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NUMERICAL SIMULATIONS
COMMENTS AND CAVEATS

In the formulation of dynamical models the range of parameter values for
which the difference or differential system describes the phenomena of interest
will be known up to a certain precision. If the mechanism of interest persists,
the parameter values in its formal description must be such that the variables
eventually settle to an invariant set of values. In applied science much of what
is observed is persistent behaviour and the relevant parameter ranges imply
bounded trajectories.

However, in the analysis of a (contextless) generic nonlinear system, it is
likely that randomly chosen parameter values will lead to unstable solutions
which take on very large values quickly. After some experience in simulating
such systems one comes to the realisation that the collection of parameter values
leading to stable limit sets is indeed a small part of the parameter space. Care
must then be taken in selecting parameter values for the analysis and in the
following exercises we have provided the relevant parameter ranges or values
so as to save time and frustration.

A related problem in the analysis of a generic nonlinear system is that the
basin of attraction of the stable limit set is probably unknown (and may be
quite small and/or have a complicated shape) so that initial values must also
be chosen with care. Also keep in mind that as parameter values are varied,
the basin boundaries change.

A more specific problem of interpreting information from simulations is the
case of a system for which parameter values and initial conditions have been
so chosen as to place it “outside” but “close” to the basin boundary of a stable
limit set. Orbits and trajectories may appear to converge to the limit set over
long periods of time, only to suddenly diverge.

Other difficulties will be described as they arise, but if the above are kept in
mind the information, or confirmation, supplied by numerical simulations will
be easier to decipher.



interactive Dynamical Model Calculator

The software programme interactive Dynamical Model Calculator (hence-
forth, iDMC) is a research tool for studying nonlinear dynamical systems. It
is particularly useful for researchers because it allows the user to choose from
among well-known models or insert his or her own models. Please refer to the
site mentioned in the footnote for installation instructions and a user’s guide
which includes a complete list of available algorithms and more detailed in-
formation on their use, as well as instructions on inserting new models. New
features are in the process of being developed and included in the programme,
consequently the exercise sets will occasionally be modified or expanded.

The first step in any session is to select a model from the directory models.
The directory has a number of well-known models, as well as a directory with
economic models and a directory called Primer which contains all the models
used in the following computer exercises. Once a model is chosen click on New
plot and, for example, Trajectory. You will be presented with an interface
that must be completed with values for initial conditions, parameters, number
of transients (number of iterations starting from the initial condition that will
be truncated and not considered), number of iterations after the transients
(number of iterations starting from the last transient that will be considered).
Clicking Start the trajectory should appear, to change parameter values or
options click Reset. A number of graphical options are available besides the
default. In the Options menu the typle of plotting points can be changed to
big dots and/or connect dots (useful for discrete-time systems). In Plot menu
the Manual bounds option allows the user to define the axes and the user may
choose the type of plot (either time evolution or state space). A zoom feature
is available (right click and select desired area of plot). A number of models
can be open at any time, click New model to open a different model. Graphic
files are saved and printed as .png files and options regarding the look of the
graphics can be changed using the Options menu. Click Exit to leave the
program.

The following is a sample session in which trajectories of an economic model

of partial equilibrium (in discrete time) are simulated. Further details can be
found in Section 1.1 and 1.2*

Consider the description of a single market with demand and supply func-
tions of the price of the good and a price adjustment equation which depends

4All figure, chapter, section, equation and exercise numbers refer to those in Nonlinear
dynamics: a primer A. Medio e M. Lines, Cambridge University Press, 2001.



on the previous price and excess demand:

D(pn) =a— bpn
S(pn) = —m+ sp,

with a,b,m,s > 0. Let h = 0 = 1, substitute demand and supply functions
into the price-adjustment equation and the model equation is

Pnt1=a+m—+ (1 —b—3s)p,
or, settinga +m=«aand 1 —b—s=0

Pnt1 = @& + ﬁpn (15)

The general solution to (1.5) is

p(n) =p+[p(0) — p]5". (1.9)

Dynamics and simulations

It should be observed from (1.5) and (1.9) that the asymptotic behaviour
of the model, that is the qualitative dynamics, are only influenced by the pa-
rameters b and s. These determine the slope of the line in (1.5) defined in the
(PnsPni1) space. Variations in parameter values for @ and m only change the
value of the equilibrium price p.

Click on File and New model, from the Primer directory select the model
(dispar). Again, from the File menu select New plot, then Trajectory.
Values must be provided for initial conditions and parameters. In the following
exercises the choice of the initial condition p(0) is left to the student. Recall,
however, that if p(0) = p there will be no price adjustment. It is necessary
to provide values to be used by the algorithm: number of transients, number
of iterations after the transients. In order to see all of the trajectory starting
from the assigned initial condition, the choice for transients is 0. The number
of iterations can be set low, such as 50. The Auto ranges feature asks how
many iterations should be considered in calculating the ranges for the axes in
the default plot, this can be set at the same value as the algorithm iterations.
(If desired, the plot axes can be defined in the Manual bounds option in the
Plot menu).

In order to see the plotted points you will probably have to change the style
of plotting. The default is pictorially correct as it gives exactly the information
calculated. A dot represents the iterated value for a discrete-time system or



the integrated value for a continuous-time system. The option Big dots makes
the points more visible but it may be necessary to use Connect dots to get
clearer curves and better printed copies. In order to understand the dynamics
of the trajectory it may be necessary to slow down the presentation. This is
possible by using the arrow on the bar above the plot. The further the arrow
is dragged to the right the slower the presentation of the data.

a. Open the Trajectory plot and insert these values for the parameters
a 10
m 2
b 0.2
s 0.1
Produce the trajectory of p for 100 iterations. Given that 0 < 3 < 1

(3 = 0.7), the trajectory converges in monotonically to p = ‘Z‘:_Zl = 40.

b. Change the parameter values of @ and m to a 10, m 2. Note that with
respect to exercise a., only the equilibrium values p = 10.5 has changed, the
convergence to equilibrium is the same. In fact, as long as 0 < 3 < 1 monotonic
convergence is guaranteed.

¢. Change the parameter values of b and s to b 0.5, s 0.7. The price converges
to an equilibrium value of 10 but with oscillations as —1 < 3 < 0.

d. Change the parameter values of b and s to b 0.9, s 1.5, and now 3 < —1.
The price has an equilibrium values at p = 20 but trajectories beginning at
an arbitrary distance from that value diverge with overshooting. The distance
from p increases exponentially and even 25 iterations are sufficient. No set of
parameter values for model (1.5) will lead to monotonic divergence since, under
the hypotheses, 3 <1V b,s > 0.

e. Multiple trajectories can be displayed in a single plot by using Variation,
found in the P1lot menu. This procedure allows the user to increase or decrease
the value of a parameter or initial condition any number of times, by specifying
the amount to change at each variation. Set parameter values as they were in
exercise a. Place a 0 in the second box for all parameters or initial conditions
that do not change. For example, keying in 0.1 next to b and 0 in all of the
other second boxes, and using 10 variations results in a plot for which, at each
subsequent simulation, the value of the parameter b is increased by 0.1. The
first trajectory is with b = 0.2, the second trajectory is for b = 0.3, and so
on. Click on Plot and note how the transient dynamics change as the value



of b varies. (These plots should be familiar to those who have worked through
Exercises 1.1 and 1.2 at the end of chapter 1.)

f. Use the Variation routine to demonstrate that the dynamics and equilib-
rium of the model are independent of the choice of initial values.

To exit iDMC select Exit from the Files menu.



Computer exercises chapter 1

SET 1
In this set we further study the discrete partial equilibrium model (1.5)
(dispar) used above and presented in Section 1.2.

a. PFrom the Files menu select New plot and Shifted and cobweb. Begin
this session by using the suggested values for exercise a. in the sample session.
For the Algorithm order use 1, this will produce a plot of p,,+1 against p, (an
order of 2 would produce a plot of p,+2 against p,, etc.). Set the horizontal
axis and vertical axis to cover the same positive range which should include
the equilibrium value. Equilibrium p is at the point that p,4+1 and p,, have the
same value.

