
Appendices

Cambridge University Press, the publisher of this book, has graciously agreed to
post diverse online resources that will aid you in making use of the methods that
this book surveys or the examples it exploits to show the methods hard at work.
These resources come without any warranty, so to speak. In particular, regarding the
software components, I don’t assert that they are reliable in all applications, only
that they are indeed the software I used for producing the majority of the analyses
and figures of shape data in the main text. There certainly exist better (i.e., more
professionally compiled) software libraries for this purpose – the list includes software
from Ian Dryden, Stanislav Katina, Dean Adams, and several others – but access to
an algorithmically accurate library does not automatically enable you to transform its
computations into effective vehicles for your findings.

Even in the context of measurements that are extents (lengths and areas) (Chapters 2
and 3), where all packages get almost exactly the same answers for invocations of
standard linear models, there is still very little assistance offered in wrapping the
resulting computations for export. (Ask yourself, for instance, if your favorite package
has a dialogue box that would let you set up Figure 2.40 by clicks.) By definition, all
of my examples in this book count as “publishable imagery,” in that they have all been
published right here. You may find a wide range of these fully explicit examples, some
from distances or areas and some from shape coordinates, useful to examine, imitate, or
improve prior to being woven into an ongoing argument of your own in a dissertation,
scientific manuscript, or colloquium talk.

The contents of these appendixes are laid out in four categories that match the four
subdirectories of the associated Cambridge website. Appendix A lists the thirteen data
sets that drove most of the empirical examples in the book. Appendix B presents and
explains the four main shape space tools that produce the vectors of loadings and scores
driving my examples in Chapter 5: Fproc.new (Procrustes shape coordinates in two
dimensions), Fpw.from.proc (partial warp loadings and scores), Fdrawtps (the
thin-plate spline grid for arbitrary pairs of landmark configurations), and Frelwarps
(for exploring patterns of shape variation at large scale). Appendix C surveys a range of
useful additional tools for diagramming patterns or explanations. The final Appendix D
is a bulky compilation of my actual Splus scripts (mostly usable in R as well) for most

1

2 Appendices

of the book’s figures that convey actual findings (as distinct from pedagogical diagrams,
proofs of theorems, and the like).

It is inevitable that there will be errors here, as well as inefficiencies of loop structure
or name assignments. Please call any anomalies that you uncover to my attention at
flb@stat.washington.edu or fred.bookstein@univie.ac.at.

Appendix A Data Sets

The data sets used for most of this book’s examples are listed explicitly in the online
resource associated with this publication. Some are mine while others are my selections
from larger online resources posted by others as acknowledged in the entries that follow.
The relevant section of S.reading.data.sets includes the few Splus statements
needed to import each of these data sets in turn to that computing environment.

A.1 Vilmann Neurocranial Octagons

The file vilmann.data.set in the online resource extracts 144 lines from the
original 164-line file printed in extenso in Bookstein (1991, Appendix A.4.5). The
restriction here is limited to the 18 animals with complete data at all ages. This
classic resource plays many different roles in my text, beginning with the first figure
of Chapter 1 and ending with the final figure of Chapter 5. File format: 144 lines with
animal number, age in days, and then eight (x, y) coordinate pairs (in a system with
Bregma at (0, 0) and Lambda on the negative x-axis). All configurations are in the
same unit of measurement, but I seem to have no record of what that unit was: maybe
μ? In the relevant part of the S.reading.data.set file, these data are read as
Cartesian coordinate pairs and immediately converted to complex numbers, rendered as
Procrustes shape coordinates, and submitted to partial warp and relative warp analysis.

A.2 Twenty-Nine Anthropoid Skulls

The file jhe03.data.set in the online resource includes 20 landmark points and
74 semilandmarks for each of 29 anthropoid skulls, as originally published in Gunz et
al. (2003). Like the Vilmann data set, these midsagittal cranial configurations appear in
this text in many different contexts, beginning in Chapter 1. The appropriate paragraph
of S.reading.data.sets imports all 94 points as Cartesian coordinate pairs,
converts them to the complex numbers that the main Splus routines prefer, assigns
names to the points and the specimens, and then extracts subsets and derives structures

3

4 A Data Sets

useful in the demonstrations to follow. File format: 29 chunks of 94 (x, y) pairs, one pair
per line, totalling 2,726 lines. The raw data were integers, but the 74 semilandmarks are
results of a matrix manipulation, hence decimals.

