this calculation. As shown in Figure 5.8, the first notch coincides with λA = L.

For the parameters given above, λA = 50 m.
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5.3 Problem 3

Suppose that the mass element of a 10 Hz geophone is 100 g.

a) What is the spring constant, k?

From Equation 5.6 we see that

k = 2πf20M = 62.8 kg s−2 .

b) Assuming that the geophone is critically damped and has a sensitivity of Sg = 1,

what is the amplitude and phase of the transfer function at 2 Hz and 20 Hz?

The geophone transfer function expressed by Equation 5.7 gives a Complex result,

which can be represented in terms of amplitude and phase. For a critically damped

geophone, the damping factor is λg = 1√
2
. For f = 2 Hz, which falls significantly

below the natural frequency of the geophone, the amplitude of the transfer function

is 0.04 and the phase is -16.4◦. For f = 20 Hz, above the natural frequency of the

geophone, the amplitude of the transfer function is 0.97 while the phase is -136.7◦.

In the limit as f →∞, the geophone transfer function approaches an amplitude of

unity and a phase of -180◦.

5.4 Problem 4

A seismometer has a sensitivity of 1000 V/m/s, 2 poles at +/- 4.4 Hz and 2 zeros

at 0 Hz. Calculate the amplitude and phase of the instrument response at 2 Hz and

20 Hz.

The seismometer transfer function is given in Equation 5.9. For the parameters

specified above, the transfer function works out to be 890.8 V/m/s at f = 2 Hz

and 998.8 V/m/s at f = 20 Hz. In both cases, the phase response is zero.

5.5 Problem 5

Consider a four-station surface network, at locations that are 3.0 km to the north,

south, east and west of an event with hypocentre at 4000 m depth. Assume that the

medium is homogeneous and isotropic with velocity V .

a) Calculate the Fréchet derivative matrix of traveltimes, Aij = ∂ti
∂xj

. Here, i denotes
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the station number and j = 1,2,3 denotes x, y and z location indices for the

source.

Let the four stations be arranged so the i = 1, 2, 3, 4 corresponds to stations located

north, south, east and west of the event and consider the 2-D problem with j = 1, 2

representing east and north spatial coordinates, respectively. If the hypocentral

distance is denoted by r, then from the chain rule the derivative computed in the

direction of the station offset is

∂t

∂x
=
∂t

∂r

∂r

∂x
=

1

V

x

r
= p,

where p is the horizontal slowness in the direction of the station. The Fréchet

derivative matrix is therefore given by

A =


0 p

0 −p
p 0

−p 0

 .

b) Calculate det(ATA), which is the basis for the D-optimality criterion for survey

design.

The matrix ATA can be written as:

p2
[

2 0

0 2

]
.

Evaluating the determinant of this matrix, det(ATA) = 4p2.

5.6 Online Exercises

.

A set of Matlab tools is provided to aid in visualization of uncertainty for pa-

rameters associated with the design of a passive-seismic experiment. These tools

can be used to create graphs of seismic-detection probability versus distance, as a

function of injected fluid volume, stochastic diagrams of location uncertainty and

condition number for moment-tensor inversion.
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5.6.1 Procedure

1. Use the Matlab program MSD detect to generate examples of seismic detection

probability as a function of injected fluid volume. Try adjusting the input param-

eters (seismic efficiency, noise level, distance range, etc.) to get a feel for inherent

tradeoffs. Note: the background noise factor is a scalar for the USGS NHNM at 10

Hz. A sample screen shot is shown below.

2. Use the Matlab program MSD locerr to generate stochastic diagrams of location

uncertainty. This program uses a homogeneous velocity model to compute synthetic

locations based on P and S arrival times plus P -wave inclination and azimuth.

Random errors (zero mean, uniform deviates) for 50 realizations are added to the

pick times and polarization data. A sample screen shot of the 3D perspective view

generated by the program is shown below. Receivers are shown by green triangles,

true source locations with magenta circles, and stochastic source points with black

+ symbols.
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The following scenarios are defined by receiver location files:

• sensors.txt: single vertical monitor well located above the reservoir horizon

• sensors2.txt: a deviated monitor well that spans the reservoir horizon

• sensors3.txt: a single horizontal receiver array within the reservoir horizon

• sensors4.txt: two horizontal monitor wells on both sides, slightly offset in depth

• sensors5.txt: three sparse vertical monitor arrays around the reservoir

• sensors6.txt: two sparse vertical monitor wells on one side

• sensors7.txt: a surface cross-arm array

3. Use the Matlab program MSD mti to compute the moment tensor inversion

(MTI) condition number for all of the above sensor geometries. A sample screen

shot is shown below. This is a map view. Receivers are indicated by black triangles.

