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2 NUMERICAL SIMULATIONSCOMMENTS AND CAVEATSIn the formulation of dynamical models the range of parameter values forwhich the di®erence or di®erential system describes the phenomena of interestwill be known up to a certain precision. If the mechanism of interest persists,the parameter values in its formal description must be such that the variableseventually settle to an invariant set of values. In applied science much of whatis observed is persistent behaviour and the relevant parameter ranges implybounded trajectories.However, in the analysis of a (contextless) generic nonlinear system, it islikely that randomly chosen parameter values will lead to unstable solutionswhich take on very large values quickly. After some experience in simulatingsuch systems one comes to the realisation that the collection of parameter valuesleading to stable limit sets is indeed a small part of the parameter space. Caremust then be taken in selecting parameter values for the analysis and in thefollowing exercises we have provided the relevant parameter ranges or valuesso as to save time and frustration.A related problem in the analysis of a generic nonlinear system is that thebasin of attraction of the stable limit set is probably unknown (and may bequite small and/or have a complicated shape) so that initial values must alsobe chosen with care. Also keep in mind that as parameter values are varied,the basin boundaries change.A more speci¯c problem of interpreting information from simulations is thecase of a system for which parameter values and initial conditions have beenso chosen as to place it \outside" but \close" to the basin boundary of a stablelimit set. Orbits and trajectories may appear to converge to the limit set overlong periods of time, only to suddenly diverge.Other di±culties will be described as they arise, but if the above are kept inmind the information, or con¯rmation, supplied by numerical simulations willbe easier to decipher.



3interactive Dynamical Model CalculatorThe software programme interactive Dynamical Model Calculator (hence-forth, iDMC) is a research tool for studying nonlinear dynamical systems. Itis particularly useful for researchers because it allows the user to choose fromamong well-known models or insert his or her own models. Please refer to thesite mentioned in the footnote for installation instructions and a user's guidewhich includes a complete list of available algorithms and more detailed in-formation on their use, as well as instructions on inserting new models. Newfeatures are in the process of being developed and included in the programme,consequently the exercise sets will occasionally be modi¯ed or expanded.The ¯rst step in any session is to select a model from the directory models.The directory has a number of well-known models, as well as a directory witheconomic models and a directory called Primer which contains all the modelsused in the following computer exercises. Once a model is chosen click on Newplot and, for example, Trajectory. You will be presented with an interfacethat must be completed with values for initial conditions, parameters, numberof transients (number of iterations starting from the initial condition that willbe truncated and not considered), number of iterations after the transients(number of iterations starting from the last transient that will be considered).Clicking Start the trajectory should appear, to change parameter values oroptions click Reset. A number of graphical options are available besides thedefault. In the Options menu the typle of plotting points can be changed tobig dots and/or connect dots (useful for discrete-time systems). In Plot menuthe Manual bounds option allows the user to de¯ne the axes and the user maychoose the type of plot (either time evolution or state space). A zoom featureis available (right click and select desired area of plot). A number of modelscan be open at any time, click New model to open a di®erent model. Graphic¯les are saved and printed as .png ¯les and options regarding the look of thegraphics can be changed using the Options menu. Click Exit to leave theprogram.The following is a sample session in which trajectories of an economic modelof partial equilibrium (in discrete time) are simulated. Further details can befound in Section 1.1 and 1.24Consider the description of a single market with demand and supply func-tions of the price of the good and a price adjustment equation which depends4All ¯gure, chapter, section, equation and exercise numbers refer to those in Nonlineardynamics: a primer A. Medio e M. Lines, Cambridge University Press, 2001.



4on the previous price and excess demand:D(pn) = a¡ bpn (1:1)S(pn) = ¡m + spn (1:1)pn+1 = pn + hµ [D(pn)¡ S(pn)] (1:3)with a; b;m; s > 0. Let h = µ = 1, substitute demand and supply functionsinto the price-adjustment equation and the model equation ispn+1 = a + m + (1¡ b¡ s)pnor, setting a + m = ® and 1¡ b ¡ s = ¯pn+1 = ® + ¯pn: (1:5)The general solution to (1.5) isp(n) = ¹p + [p(0)¡ ¹p]¯n: (1:9)Dynamics and simulationsIt should be observed from (1.5) and (1.9) that the asymptotic behaviourof the model, that is the qualitative dynamics, are only in°uenced by the pa-rameters b and s. These determine the slope of the line in (1.5) de¯ned in the(pn; pn+1) space. Variations in parameter values for a and m only change thevalue of the equilibrium price ¹p.Click on File and New model, from the Primer directory select the model(dispar). Again, from the File menu select New plot, then Trajectory.Values must be provided for initial conditions and parameters. In the followingexercises the choice of the initial condition p(0) is left to the student. Recall,however, that if p(0) = ¹p there will be no price adjustment. It is necessaryto provide values to be used by the algorithm: number of transients, numberof iterations after the transients. In order to see all of the trajectory startingfrom the assigned initial condition, the choice for transients is 0. The numberof iterations can be set low, such as 50. The Auto ranges feature asks howmany iterations should be considered in calculating the ranges for the axes inthe default plot, this can be set at the same value as the algorithm iterations.(If desired, the plot axes can be de¯ned in the Manual bounds option in thePlot menu).In order to see the plotted points you will probably have to change the styleof plotting. The default is pictorially correct as it gives exactly the informationcalculated. A dot represents the iterated value for a discrete-time system or



5the integrated value for a continuous-time system. The option Big dots makesthe points more visible but it may be necessary to use Connect dots to getclearer curves and better printed copies. In order to understand the dynamicsof the trajectory it may be necessary to slow down the presentation. This ispossible by using the arrow on the bar above the plot. The further the arrowis dragged to the right the slower the presentation of the data.a. Open the Trajectory plot and insert these values for the parametersa 10m 2b 0.2s 0.1Produce the trajectory of p for 100 iterations. Given that 0 < ¯ < 1(¯ = 0:7), the trajectory converges in monotonically to ¹p = a+mb+s = 40.b. Change the parameter values of a and m to a 10, m 2. Note that withrespect to exercise a., only the equilibrium values ¹p = 10:5 has changed, theconvergence to equilibrium is the same. In fact, as long as 0 < ¯ < 1 monotonicconvergence is guaranteed.c. Change the parameter values of b and s to b 0.5, s 0.7. The price convergesto an equilibrium value of 10 but with oscillations as ¡1 < ¯ < 0.d. Change the parameter values of b and s to b 0.9, s 1.5, and now ¯ < ¡1.The price has an equilibrium values at ¹p = 20 but trajectories beginning atan arbitrary distance from that value diverge with overshooting. The distancefrom ¹p increases exponentially and even 25 iterations are su±cient. No set ofparameter values for model (1.5) will lead to monotonic divergence since, underthe hypotheses, ¯ < 1 8 b; s > 0.e. Multiple trajectories can be displayed in a single plot by using Variation,found in the Plot menu. This procedure allows the user to increase or decreasethe value of a parameter or initial condition any number of times, by specifyingthe amount to change at each variation. Set parameter values as they were inexercise a. Place a 0 in the second box for all parameters or initial conditionsthat do not change. For example, keying in 0.1 next to b and 0 in all of theother second boxes, and using 10 variations results in a plot for which, at eachsubsequent simulation, the value of the parameter b is increased by 0.1. The¯rst trajectory is with b = 0:2, the second trajectory is for b = 0:3, and soon. Click on Plot and note how the transient dynamics change as the value



6of b varies. (These plots should be familiar to those who have worked throughExercises 1.1 and 1.2 at the end of chapter 1.)f. Use the Variation routine to demonstrate that the dynamics and equilib-rium of the model are independent of the choice of initial values.To exit iDMC select Exit from the Files menu.