Now click on the Cobweb animation option, provide an initial value and
choose 0 transients. The routine will include the bisector and, beginning from
the given initial value, draw the trajectory path towards equilibrium at p = 40
(see figure 1.2(a)). Use the same routine with a different set of parameter
values.

b. Follow the instructions for Variation to get the time evolution as b varies.
Choose values for other parameters and the variation options so as to produce a
plot with the following transient dynamics: monotonic convergence to equilib-
rium; no adjustment (the inital condition is the equilibrium value); monotonic
convergence to equilibrium; oscillatory convergence towards equilibrium; os-
cillatory divergence. It may be helpful to refer to the analysis in Chapter 1
Section 1.2 (summarised in the parameter space represented in Figure 1.3).
Click on Close and then, from Files, click on Exit to quit or select ctpar to
continue with set 2 below.

SET 2

In this set we use the continuous time partial equilibrium model (conpar)
presented in Section 1.3. In this version of partial equilibrium the price ad-
justment again depends on excess demand, but adjustment is in continouous
time:

D(p) =a—bp
S(p) = —m+sp
p = [D(p) — S(p)].

After substitution we have the differential equation

p=(a+m)—(b+s)p (1.10)



with general solution
p(t) =+ [p(0) — ple” "+, (1.13)

The nature of the dynamics will be determined by the exponent in (1.13) which,
under the hypotheses for the parameter values of b and s is always positive.
That is, whatever the particular values choosen for the parameters (satisfying
the hypotheses), the trajectories will converge to the equilibrium value. In fact,
—(b—l—s)t — 0

lim e
t—oo

and lim p(t) =p+0=p.
t—o0

The simulation of models in continuous-time differs from that of models
in discrete-time in that differential equations like (1.10) must be integrated
rather than simply iterated. The default integrator in iDMC is the Runge-
Kutta procedure, which uses a fixed step size (other integration procedures are
available under Step function in the Plot menu). In addition to the usual
information, the user must also provide the step size. For example, a step
size of 0.02 means that the interval between time ¢ and time ¢ + 1 is divided
into 50 equal intervals. The number of iterates multiplied by the step size
gives the number of time periods. Using 1000 iterations with a step size of
0.02 means 20 time periods have been simulated. Trajectories and orbits will
be smoother with smaller steps but the number of iterations must be adjusted
accordingly to cover the same time period.

Using the Variation routine create and print a plot which represents inde-
pendence to initial conditions. Annotate the figure by noting the parameter
values chosen for the simulations, labeling trajectories with parameter values
and discussing the resulting dynamical behaviours (for example, is it possible in
this model to have transient behaviour characterised by monotonic divergence
or oscillatory convergence).



computer exercises chapter 2

SET 1

In this set we use the discrete partial equilibrium model with lagged supply
response presented in section 2.6. This model differs from the model in (1.1),
(1.3) in the assumption that producers require time to adjust their supply of
the product and therefore base their quantity choice on the price in the previous
period, while demand adjusts to the current price. Then

D(pn) = a—bpy (1.1)
S(pn—1) = —m+ spn—1 (2.41)
Pnt1 = Pn + RO [D(pn) — S(prn—1)]

and again it is assumed that a, b, m, s > 0. Substituting the demand and
supply functions in the price-adjustment equation we have

Pl = Pn + (@ —bpyp +m — spp_1)
= (1 =0)pn — spp—1 + (a +m). (2.42)

Recall that to put a difference or differential equation of order m into the
canonical form of a first order system in m equations, auxiliary variables are
introduced. (See Remark 1.1, Chapter 1 for differential equations and Exercise
1.7 for difference equations.) For the trasformation into a first-order system of
2 equations, let z, = p,—1. To render the new system homogeneous another
auxiliary varible is introduced which places the equilibrium at the origin:

a+m

Zn = Pn-1 = Pn—1 — 2.44
Z Prn—1 = Pn—1 bt s ( )
and we have the first—order, homogeneous system
Zn = Pn
ep (2.45)

Pl = —8Z, + (1 — b)pn-
This system has a unique equilibrium value (0,0) while the equilibrium for the

original variable is, once again,

a+m
b+s

25:

The dynamical behaviour of system (2.45) is characterized by the eigenvalues

BZ(—OS 1£b> (2.46)

of the constant matrix
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which are the roots of the characteristic equation x2 — (1 —b)x+s = 0, that is,

g = % (b= T b7 11

The parameters which determine the dynamics of the system, the stability
and type of transient behaviour, are again b and s. In the following exercises it
will prove useful to refer to the range of possible dynamics represented in the
parameter space (b,s) in Fig. 2.9. We study these dynamical behaviours by
choosing values for the parameters that distinguish three cases for the sign of
the discriminant A = (1 — b)? — 4s.

From the Model menu select the disparlag model. Choose reasonable values
for the parameters a and m (those in the sample session, for example). For
simplicity use the same initial condition for Z and p. In order to see the entire
trajectory again use 0 transients. The number of iterations should be kept
small for visual clarity, no more than 200. Simulations of multi-dimensional
models can be represented as the time evolution of single variables (referred
to as trajectories) or the state space of two variables (referred to as orbits).
The default plot is the state space, but it may be helpful to look at the time
evolution of the variables by choosing the Time plot from the Plot menu.

Case 1 A > 0.

a. Set b = 0.5, s = 0.05. The eigenvalues of B are: ry = i(l—i—%\/g),
Ko = i ( — %\/3), giving |k1|, |k2| < 1 and K1,k > 0. The system converges
monotonically to the equilibrium which is a stable node. Use the Variation
procedure to verify that the trajectories do not depend on the initial conditions.

b. Set b = 2, s = 0.1. The eigenvalues are: k; = —% <1—|—@>, Ky =
5 <1 — @), therefore |k1],|k2| < 1 and ky1,k2 < 0. The equilibrium is a

stable node but because of the negative eigenvalues, the trajectory convergences
with improper oscillations (see Section 2.4).

c. Set b =5, s = 6. The eigenvalues are: k1 = —3/2, ko = —5/2, therefore
|k1], [k2| > 1 e k1, k9 < 0. The equilibrium is an unstable node with improper
oscillations. Given that b and s are assumed positive, the equilibirum at the
origin cannot be an unstable node with monotonic divergence as |k1|, |ka| > 1
and K1,Kko > 0.

d. Set b =3, s =0.75. In this case we have k1 = —1/2, ko = —3/2, therefore
|k1] < 1, |k2| > 1 and k1,k2 < 0. The equilibrium is a saddle point and
orbits from any generic initial condition eventually diverge from the origin
with improper oscillations. However, from initial conditions choosen so as to
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be positioned on the eigenvector associated with eigenvalue %1, orbits converge
to the equilibrium, overshooting at each iteration. This can be verified by
setting Zp = 6 and pg = —3 (the point (6,-3) lies on the relevant eigenvector.).

Case 2 A < 0 and eigenvalues are complex (K1, kg) = 0 £ 6.

a. Set b =1, s = 0.6. Then, r = |0 +i0| = /det(B) = /s < 1 and the

equilibrium is a stable focus.
b. Set b =2, s =4, giving > 1 and (0,0) is an unstable focus.

c. Set b =1,s =1, giving r = 1. Recall (see Secton 2.4) that solutions
for discrete systems are sequences of points lying on curves. In the present
case the solutions lie on closed curves which may be periodic or quasiperiodic,
depending on the frequency of the trigonometric oscillation given by w/27,
w = arccos[tr(B)/2] (see see Case 2, Section 2.5). With the values assigned
to parameters we have w = arccos(0) = 7/2, and the ratio w/27 is a rational
number. The solution sequences are k-periodic, in this case k = 4. Solutions
in the case of such special parameter patterns (giving » = 1) are sensitive to
initial conditions, which position the oscillation on a particular curve. Use the
Variation routine to verify that changing the starting point changes also the
radius of the closed curve.

d. Set b = 0.5, s = 1, and again, »r = 1. In this case it is easy to check
that w/27 is an irrational number. The solution is quasiperiodic in that the
oscillation does not returns exactly to a previously visited point and instead
orbits continue to oscillate around the curve on which the solution lies, coming
close to previous points and filling in the curve. Use a high number of iterates
and slow motion (move the bar above the plot to the right) to see how the
curve eventually fills in.