In general, the condition number should be as small as possible for stable inversion

results.
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6.1 Problem 1

Suppose that recorded ground motion as a function of time t (0 < t < T = Nπ) for

an event is defined by

ux = a sin t

uy = b cos t

uz = 0 .

Construct a covariance matrix using Equation 6.1 and show that the two nonzero

eigenvalues of this matrix are proportional to a and b.

For this problem, the covariance matrix defined by Equation 6.1 can be expressed

in continuous form as

C =


a2

T

∫ T
0

sin2(t)dt
ab

T

∫ T
0

sin(t) cos(t)dt 0

ab

T

∫ T
0

sin(t) cos(t)dt
b2

T

∫ T
0

cos2(t)dt 0

0 0 0

 .
Since:∫

sin2(t)dt = 1
2 (t− sin(t)/2)∫

cos2(t)dt = 1
2 (t+ sin(t)/2)∫

sin(t) cos(t)dt = sin2(t)/2

and T = Nπ, the covariance matrix reduces to

C =

 a2

2 0 0

0 b2

2 0

0 0 0

 .
The eigenvalues of this matrix are a2

2 , b2

2 and zero. Jurkevics (1988) defines the
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polarization problem as finding the eigenvalues (λ1λ2λ3) and eigenvectors (u1u2u3)

that are nontrivial solutions to

(C− λ2I)u = 0,

where I denotes the identity matrix. Comparing this with the matrix above, we see

that the polarization is defined by elliptical motion in the x − y plane with axis

lengths that are proportional to a and b, respectively.

6.2 Problem 2

Consider a time series given by random white noise with a root-mean-squared am-

plitude of AN and a unit impulse at t = 0. Draw a sketch of the characteristics

functions using STA/LTA, kurtosis and AIC approaches for signal detection.

See examples given in the online problem below.

6.3 Problem 3

Consider a shale layer that contains thin coal intervals, as defined in Problem 4b of

Chapter 1. In addition, the shale density is 2200 kg/m3 and the coal density is 1800

kg/m3. Determine the layer parameters (isotropic vP and vS, or VTI parameters

as appropriate).

a) Take the thickness-weighted average of the vP and vS of the constituent beds. This

is a commonly used approach for blocking velocity models.

Based on the information given above and in Problem 4b of Chapter 1, the

velocities in the shale layer are vP = 3.80 km/s and vS = 2.24 km/s, whereas the

velocities in the coal layer are vP = 2.11 km/s and vS = 1.05 km/s, respectively.

Problem 4b specifies that coal layers that are 10 percent of the thickness of shale

layers, on average. Thus, the thickness weighted average velocities of the medium

are vP = 3.63 km/s and vS = 2.12 km/s.

b) Take the time-weighted average of the vP and vS of the constituent beds.

In this case, the weighted mean of the respective velocities is determined with

weights given by

(
tshale

tshale + tcoal

)
and

(
tcoal

tshale + tcoal

)
for shale and coal, re-

spectively, where tshale is the transit time for a shale layer that is 90 percent

of the total thickness. Likewise, tcoal is the transit time for a shale layer that is
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10 percent of the total thickness. The total thickness is arbitrary. Use of these

weights leads to time-weighted average velocities of the medium are vP = 3.52

km/s and vS = 2.01 km/s. In this scheme, the coal layer has a greater weighting

as it is slower and the transit time is relatively larger.

c) Take the time-weighted average of the slownesses (reciprocal of velocity) of the

constituent beds.

The calculation is similar to the previous calculation, except that the reciprocal

of the average of the reciprocal velocities is used, leading to vP = 3.35 km/s and

vS = 1.84 km/s. This approach is equivalent to the Wyllie time-average equation

for well-log data (Wyllie et al., 1956).

d) Calculate the equivalent VTI medium using Backus averaging (as in Problem 4b).

Express your results using Thomsen (1986) parameters of α, β, γ, δ and ε.

Using the elastic stiffness matrix components from the solution to Problem 4b of

Chapter 1 and Equations 3.35, 3.36, 3.40, 3.41 and 3.45 we find that α = 3.43 km/s,

β = 1.93 km/s, ε = 0.07, γ = 0.12 and δ = −0.04.