7Computer exercises chapter 1SET 1In this set we further study the discrete partial equilibrium model (1.5)(dispar) used above and presented in Section 1.2.a. From the Files menu select New plot and Shifted and cobweb. Beginthis session by using the suggested values for exercise a. in the sample session.For the Algorithm order use 1, this will produce a plot of pn+1 against pn (anorder of 2 would produce a plot of pn+2 against pn, etc.). Set the horizontalaxis and vertical axis to cover the same positive range which should includethe equilibrium value. Equilibrium ¹p is at the point that pn+1 and pn have thesame value.Now click on the Cobweb animation option, provide an initial value andchoose 0 transients. The routine will include the bisector and, beginning fromthe given initial value, draw the trajectory path towards equilibrium at ¹p = 40(see ¯gure 1.2(a)). Use the same routine with a di®erent set of parametervalues.b. Follow the instructions for Variation to get the time evolution as b varies.Choose values for other parameters and the variation options so as to produce aplot with the following transient dynamics: monotonic convergence to equilib-rium; no adjustment (the inital condition is the equilibrium value); monotonicconvergence to equilibrium; oscillatory convergence towards equilibrium; os-cillatory divergence. It may be helpful to refer to the analysis in Chapter 1Section 1.2 (summarised in the parameter space represented in Figure 1.3).Click on Close and then, from Files, click on Exit to quit or select ctpar tocontinue with set 2 below.SET 2In this set we use the continuous time partial equilibrium model (conpar)presented in Section 1.3. In this version of partial equilibrium the price ad-justment again depends on excess demand, but adjustment is in continououstime: D(p) = a¡ bpS(p) = ¡m+ sp_p = [D(p)¡ S(p)]:After substitution we have the di®erential equation_p = (a + m) ¡ (b + s)p (1:10)



8with general solution p(t) = ¹p + [p(0)¡ ¹p]e¡(b+s)t: (1:13)The nature of the dynamics will be determined by the exponent in (1.13) which,under the hypotheses for the parameter values of b and s is always positive.That is, whatever the particular values choosen for the parameters (satisfyingthe hypotheses), the trajectories will converge to the equilibrium value. In fact,limt!1 e¡(b+s)t = 0 and limt!1 p(t) = ¹p + 0 = ¹p:The simulation of models in continuous-time di®ers from that of modelsin discrete-time in that di®erential equations like (1.10) must be integratedrather than simply iterated. The default integrator in iDMC is the Runge{Kutta procedure, which uses a ¯xed step size (other integration procedures areavailable under Step function in the Plot menu). In addition to the usualinformation, the user must also provide the step size. For example, a stepsize of 0.02 means that the interval between time t and time t + 1 is dividedinto 50 equal intervals. The number of iterates multiplied by the step sizegives the number of time periods. Using 1000 iterations with a step size of0.02 means 20 time periods have been simulated. Trajectories and orbits willbe smoother with smaller steps but the number of iterations must be adjustedaccordingly to cover the same time period.Using the Variation routine create and print a plot which represents inde-pendence to initial conditions. Annotate the ¯gure by noting the parametervalues chosen for the simulations, labeling trajectories with parameter valuesand discussing the resulting dynamical behaviours (for example, is it possible inthis model to have transient behaviour characterised by monotonic divergenceor oscillatory convergence).



9computer exercises chapter 2SET 1In this set we use the discrete partial equilibrium model with lagged supplyresponse presented in section 2.6. This model di®ers from the model in (1.1),(1.3) in the assumption that producers require time to adjust their supply ofthe product and therefore base their quantity choice on the price in the previousperiod, while demand adjusts to the current price. ThenD(pn) = a ¡ bpn (1:1)S(pn¡1) = ¡m + spn¡1 (2:41)pn+1 = pn + hµ [D(pn)¡ S(pn¡1)]and again it is assumed that a, b, m, s > 0. Substituting the demand andsupply functions in the price-adjustment equation we havepn+1 = pn + (a ¡ bpn + m¡ spn¡1)= (1¡ b)pn ¡ spn¡1 + (a + m): (2:42)Recall that to put a di®erence or di®erential equation of order m into thecanonical form of a ¯rst order system in m equations, auxiliary variables areintroduced. (See Remark 1.1, Chapter 1 for di®erential equations and Exercise1.7 for di®erence equations.) For the trasformation into a ¯rst-order system of2 equations, let zn = pn¡1. To render the new system homogeneous anotherauxiliary varible is introduced which places the equilibrium at the origin:~zn = ~pn¡1 = pn¡1 ¡ a + mb + s (2:44)and we have the ¯rst{order, homogeneous system~zn+1 = ~pn~pn+1 = ¡s~zn + (1¡ b)~pn: (2:45)This system has a unique equilibrium value (0; 0) while the equilibrium for theoriginal variable is, once again, ¹p = a + mb + s :The dynamical behaviour of system (2.45) is characterized by the eigenvaluesof the constant matrix B = µ 0 1¡s 1¡ b¶ (2:46)



10which are the roots of the characteristic equation ·2¡ (1¡ b)·+ s = 0, that is,·1;2 = 12 h(1¡ b)§p(1¡ b)2 ¡ 4si :The parameters which determine the dynamics of the system, the stabilityand type of transient behaviour, are again b and s. In the following exercises itwill prove useful to refer to the range of possible dynamics represented in theparameter space (b; s) in Fig. 2.9. We study these dynamical behaviours bychoosing values for the parameters that distinguish three cases for the sign ofthe discriminant ¢ = (1¡ b)2 ¡ 4s.From the Model menu select the disparlag model. Choose reasonable valuesfor the parameters a and m (those in the sample session, for example). Forsimplicity use the same initial condition for ~z and ~p. In order to see the entiretrajectory again use 0 transients. The number of iterations should be keptsmall for visual clarity, no more than 200. Simulations of multi-dimensionalmodels can be represented as the time evolution of single variables (referredto as trajectories) or the state space of two variables (referred to as orbits).The default plot is the state space, but it may be helpful to look at the timeevolution of the variables by choosing the Time plot from the Plot menu.Case 1 ¢ > 0.a. Set b = 0:5, s = 0:05. The eigenvalues of B are: ·1 = 14 ¡1 + 15p5¢,·2 = 14 ¡1¡ 15p5¢, giving j·1j; j·2j < 1 and ·1; ·2 > 0. The system convergesmonotonically to the equilibrium which is a stable node. Use the Variationprocedure to verify that the trajectories do not depend on the initial conditions.b. Set b = 2, s = 0:1. The eigenvalues are: ·1 = ¡ 12 ³1 + p155 ´, ·2 =12 ³1 ¡ p155 ´, therefore j·1j; j·2j < 1 and ·1; ·2 < 0. The equilibrium is astable node but because of the negative eigenvalues, the trajectory convergenceswith improper oscillations (see Section 2.4).c. Set b = 5, s = 6. The eigenvalues are: ·1 = ¡3=2, ·2 = ¡5=2, thereforej·1j; j·2j > 1 e ·1; ·2 < 0. The equilibrium is an unstable node with improperoscillations. Given that b and s are assumed positive, the equilibirum at theorigin cannot be an unstable node with monotonic divergence as j·1j; j·2j > 1and ·1; ·2 > 0.d. Set b = 3, s = 0:75. In this case we have ·1 = ¡1=2, ·2 = ¡3=2, thereforej·1j < 1, j·2j > 1 and ·1; ·2 < 0. The equilibrium is a saddle point andorbits from any generic initial condition eventually diverge from the originwith improper oscillations. However, from initial conditions choosen so as to



11be positioned on the eigenvector associated with eigenvalue ·1, orbits convergeto the equilibrium, overshooting at each iteration. This can be veri¯ed bysetting ~z0 = 6 and ~p0 = ¡3 (the point (6,-3) lies on the relevant eigenvector.).Case 2 ¢ < 0 and eigenvalues are complex (·1; ·2) = ¾ § iµ.a. Set b = 1, s = 0:6. Then, r = j¾ § iµj = pdet(B) = ps < 1 and theequilibrium is a stable focus.b. Set b = 2, s = 4, giving r > 1 and (0,0) is an unstable focus.c. Set b = 1, s = 1, giving r = 1. Recall (see Secton 2.4) that solutionsfor discrete systems are sequences of points lying on curves. In the presentcase the solutions lie on closed curves which may be periodic or quasiperiodic,depending on the frequency of the trigonometric oscillation given by !=2¼,! = arccos[tr(B)=2] (see see Case 2, Section 2.5). With the values assignedto parameters we have ! = arccos(0) = ¼=2, and the ratio !=2¼ is a rationalnumber. The solution sequences are k-periodic, in this case k = 4. Solutionsin the case of such special parameter patterns (giving r = 1) are sensitive toinitial conditions, which position the oscillation on a particular curve. Use theVariation routine to verify that changing the starting point changes also theradius of the closed curve.d. Set b = 0:5, s = 1, and again, r = 1. In this case it is easy to checkthat !=2¼ is an irrational number. The solution is quasiperiodic in that theoscillation does not returns exactly to a previously visited point and insteadorbits continue to oscillate around the curve on which the solution lies, comingclose to previous points and ¯lling in the curve. Use a high number of iteratesand slow motion (move the bar above the plot to the right) to see how thecurve eventually ¯lls in.Case 3 ¢ = 0 and eigenvalues coincide ·1 = ·2 = ¹· = tr(B)=2.a. Set b = 0:4, s = 0:04, j¹·j < 1 and the system converges to a stable node.b. Set b = 4, s = 4 giving ¹· = ¡3=2 (j¹·j > 1). The equilibrium is an unstablenode with orbits diverging in improper oscillations.c. Set b = 3, s = 1 giving ¹· = ¡1. In this case solutions diverge linearly ratherthan exponentially from the equilibrium (with improper oscillations). To seehow these two expansions di®er use the Time plot for either variable and theVariation routine to represent both linear and exponential expansion.