A.3 The “Baby Brain” Data Set

The file baby.brain.data.set in the online resource includes four landmark
points from synthetic midsagittal ultrasound images of the infant corpus callosum for
23 babies whose mothers reported having exposed them to high levels of alcohol before
birth along with 21 others. These data are exploited here in Example 3.9, Figures 3.46
et seqq. The ultrasound source images, as reported in Bookstein et al. (2007), are not
to any consistent scale, and so they have already been converted to Procrustes shape
coordinates. File format: an exposure code (1 = unexposed to alcohol before birth,
2 = exposed) followed by four points in the form of complex numbers.

A.4 Human Adult Female Footprints

The file domjanic.data.set in the online resource lists 36 semilandmarks from a
synthetic section of three-dimensional surface scans of both feet for 79 adult Croatian
women as analyzed in Bookstein and Domjanić (2015). The word domjanic stands
for Dr. Jacqueline Domjanić of Zagreb, Croatia, part of whose dissertation data set this
was. The data will be processed by the sliding algorithm Ftpsoutline and used here
in Figure 5.82. Format: each 36-gon is spread over four lines of eight complex numbers
and a fifth line of four. Left and (mirrored) right foot are paired.

A.5 Marcus–Hingst–Zaher Mammalian Calvarial Midlines

The file marcus57.projected.coordinates in the online resource lists 13
midsagittal landmark locations for representative specimens of 57 mammalian taxa.
The larger landmark set from which this extracts the unpaired points was reported in
Marcus, Hingst-Zaher, and Zaher (2000). These data provide the analysis displayed
in Figures 5.59–5.60 here (although 5.60 required additional information, not in this
online resource, about the evolutionary history of these specimens). File format: 57
lines of thirteen complex numbers each, derived as projections onto the first two princi-
pal axes of the original 3D scatter of these points. The S.reading data.sets file
includes text strings for specimen names (vernacular, not Linnaean) and long landmark
descriptions.

A.6 Isthmus Transects

The file isthmus.data.set in the online resource lists 45 Cartesian two-vectors
representing transects of the isthmus of the callosal midcurve at its shortest average

A.10 Berkeley Guidance Study Data 5

section for three groups of Seattle adult males imaged by brain MRI in 1998. Exposure
is coded in an integer from 0 to 3: code 3 for 15 subjects previously diagnosed with
Fetal Alcohol Syndrome, code 2 for 15 with Fetal Alcohol Effects, and code 1 for the
15 whose mothers, interviewed in 1974, assured us they had not exposed their fetus to
prenatal alcohol. The 46th line, assigned to group zero, is for a client (whose initials
were not “XX”) from my forensic practice. The larger semilandmark set from which
this is a selection is not yet released for publication. These isthmus transect data appear
in Figures 3.43 et seqq.

A.7 United States Death Rates, 2003

Files life.table.males.2003.csv and life.table.females.2003
.csv in the online resource were downloaded from Arias (2006). Their role in this
book is to supply the closest fit to a straight line of any empirical example (Figure 3.21).
File format: introductory text followed by 100 lines each of seven entries. The example
in the text involves only the third column of these data sets.

A.8 Wright’s Leghorn Chickens

The file wright.chickens.data.set in the online resource lists ten measures,
of which we use the primary six, for 276 leghorn chickens that were used in Sewall
Wright’s famous analysis of “general” and “special” size factors driving Figure 2.7 and
2.31. This file was downloaded from an online resource at Jim Rohlf’s morphmet
web site.

A.9 Bumpus’s Sparrows

The file bumpus.data.set in the online resource lists nine morphometric measures
for 136 sparrows collected after a snowstorm in Providence, Rhode Island, in 1898. The
examples in the book use either all the adult males (N = 59) or the 36 surviving adult
males. These data appear in Sections 3.1 and 3.6. The original data were published in
Bumpus (1898); my listing is a version online at the Field Museum, Chicago.