6.4 Problem 4

Use the Brune spectral method to estimate the magnitude of the event depicted in

Figure 6.17, assuming vS = 2500 m/s, ρ = 2600 kg/m3 and r = 500 m.

Based on the Brune model, seismic moment (M0) can be determined from the low-

frequency plateau amplitude of the displacement spectrum using Equation 3.88.

Using an estimated value of A0 = 4 ×10−11 m-s, this yields M0 = 1.62 ×107 N-m.

From Equation 3.81, this corresponds with a moment magnitude of MW = −1.2.

6.5 Online Exercise

The objectives of this exercise are:

1 to study the effect of window size in short time average (STA) and long time av-

erage (LTA) ratio method, Modified Energy Ratio (MER) method and to explore

the Akaike Information Criterion (AIC) method;

2 to perform interactive picking of P - and S-arrival times on microseismic data.

The basic theory for the methods used in this assignment is discussed by Akram

(2014), and is summarized below. The classic short- and long-time average ratio
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(STA/LTA) technique is the most widely used approach for event detection and

time picking. The first step is to compute moving average values for both a short-

time window and a long-time window, as follows:

STA(t) = mean
{
u
(
t− tS

2 ≤ t ≤ t+ tS
2

)}
,

and

LTA(t) = mean
{
u
(
t− tL

2 ≤ t ≤ t+ tL
2

)}
.

In these expressions, u(t) is a seismic trace, and tS and tL are the short and long

window lengths, respectively. Han et al. (2009) recommended a STA window size

that is 2 - 3 times the dominant period of the seismic signal and a LTA window size

equal to 5 - 10 times the STA window size. Although these guidelines are reasonable,

an LTA window length that is 7 - 12 times the STA window length may yield better

results. The STA/LTA ratio is given by

R(t) =
STA(t)

LTA(t)
.

The MER algorithm, proposed by Han et al. (2009), differs from the STA/LTA

algorithm in the sense that it uses both pre- and post-sample windows of equal size

for energy ratio calculations. Consider an energy ratio (ER) given by

ERi =

∑i+w
j=i u

2
j∑i

j=i−w u
2
j

,

where w is the window length. The modified energy ratio (MER) is given by

MERi = |ui|3ERi .

The AIC algorithm is based on the idea that non-stationary characteristics of

microseismic signals can be approximated by dividing an observed trace into locally

stationary segments, where each is treated as an autoregressive process. For a trace

of length N , the AIC characteristic curve is represented as

AICk = k log (var {ui:k}) + (N − k + 1) log (var {uk+1:N}) ,

where k ranges through all samples of the input microseismic trace. A local min-

imum value of the AIC characteristic curve represents the arrival time. Unlike

STA/LTA and MER, this technique does not require the selection of a window size.
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6.5.1 Procedure

1. Test parameters for STA/LTA using the program STA LTA tool. After selecting

a dataset for processing, this program runs through each trace. Select the approx-

imate start time and threshold value in the STA/LTA window using the mouse.

As illustrated below, the algorithm will “snap” to the next peak in the normalized

STA/LTA characteristic curve. Once completed, the 3-component record section is

plotted with your picks indicated by green arrows.

2. Test the window length for the Maximum Energy Ratio (MER) method using the

program MER tool. The program works in much the same way as STA LTA tool,

except that the MER characteristic curve is shown with a logarithmic scale as

illustrated below.
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3. Use the program AIC tool to pick P - and S-wave arrival times. This program

works in a similar manner to the previous ones, but in this case pick just above and

prior to the appropriate local minimum in the AIC characteristic curve.

For all three of the programs described above, when finished picking you will see

a record section with the picks marked by green plus symbols as illustrated below.

Zoom in to examine the picks in detail.
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4. Compare the automatically picked first arrival times using STA/LTA, MER and

AIC methods. The goal is to optimize the parameters to pick the P -wave first arrival

accurately for the events.
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7.1 Problem 1

Raw microseismic data requires conversion into units of velocity. If the background

noise falls within the range of ± 0.2 raw amplitude units, what is the correspond-

ing range of displacement in m/s, given a sensitivity of Si = 85.8 V/m/s and an

amplifier gain of ga = 72 dB?