12SET 2In this set we study the generic di®erential system in the planeµ _x_y¶ = Aµxy¶ = µ a11 a12a21 a22¶µxy¶ : (2:29)with aij real constants. The dynamical behaviour of system (2.29) is charac-terised by the eigenvalues of the the canstant matrix A, which are roots to thecharacteristic equationdet(A¡ ¸I) = 0 that is ¸2 ¡ tr(A)¸ + det(A) = 0that is, ¸1;2 = 12 ³tr(A)§p¢´ (2:30)where ¢ ´ ³[tr(A)]2 ¡ 4det(A)´ = (a11 ¡ a22)2 + 4a12a21:Open the model (con2d)In the simulations we once again assign parametervalues falling into one of three categories regarding the sign of the discriminant.Note also that the trace and determinant of the constant matrix A completelycharacterise the dynamics of the system. It may be helpful to refer to Figures2.1 and 2.3 while working with system (2.29). Choose initial conditions asyou please. iDMC must integrate system (2.29) and you must provide a stepsize (say 0.02 or 0.05) for the algorithm. Again use 0 transients so that theentire orbit or trajectory is included in the representation. Recall that theactual number of periods will be the product of the step size and the numberof iterations, so consider a high value for this number (10,000 iterations with astep size of 0.02 means 200 periods).Case 1 ¢ > 0a. Set a11 = ¡4, a12 = 6, a21 = 0:5, a22 = ¡6. These values give tr(A) < 0,det(A) > 0 and the eigenvalues are both real and negative, ¸1 = ¡1, ¸2 = ¡9.The equilibrium is a stable node. Use the Variation routine to verify thatorbits converge to the equilibrium independently of initial conditions, use theTime plot for one of the variables to see the same convergence in trajectories.b. Set a11 = 3, a12 = 2, a21 = 6, a22 = 4. Then det(A) = 0 and theeigenvalues are zero and tr(A) so that it is the sign of the trace that determinesthe qualitative dynamics. Moreover, the equilibrium is not a point in thisspecial case but a set of points that lie on the line passing through the originy=x = ¡(a11=a12) = ¡(a21=a22):



13For this collection of paramter values tr(A) = 7 > 0, ¸1 = 0, ¸2 = 7. Theequilibrium set consists of the points whose coordinates (x; y) are such thaty = ¡3=2 x. Position the initial conditions of the orbit on a generic point inthe state space and verify that the equilibrium set is unstable.c. Set a11 = ¡5, a12 = 2, a21 = 10, a22 = ¡4. Again we have det(A) = 0, butthe trace is negative and the eigenvalues are ¸1 = 0, ¸2 = ¡9. The equilibriumset is the points on the line y = 5=2 x.d. Set a11 = 4, a12 = ¡2, a21 = ¡4, a22 = 6. Then tr(A) > 0 and det(A) > 0.The eigenvalues are real and positive ¸1 = 8; ¸2 = 2 and the equilibrium is anunstable node.e. Set a11 = 3, a12 = 6, a21 = 4, a22 = 5. Then det(A) < 0 and tr(A) > 0.A negative determinate implies eigenvalues of opposite sign, independent ofthe sign of the trace. In this case ¸1 = 9; ¸2 = ¡1 and the one-dimensionaleigenspace generated by ¸1 is unstable, while that generated by ¸2 is stableand the equilibrium is a saddle point.Set the step size to 0.01 with 350 iterations. Use the Variation routineto show two orbits, one beginning at (¡6; 4), a second beginning at a smalldistance from the ¯rst. Notice how the orbit dynamics change. The initialcondition of the ¯rst orbit lies on the eigenvector associated with the negativeeigenvalue (A¡ ¸2I)v = 0 whose solutions lie on the line y = ¡ 23x. All orbitsinitiating on the line converge to equilibrium, all others diverge.Next use the same initial conditions (¡6; 4) but increase the iterations to 450.Notice that the orbit ¯rst moves towards the equilibrium (the 3.5= 350£ 0:01periods of the ¯rst run), only to diverge quickly after. In theory the orbit shouldconverge to the saddle point at (0,0) but in practice, given ¯nite precision bothin placing the initial condition and in integrating forward in time, the errorscompound and the orbit eventually diverges.Case 2 ¢ < 0 and eigenvalues are complex (¸1; ¸2) = ® § i¯, ® = 12 tr(A),¯ = 12p¡¢:a. Set a11 = 3, a12 = 5, a21 = ¡5, a22 = ¡5. These values give tr(A) < 0,and the real part of the eigenvalues are negative (Re ¸ = ® = tr(A)=2 < 0):¸1 = ¡1 + 3i and ¸2 = ¡1¡ 3i. Orbits converge to a stable focus.b. Set a11 = 5, a12 = ¡5, a21 = 6:1, a22 = 4. Then tr(A) > 0, Re ¸ = ® > 0and the system diverges and the equilibrium is an unstable focus.c. Set a11 = 3, a12 = ¡5, a21 = 2, a22 = ¡3. Set the step size to 0.01and iterations to at least 650. We have tr(A) = 0, Re ¸ = ® = 0 (¸1 = i,



14̧2 = ¡i), det(A) > 0. In fact the oscillations are with constant amplitude,neither diverging nor converging and the equilibrium is called a center. Usethe Variation routine to demonstrate that the amplitude of the oscillationsdepends on the initial conditions.Case 3 ¢ = 0 and eigenvalues coincide.a. Set a11 = ¡6, a12 = 4, a21 = ¡4, a22 = 2. The eigenvalues are ¸1 = ¸2 =¹̧ = ¡2, to which is associated an eigenvector u of the type k ¢ (1; 1), k real.Notice that A6= ¸I. In this case the equilibrium is a node, known as a Jordannode (see Figure 2.2). Verify that u is an invariant set and that on the vectoru the system converges to equilibrium.b. Set a11 = 2, a12 = 0, a21 = 0, a22 = 2. We have two eigenvectors ¸1 = ¸2 =¹̧ = 2 such that A = ¸I. The equilibrium is an unstable node, called bicritical(see Figure 2.2). Verify that all of the half-lines passing through the origin aresolutions to the system.



15computer exercises chapter 3From Chapter 3 we know that the local properties of equilibrium points ofa nonlinear dynamical system can be studied by making use of the Jacobianmatrix of the ¯rst partial derivates calculated at the equilibrium point. Asstated in the Hartman-Grobman Theorem (Theorem 3.1) the linear approxi-mation of a nonlinear system preserves the local properties of the ¯xed pointsif they are hyperbolic. The ¯xed point of a di®erential system is hyperbolicif no eigenvalue has real part equal to zero. The ¯xed point of a system ofdi®erence equations is hyperbolic if no eigenvalue has modulus equal to one.SET 1In this set we study the local behaviour in the neighbourhood of the ¯xedpoints of the system found in exercise 3.4(a) at the end of chapter 3 (whichshould be worked through before beginning the computer analysis):_x = y2 ¡ 3x + a_y = x2 ¡ y2 3:4(a)where a = 2. Select the model conlocal (continuous time model for localdynamics). Use the state space plots and choose initial conditions so as to il-lustrate each of the local dynamical behaviour of the four types of ¯xed points.Recommended values for integration data are step size of 0.02 with 500 iter-ations and Manual bounds for the horizontal axis (0,5) and the vertical axis(-5,5). Plot sample state spaces using the Variation procedure to get a feworbits, including one initiating on the ¯xed point.SET 2In this set we study analytically and through numerical simulations thesystem in Exercise 3.4(d) which has been modi¯ed by the introduction of aparameter as follows: _x = y ¡ x2 + 2_y = 2a(x2 ¡ y2) (i)The Jacobian matrix of (i) is:J = µ¡2x 14ax ¡4ay¶ (ii)and ¯xed points are easily calculated from (i) as A = (¡1;¡1), B = (1;¡1),C = (¡2; 2), D = (2; 2). Then the Jacobian matrices calculated in the four