Case 3 A = 0 and eigenvalues coincide k1 = kg = i = tr(B)/2.
a. Set b =10.4, s =0.04, |r| < 1 and the system converges to a stable node.

b. Set b =4, s =4 giving & = —3/2 (|&| > 1). The equilibrium is an unstable
node with orbits diverging in improper oscillations.

c. Set b =3, s =1 giving k = —1. In this case solutions diverge linearly rather
than exponentially from the equilibrium (with improper oscillations). To see
how these two expansions differ use the Time plot for either variable and the
Variation routine to represent both linear and exponential expansion.
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SET 2

In this set we study the generic differential system in the plane

OG- ) e
Y Y @21 a22 Y
with a;; real constants. The dynamical behaviour of system (2.29) is charac-

terised by the eigenvalues of the the canstant matrix A, which are roots to the
characteristic equation

det(A—XI) =0 thatis A% —tr(A)A 4 det(A4) =0

that is,

Ao = <tr(A) + ﬂ) (2.30)

1
2
where A = <[tr(A)]2 — 4det(A)> = (a1 — a9)* + 4ajsaz;.

Open the model (con2d)In the simulations we once again assign parameter
values falling into one of three categories regarding the sign of the discriminant.
Note also that the trace and determinant of the constant matrix A completely
characterise the dynamics of the system. It may be helpful to refer to Figures
2.1 and 2.3 while working with system (2.29). Choose initial conditions as
you please. iIDMC must integrate system (2.29) and you must provide a step
size (say 0.02 or 0.05) for the algorithm. Again use 0 transients so that the
entire orbit or trajectory is included in the representation. Recall that the
actual number of periods will be the product of the step size and the number
of iterations, so consider a high value for this number (10,000 iterations with a
step size of 0.02 means 200 periods).

Case 1 A>0

a. Set aj; = —4, a12 = 6, as; = 0.5, ags = —6. These values give tr(A4) < 0,
det(A) > 0 and the eigenvalues are both real and negative, \; = —1, Ay = —9.
The equilibrium is a stable node. Use the Variation routine to verify that
orbits converge to the equilibrium independently of initial conditions, use the
Time plot for one of the variables to see the same convergence in trajectories.

b. Set a;; = 3, a2 = 2, ag; = 6, ags = 4. Then det(A) = 0 and the
eigenvalues are zero and tr(A) so that it is the sign of the trace that determines
the qualitative dynamics. Moreover, the equilibrium is not a point in this
special case but a set of points that lie on the line passing through the origin

y/r = —(an/am) = —(a21/a22)-
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For this collection of paramter values tr(4) =7 > 0, \y =0, Ay = 7. The
equilibrium set consists of the points whose coordinates (z,y) are such that
y = —3/2 x. Position the initial conditions of the orbit on a generic point in
the state space and verify that the equilibrium set is unstable.

c. Set ay; = —5, a1 = 2, ag; = 10, ags = —4. Again we have det(A) = 0, but
the trace is negative and the eigenvalues are Ay = 0, Ao = —9. The equilibrium
set is the points on the line y = 5/2 .

d. Set a1y =4, a19 = =2, as; = —4, azy = 6. Then tr(A4) > 0 and det(A) > 0.
The eigenvalues are real and positive A\ = 8, Ay = 2 and the equilibrium is an
unstable node.

e. Set a;; = 3, aj9 = 6, ag; = 4, azo = 5. Then det(A4) < 0 and tr(A4) > 0.
A negative determinate implies eigenvalues of opposite sign, independent of
the sign of the trace. In this case A\y = 9,2 = —1 and the one-dimensional
eigenspace generated by A; is unstable, while that generated by As is stable
and the equilibrium is a saddle point.

Set the step size to 0.01 with 350 iterations. Use the Variation routine
to show two orbits, one beginning at (—6,4), a second beginning at a small
distance from the first. Notice how the orbit dynamics change. The initial
condition of the first orbit lies on the eigenvector associated with the negative
eigenvalue (A — AaT)v = 0 whose solutions lie on the line y = —%x. All orbits
initiating on the line converge to equilibrium, all others diverge.

Next use the same initial conditions (—6, 4) but increase the iterations to 450.
Notice that the orbit first moves towards the equilibrium (the 3.5= 350 x 0.01
periods of the first run), only to diverge quickly after. In theory the orbit should
converge to the saddle point at (0,0) but in practice, given finite precision both
in placing the initial condition and in integrating forward in time, the errors
compound and the orbit eventually diverges.

Case 2 A < 0 and eigenvalues are complex (A\,\2) = a + i3, a = %tr(A),

=475,

a. Set a;; = 3, a19 = 5, ag; = —b, agy = —5. These values give tr(A4) < 0,
and the real part of the eigenvalues are negative (Re A = a = tr(4)/2 < 0):
A1 = —1+ 3¢ and Ay = —1 — 3¢. Orbits converge to a stable focus.

b. Set a1; =5, a1 = =5, as; = 6.1, ags = 4. Then tr(4) >0, Re A =a >0
and the system diverges and the equilibrium is an unstable focus.

c. Set a;1 = 3, a2 = —5, as1 = 2, aszs = —3. Set the step size to 0.01
and iterations to at least 650. We have tr(4) = 0, Re A = a = 0 (A, = 14,
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Ao = —i), det(A) > 0. In fact the oscillations are with constant amplitude,
neither diverging nor converging and the equilibrium is called a center. Use
the Variation routine to demonstrate that the amplitude of the oscillations
depends on the initial conditions.

Case 3 A = 0 and eigenvalues coincide.

a. Set a;; = —6, aj0 =4, ay1 = —4, asg = 2. The eigenvalues are \; = Ay =
A = —2, to which is associated an eigenvector u of the type k- (1,1), k real.
Notice that A # AI. In this case the equilibrium is a node, known as a Jordan
node (see Figure 2.2). Verify that « is an invariant set and that on the vector

u the system converges to equilibrium.

E). Set a11 =2, a10 =0, as; =0, agg = 2. We have two eigenvectors A\ = Ay =
A = 2 such that A = AI. The equilibrium is an unstable node, called bicritical
(see Figure 2.2). Verify that all of the half-lines passing through the origin are

solutions to the system.
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computer exercises chapter 3

From Chapter 3 we know that the local properties of equilibrium points of
a nonlinear dynamical system can be studied by making use of the Jacobian
matrix of the first partial derivates calculated at the equilibrium point. As
stated in the Hartman-Grobman Theorem (Theorem 3.1) the linear approxi-
mation of a nonlinear system preserves the local properties of the fixed points
if they are hyperbolic. The fixed point of a differential system is hyperbolic
if no eigenvalue has real part equal to zero. The fixed point of a system of
difference equations is hyperbolic if no eigenvalue has modulus equal to one.

SET 1

In this set we study the local behaviour in the neighbourhood of the fixed
points of the system found in exercise 3.4(a) at the end of chapter 3 (which
should be worked through before beginning the computer analysis):

. 2
T = —3r+a
Y 3.4(a)

g = 2% —

where @ = 2. Select the model conlocal (continuous time model for local
dynamics). Use the state space plots and choose initial conditions so as to il-
lustrate each of the local dynamical behaviour of the four types of fixed points.
Recommended values for integration data are step size of 0.02 with 500 iter-
ations and Manual bounds for the horizontal axis (0,5) and the vertical axis
(-5,5). Plot sample state spaces using the Variation procedure to get a few
orbits, including one initiating on the fixed point.