My variant Fcdf.pair of Splus’s built-in cumulative distribution function tool
cdf is used to emulate Bumpus’s original observations of group differences variable
by variable. The code for this routine is included in the online resource.

A.10 Berkeley Guidance Study Data

The file berkeley.guidance.data.set here is copied from the online resource
for Weisberg (2005). Weisberg, in turn, extracted these from the full listing published in
Tuddenham and Snyder (1954). These data, my favorite example of a hypothesis-rich

6 A Data Sets

longitudinal study of extents (as distinct from shape information), are used extensively
in Sections 3.3 and 3.4.

A.11 Tetrahymena Data Set

The file tetrahymena.csv was originally posted by Andersen and Skovgaard in
the online resource for Andersen and Skovgaard (2010). There are two measures for
51 experimental runs of a study of the protist Tetrahymena having two groups: 32
with high glucose and 19 others. These data appear in this text in Section 3.3. File
format: 51 lines of three semicolon-separated entries: glucose group (1 = high, 0 =
low), concentration, and mean diameter of the experimental samples.

A.12 Birthweight Prediction Data Set

The contents of the birthweight.prediction.data.set file were likewise
retrieved from the online resource for Andersen and Skovgaard (2010). This file
tabulates three measures for each of 108 newborn infants on whom two diameters were
measured prenatally by ultrasound and who then were weighed at birth. The read file
generates the appropriate transforms of the ultrasound measures (namely, their cubes).
File format: 107 lines of four semicolon-separated integers each. These data drive one
of the examples of added-variable plots in Section 3.2.

A.13 A Data Set about Mammalian Brains

I transcribed the four long lines of neuron.data.set from the printed table 1 in
Herculano-Houzel et al. (2015). These are the data for Figure 3.20c: genus names,
taxonomic categories, and representative brain weights and neuron counts for 40 taxa
of mammals. File format: four comma-separated lists.

Appendix B Code for the Basic Shape
Space Manipulations

This section offers accounts or lightly commented listings of the basic computa-
tional tactics that lie at the core of nearly every shape coordinate analysis in this
book: Fproc.new (for Procrustes shape coordinates and certain derived descriptors),
Fpw.from.proc (for the uniform component and the partial warps of a two-
dimensional shape coordinate data set), Fdrawtps (for plotting the thin-plate spline
for a pair of landmark configurations in two dimensions), and Frelwarps (for
computing the relative warps of a shape coordinate data set – its principal components
with respect to Procrustes distance). All the routines are laid out in full in the
corresponding online directory.

B.1 Fproc.new

This is the basic routine for making Procrustes shape coordinates out of landmark
coordinates in the plane. The version in the online resource is called with one argument
that is an n×p matrix of n p-landmark configurations represented as complex numbers.
It returns a structure of six elements: a vector of p complex numbers for the Procrustes
mean shape, an n × p matrix for the coordinates of each specimen after it is fit to the
Procrustes mean; another n × p matrix for the differences of those fitted coordinates
from their means (the Procrustes shape coordinates per se); a vector of length n with
the Centroid Sizes of the specimens that were divided out in the course of the fitting;
another n-vector of the rotations (represented as complex numbers); and finally one
more n × p output matrix for the nonaffine shape coordinates, those resulting from an
extended fitting algorithm removing any uniform component of the shape change as
well as centering, scaling, and rotating.

Fproc.new is a loop, but the basic operation of fitting one configuration
of landmarks to another is a finite computation carried out (for 2D landmarks
taking the form of complex numbers) by the Fproc.12 function that applies
to an already centered target configuration c1. Matching Figure 5.42, this reads,
in toto,

7

8 B Code for the Basic Shape Space Manipulations

> Fproc.12
function(c1, c2)
{

c2 <- c2 - mean(c2)
c3 <- c2/sqrt(sum(Re(c2 * Conj(c2))))
c4 <- sum(c1 * Conj(c3))
c4 * c3