16̄xed points areJ(A) = µ 2 1¡4a 4a¶ eigenvalues ¸A12 = 1 + 2a§p1¡ 8a+ 4a2J(B) = µ¡2 14a 4a¶ eigenvalues ¸B12 = ¡1 + 2a§p1 + 8a + 4a2J(C) = µ 4 1¡8a ¡8a¶ eigenvalues ¸C12 = 2³1¡ 2a §p1 + 2a+ 4a2´J(D) = µ¡4 18a ¡8a¶ eigenvalues ¸D12 = ¡2³1 + 2a §p1¡ 2a+ 4a2´ :We now have all the information necessary to study the local properties ofthe ¯xed points of system (i). Select model cona and simulate orbits in thestate space, varying the value of parameter a. Compare the behaviour of thesystem with information on the linearised system. For example:con a = ¡1eq ¸1 ¸2 linearized nonlinear systemA -4.61 2.6 saddle point locally unstableB -3-1.73i -3+1.73i stable focus locally stableC 2.54 9.46 unstable node locally unstableD -3.29 7.29 saddle point locally unstablecon a = 0:14eq ¸1 ¸2 linearized nonlinear systemA 1.28-0.2i 1.28+i unstable focus locally unstableB -2.2 0.76 saddle point locally stableC -0.89 3.77 saddle point locally unstableD -4.35 -0.77 stable node locally stablecon a = 0:5eq ¸1 ¸2 linearized nonlinear systemA 2-1.41i 2+1.41i unstable focus locally unstableB -2.45 2.45 saddle point locally unstableC -3.46 3.46 saddle point locally unstableD -6 -2 stable node locally stableChoose a di®erent parameter value for a and determine the local stability of



17the ¯xed points. Use the Variation routine for initial conditions to confermthe local stability.SET 3In an analogous manner study the following system_x = x2 + ax+ xy2_y = ¡y + by3=2(model name conb), varying the values of parameters a and b and determiningthe associated stability of the ¯xed points of 1A = (0; 0), B = ¡0; 1b2 ¢, C =(¡a; 0), D = ³¡ab4+1b4 ; 1b2´.SET 4This is the last of the continuous systems in the plane to be considered. Wetake the famous model for predator-prey relations known as the Lotka-Volterrasystem, given as Exercise 3.4(g):_x = ®x¡ ¯xy_y = ¡°y + ±xy ®; ¯; °; ± ¸ 0 :There also exists a famous economic growth model leading to the same equa-tions (due to Goodwin, see the appendix to chapter 4 for more details).There are two equilibria, the origin and (°=±; ®=¯). The latter, setting allparameters to one is at (1; 1). From the linear approximation (see response toexercise 3.4(g)) it is known that the origin behaves locally as a saddle point,while the ¯xed point in the positive quadrant has a two{dimensional centremanifold and the Hartman{Grobman Theorem is not applicable. However,from the exact solution (see Exercise 3.7(a)) it is known that there are closedcurve orbits around the equilibria, that is, the ¯xed point is a centre.Select lv and use Variation on initial conditions to obtain a plot of severalof these curves. Suppose the system can take on negative values. Set x andvary the initial conditions of y to see how the saddle at the origin attracts andthen repells orbits.SET 5In this set we consider the set of di®erence equations:xn+1 = 2bxn + 10yn+1 = 2ay2n



18with ¯xed points A = (¡ 102b¡1 ; 0) and B = (¡ 102b¡1 ; 12a ). Check that only ¯xedpoint A can be locally stable for certain parameter values. Select the modeldisa and use the Variation routine to simulate two orbits, one starting in thebasin of attraction of A and another starting outside the basin but close to thebasin boundary (recall that with the technique of the linear approximation wehave established only the local stability of A).SET 6In this set we consider Lyapunov's direct method for demonstrating theglobal stability of equilibria. This method requires that a Lyapunov functionbe determined whose time derivative is negative along the orbits of the system.For further details refer to Section 3.3 and, in particular, Theorem 3.2. Forsystem Exercise 3.11(b) _x = ¡x¡ y2_y = kxy 3:11(b)a Lyapunov function is V (x; y) = k2x2 + 12y2:Select conlyapa and use the Variation routine to show that the stability isindependent of initial conditions for selected ranges of k and that the ¯xedpoint (0,0) is stable over the speci¯ed plane. Try even large subsets of theplane.Repeat the same procedure with Exercise 3.11(d)_x = y + kx(x2 + y2)_y = ¡x 3:11(d)for which the following is a Lyapunov functionV (x; y) = 12x2 + 12y2and the model name is conlyapb.



19computer exercises chapter 4SET 1In this set we study of the period-2 and period-4 cycles of the simple logisticmap xn+1 = ¹xn(1¡ xn):As determined in exercise 4.9(b), there exists a period-2 cycle for the map with¹ = 3:2, which is stable and attracting over x 2 (0; 1).a. Use Variation to produce a plot of the time evolution that illustratesthat the period-2 cycle is attracting over a selected range of initial conditions.It will probably be necessary to select Big dots and possibly Connect dotsfrom the Plot options. Include in the plot at least one trajectory that is notattracted. Use manual bounds over (0,1) and only a few (say 20) iterations.Check that the values of the periodic points approximate those calculated inexercise 4.9(b).b. Use Variation to get trajectories for ¹ = 3:2; 3:3; 3:4 on the same plot,using 0 transients and 50 iterates. Note that the trajectory with ¹ = 3:4 takesa number of iterations which suggest a period-4 cycle, before settling down onthe period-2 cycle. Simulate a trajectory of the period-4 cycle for ¹ = 3:5.c. From the New plot menu select Shifted and cobweb and from the Plot se-lect Cobweb animation. Set the order to 1, which plots values in the (xn; xn+1)plane (an order of 2 would plot values in the (xn; xn+2) plane). Use 0 transientsand de¯ne both axes over (0,1). To begin, use an initial value which is in thebasin of attraction of the period-2 cycle. To slow down the convergence dragthe arrow above the plot to the right. Once the cycle has been reached clickStop to stop the algorithm. In order to see the values of the periodic points itwill be helpful to repeat the simulation using some transients (say 100). Repeatthe procedure for the period-4 cycle. The period-8 cycle can be simulated for¹ = 3:55.SET 2In Section 4.4.2 we de¯ned periodic points x¤ of a system of di®erence equa-tions, or map, xn+1 = G(xn)x¤ is a periodic point of period k if x¤ = Gk(x¤) and Gn(x)6= x for 1 · n < k,where Gn(x) denotes the k-th iterate of the map G. We study the periodicpoints of period k of the map G by studying the ¯xed points of its K-th iterateF ´ Gk. It is then possible to use the linear approximation (see Chapter 3)



20of the map F to determine the local properties of the nonlinear map if theperiodic points are hyperbolic.Consider the famous model of H¶enon:xn+1 = a ¡ x2n + bynyn+1 = xn:The four periodic points of period 2 are determined as solutions to the system¹x = a¡ (a ¡ ¹x2 + b¹y)2 + b¹x+ b¹y¹y = a¡ ¹x2 + b¹yand areA = Ãb¡ 1 +pb2 ¡ 2b + 1 + 4a2 ; b¡ 1 +pb2 ¡ 2b + 1 + 4a2 !B = Ãb¡ 1¡pb2 ¡ 2b + 1 + 4a2 ; b¡ 1¡pb2 ¡ 2b + 1 + 4a2 !C = Ã1¡ b +p4a¡ 3 + 6b¡ 3b22 ; b¡ 1¡p4a ¡ 3 + 6b ¡ 3b22 !D = Ã1¡ b ¡p4a¡ 3 + 6b¡ 3b22 ; b¡ 1 +p4a ¡ 3 + 6b ¡ 3b22 ! :The points A and B are also ¯xed points of the system and are real for a ¸14 ¡¡b2 + 2b ¡ 1¢. The periodic points C and D are real for a ¸ 34 ¡b2 ¡ 2b+ 1¢.Notice that when C and D are real so are A and B, since 34 ¡b2 ¡ 2b+ 1¢ ¸14 ¡¡b2 + 2b ¡ 1¢ 8b.In the following set one parameter ¯xed, let b = 0:1, then for approximately0 < a < 0:6 trajectories converge to a ¯xed point, for approximately 0:6 < a <1:1 trajectories converge to a period-2 cycle.a. Select the model h¶enon. Again it will be useful to switch to bigger dotsand connected dots, as well as slow down the plotting, in order to follow theorbits. Insert values for convergence to the ¯xed point a = b = 0:1 from initialconditions x = 0; y = 0:5 using 0 tranasients and only a few iterations, say 100.Notice that in converging to the equilibrium the orbit jumps back and forthas the case of improper oscillations. The ¯xed point attractor in this case isA = ³ b¡1+pb2¡2b+1+4a2 ; b¡1+pb2¡2b+1+4a2 ´ = (0:1; 0:1): Use the time evolutionplot to see how a single variable converges.