SET 2
In this set we study analytically and through numerical simulations the
system in Exercise 3.4(d) which has been modified by the introduction of a
parameter as follows:
: 2
rT=y—ax°+2 )
(2)

§=2a(s* ~ )

The Jacobian matrix of (i) is:

—2x 1 ..
S = < dax —4ay> (7)

and fixed points are easily calculated from (i) as A = (—1,—1), B = (1,—1),
C =(-2,2), D = (2,2). Then the Jacobian matrices calculated in the four
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fixed points are

2

J(A) = <—4a 4a

J(B) = <;3 4a
- (4,

1=

We now have all the information necessary to study the local properties of
Select model cona and simulate orbits in the
state space, varying the value of parameter a. Compare the behaviour of the

the fixed points of system (i).

1
—8a

> eigenvalues A5 = —2 <1 +2a++/1—2a+ 4a2> .

—8a

> eigenvalues A7y =14 2a £ /1 — 8a + 4a2
> eigenvalues AP, = —1 4 2a £ /1 + 8a + 4a2

> cigenvalues A§, = 2 <1 —2a+ 1+ 2a+ 4a2>

system with information on the linearised system. For example:

con a =—1
eq A1 Ao linearized nonlinear system
A -4.61 2.6 saddle point locally unstable
B -3-1.732 -34+1.731¢ stable focus locally stable
C 2.54 9.46 unstable node locally unstable
D -3.29 7.29 saddle point locally unstable
con a =0.14
eq A1 Ao linearized nonlinear system
A 1.28-0.2¢ 1.2841 unstable focus locally unstable
B -2.2 0.76 saddle point locally stable
C -0.89 3.77 saddle point locally unstable
D -4.35 -0.77 stable node locally stable
con a = 0.5
eq Al A2 linearized nonlinear system
A 2-1.41% 2+1.41% unstable focus locally unstable
B -2.45 2.45 saddle point locally unstable
C -3.46 3.46 saddle point locally unstable
D -6 -2 stable node locally stable

Choose a different parameter value for ¢ and determine the local stability of
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the fixed points. Use the Variation routine for initial conditions to conferm
the local stability.

SET &

In an analogous manner study the following system

$:x2+ax+xy2
§=—y+by*?

(model name conb), varying the values of parameters a and b and determining

the associated stability of the fixed points of 14 = (0,0), B = (0, b—12>, C =

(_a70)7 D = <_ab;;|—17b%>‘

SET J

This is the last of the continuous systems in the plane to be considered. We
take the famous model for predator-prey relations known as the Lotka-Volterra
system, given as Exercise 3.4(g):

T =ax — Bry

gy=—yy+éry  a,B,7,6>0

There also exists a famous economic growth model leading to the same equa-
tions (due to Goodwin, see the appendix to chapter 4 for more details).

There are two equilibria, the origin and (v/8,«/3). The latter, setting all
parameters to one is at (1,1). From the linear approximation (see response to
exercise 3.4(g)) it is known that the origin behaves locally as a saddle point,
while the fixed point in the positive quadrant has a two—dimensional centre
manifold and the Hartman—Grobman Theorem is not applicable. However,
from the exact solution (see Exercise 3.7(a)) it is known that there are closed
curve orbits around the equilibria, that is, the fixed point is a centre.

Select 1v and use Variation on initial conditions to obtain a plot of several
of these curves. Suppose the system can take on negative values. Set x and
vary the initial conditions of y to see how the saddle at the origin attracts and
then repells orbits.

SET 5

In this set we consider the set of difference equations:

Tnt1 = 2bx, + 10

Yn+1 = 2&:%%
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with fixed points A = (—%, 0) and B = (—%, i) Check that only fixed
point A can be locally stable for certain parameter values. Select the model
disa and use the Variation routine to simulate two orbits, one starting in the
basin of attraction of A and another starting outside the basin but close to the
basin boundary (recall that with the technique of the linear approximation we

have established only the local stability of A).

SET 6
In this set we consider Lyapunov’s direct method for demonstrating the
global stability of equilibria. This method requires that a Lyapunov function
be determined whose time derivative is negative along the orbits of the system.
For further details refer to Section 3.3 and, in particular, Theorem 3.2. For
system Exercise 3.11(b)
. 2
T =—x—
Y 3.11(b)
y = kry
a Lyapunov function is
k 1
Viz,y) = =% + =¢°.
(x,y) = 50° + 5

Select conlyapa and use the Variation routine to show that the stability is
independent of initial conditions for selected ranges of k& and that the fixed

)

point (0,0) is stable over the specified plane. Try even large subsets of the
plane.
Repeat the same procedure with Exercise 3.11(d)

&=y + ka(z? + )

, 3.11(d)
y=-—x

for which the following is a Lyapunov function

1 1
Viwy) = 522 + 502

and the model name is conlyapb.
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computer exercises chapter 4

SET 1
In this set we study of the period-2 and period-4 cycles of the simple logistic
map
Tl = pan(l — 2p).

As determined in exercise 4.9(b), there exists a period-2 cycle for the map with
i = 3.2, which is stable and attracting over x € (0, 1).

a. Use Variation to produce a plot of the time evolution that illustrates
that the period-2 cycle is attracting over a selected range of initial conditions.
It will probably be necessary to select Big dots and possibly Connect dots
from the Plot options. Include in the plot at least one trajectory that is not
attracted. Use manual bounds over (0,1) and only a few (say 20) iterations.
Check that the values of the periodic points approximate those calculated in

exercise 4.9(b).

b. Use Variation to get trajectories for p = 3.2,3.3,3.4 on the same plot,
using 0 transients and 50 iterates. Note that the trajectory with p = 3.4 takes
a number of iterations which suggest a period-4 cycle, before settling down on
the period-2 cycle. Simulate a trajectory of the period-4 cycle for p = 3.5.

c. From the New plot menu select Shifted and cobweb and from the Plot se-
lect Cobweb animation. Set the order to 1, which plots values in the (z,,, Z,41)
plane (an order of 2 would plot values in the (,,, %, 12) plane). Use 0 transients
and define both axes over (0,1). To begin, use an initial value which is in the
basin of attraction of the period-2 cycle. To slow down the convergence drag
the arrow above the plot to the right. Once the cycle has been reached click
Stop to stop the algorithm. In order to see the values of the periodic points it
will be helpful to repeat the simulation using some transients (say 100). Repeat
the procedure for the period-4 cycle. The period-8 cycle can be simulated for
@=3.55.

SET 2
In Section 4.4.2 we defined periodic points z* of a system of difference equa-
tions, or map,
Tnt1 = G(zy)

x* is a periodic point of period k if 2* = GF(2*) and G"(z) # v for 1 < n <k,
where G"(z) denotes the k-th iterate of the map G. We study the periodic
points of period k of the map GG by studying the fixed points of its K-th iterate
F = G*. Tt is then possible to use the linear approximation (see Chapter 3)
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of the map F' to determine the local properties of the nonlinear map if the
periodic points are hyperbolic.
Consider the famous model of Hénon:

2
Tnt1 =0 —x, + by,

Yn+1 = Tp.
The four periodic points of period 2 are determined as solutions to the system

—a— (a— 2 +by)? + bz + by

x
g=a—Z>+by
and are
Ao b—1+vVb2—20+1+4a b—1+vVb2—-2b+1+4a
N 2 ’ 2
B b—1—-Vb2—2b+1+4a b—1— Vb2 —2b+1+4a
B 2 ’ 2
o 1—b++v4a—3+6b—302 b—1—+/4a — 3+ 6b — 3b2
N 2 ’ 2
b (1=b-VAa—356 —3 b—1+\/4a—3+6b—3b2)
N 2 ’ 2 '

The points A and B are also fixed points of the system and are real for a >
i (—bQ + 2b — 1). The periodic points C' and D are real for a > % (bQ — 2b+ 1).
Notice that when €' and D are real so are A and B, since % (bQ —2b+ 1) >
(—b* +2b—1) Vb.