}

as you will see nested in the more extended routine later here.
All those Proc.new outputs notwithstanding, it is worth displaying the core of

the function that realizes the process laid out in Figure 5.45. (The following exposition
replaces the names of the variables in the actual Splus functions by the names they
should have been assigned instead.) At this stage, each of our n specimens has been
converted from 2p Cartesian coordinates to p complex numbers, centered at mean 0+0i,
and scaled to Centroid Size 1 (sum of squared distances from this shared centroid).
Load an n × p array originals with these original standardized specimens, and
allocate an array iterates of the same size for the results of the computation to
come. Furthermore, there is already some tentative “Procrustes average” shape under
consideration (if only the first specimen in the data set); call it testmean. Then the
basic loop is as follows:

for (j in 1:n) {
iterates[j,]<-iterates[j,]*

(sum(testmean*Conj(iterates[j,]))/
sum(iterates[j,]*Conj(iterates[j,])))

You recognize this from the code of Fproc.12 above – it computes the rotation
necessary as a complex regression of the current iterate on the current testmean, and
then produces the next version of the iterate as the predicted value of the vector of
landmark locations from that regression. The regression has no constant term because
both predictor and predictand have means preset to the complex number 0 + 0i.. The
regression residuals are no longer at Centroid Size 1, so, still in the loop over specimen
index j, we put them back there:

iterates[j,]<-iterates[j,]/
sqrt(sum(Mod(iterates[j,])**2))

and then close the loop over specimens and update the average:

}
testmean<-apply(iterates,2,mean)

And that is all there is to the basic Procrustes algorithm – this loop over specimens is
repeated until convergence, which is invariably rapid. At the end, it is helpful to rotate
to principal axes horizontal and vertical (the orientation that makes it easiest to compute
uniform components). This entails final processing by a routine that should have been
coded as follows:

B.2 Fpw.from.proc, FLmatrix 9

testmean.pc1<-princomp(cbind(Re(testmean),
Im(testmean)))$loadings[,1]

if (testmean.pc1[1]<0) testmean.pc1<- -testmean.pc1
testmean.turn<-complex(r=testmean.pc1[1],
i=-testmean.pc1[2])

testmult<- 1
if (Re(testmean.turn)<0) testmult<- -1
if (Re(testmean.turn)<sqrt(0.5)&Im(testmean

.turn)>0) testmult<-(0-1i)
if (Re(testmean.turn)<sqrt(0.5)&Im(testmean

.turn)<0) testmult<-(0+1i)
testmean.turn<-testmean.turn*testmult

testmean<-testmean.turn*testmean
iterates<-testmean.turn*iterates

where the indented code checks for alignment with long axis horizontal and no
inversion. All the Procrustes shape coordinate scatters in this book were produced by
this same routine.

B.2 Fpw.from.proc, FLmatrix

These functions are just software implementations of the corresponding algebraic
equations in the main text. Launched with an argument m0 that is the structure output
by the Fproc.new routine just reviewed, Fpw.from.proc produces three new
structures of its own. For a data set of n configurations of p landmarks, these are an
n × (p − 2) matrix of partial warp scores, a (p − 2)-vector (whose first entry is zero)
of the corresponding bending energies, and a n × (p − 3) matrix of the principal warps
corresponding to the eigenmodes of nonzero bending in the thin-plate model. Notice
the call to built-in routines eigen (for principal component analysis) and solve
(for matrix inversion). If you haven’t read Splus or R code before, it helps to know
that the $ notation refers to named subelements of a structure; thus, m0$mean is the
element named “mean” (a vector of complex numbers) from the structure m0 produced
by the Fproc.new procedure (Section B.1). The parameters alpha and gamma are
the α and γ from the extended six-dimensional linear formulas in equations 5.7 of
Section 5.4.

> Fpw.from.proc
function(m0)
{

m1<-FLmatrix(m0$mean)
m2<-solve(m1)
m3<-eigen(m2[1:length(m0$mean),
1:length(m0$mean)],symmetric=T)

b.e.<-c(0,m3$values[(length(m0$mean)-3):1])
m4<-m0$fits%*%m3$vectors[,(length(m0$mean)-3):1,
drop = F]

10 B Code for the Basic Shape Space Manipulations

alpha<-sum(Re(m0$mean)*Re(m0$mean))
gamma<-sum(Im(m0$mean)*Im(m0$mean))
m5<-complex(r=alpha*Im(m0$mean),

i=-gamma*Re(m0$mean))
m6<-m0$resids%*%m5/sqrt(alpha*gamma)
m7<-cbind(m6,m4)
list(wscores=m7,b.e.=b.e.,prinw=m3$vectors[,