21b. Next we want to set a for a period-2 cycle. The minimum value that guar-antees existence of the cycle is ar = 0:6075, because for a ¸ ar the determinant4a¡ 3 + 6b¡ 3b2 is nonnegative and the points C e D are real. In that intervalalso points A and B are real, but both are unstable and do not attract orbits.Set a = 0:9 to see convergence to the period-2 cycle. Start with 0 transientsand then to better see the values of the cycle rerun the simulation with sometransients. The H¶enon system for these parameter values asymptotically visitsonly C = µ121¡ b +p4a ¡ 3 + 6b ¡ 3b2; 12b¡ 1¡p4a¡ 3 + 6b¡ 3b2¶= (0:99;¡0:09)D = µ121¡ b ¡p4a ¡ 3 + 6b ¡ 3b2; 12b¡ 1 +p4a¡ 3 + 6b¡ 3b2¶= (¡0:09; 0:99):c. The Cycles routine, chosen from the New plot menu, represents the periodicpoints of both stable and unstable cycles of the speci¯ed period. Use the routineto con¯rm that the period 2 cycle periodic points are those given in the aboveexercise. For the algorithm ¯elds choose a small value for the epsilon (whichde¯nes the point as within the epsilon radius of the value so that lower valuesgive ever more precision), and maximum tries around 10. The horizontal andvertical axes can be set the same at (-2,2).d. Use the Basin of attraction routine from the Files menu to see theinitial conditions for which the orbits converge to this period-2 cycle. Becausethere is only one attractracting set we can plot the basin of in¯nity, that is, allthe initial conditions that eventually diverge to in¯nity. Then what is not thebasin of in¯nity is the basin of attraction for the period-2 cycle. Select Basinof infinity from the Plot menu and Big dots from the Options menu. Seta = 0:9; b = 0:1 and set the value at which the algorithm assigns the statein¯nity at a low number, say 10. In order to get a quick picture of the basinset transients low, say 50, and iterations also low, say 100. The number oftrials (di®erent initial conditions) also can be a small number, say 4. Set thehorizontal axis (-4,4) and the vertical axis (-10, 10). The two periodic pointsare visible as pink dots in the black basin. If you chose the All basins routineyou will arrive, after a little more time, at the same ¯gure but with blackrepresenting initial conditions that converge to in¯nity, the colored basin ofattraction for the period-2 cycle and the pink periodic points.e. The stability of the period-2 cycle is lost around a ¼ 1:15 and a period-4cycle appears that is initially stable (we will return to this period-doubling



22scenario in sections 5.4 and 8.1). Use the routines suggested above to studythis period-4 cycle.SET 3In this exercise a quasiperiodic trajectory on a torus is simulated using thesystem _x = (a¡ b)x¡ cy + xz + dx(1¡ z2)_y = cx+ (a¡ b)y + yz + dy(1¡ z2)_z = az ¡ x2 ¡ y2 ¡ z2:Select the quasi model. Suggested values are: Initial values near the un-stable ¯xed point at the origin, say (0:1; 0:1; 0:1); Parameters 2.005, 3, 0.25,0.2; step size 0.05, starting with 0 transients and 5000 iterations. Set thenumber of iterations for the automatic calculation of the axes at 1000. Theorbit moves toward the torus, and then, once there, it continues to wind aroundthe surface. Drag the arrow above the plot to slow down the orbit plotting.Press continue to calculate another 5000 iterations and see how the surface ¯llsin (and again if you like). To see only the torus remove transient behaviour bysetting transients at a fairly high value, say 2000.



23computer exercises chapter 5SET 1In this set we use the Bifurcation routine to re-visit models from thecomputer exercise in Chapter 4 and study the °ip bifurcation.a. Choose the logistic model. From the Files, New plot menu select theBifurcation routine to produce the numeric bifurcation diagram. While ana-lytically unstable branches are determined and can be plotted (customarily, asa dashed line), iDMC does not determine these unstable ¯xed points so thatthe bifurcation diagram represents only stable asymptotic behaviour. All tran-sients must be eliminated in bifurcation diagram calculations. If the number ofiterations assigned as transients is insu±cient, the variable values representedin the diagram are not truly part of the limit set and may therefore be mis-leading (an equilibrium point appears as an equilibrium set, etc.). Obviously,the diagram will be ¯ner the smaller the interval of the paramter. However, fora close-up of any region left-click and select the area to be zoomed. This areawill be re-calculated.Specify an initial value in (0,1), give the range for the parameter of (2,4), avertical axis of (0,1) and for the algorithm 500 transients, 2000 iterations. Thesevalues of ¹ give the bifurcation diagram before the ¯rst °ip bifurcation andcover the entire range of attracting sets. We will return to the period-doublingscenario in Chapter 8, Section 8.1. Notice that if you choose Transparencyfrom the Options menu it is clearer which points are being visited more often.b. Choose the H¶enon 2 model and for the Bifurcation plot use initial values(0, 0.5), set b at 0.1 and set a to vary over (0, 1.8), a vertical range of (-2,2), 500 transients and 2000 iterations. Again, using the Trasparency optiongives a clearer idea of what values are most visited. You should be able toproduce orbits for a variety of periodic cycles using the Trajectory routineand estimate the values of the periodic points with the Cycles algorithm.SET 2In this set various views of the fold and transcritical bifurcations are simu-lated. The equation is that of Exercise 5.6 at the end of chapter 5, the modelis called conbif: _x = x3 + x2 ¡ (2 + ¹)x+ ¹:It is suggested that analytical results are obtained before turning to the simu-lations.First study typical transient behaviour of trajectories for each of three in-tervals of ¹: ¹ < ¡1; ¡1 < ¹ < 3;¹ > 3. It should be pointed out that if



24there is no stable ¯xed point the trajectory races o® to in¯nity. It is thereforeuseful to use a value of ¹ close to the bifurcation value ¹ = ¡1 and to de¯ne alimited range for the variable x in the Manual bounds option, say (-2, 2). Thealgorithm data given below allows for a plot in which the trajectory values arestill small if ¹ is set at ¡1:01. It is then possible to use Variation to increase¹ until all local dynamic behaviours are evident in the plot. Set the Initialvalue at x = 0:5, the algorithm step size at 0.01, use 0 transients and 1500iterations. Check that the asymptotic behaviour (and approximate value of¯xed points) is as found analytically in Exercise 5.6.SET 3In this set the fold and °ip bifurcations in a discrete-time equation arestudied. The equation is that of Exercise 5.8(c) and the model is called disbif:xn+1 = ¹+ xn ¡ x2n:It is suggested that analytical results are obtained before turning to the simu-lations.a. First produce the numeric bifurcation diagram. To avoid transient dynamicsset the number of transients to 500 and set iterations 500. Select Bifur-cation and produce a diagram for ¹ 2 (0; 1:2). Note where the fold and °ipbifurcations occur. Simulate typical trajectories representing behaviour in eachof three intervals of ¹, setting the Manual bounds to limit the range of x, sayfrom -5 to 2. Use the Variation procedure to get trajectories in each interval(it will be helpful to select the connect-dots option).SET 4In this set of simulations the Neimark{Sacker bifurcation is studied usingan economic model of the class known as overlapping generations model whichis presented in Exercise 5.12 at the end of chapter 5 (other references giventhere). The model, called olgns in iDMC, reduces to the systemcn+1 = l¹nln+1 = b(ln ¡ cn):a. Using the sketch of the relevant parameter subspace of the OLG modelgiven in your answer to Exercise 5.11 of the text, choose a value of ¹ that,by varying b, results in three types of transient dynamic behaviour. Use theVariation routine to get examples of orbits of each type plotted in the statespace. Initial conditions should be fractional, e.g. at (c; l) = (0:1; 0:3). Inorder to follow the orbits use the option for Connect dots under Plot and a