In the following set one parameter fixed, let b = 0.1, then for approximately
0 < a < 0.6 trajectories converge to a fixed point, for approximately 0.6 < a <
1.1 trajectories converge to a period-2 cycle.

1
4

a. Select the model hénon. Again it will be useful to switch to bigger dots
and connected dots, as well as slow down the plotting, in order to follow the
orbits. Insert values for convergence to the fixed point a = b = 0.1 from initial
conditions z = 0,y = 0.5 using 0 tranasients and only a few iterations, say 100.
Notice that in converging to the equilibrium the orbit jumps back and forth
as the case of improper oscillations. The fixed point attractor in this case is

14T Ob 1 da b—14+V0P—3h 1 da ) . .
A= <b Lt b22 2btlida bl b22 2b+1+4“> = (0.1,0.1). Use the time evolution

plot to see how a single variable converges.
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b. Next we want to set a for a period-2 cycle. The minimum value that guar-
antees existence of the cycle is a,, = 0.6075, because for a > «a, the determinant
4a — 3+ 6b — 3b? is nonnegative and the points C' e D are real. In that interval
also points A and B are real, but both are unstable and do not attract orbits.
Set a = 0.9 to see convergence to the period-2 cycle. Start with O transients
and then to better see the values of the cycle rerun the simulation with some
transients. The Hénon system for these parameter values asymptotically visits
only

1 1
C = <§1—b+\/4a—3+6b—3b2,§b—1—\/4a—3+6b—3b2>

= (0.99, —0.09)

2
= (—0.09,0.99).

1 1
D= <—1—b—\/4a—3+6b—3b2,§b—1+\/4a—3+6b—3b2>

c. The Cycles routine, chosen from the New plot menu, represents the periodic
points of both stable and unstable cycles of the specified period. Use the routine
to confirm that the period 2 cycle periodic points are those given in the above
exercise. For the algorithm fields choose a small value for the epsilon (which
defines the point as within the epsilon radius of the value so that lower values
give ever more precision), and maximum tries around 10. The horizontal and
vertical axes can be set the same at (-2,2).

d. Use the Basin of attraction routine from the Files menu to see the
initial conditions for which the orbits converge to this period-2 cycle. Because
there is only one attractracting set we can plot the basin of infinity, that is, all
the initial conditions that eventually diverge to infinity. Then what is not the
basin of infinity is the basin of attraction for the period-2 cycle. Select Basin
of infinity from the Plot menu and Big dots from the Options menu. Set
a = 0.9,b = 0.1 and set the value at which the algorithm assigns the state
infinity at a low number, say 10. In order to get a quick picture of the basin
set transients low, say 50, and iterations also low, say 100. The number of
trials (different initial conditions) also can be a small number, say 4. Set the
horizontal axis (-4,4) and the vertical axis (-10, 10). The two periodic points
are visible as pink dots in the black basin. If you chose the A11 basins routine
you will arrive, after a little more time, at the same figure but with black
representing initial conditions that converge to infinity, the colored basin of
attraction for the period-2 cycle and the pink periodic points.

e. The stability of the period-2 cycle is lost around a =~ 1.15 and a period-4
cycle appears that is initially stable (we will return to this period-doubling
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scenario in sections 5.4 and 8.1). Use the routines suggested above to study
this period-4 cycle.

SET 3
In this exercise a quasiperiodic trajectory on a torus is simulated using the
system
&= (a—bx—cy+az+de(l—2°)

§=cx+(a— by +yz+dy(l — %)

Zzaz—xQ—yQ—ZQ.
Select the quasi model. Suggested values are: Initial values near the un-
stable fixed point at the origin, say (0.1,0.1,0.1); Parameters 2.005, 3, 0.25,
0.2; step size 0.05, starting with O transients and 5000 iterations. Set the
number of iterations for the automatic calculation of the axes at 1000. The
orbit moves toward the torus, and then, once there, it continues to wind around
the surface. Drag the arrow above the plot to slow down the orbit plotting.
Press continue to calculate another 5000 iterations and see how the surface fills
in (and again if you like). To see only the torus remove transient behaviour by
setting transients at a fairly high value, say 2000.
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computer exercises chapter 5

SET 1

In this set we use the Bifurcation routine to re-visit models from the
computer exercise in Chapter 4 and study the flip bifurcation.

a. Choose the logistic model. From the Files, New plot menu select the
Bifurcation routine to produce the numeric bifurcation diagram. While ana-
lytically unstable branches are determined and can be plotted (customarily, as
a dashed line), iDMC does not determine these unstable fixed points so that
the bifurcation diagram represents only stable asymptotic behaviour. All tran-
sients must be eliminated in bifurcation diagram calculations. If the number of
iterations assigned as transients is insufficient, the variable values represented
in the diagram are not truly part of the limit set and may therefore be mis-
leading (an equilibrium point appears as an equilibrium set, etc.). Obviously,
the diagram will be finer the smaller the interval of the paramter. However, for
a close-up of any region left-click and select the area to be zoomed. This area
will be re-calculated.

Specify an initial value in (0,1), give the range for the parameter of (2,4), a
vertical axis of (0,1) and for the algorithm 500 transients, 2000 iterations. These
values of p give the bifurcation diagram before the first flip bifurcation and
cover the entire range of attracting sets. We will return to the period-doubling
scenario in Chapter 8, Section 8.1. Notice that if you choose Transparency
from the Options menu it is clearer which points are being visited more often.

b. Choose the Hénon 2 model and for the Bifurcation plot use initial values
(0, 0.5), set b at 0.1 and set a to vary over (0, 1.8), a vertical range of (-2,
2), 500 transients and 2000 iterations. Again, using the Trasparency option
gives a clearer idea of what values are most visited. You should be able to
produce orbits for a variety of periodic cycles using the Trajectory routine
and estimate the values of the periodic points with the Cycles algorithm.

SET 2

In this set various views of the fold and transcritical bifurcations are simu-
lated. The equation is that of Exercise 5.6 at the end of chapter 5, the model
1s called conbif:

=2+ 2% — 2+ pz+ p.

It is suggested that analytical results are obtained before turning to the simu-
lations.

First study typical transient behaviour of trajectories for each of three in-
tervals of p: p < —1; =1 < p < 3; 0 > 3. It should be pointed out that if
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there is no stable fixed point the trajectory races off to infinity. It is therefore
useful to use a value of i close to the bifurcation value ¢ = —1 and to define a
limited range for the variable x in the Manual bounds option, say (-2, 2). The
algorithm data given below allows for a plot in which the trajectory values are
still small if p is set at —1.01. It is then possible to use Variation to increase
p until all local dynamic behaviours are evident in the plot. Set the Initial
value at x = 0.5, the algorithm step size at 0.01, use 0 transients and 1500
iterations. Check that the asymptotic behaviour (and approximate value of
fixed points) is as found analytically in Exercise 5.6.

SET 3
In this set the fold and flip bifurcations in a discrete-time equation are
studied. The equation is that of Exercise 5.8(c) and the model is called disbif:

2
Tptl = U+ Tp — T,,.

It is suggested that analytical results are obtained before turning to the simu-
lations.

a. First produce the numeric bifurcation diagram. To avoid transient dynamics
set the number of transients to 500 and set iterations 500. Select Bifur-
cation and produce a diagram for p € (0,1.2). Note where the fold and flip
bifurcations occur. Simulate typical trajectories representing behaviour in each
of three intervals of p, setting the Manual bounds to limit the range of z, say
from -5 to 2. Use the Variation procedure to get trajectories in each interval
(it will be helpful to select the connect-dots option).