(length(m0$mean)-3):1,drop=F],mean=m0$mean)
}

Fpw.from.proc’s output begins with “partial warp zero,” the uniform term,
which is assigned its own special set of horizontal and vertical scores as per the formulas
in Sections 5.4.4 and 5.5.3. The structure produced by this routine also feeds directly
into the production of the bending energy – partial warp variance plot (Figure 5.92):

some.pw<-Fpw.from.proc(some.procrustes.analysis)
plot(log(some.pw$b.e.[-1]),log(apply(Mod(some.

pw$wscores[,-1]**2),2,mean)))

The function FLmatrix called by Fpw.from.proc is occasionally called elsewhere
in these data analyses as well (e.g., in Ftpsoutlinelmks). Here it is, exactly
matching its formulation as a matrix in equations 5.10–5.11 of Section 5.5 for a calling
argument of complex numbers. The ifelse is to avoid evaluating 1

2 r2 log r at r = 0
(diagonals of the matrix U); instead, this value is simply defined to be zero.

> FLmatrix
function(coords)
{

m1<-rep(complex(r=1,i=0),length(coords))
m2<-m1%o%coords-coords%o%m1
m3<-Re(m2*Conj(m2))
m4<-ifelse(m3>0,0.5*m3*log(m3),0)
m5<-cbind(1,Re(coords),Im(coords))
rbind(cbind(m4,m5),cbind(t(m5),matrix(0,3,3)))

}

B.3 Fdrawtps

This is another routine too verbose to be worth printing in full. It is called by the
simple command Fdrawtps(source,target) and produces a single image, the
deformation of an initially squared grid given by the interpolation of the landmark
correspondence between the source and the target. The actual algebra of the
correspondence, a thin-plate spline on the landmarks of the source, is that of equation
5.12 in Section 5.5. The coefficients of this expression are produced by the single
command right at the beginning of the routine that produces the actual equation of
the desired spline:

B.4 Frelwarps 11

tpscoeff<-complex(r=solve(FLmatrix(source),
c(Re(target),0,0,0),

i=solve(FLmatrix(source),c(Im(target),0,0,0))))

But it takes another 40 lines of much more tedious code to calibrate, compute, and draw
the corresponding transformation grid (a matter of three nested loops, for grid row, grid
column, and landmark number). At the core of this process is the following fragment for
evaluating the thin-plate spline whose p + 3 coefficients tpscoeff we just computed
at a list of points that, from the spline’s own point of view, is completely arbitrary
(namely, the points of the starting grid superimposed over the source configuration).
Here is the additional code for that evaluation as applied to any list domain of new
points in that image plane:

affine<-rep(tpscoeff[nland+1],length(domain))+
tpscoeff[nland+2]*Re(domain)+tpscoeff[nland+3]

*Im(domain)
kernels<-domain%o%rep(1,nland)
centers<-rep(complex(r=1,i=0),length(domain))

%o%source
sepmtx<-kernels-centers
terms<-Re(sepmtx*Conj(sepmtx))
terms<-ifelse(terms>0,0.5*terms*log(terms),0)
coeffs<-rep(complex(r=1,i=0),length(domain))

%o%tpscoeff[1:nland]
partials<-terms*coeffs
nonaff<-apply(partials,1,sum)
affine+nonaff

I have saved you from the tedium of reviewing the code that sets up this “domain” and
also the code that draws the grid lines connecting up the rows and columns.

Extrapolated plots are easily produced by this same Fdrawtps routine.
The alpha-fold extrapolation of the map between a source configuration and
a target configuration is drawn by the call Fdrawtps(source,target
+(alpha-1)*(target-source)).

Variant version: Fdrawtps.scale, giving me a little more control over the grid
per se.