From Equation 7.7, the correction term is given by ξc = Si 10ga/20. Based on the

information provided above, ξc = 3.42× 105. Hence, the background noise is in the

range of 5.86 ×10−7 m/s.

7.2 Problem 2

Consider the shallow borehole station depicted in Figure 7.2a. Given the known

depths, determine the near-surface P -wave velocity, given the arrival times of 2.451,

2.455, 2.459 s for the three 1C components (from the top), and 2.465 s for the 3C

receiver at the bottom. What is the near-surface velocity? Does this value fall into

the range of expected near-surface P -wave velocity?

By simply using the depths (12 m and 27 m) and times for the shallowest and

deepest geophone levels, the estimated apparent velocity is vP ' 1071 m/s. If

linear regression is used, then the estimated apparent velocity is vP ' 1087 m/s.

This velocity falls within the expected range for dry sand.

7.3 Problem 3

Consider the shallow buried array in Figure 7.7. If hydraulic fracturing is performed

at a depth of 3.0 km in the eastern horizontal well and 3C geophones are used to

record the resulting microseismic events, on which components do you expect to

record the P -wave, and on which do you expect to record the S-wave? Next, con-

sider an event originating at depth outside the limits of the array to the northwest.

On which components would you then expect to see the dominant P - and S-wave

42



43 Problem 4

motion? Assume that the vP and vS of the near-surface unconsolidated layer is

much less than the velocities in the underlying layers.

The presence of low-velocity overburden means that both P and S waves are ex-

pected to refract into near-vertical incidence at the surface. Consequently, the P

wave for a microseismic source location near the east well at 3.0 km depth will

be recorded primarily on the vertical-component geophones. For a source located

northwest of the array, some horizontal ground motion is also expected, along a

northwest - southeast azimuth. S waves will tend to be recorded on horizontal

geophone components irrespective of the source location. The relationship of the

S-wave polarization to the source position is more complex.

7.4 Problem 4

Sketch the wavefronts for both cases in Problem 3. How would you characterize the

moveout that would be expected for both events, if the receivers were re-ordered by

distance from the central well?

To a first approximation, wavefronts for a source 3 km below the geophone array

would be propagating vertically upwards. On the other hand, wavefronts for a source

that is located northwest of the array, wavefronts would propagate toward the SE

with oblique incidence at the surface. In the former case, the moveout would be

approximately hyperbolic with distance from the central well; in the latter case,

the moveout would have a more complex pattern.
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8.1 Problem 1

The table below summarizes the number events within magnitude bins of width one

magnitude unit and centred at values shown by M . Suppose that these events were

detected within the same study area, during three different time windows of varying

length.

M 1 day 7 days 28 days

0 48 346 1329

1 4 28 110

2 0 2 9

3 0 0 1

a) Estimate the b-value by linear regression. Assume that the table is complete to

the lowest magnitude bin.

Linear regression with the values tabulated above yields b-values of 1.08, 1.12 and

1.05, respectively.

b) Based on this simple example, how many observations do you think are necessary

for reliable determination of b-value?

Clearly, uncertainties in determination of b-value are reduced when using a larger

catalog (assuming a stationary process). An issue for the toy example considered

here is the use of large magnitude bins. For a discussion of a robust approach

for determining maximum-likelihood b-value with grouped magnitude values, the

reader is referred to Bender (1983).

8.2 Problem 2

.

The table below shows the locations for 10 coplanar events. Locations denoted by

(x′, y′, z′) contain noise, whereas those denoted by (x, y, z) are noise-free. Using
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equation 8.2, calculate the D value for both of these sets of events. What does this

tell you about the effects of location uncertainty on the calculated D value?

x y z x′ y′ z′

162 451 759 158 465 919

794 84 525 772 78 613

311 229 502 331 216 309

529 913 1637 551 909 1928

166 152 314 165 132 588

602 826 1542 601 807 1741

263 538 941 255 560 852

654 996 1824 674 1019 1685

689 78 464 683 82 376

748 443 1041 729 421 1070

The fractal dimension (D) can be estimated using Equations 8.2 and 8.3. Numerical

estimation using the discrete set of values of distance (r) given by [200,300,400,500,600,700,800,900,1000]

yields a D value of 1.68 for the noise-free data and 1.93 for the noisy data. Recall

that, since the points are coplanar, the expected fractal dimension is 2.0. The in-

ferred fractal dimension is lower because of the limited spatial extent of the data.