SET J

In this set of simulations the Neimark—Sacker bifurcation is studied using
an economic model of the class known as overlapping generations model which
is presented in FExercise 5.12 at the end of chapter 5 (other references given
there). The model, called olgns in iDMC, reduces to the system

Cn+1 = ZZL

Lnir = b(l,, — cp).

a. Using the sketch of the relevant parameter subspace of the OLG model
given in your answer to Exercise 5.11 of the text, choose a value of p that,
by varying b, results in three types of transient dynamic behaviour. Use the
Variation routine to get examples of orbits of each type plotted in the state
space. Initial conditions should be fractional, e.g. at (¢,1) = (0.1,0.3). In
order to follow the orbits use the option for Connect dots under Plot and a
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small number of iterates, say 200 (no transients). Plot the time evolutions of
the variables.

b. Focus the Variation routine so as to get a number of invariant circles in
the state space over the limited parametric subspace of their existence. For
example, for ;1 = 6 the curves exist over b € (1.20,1.26) using the starting
point suggested in exercise a. Change the Plot type back to dots and set
transients to 1000, iterates at 2000 so as to avoid long transients and slow
filling in of invariant curves. The invariant circles are most likely to appear
quasiperiodic, but there may also be periodic curves (with few points on the
invariant circle visited), depending on the value chosen.

c¢. Use the Bifurcation routine to compute the bifurcation diagram, using
the same fixed value of p as used in exercise b., varying the parameter b so
as to capture the Neimark—Sacker bifurcation and a few periodic invariant
curves. Use the variable [ which has greater variation. Having chosen the same
parameter values the bifurcation diagram plots the values of the labour variable
[ taken on by orbits on the invariant circles in the state space as simulated in
the previous exercise.

d. Finally, use the Basin of attraction routine from the Files menu to get
a sample of the size and shape of the basin of attraction for one of the invariant
circles plotted in b. As there is only one attractracting set we can plot the basin
of infinity, that is, all the initial conditions that eventually diverge to infinity.
Then what is not the basin of infinity is the basin of attraction for the invariant
circle. Select Basin of infinity from the Plot menu and Big dots from the
Options menu. Set the paramter values so as to reproduce a limit set of one
of the invariant circles simulated in b. Set the value at which the algorithm
assigns the state infinity at a low number, say 10. In order to get a quick picture
of the basin set transients low, say 20, and iterations at 500. The number of
trials can be set to 1. Set the horizontal axis (-2, 2) and the vertical axis (-2,

9).

SET 5
The Hopf bifurcation occurs in continuous—time systems when the real part

of a pair of complex, conjugate eigenvalues passes through zero. The following
numerical simulations are to study the Hopf bifurcation in the system given at
the end of Chapter 5, in Exercise 5.7:

@ =y +ke(2? +y7)

y=—x+py
for which the bifurcation leads to locally stable limit cycles. The model is called
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hopf in DMC.

a. In the first simulation the transient behaviour is plotted for a few values of
i for a value of £ for which the Hopf bifurcation is supercritical and the fixed
points and limit cycles are stable. For the simulation set £ = —2, and choose
a small negative value for o (e.g. p = —0.4). Tt is convenient to start close
to the fixed point and cycles, say at (1,1). Setting the step size at 0.05 for
5000 iterations gives an evolution of 250 time periods. Increase the value of p
using Variation to show transient behaviours in the state space: convergence
to the fixed point, the limit cycle of zero amplitude, a limit cycle of positive
amplitude, a divergent trajectory. Adequate Manual bounds are (-1, 1.5), (-1,
1.5). (Also try a start point near the origin with g at say 0.4 and increase
the value of the starting point with the procedure Variation. In this case
trajectories sometimes spiral out to the cycle, and sometimes spiral in to it.)

b. To see the limit cycle orbits set the transients value at 4000 and use the
Variation routine to get a number of cycles.
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computer exercises chapter 6

SET 1

In these simulations the map G(x,,) = 1 — 22 (model £1ip), found in Exer-
cises 5.8(a) and 6.1, is used to study of various aspects of flip bifurcations and
chaotic trajectories.

a. Select values to simulate the time evolution for G over 100 iterations (no
transients), x € (—0.5,2) and zp = 0.5. Use the Variation procedure to
produce a plot of trajectories converging to a fixed point and at least one
trajectory converging to a period-2 cycle. The trajectory will be clearer if the
starting point is simultaneously varied by 1 at each run. Simulate a period-4
cycle.

b. Recall that a characteristic of chaotic trajectories of strange attractors is
their sensitive dependence on initial conditions. To ensure that the system is
on its attractor and not merely experiencing chaotic transients set transients
to 500 and iterations to 550. Select a value near the strange attractor (p ~ 1.9
will do) and use Variation to simulate a second trajectory beginning within
0.005 of the first. Note the maximum and minimum distances between the two
trajectories. How would the initial difference have evolved on a non-chaotic
attractor?

c. Changes in the dynamical behaviour arising from varying g, studied as time
evolving trajectories in exercise a. above, are here viewed from the point of
view of the asymptotic stable dynamics using the Bifurcation routine. Set
transients to 500, iterations to 1000. For the first run use p € (—0.25,1.3),
beginning with the first stable fixed point, at the fold bifurcation value, followed
by the first flip at ;1 = 0.75 and the second flip at p ~ 1.28. Take a closer look
at the period-doubling scenario using the left-click to select the interval of
i € (0.7,1.5). Finally, take a closer look at the neighbourhood of the period-3
cycle p € (1.65,1.8).

d. In this exercise we use the Cobweb animation routine to display the maps
of G, G? and G*, using the map G with p = 1.9, by setting the order to 1,
2, 4 respectively. It may be necessary to set the delay in order to follow the
trajectory and use 0 transients.

SET 2
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In this set we study the dynamical behaviour of the Lorenz model:

T =—0x+ 0y
y=—xz+rr—y (6.7)

z=uxy— bz

where z,y, 2 € R; 0,7,b > 0. Recall that system (6.7) is symmetrical under the
transformation (z,y, z) — (—x, —y, z) and has potentially 3 equilibria, depend-
ing on the value of . If 0 < r < 1 the only equilibrium is F; : (0,0,0). Forr > 1

there exist two other equilibria, namely Fs : <—|—\/b(7‘ - 1), —|—\/b(7‘ —1),r— 1>

and F3 : <—\/b(7‘ —1),—/b(r —1),r — 1>. Local stability also depends on the
value of r. Let r > 0 be the bifurcation parameter, and set other parameter

values as ¢ = 10, b = 2.667. Then, as discussed in section 6.8, the following
behaviour occurs around r» = 1

r<l1 1 stable fixed point at origin
r=1 pitchfork bifurcation
r > 1 2 stable fixed points, unstable fixed point at origin.

a. A homoclinic connection occurs at 7 &~ 13.927, but it is very difficult to
determine the exact value of r for which it takes place. The presence of the
homoclinic orbits can be imagined by observing the transition from values
slightly smaller to values slightly larger than the homoclinic connection value.
For a very smooth curve and precise integration set step size to 0.002 and
use 2000 iterates. Begin close to the origin (0.001, 0, 0) and use the delay if
necessary to follow the obit as it slowly curves around Fs moving along the
z-axis and curving again around Fs to which it converges for r» = 13.927. For
a value just past the connection value the orbit crosses over the z-axis and
curves around (converging to) F3. (Use, for example, Variation with 1 count,
changes in 7 at 0.001, Manual bounds z € (—15,15), z € (0,25).)

b. The fixed points Fs and Fj3 are stable over (1,7y), g ~ 24.74, but in
simulations a chaotic attractor is often detected for r > r., r. &~ 24.06. The
local neighbourhood for which the fixed point is attracting gets smaller the
closer the system is to the Hopf bifurcation (see Figure 6.9 in the book). At
r = 23, for instance, an orbit beginning at (1,1, 1) clearly converges to E3 (use
step size 0.2 and 5000 iterates). At r = 24.2 the orbit from that initial point
does not converge, but try a closer initial value (—8, —8,25) (and set step size

to 0.05).
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¢. Simulate the so—called “butterfly attractor”, that is, the chaotic attractor
of the Lorenz model, by selecting a value of r slightly greater than rp. The
choice of variables x and z ensures a good view.