25small number of iterates, say 200 (no transients). Plot the time evolutions ofthe variables.b. Focus the Variation routine so as to get a number of invariant circles inthe state space over the limited parametric subspace of their existence. Forexample, for ¹ = 6 the curves exist over b 2 (1:20; 1:26) using the startingpoint suggested in exercise a. Change the Plot type back to dots and settransients to 1000, iterates at 2000 so as to avoid long transients and slow¯lling in of invariant curves. The invariant circles are most likely to appearquasiperiodic, but there may also be periodic curves (with few points on theinvariant circle visited), depending on the value chosen.c. Use the Bifurcation routine to compute the bifurcation diagram, usingthe same ¯xed value of ¹ as used in exercise b., varying the parameter b soas to capture the Neimark{Sacker bifurcation and a few periodic invariantcurves. Use the variable l which has greater variation. Having chosen the sameparameter values the bifurcation diagram plots the values of the labour variablel taken on by orbits on the invariant circles in the state space as simulated inthe previous exercise.d. Finally, use the Basin of attraction routine from the Files menu to geta sample of the size and shape of the basin of attraction for one of the invariantcircles plotted in b. As there is only one attractracting set we can plot the basinof in¯nity, that is, all the initial conditions that eventually diverge to in¯nity.Then what is not the basin of in¯nity is the basin of attraction for the invariantcircle. Select Basin of infinity from the Plot menu and Big dots from theOptions menu. Set the paramter values so as to reproduce a limit set of oneof the invariant circles simulated in b. Set the value at which the algorithmassigns the state in¯nity at a low number, say 10. In order to get a quick pictureof the basin set transients low, say 20, and iterations at 500. The number oftrials can be set to 1. Set the horizontal axis (-2, 2) and the vertical axis (-2,2).SET 5The Hopf bifurcation occurs in continuous{time systems when the real partof a pair of complex, conjugate eigenvalues passes through zero. The followingnumerical simulations are to study the Hopf bifurcation in the system given atthe end of Chapter 5, in Exercise 5.7:_x = y + kx(x2 + y2)_y = ¡x+ ¹yfor which the bifurcation leads to locally stable limit cycles. The model is called



26hopf in DMC.a. In the ¯rst simulation the transient behaviour is plotted for a few values of¹ for a value of k for which the Hopf bifurcation is supercritical and the ¯xedpoints and limit cycles are stable. For the simulation set k = ¡2, and choosea small negative value for ¹ (e.g. ¹ = ¡0:4). It is convenient to start closeto the ¯xed point and cycles, say at (1; 1). Setting the step size at 0.05 for5000 iterations gives an evolution of 250 time periods. Increase the value of ¹using Variation to show transient behaviours in the state space: convergenceto the ¯xed point, the limit cycle of zero amplitude, a limit cycle of positiveamplitude, a divergent trajectory. Adequate Manual bounds are (-1, 1.5), (-1,1.5). (Also try a start point near the origin with ¹ at say 0.4 and increasethe value of the starting point with the procedure Variation. In this casetrajectories sometimes spiral out to the cycle, and sometimes spiral in to it.)b. To see the limit cycle orbits set the transients value at 4000 and use theVariation routine to get a number of cycles.



27computer exercises chapter 6SET 1In these simulations the map G(xn) = ¹¡ x2n (model flip), found in Exer-cises 5.8(a) and 6.1, is used to study of various aspects of °ip bifurcations andchaotic trajectories.a. Select values to simulate the time evolution for G over 100 iterations (notransients), x 2 (¡0:5; 2) and x0 = 0:5. Use the Variation procedure toproduce a plot of trajectories converging to a ¯xed point and at least onetrajectory converging to a period-2 cycle. The trajectory will be clearer if thestarting point is simultaneously varied by 1 at each run. Simulate a period-4cycle.b. Recall that a characteristic of chaotic trajectories of strange attractors istheir sensitive dependence on initial conditions. To ensure that the system ison its attractor and not merely experiencing chaotic transients set transientsto 500 and iterations to 550. Select a value near the strange attractor (¹ ¼ 1:9will do) and use Variation to simulate a second trajectory beginning within0:005 of the ¯rst. Note the maximum and minimum distances between the twotrajectories. How would the initial di®erence have evolved on a non-chaoticattractor?c. Changes in the dynamical behaviour arising from varying ¹, studied as timeevolving trajectories in exercise a. above, are here viewed from the point ofview of the asymptotic stable dynamics using the Bifurcation routine. Settransients to 500, iterations to 1000. For the ¯rst run use ¹ 2 (¡0:25; 1:3),beginning with the ¯rst stable ¯xed point, at the fold bifurcation value, followedby the ¯rst °ip at ¹ = 0:75 and the second °ip at ¹ ¼ 1:28. Take a closer lookat the period-doubling scenario using the left-click to select the interval of¹ 2 (0:7; 1:5). Finally, take a closer look at the neighbourhood of the period-3cycle ¹ 2 (1:65; 1:8).d. In this exercise we use the Cobweb animation routine to display the mapsof G, G2 and G4, using the map G with ¹ = 1:9, by setting the order to 1,2, 4 respectively. It may be necessary to set the delay in order to follow thetrajectory and use 0 transients.SET 2



28 In this set we study the dynamical behaviour of the Lorenz model:_x = ¡¾x + ¾y_y = ¡xz + rx¡ y_z = xy ¡ bz (6:7)where x; y; z 2 R; ¾; r; b > 0. Recall that system (6.7) is symmetrical under thetransformation (x; y; z) ! (¡x;¡y; z) and has potentially 3 equilibria, depend-ing on the value of r. If 0 < r < 1 the only equilibrium is E1 : (0; 0; 0). For r > 1there exist two other equilibria, namely E2 : ³+pb(r ¡ 1);+pb(r ¡ 1); r ¡ 1´and E3 : ³¡pb(r ¡ 1);¡pb(r ¡ 1); r ¡ 1´. Local stability also depends on thevalue of r. Let r > 0 be the bifurcation parameter, and set other parametervalues as ¾ = 10, b = 2:667. Then, as discussed in section 6.8, the followingbehaviour occurs around r = 1r < 1 1 stable ¯xed point at originr = 1 pitchfork bifurcationr > 1 2 stable ¯xed points, unstable ¯xed point at origin.a. A homoclinic connection occurs at r ¼ 13:927, but it is very di±cult todetermine the exact value of r for which it takes place. The presence of thehomoclinic orbits can be imagined by observing the transition from valuesslightly smaller to values slightly larger than the homoclinic connection value.For a very smooth curve and precise integration set step size to 0.002 anduse 2000 iterates. Begin close to the origin (0.001, 0, 0) and use the delay ifnecessary to follow the obit as it slowly curves around E2 moving along thez-axis and curving again around E2 to which it converges for r = 13:927. Fora value just past the connection value the orbit crosses over the z-axis andcurves around (converging to) E3. (Use, for example, Variation with 1 count,changes in r at 0.001, Manual bounds x 2 (¡15; 15), z 2 (0; 25).)b. The ¯xed points E2 and E3 are stable over (1; rH), rH ¼ 24:74, but insimulations a chaotic attractor is often detected for r > rc, rc ¼ 24:06. Thelocal neighbourhood for which the ¯xed point is attracting gets smaller thecloser the system is to the Hopf bifurcation (see Figure 6.9 in the book). Atr = 23, for instance, an orbit beginning at (1; 1; 1) clearly converges to E3 (usestep size 0.2 and 5000 iterates). At r = 24:2 the orbit from that initial pointdoes not converge, but try a closer initial value (¡8;¡8; 25) (and set step sizeto 0.05).