The addition of noise, which makes the point cloud more diffuse, has the effect of

increasing D.

8.3 Problem 3

Supplementary Table 1 in the online materials contains locations, times and mag-

nitudes for a series of events that could be classified variously into clusters. Discuss

various approaches that could be used to cluster these events.

The reader is referred to Jain et al. (1999) for a comprehensive review of different

clustering techniques, many of which are implement in Matlab.

8.4 Problem 4

For the tabulated events in question 3:

a) make an r − t graph to determine the apparent diffusivity;

b) evaluate attributes listed in Table 8.2.

The x − y position of the microseismic events from Supplementary Table 1 are
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plotted below. The events are grouped into three stages as marked. Given the lim-

ited amount of data available in the Supplementary Table, not all of the attributes

in Table 8.2 can be computed. Examples of attributes that can be determined in-

clude cluster length, height, azimuth and duration; mean magnitude and magnitude

variance; b value and D value; net seismic moment; maximum-moment rate; and

seismic-moment density.

The following diagram shows and r− t graph, including events from all three of the

stages in the Supplementary Table. A set of curves with varying values of apparent

diffusivity are plotted, with D =, 10, 5, 2 and 1 m2/s, respectively.



47 Problem 5

8.5 Problem 5

Use Equation 8.7 to determine the most-positive curvature corresponding to the

following analytically defined surfaces.

a) A sphere of radius a.

b) A paraboloid defined by z = x2/a2 + y2/b2.

At any point on a curved surface there are two principal curvatures, the maximum

curvature, κ1, and minimum curvature, κ2. The product of these is the Gaussian

curvature, kGauss = κ1κ2 and the average is the mean curvature, kmean = κ1+κ2

2 .

For a sphere of radius a, we have κ1 = 1/a and κ2 = 1/a, so kGauss = 1/a2 and

kmean = 1/a. Substituting these values into Equation 8.7 yields k1 = kmean = 1/a.

To make the calculation for a paraboloid, we can use Equations 8.4 - 8.7. Comparing

the formula for the paraboloid surface defined above with Equation 8.4, we see that

the coefficients c, d, e and f in Equation 8.4 are all zero. From Equation 8.6, this

gives kGauss = 4
a2b2 . From Equation 8.5, this gives kmean = 1

a2 + 1
b2 . Substitution

into Equation 8.7 shows that k1 = 2
a2 (a ≤ b) or k1 = 2

b2 (otherwise).

8.6 Online Exercise

In this exercise, the convex-hull method described in Box 8.1 is used to calculated

Estimated Stimulated Volume (ESV) using the three sample microseismic clusters

from Problems 3 and 4. The basic methodology is outlined in Figures 8.7 and 8.8.

8.6.1 Procedure

The program used in this exercise is called ESV tool. When the program is invoked,

the user is asked to select the sample dataset. For convenience, these are stored

under file names cluster1.mat, cluster2.mat and cluster3.mat in the Chapter8 folder.

These files contain the event location information from Supplementary Table 1, as

well as the location of the injection point and a reported location uncertainty.

This dataset is from downhole microseismic monitoring of a tight sand reservoir

in central Alberta, Canada. The location uncertainties reflect standard errors in

location determined from the picking uncertainties, and do not include other sources

of error such as uncertainties in the velocity model.

As illustrated in Figure 8.8, ESV tool calculates the upper and lower of the esti-

mated stimulated volume using the convex-hull approach together with the reported

uncertainty data.
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9.1 Problem 1

Calculate the seismogenic index (Equation 9.1) for cluster 1 and well pad 1 using

supplementary data from Bao and Eaton (2016), assuming a b-value of unity. The

data are freely available in Tables S5 and S7, respectively, at:

http://science.sciencemag.org/content/suppl/2016/11/16/science.aag2583.DC1

Based on seismicity and fluid injection data, the caclulated seismogenic index re-

ported by Bao and Eaton (2016) in their supplementary data table S4 are−2.7,−1.7,−1.5

and −1.5 for clusters 1, 2, 3 and 6, respectively.

9.2 Problem 2

Calculate the pore-pressure increase caused by a point source with a constant flux

within a homogeneous poroelastic medium (Equation 9.2), using the following pa-

rameters: flux rate q/ρ0 = 10−2 m3/s, dynamic viscosity η = 10−3 Pa-s, perme-

ability κ = 10−15 m2 and hydraulic diffusivity c = 0.1 m2/s. Calculate the pore

pressure at distances of r = 500 m and 5.0 km and injection times of 30 days and

1 year. Be mindful of units.