SET 3
In this section we study a two-dimensional system describing the “backward

dynamics” of an overlapping generations model. The basic framework is the
same as that of the model studied in the exercises of Chapter 5, Set 4, except
that an exponential utility function has been assumed which makes it impos-
sible to invert the system. The time indices have been exchanged in order to
study the dynamics of the system moving backwards in time (for further details
see Medio, Choatic Dynamics, Cambridge University Press, 1992, Section
12.3). The variables are again consumption ¢ and labour / in per-capita terms,
the system is

lpt1 = (rce_c)%

Cny1 = (ree™ )% — =

b
with » > 0, b, 3 > 1 and for iDMC the model name is olg.

a. In our analysis so far we have studied how dynamics change through a
bifurcation diagram with a single parameter. In this exercise we explore the
dynamics over a subspace of the 2-parameter space. Open the Bifurcation
procedure and click on the Double parameter option from the Plot menu.
Use Initial values ! =5, ¢ = 2. In this plot we set gamma= 0.5 and use the
subspace of the (b, r) parameter plane defined by a b € (1.5,3), r € (10, 75).

The algorithm requests a number of input values. For the approximation
process the user must define the precision and infinity. Epsilon is an indication
at how fine-grained the user wants the plot to be. The smaller epsilon, the
closer a value must be to the point to be defined as that point. First set
epsilon= 10e —4, which is 0.183, rather coarse. Next try with more precision,
say 10e — 10 ~ 0.0005 and try to explain the differences in the two plots. The
algorithm needs to know at what point the user considers that a trajectory
is on its way to infinity. For the current plot let infinity= 100. The plot
will represent periodic behaviour and the user must set the highest number of
periods to be considered for a given simulation (up to 35). It will be tempting
to take all higher-order cycles as quasiperiodic, but that is not the case. Here
we consider cycles of up to 32 periods.

Recall that the bifurcation diagram is meant to represent asymptotic be-
haviour and for computational methods, the user must decide at what iteration
the dynamical behaviour is no longer transient. The time it takes to reach a
limit set varies greatly. A common problem in interpreting results is that the
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value for tranients is set too low and the plot contains more than the limit set.
For the current exercise we can get by with ignoring the first 500 iterations.

The diagram presents a period-doubling scenario that can be followed as a
sequence by holding either parameter constant and following changes in the
other parameter. For example, follow changes in r» with b = 1.6. As parameter
values for r change, a fixed point becomes a period-2 cycle, and so on, as a
cycle of period 2F loses stability and a stable cycle of period 2% replaces it
as the limit set.

b. Use the plot produced above to explore the dynamics of the model over the
given parameter ranges. For example, fix b = 1.55 and produce a bifurcation
diagram for r € (42,82) (chose from the plot menu One paramter) using Ver-
tical range = (3.5,6) Vertical axis = [. The cascade of flip bifurcations
resembles that of the one-dimensional logistic model produced in Chapter 5
exercises, Set 1.

¢. Choose a value for r in the chaotic zone, such as r = 80 and simulate an
orbit using Trajectory excluding transients. If the number of iterations is
set high enough the attractor should be visible. Select Time plot and choose
one of the variables to see that, while the variable does not escape from the
attractor, neither does it settle down to a periodic set. Return to the state space
representation and click on Continue a number of times until the attractor
seems to be on a continuous curve. Select an area of the attractor to magnify.
Notice that the piece of attractor selected is no longer appears a continuous
curve, but has a fractal structure. No matter how many iterations used, there
is always a magnification level that reveals the underlying fractal structure of
the strange attractor (more on this in Section 7.2).

d. Consider again the bifurcation diagram in the single paramter r. Observe
that within the chaotic zone there are intervals of r representing periodic limit
sets. An example is the periodic window for r € (77.95,78.12), in which there
are stable period-6 cycles. Exclude transient behaviour and represent the pe-
riodic attractor in the state space.

SET J
In this section we study Maynard Smith’s two-dimensional map with very
complicated dynamics
Tp41 = €Tp + fh — yvgz

Yn+1 = Tn

a. Open the model msmith. Begin by producing a Bifurcation plot with two
paramters, setting a Initial values: ¢ = 0.2, y = 0.1; Parameter values € €
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(—2,2), p € (—0.5,4) and use a maximum of 32 periods. In the parameter space
many periodic “ tonuges” can be observed. You should be able to distinguish
areas where the equilibrium point loses stability through a flip bifurcation (e.g.
¢ is near 0) and where it loses stabilty through a Neimark bifuraction.

b. Now fix € = 0.6 and produce a bifurcation diagram for p € (0.3,1.1), using
Vertical range = (-1.7,1.8). The plot represents how as p varies, the as-
ymptotic dynamical behaviour of orbits changes from periodic to quasiperiodic
to chaotic. At p = 0.48, for example, the orbits converge to a closed curve
with quasiperiodic motion. Fix g = 0.9 and draw the trajectory using 5000
transients and 10000 iterations. The orbits converge to the chaotic attractor
with is distributed in six regions of the (z,y) plane. Increase the value of i to
see the changing form of the attractor. Represent the basin of attraction for
different, increasing values of yt over the chaotic range (0.9, 1.07). Observe that
as  increases the attractor pieces extend until at g = p. ~ 1.07 they become
tangent at various points of the basin. For 1 > p. the basin of attraction no
longer exists and orbits tend to infinity.
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computer exercises chapter 7

SET 1

In these exercises trajectories for each of five values of p are simulated and
the single Lyapunov characteristic exponent for each is calculated. The basic
equation for simulations is the map used to study flip bifurcations and chaotic
orbits in set 1 of the computer exercises for chapter 6 (the model name is £1ip)

2

ne

G(xy,) =p—=x

a. Before calculating the LCEs at various parameter values it is good practice
to take a look at the trajectories and get at least an expected sign for the
exponent. Set the input values to simulate the time evolution for G' over 100
iterations, with x € (—1.5,2) and 29 = 1.5. Plot trajectories for the following
set of parameter values: p = 0.9 (period-2 cycle); p = 1.38 (period-8 cycle);
= 1.6 (chaotic trajectory); pu = 1.76 (period-3 cycle); p = 1.9 (chaotic
trajectory).

b. Select Lyapunov exponents from the New plot menu. There are three Plot
options: Time, Parameter, Parameter space. Begin with a Time plot which
represents the of the average estimate of the exponent converging in time. Set
the Algorithm values for long trajectories (5000) as the Lyapunov characteristic
exponents are time averages and are more precise the longer is the series used
for their approximation. Choose the Vertical range to include positive and
negative values, but the optimal range will depend on the dynamical behaviour
at that parameter value. For each of the trajectories used in a. above plot
the Lyapunov exponent and convince yourself that such a value makes sense.
Note that this equation at g = 1.9 can be shown to have the same Lyapunov
characteristic exponent that the logistic map has for ;1 = 4, and that value is
the natural logarithm of 2, approximately 0.7.

c. Use the Bifurcation routine to get the diagram over a range of p including
all of the dynamical behaviours studied in exercise a. and b. Start iDMC in
another window and calculate the Lyapunov exponents over the same range
of parameter values by selecting the option for Parameter from the Lyapunov
exponent routine. Clicking on the Crosshair option and holding a line on zero
makes it easier to see where exponents become positive. Place the bifurcation
diagram above the Lyapunov exponent window to see how the exponents vary
as the dynamics change.

SET 2
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In this exercise we return to the OLG model (oldns) introduced in the
computer exercises for Chapter 5, Set 4. Recall that for certain parameter
values there are invariant circle solutions which may occasionally appear to be
chaotic rather than quasiperiodic as all points on the circle seem to be visited
and trajectories seem random. Use the value of p chosen for exercise b. of that
set to produce a quasiperiodic orbit of say 5000 iterates with no transients. It
may be useful to slow down the plotting by dragging the speed arrow to the
right. For those same parameter values plot the Lyapunov explonents. Is the
evidence in favor of quasiperiodic or chaotic orbits?