29c. Simulate the so{called \butter°y attractor", that is, the chaotic attractorof the Lorenz model, by selecting a value of r slightly greater than rH . Thechoice of variables x and z ensures a good view.SET 3In this section we study a two-dimensional system describing the \backwarddynamics" of an overlapping generations model. The basic framework is thesame as that of the model studied in the exercises of Chapter 5, Set 4, exceptthat an exponential utility function has been assumed which makes it impos-sible to invert the system. The time indices have been exchanged in order tostudy the dynamics of the system moving backwards in time (for further detailssee Medio, Choatic Dynamics, Cambridge University Press, 1992, Section12.3). The variables are again consumption c and labour l in per-capita terms,the system is ln+1 = ¡rce¡c¢ 1̄cn+1 = ¡rce¡c¢ 1̄ ¡ lnbwith r > 0, b; ¯ > 1 and for iDMC the model name is olg.a. In our analysis so far we have studied how dynamics change through abifurcation diagram with a single parameter. In this exercise we explore thedynamics over a subspace of the 2-parameter space. Open the Bifurcationprocedure and click on the Double parameter option from the Plot menu.Use Initial values l = 5, c = 2. In this plot we set gamma= 0:5 and use thesubspace of the (b; r) parameter plane de¯ned by a b 2 (1:5; 3), r 2 (10; 75).The algorithm requests a number of input values. For the approximationprocess the user must de¯ne the precision and in¯nity. Epsilon is an indicationat how ¯ne-grained the user wants the plot to be. The smaller epsilon, thecloser a value must be to the point to be de¯ned as that point. First setepsilon= 10e¡4, which is 0.183, rather coarse. Next try with more precision,say 10e¡ 10 ¼ 0:0005 and try to explain the di®erences in the two plots. Thealgorithm needs to know at what point the user considers that a trajectoryis on its way to in¯nity. For the current plot let infinity= 100. The plotwill represent periodic behaviour and the user must set the highest number ofperiods to be considered for a given simulation (up to 35). It will be temptingto take all higher-order cycles as quasiperiodic, but that is not the case. Herewe consider cycles of up to 32 periods.Recall that the bifurcation diagram is meant to represent asymptotic be-haviour and for computational methods, the user must decide at what iterationthe dynamical behaviour is no longer transient. The time it takes to reach alimit set varies greatly. A common problem in interpreting results is that the



30value for tranients is set too low and the plot contains more than the limit set.For the current exercise we can get by with ignoring the ¯rst 500 iterations.The diagram presents a period-doubling scenario that can be followed as asequence by holding either parameter constant and following changes in theother parameter. For example, follow changes in r with b = 1:6. As parametervalues for r change, a ¯xed point becomes a period-2 cycle, and so on, as acycle of period 2k loses stability and a stable cycle of period 2k+1 replaces itas the limit set.b. Use the plot produced above to explore the dynamics of the model over thegiven parameter ranges. For example, ¯x b = 1:55 and produce a bifurcationdiagram for r 2 (42; 82) (chose from the plot menu One paramter) using Ver-tical range = (3.5,6) Vertical axis = l. The cascade of °ip bifurcationsresembles that of the one-dimensional logistic model produced in Chapter 5exercises, Set 1.c. Choose a value for r in the chaotic zone, such as r = 80 and simulate anorbit using Trajectory excluding transients. If the number of iterations isset high enough the attractor should be visible. Select Time plot and chooseone of the variables to see that, while the variable does not escape from theattractor, neither does it settle down to a periodic set. Return to the state spacerepresentation and click on Continue a number of times until the attractorseems to be on a continuous curve. Select an area of the attractor to magnify.Notice that the piece of attractor selected is no longer appears a continuouscurve, but has a fractal structure. No matter how many iterations used, thereis always a magni¯cation level that reveals the underlying fractal structure ofthe strange attractor (more on this in Section 7.2).d. Consider again the bifurcation diagram in the single paramter r. Observethat within the chaotic zone there are intervals of r representing periodic limitsets. An example is the periodic window for r 2 (77:95; 78:12), in which thereare stable period-6 cycles. Exclude transient behaviour and represent the pe-riodic attractor in the state space.SET 4In this section we study Maynard Smith's two-dimensional map with verycomplicated dynamics xn+1 = ²xn + ¹¡ y2nyn+1 = xna. Open the model msmith. Begin by producing a Bifurcation plot with twoparamters, setting a Initial values: x = 0:2, y = 0:1; Parameter values ² 2



31(¡2; 2), ¹ 2 (¡0:5; 4) and use a maximum of 32 periods. In the parameter spacemany periodic \ tonuges" can be observed. You should be able to distinguishareas where the equilibrium point loses stability through a °ip bifurcation (e.g.² is near 0) and where it loses stabilty through a Neimark bifuraction.b. Now ¯x ² = 0:6 and produce a bifurcation diagram for ¹ 2 (0:3; 1:1), usingVertical range = (-1.7,1.8). The plot represents how as ¹ varies, the as-ymptotic dynamical behaviour of orbits changes from periodic to quasiperiodicto chaotic. At ¹ = 0:48, for example, the orbits converge to a closed curvewith quasiperiodic motion. Fix ¹ = 0:9 and draw the trajectory using 5000transients and 10000 iterations. The orbits converge to the chaotic attractorwith is distributed in six regions of the (x; y) plane. Increase the value of ¹ tosee the changing form of the attractor. Represent the basin of attraction fordi®erent, increasing values of ¹ over the chaotic range (0.9, 1.07). Observe thatas ¹ increases the attractor pieces extend until at ¹ = ¹c ¼ 1:07 they becometangent at various points of the basin. For ¹ > ¹c the basin of attraction nolonger exists and orbits tend to in¯nity.



32 computer exercises chapter 7SET 1In these exercises trajectories for each of ¯ve values of ¹ are simulated andthe single Lyapunov characteristic exponent for each is calculated. The basicequation for simulations is the map used to study °ip bifurcations and chaoticorbits in set 1 of the computer exercises for chapter 6 (the model name is flip)G(xn) = ¹¡ x2n:a. Before calculating the LCEs at various parameter values it is good practiceto take a look at the trajectories and get at least an expected sign for theexponent. Set the input values to simulate the time evolution for G over 100iterations, with x 2 (¡1:5; 2) and x0 = 1:5. Plot trajectories for the followingset of parameter values: ¹ = 0:9 (period-2 cycle); ¹ = 1:38 (period-8 cycle);¹ = 1:6 (chaotic trajectory); ¹ = 1:76 (period-3 cycle); ¹ = 1:9 (chaotictrajectory).b. Select Lyapunov exponents from the New plot menu. There are three Plotoptions: Time, Parameter, Parameter space. Begin with a Time plot whichrepresents the of the average estimate of the exponent converging in time. Setthe Algorithm values for long trajectories (5000) as the Lyapunov characteristicexponents are time averages and are more precise the longer is the series usedfor their approximation. Choose the Vertical range to include positive andnegative values, but the optimal range will depend on the dynamical behaviourat that parameter value. For each of the trajectories used in a. above plotthe Lyapunov exponent and convince yourself that such a value makes sense.Note that this equation at ¹ = 1:9 can be shown to have the same Lyapunovcharacteristic exponent that the logistic map has for ¹ = 4, and that value isthe natural logarithm of 2, approximately 0.7.c. Use the Bifurcation routine to get the diagram over a range of ¹ includingall of the dynamical behaviours studied in exercise a. and b. Start iDMC inanother window and calculate the Lyapunov exponents over the same rangeof parameter values by selecting the option for Parameter from the Lyapunovexponent routine. Clicking on the Crosshair option and holding a line on zeromakes it easier to see where exponents become positive. Place the bifurcationdiagram above the Lyapunov exponent window to see how the exponents varyas the dynamics change.SET 2