From Equation 9.2, at a distance of 500 m these parameters give P = 0.8 MPa after

30 days and P = 1.3 MPa after one year (365 days). Similarly, at a distance of 5.0

km these parameters give P ≈ 0 after 30 days and P = 7.4 kPa after one year.

9.3 Problem 3

Based on the seismicity and injection data for cluster 1 from question 1, determine

and compare the maximum magnitude obtained using the method of McGarr (2014)

and the method of Van der Elst et al. (2016), as described in Box 9.1.

According to McGarr (2014), the maximum seismic moment is given by M0 = µ∆V ,
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where ∆V is the net injected volume. Using the data from Problem 1(∆V = 59.6

× 103 m3, ∆V = 120.4 × 103 m3, ∆V = 26.8 × 103 m3 and ∆V = 37.4 × 103 m3)

with µ = 3 ×1010 Pa, the predicted maximum magnitudes are 4.2, 4.4, 3.9 and 4.0

for clusters, 2, 3 and 6, respectively.

According to Van der Elst et al. (2016) the maximum magnitude for fluid injection

can be written as 1
b (Σ + log10 V ), where Σ is the seismogenic index. Using the

seismogenic indices from Problem 1 and assuming b = 1, the predicted maximum

magnitudes are 2.1, 3.4, 2.9 and 3.1 for the same set of clusters.

Bao and Eaton (2016) reported an event of magnitude MW 3.9 for cluster 1 from

this dataset.

9.4 Problem 4

Suppose that there are two seismogenic source regions at distances of 20 km and 200

km from a particular area of interest. The near region is characterized by annual

Gutenberg-Richter parameters of a = 5.2 and b = 1.2, while the farther region has

a = 4.1 and b = 0.9.

a) Using the ground-motion prediction equation (GMPE) given in equation 5.11 with

parameters for eastern North America from Atkinson et al. (2014), calculate the

pseudoacceleration amplitude (in cm/s2) for both distance ranges, for a period of

0.3 s and a magnitude of M4.

Equation 5.11 is a GMPE that expresses pseudoacceleration amplitude as a function

of magnitude and distance. At a period of 0.3 s, the coefficients for eastern North

America are CT = −3.3 and γT =0.0015. Combined with the distance relationship

in Equation 5.12, the calculated values are PSA = 6.0 cm/s2 and 0.5 cm/s2 at dis-

tances of 20 km and 200 km. Note the differing forms of the geometrical attenuation

in Equation 5.12 for these two distance ranges.

b) Calculate the expected number of M4, M6 and M8 events in both regions, in a

50-year time interval.

Based on the Gutenberg-Richter formula with the parameters given, the expected

number of events in a 50-year period (rounded to the nearest integer) are 126 and 1

in the case of the near region with a = 5.2 and b = 1.2, for M4 and M6, respectively.

The expected number of events in a 50-year period for the farther region with a =

4.1 and b = 0.9 are 158 and 3 for M4 and M6 respectively. Based on the parameters

given, the probability of a M8 event in either area is small.
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9.5 Online Exercise

A review of seismicity, structure, tectonics, volcanism, earthquake triggering mech-

anisms, and gas geochemistry in West Bohemia and the adjacent Vogtland region is

presented by Fischer et al. (2014). The most active part of this region contains three

Quaternary active volcanoes and coincides with the intersection of the Eger Rift and

RegensburgLeipzigRostock Zone. The latitude-longitude range for the seismically

active area is approximated by 50◦ - 50.5◦ N and 12◦ - 12.7◦E.

There are many websites that provide tools for downloading earthquake data. A

useful compilation of sites (especially in North America) can be found at:

www.geophysics.geol.uoa.gr/frame en/insti/seisurf.html

The Observatories and Research Facilities for European Seismology (ORFEUS)

site provides access to digital waveform data and station metadata through the

European Integrated Data Archive:

https://www.orfeus-eu.org/data/eida/

This service allows a user to specify a latitude-longitude window, query available

stations and data. The data can be downloaded in Mini SEED or Full SEED for-

mat, while various formats exist for metadata. Similarly, the Incorporated Research

Institutes in Seismology (IRIS) provides a variety of tools to access online data from

global seismograph networks:

http://ds.iris.edu/ds/nodes/dmc/tools/
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