SET 3

Consider again the 3-dimensional continuous-time system introduced in com-
puter exercise Set 3, Chapter 4 to simulate quasiperiodic orbits (quasi). Use
the same values for parameters and initial conditions as given there, but set
the Algorithm for step size at 0.1, transients at 0, iterates at 10000 to
get a long series. Look at the orbit in the state space, then plot the LCE’s.
COmpare the estimated values for the LCEs to those in Set 2 above, regarding
the OLG model.

SET J

In this set we study a simple oligopoly model (due to Tonu Puu) with inter-
esting dynamics. Consider a market composed of only two firms that produce
the same good. Let x and y be the supply of firm 1 and firm 2, respectively.
We define the function of inverse demand as

1
r+y’

p:

where p indicates the price. Suppose that marginal costs of production are
respectively @ and b. Profits of the two firms are then:

xT

—azx 1, = Y — bzx.

11, =
! r+y r+y

The “best reply” (or “reaction function”) for each firm to the supply of the
other is found by solving:

max [ such that z,y > 0
max [y such that z,y > 0
y

from which we have
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Suppose that the action of each firm coincides at every instant of time with its
best reply. We can describe the supply adjustment process as follows

- - \/ —yn ifay, <1, - -y, if br, <14
ntl = if ayn > 1, Ynt1 = 0 if by > 1,

It should be observed that in the intervals ay; > 1 and bx; > 1 the best reply
is to offer a negative quantity. To avoid orbits taking on negative values the
following condition must be satisfied %,g < %.

This repeated game has 2 Nash equilibria (or Cournot points, see Puu
Attractors, Bifurcation and Chaos, Springer, 2000 for further details),

the trivial one (0,0) and a second in the positive quadrant <W, W),

which are also the fixed points of the dynamical model. It is easy to demon-
strate that the trivial equilibrium is unstable while the second is stable over

3—2V2 <a/b<3+2/2.

a. Open the model cournot and plot the bifurcation diagram using x =y =
0.01, a = 1, b € (5.75,6.25), Vertical range= (0,0.2), 5000 transients and
200 iterations. Choose a value of b for which there exists a period-4 cycle,
e.g. b =06.15. Now use the Basin of attraction routine with n b = 6.15, a
horizontal range of (0,0.17) and vertical range of (0,0.045). The basin has a
checkerboard structure because of the coexistence of two period-8 cycles, each
with its own basin of attraction, deriving from the combination of a period-4
cycle in the varible x and another in the variable y. Plot the basin for b = 6.192,
with the coexistence of two period-24 cycles (a period-12 cycle in each variable).

In the above it was assumed that adjustment was istantaneous. Suppose,
instead, that firms adjust their best reply, on the basis of previous decisions,
in the direction of the optimal supply without necessarily reaching the optimal
immediately. The resulting system is:

xn+1={(1_ :rn+7(\/ — ) ifay, <1

(1 =)z, if ay, > 1
B (1—6)yn+6(«/ —xn) if bz, <1
Ynt1 = (1= 8)yn if b, > 1

with 0 < 7,6 < 1. This system has the same equilibria as the previous model
and if 6 =y =1 it reduced to the instantaneous adjustment model.

b. Open the cournotad model. Notice that for simplicity we have set v = ¢ = c.
Select the Bifurcation plot e the Double parameter option. Use x = y =
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0.01, a = 1, Horizontal axis: ¢ € (0.1,1), Vertical axis: b € (0,50),
Epsilon= 10e — 7 ~ 0.009, Infinity= 10, Transients= 500, Period= 15. In
the plot periodic “tongues” can be observed, that is, combinations of parameter
values for which orbits converge to cycles of less than or equal to 15 periods.
The curve bounding the red area represents the Neimark bifurcation curve (see
Chapter 5.) on which the determinant of the Jacobian matrix calculated at the
fixed point is equal to 1. Using the Crosshair, find values of the parameter
for which the orbits converge to odd-period cycles and simulate the asymptotic
state using Trajectory with a high number of transients.
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computer exercises chapter 8

SET 1
In this set of computer simulations a closer look is taken at the period-
doubling route to chaos using the logistic map logistic

Tpy1 = prn(l —z)p € (1,4).

Begin by printing out a bifurcation diagram for the map over p € (3,4), starting
from g = 0.2, using 500 transients and 1000 iterates. The diagram will be a
useful reference during the following exercises.

a. For the first simulations it may prove easier to follow the trajectories if
the Connect dots option is chosen. Set the Manual bounds to give the evolu-
tion of z € (0,1) and consider a limited time interval, say (2850, 2900). First
look at a period-8 cycle, at ¢ = 3.54 for example. Next look at a trajectory
from the Feigenbaum attractor by setting pt = ptoo & 3.569446. The trajectory
may appear to be a period-8 cycle similar to that found in the first run, but
it is actually aperiodic. However, the Lyapunov characteristic exponent for
the Feigenbaum attractor is zero, there is no divergence of nearby trajectories.
Leaving i set to simulate the Feigenbaum attractor, use Variation to start at
a point only slightly distant from the initial value of the previous run. Do these
trajectories appear to diverge or converge? Calculate the Lyapunov character-
istic exponent for a trajectory of the Feigenbaum attractor using 5000 iterates.
Does the value make sense for this attractor?

b. In this exercise a chaotic trajectory is viewed from several points of view.
Simulate a long series using a slightly larger value of p such as pp = 3.7 for which
trajectories are chaotic (using 300 transients and 3000 iterates, for example).

Choose Algorithm values such that a short time interval of long-run be-
haviour is clear, say (2850, 2900), and simulate a chaotic trajectory. Use Vari-
ation to show sensitive dependence on initial conditions, noting how many
iterates are necessary before the distance between trajectories has reached 0.5
(half of the interval).

Select the Shifted and cobweb option and plot the series (no transients)
in the plane (x,,2,11). Much of the curve of the logistic equation for p = 3.7
appears, but the attractor does not cover the entire unit interval. Click on
the Cobweb animation routine and note how the trajectory moves over the
attractor.

Plot the time convergence of the Lyapunov characteristic exponent for the
same parameter value. Do these plots provide evidence as to the chaoticity of
the trajectory?
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3. Repeat the stepsin b. above for p = 4. At this value the map is characterized
by a strange attractor with LCE= In2 ~ 0.7. Again consider whether these
plots provide evidence for chaoticity, and notice how the various plots change
with respect to those for p = 3.7.

SET 2

a. Again simulate a long series from which transients have been removed using
@ = 3.83, a value for which the map has a period-3 cycle. Choose Algorithm
values to get a time interval over (2850, 2900). What does the plot suggest
regarding sensitive dependence on initial conditions and the attractiveness of
the period-3 cycle? As further evidence, calculate the LCE, which should
converge to a negative number (&~ —0.52).

b. Recall that intermittency refers to the aspect of a trajectory for which
regular behaviour is occasionally interrupted by irregular behaviour. Consider
values of ;1 on the right boundary of the period-3 cycle window (the case is
described in Section 8.2 and pictorially represented in Figure 8.4). Set p =
3.828427 and the Algorithm values so as to obtain the time evolution of & over
(2800, 2900). The three periodic points of the period-3 cycle should be evident.
Next try p = 3.828, the trajectory still spends a lot of time around the three
periodic points until it gets through the channel (see Figure 8.4(d)), after which
it is erratic until it gets reinjected near the channel once again. For p = 3.82
the memory of the period-3 cycle is all but lost, although the trajectory does
spend a great deal of time near the largest value of the period-3 cycle. The
intermittency can be observed using the Cobweb animation routine for these
values. If the order is set to 1, giving a plot in the (2,,2,4+1 plane, from say
0.2 with no transients, the trajectory is seen to wander around and eventually
converge to a period-3 cycle for which the 3 periodic points are obvious. To
better see these points set transients at 1000. Choose order 3 and see the
curve formed by the map G?, that is G(G(G(z,,))). In the (2, Z,,+3 plane the
period-3 cycle is represented by a fixed point, on which the trajectory eventually
settles.