33In this exercise we return to the OLG model (oldns) introduced in thecomputer exercises for Chapter 5, Set 4. Recall that for certain parametervalues there are invariant circle solutions which may occasionally appear to bechaotic rather than quasiperiodic as all points on the circle seem to be visitedand trajectories seem random. Use the value of ¹ chosen for exercise b. of thatset to produce a quasiperiodic orbit of say 5000 iterates with no transients. Itmay be useful to slow down the plotting by dragging the speed arrow to theright. For those same parameter values plot the Lyapunov explonents. Is theevidence in favor of quasiperiodic or chaotic orbits?SET 3Consider again the 3-dimensional continuous-time system introduced in com-puter exercise Set 3, Chapter 4 to simulate quasiperiodic orbits (quasi). Usethe same values for parameters and initial conditions as given there, but setthe Algorithm for step size at 0.1, transients at 0, iterates at 10000 toget a long series. Look at the orbit in the state space, then plot the LCE's.COmpare the estimated values for the LCEs to those in Set 2 above, regardingthe OLG model.SET 4In this set we study a simple oligopoly model (due to Tonu Puu) with inter-esting dynamics. Consider a market composed of only two ¯rms that producethe same good. Let x and y be the supply of ¯rm 1 and ¯rm 2, respectively.We de¯ne the function of inverse demand asp = 1x + y ;where p indicates the price. Suppose that marginal costs of production arerespectively a and b. Pro¯ts of the two ¯rms are then:¦1 = xx + y ¡ ax ¦2 = yx + y ¡ bx:The \best reply" (or \reaction function") for each ¯rm to the supply of theother is found by solving:maxx ¦1 such that x; y ¸ 0maxy ¦2 such that x; y ¸ 0from which we havex =rya ¡ y y =rxb ¡ x:



34Suppose that the action of each ¯rm coincides at every instant of time with itsbest reply. We can describe the supply adjustment process as followsxn+1 = ½p yna ¡ yn if ayn · 1;0 if ayn > 1; yn+1 = ½pxnb ¡ xn if bxn · 1;0 if bxn > 1;It should be observed that in the intervals ayt > 1 and bxt > 1 the best replyis to o®er a negative quantity. To avoid orbits taking on negative values thefollowing condition must be satis¯ed ab ; ba · 254 :This repeated game has 2 Nash equilibria (or Cournot points, see PuuAttractors, Bifurcation and Chaos, Springer, 2000 for further details),the trivial one (0; 0) and a second in the positive quadrant ³ b(a+b)2 ; a(a+b)2´,which are also the ¯xed points of the dynamical model. It is easy to demon-strate that the trivial equilibrium is unstable while the second is stable over3¡ 2p2 < a=b < 3 + 2p2.a. Open the model cournot and plot the bifurcation diagram using x = y =0:01, a = 1, b 2 (5:75; 6:25), Vertical range= (0; 0:2), 5000 transients and200 iterations. Choose a value of b for which there exists a period-4 cycle,e.g. b = 6:15. Now use the Basin of attraction routine with n b = 6:15, ahorizontal range of (0; 0:17) and vertical range of (0; 0:045). The basin has acheckerboard structure because of the coexistence of two period-8 cycles, eachwith its own basin of attraction, deriving from the combination of a period-4cycle in the varible x and another in the variable y. Plot the basin for b = 6:192,with the coexistence of two period-24 cycles (a period-12 cycle in each variable).In the above it was assumed that adjustment was istantaneous. Suppose,instead, that ¯rms adjust their best reply, on the basis of previous decisions,in the direction of the optimal supply without necessarily reaching the optimalimmediately. The resulting system is:xn+1 = ½ (1¡ °)xn + ° ¡p yna ¡ yn¢ if ayn · 1(1¡ °)xn if ayn > 1yn+1 = ½ (1¡ ±)yn + ± ¡pxnb ¡ xn¢ if bxn · 1(1¡ ±)yn if bxn > 1with 0 < °; ± < 1. This system has the same equilibria as the previous modeland if ± = ° = 1 it reduced to the instantaneous adjustment model.b. Open the cournotad model. Notice that for simplicity we have set ° = ± = c.Select the Bifurcation plot e the Double parameter option. Use x = y =



350:01, a = 1, Horizontal axis: c 2 (0:1; 1), Vertical axis: b 2 (0; 50),Epsilon= 10e¡ 7 ¼ 0:009, Infinity= 10, Transients= 500, Period= 15. Inthe plot periodic \tongues" can be observed, that is, combinations of parametervalues for which orbits converge to cycles of less than or equal to 15 periods.The curve bounding the red area represents the Neimark bifurcation curve (seeChapter 5.) on which the determinant of the Jacobian matrix calculated at the¯xed point is equal to 1. Using the Crosshair, ¯nd values of the parameterfor which the orbits converge to odd-period cycles and simulate the asymptoticstate using Trajectory with a high number of transients.



36 computer exercises chapter 8SET 1In this set of computer simulations a closer look is taken at the period-doubling route to chaos using the logistic map logisticxn+1 = ¹xn(1¡ xn)¹ 2 (1; 4):Begin by printing out a bifurcation diagram for the map over ¹ 2 (3; 4), startingfrom x0 = 0:2, using 500 transients and 1000 iterates. The diagram will be auseful reference during the following exercises.a. For the ¯rst simulations it may prove easier to follow the trajectories ifthe Connect dots option is chosen. Set the Manual bounds to give the evolu-tion of x 2 (0; 1) and consider a limited time interval, say (2850, 2900). Firstlook at a period-8 cycle, at ¹ = 3:54 for example. Next look at a trajectoryfrom the Feigenbaum attractor by setting ¹ = ¹1 ¼ 3:569446. The trajectorymay appear to be a period-8 cycle similar to that found in the ¯rst run, butit is actually aperiodic. However, the Lyapunov characteristic exponent forthe Feigenbaum attractor is zero, there is no divergence of nearby trajectories.Leaving ¹ set to simulate the Feigenbaum attractor, use Variation to start ata point only slightly distant from the initial value of the previous run. Do thesetrajectories appear to diverge or converge? Calculate the Lyapunov character-istic exponent for a trajectory of the Feigenbaum attractor using 5000 iterates.Does the value make sense for this attractor?b. In this exercise a chaotic trajectory is viewed from several points of view.Simulate a long series using a slightly larger value of ¹ such as ¹ = 3:7 for whichtrajectories are chaotic (using 300 transients and 3000 iterates, for example).Choose Algorithm values such that a short time interval of long-run be-haviour is clear, say (2850, 2900), and simulate a chaotic trajectory. Use Vari-ation to show sensitive dependence on initial conditions, noting how manyiterates are necessary before the distance between trajectories has reached 0.5(half of the interval).Select the Shifted and cobweb option and plot the series (no transients)in the plane (xn; xn+1). Much of the curve of the logistic equation for ¹ = 3:7appears, but the attractor does not cover the entire unit interval. Click onthe Cobweb animation routine and note how the trajectory moves over theattractor.Plot the time convergence of the Lyapunov characteristic exponent for thesame parameter value. Do these plots provide evidence as to the chaoticity ofthe trajectory?



373. Repeat the steps in b. above for ¹ = 4. At this value the map is characterizedby a strange attractor with LCE= ln 2 ¼ 0:7. Again consider whether theseplots provide evidence for chaoticity, and notice how the various plots changewith respect to those for ¹ = 3:7.SET 2a. Again simulate a long series from which transients have been removed using¹ = 3:83, a value for which the map has a period-3 cycle. Choose Algorithmvalues to get a time interval over (2850, 2900). What does the plot suggestregarding sensitive dependence on initial conditions and the attractiveness ofthe period-3 cycle? As further evidence, calculate the LCE, which shouldconverge to a negative number (¼ ¡0:52).b. Recall that intermittency refers to the aspect of a trajectory for whichregular behaviour is occasionally interrupted by irregular behaviour. Considervalues of ¹ on the right boundary of the period-3 cycle window (the case isdescribed in Section 8.2 and pictorially represented in Figure 8.4). Set ¹ =3:828427 and the Algorithm values so as to obtain the time evolution of x over(2800, 2900). The three periodic points of the period-3 cycle should be evident.Next try ¹ = 3:828, the trajectory still spends a lot of time around the threeperiodic points until it gets through the channel (see Figure 8.4(d)), after whichit is erratic until it gets reinjected near the channel once again. For ¹ = 3:82the memory of the period-3 cycle is all but lost, although the trajectory doesspend a great deal of time near the largest value of the period-3 cycle. Theintermittency can be observed using the Cobweb animation routine for thesevalues. If the order is set to 1, giving a plot in the (xn; xn+1 plane, from say0.2 with no transients, the trajectory is seen to wander around and eventuallyconverge to a period-3 cycle for which the 3 periodic points are obvious. Tobetter see these points set transients at 1000. Choose order 3 and see thecurve formed by the map G3, that is G(G(G(xn))). In the (xn; xn+3 plane theperiod-3 cycle is represented by a ¯xed point, on which the trajectory eventuallysettles.