B.4 Frelwarps

This routine, another one too verbose to be worth printing in full in these pages,
produces the three basic types of relative warps that help us explore the pattern space of
landmark configurations in Procrustes shape space. One set of components (“nonaff”)
applies to the nonuniform subspace of shape variation, another (“unif”) to the uniform
subspace. These analyses are commensurate in units of Procrustes distance, and the
third version (“full”) is their geometric combination. Each set of warps is extracted by
marshalling the relevant dimensions of shape space and sending them to the built-in

12 B Code for the Basic Shape Space Manipulations

routine princomp for eigenanalysis in the standard way. All vectors of coefficients
are reported in two different bases at the same time (the original shape coordinates
and either the partial warps [for the full and nonaffine analyses] or the horizontal and
vertical uniform components [for the full and the uniform analyses]), along with the
specimen-specific scores. It is mostly the redundancy of these six different reporting
styles that renders the routine unworthy of reprinting here.

Appendix C Diverse Additional
Drawing Tools

This appendix assembles a few other routines useful for measuring or diagram-
ming that I have invoked in various places in the course of producing this book’s
illustrations.

C.1 Fplotsquare

This is legacy code from an era when some built-in plotters did not have an option to set
the two axes at the same spacing. It is called with a single vector or matrix of complex
numbers as its argument, and resets the plotting character size mkh (another argument)
to the default before it exits.

> Fplotsquare
function(plotlist,xl="",yl="",pch="*",psize=0)
{

plotrange<-max(diff(range(Re(plotlist))),
diff(range(Im(plotlist))))

par(pty="s")
plot(c(min(Re(plotlist)),min(Re(plotlist))
+plotrange),c(min(Im(plotlist)),

min(Im(plotlist))+plotrange),type="n",
xlab=xl,ylab=yl,pty="s")

par(mkh = psize)
points(plotlist,pch=pch)
par(mkh=0)

}

Variant versions: Fplotsquare.noborder, Fplotsquare. smalllabel,
each of which just fiddles a bit with the basic layout.

13

14 C Diverse Additional Drawing Tools

C.2 Fplotpw, Fplotunif

These routines sets up the plot of a bent partial warp (Fplotpw) or a uniform partial
warp 0 (Fplotunif) as a thin-plate spline. The arguments include a partial warp
structure (output of the Fpw.from.proc command), a warp number (for Fplotpw),
and a two-vector of loadings. Here is the core of the code:

> Fplotpw
function(parwarps,whichone,realp=0.1,imagp=0.3,

xl="",psize=0.04)
{

parw <- complex(r=realp,i=imagp)
plotvec <- NULL
nland <- length(parwarps$mean)
for (i in 1:nland) {

ctr<-parwarps$mean[i]
sep<-parw*parwarps$prinw[i,whichone]
plotvec<-c(plotvec,ctr+sep)

}
Fdrawtps(parwarps$mean,plotvec,xl=xl,psize=psize)

}
For the rest of this Splus function, see the listing in the explicit Splus code resource.

C.3 Fplotrw

This routine sets up the plot of a relative warp as a thin-plate spline and also as a
displacement diagram. The arguments include a relative warp structure (output of the
Frelwarps command), the name of a set of warps (“full”, “unif”, or “nonaff”), an
index, and a two-vector of loadings. Assuming all these have been set sensibly, here is
the core of the code:

plotvec<-NULL
nland<-length(relwarps$mean)
scale<-scale*diff(range(analysis$scores[,

whichone]))
for (i in 1:nland) {

ctr<-relwarps$mean[i]
sep<-complex(real=analysis$vec.ld

[2*i-1,whichone],
imag=analysis$vec.ld[2*i,whichone])

plotvec<-c(plotvec,ctr+scale*sep)
}
Fdrawtps(relwarps$mean,plotvec)

This code closely parallels that of Fplotpw. For the explicit Splus function, see the
online resource.

C.6 Fshapecoords 15

Variant versions of the function (that should have been toggle arguments instead):
Fplotrw.nogrid, Fplotrw.noplot. The original function always produced
both kinds of graphical output, in the second of which the displacements at the
landmarks are just the elements of the vector plotvec itself.

C.4 Ftritensor

This routine, too long to print here (because of all the different combinations of triangle
edges that the tensor might find itself intersecting), produced Figure 5.68 in Section 5.5.
It should have produced Figure 5.70 as well, but it was not coded yet at the time, so 5.70
was produced inline (see S.chap.5.5).

C.5 F.convexhull

This is one single command (inside a deep loop) designed to be executed after the points
themselves have been plotted (see, e.g., Figure 3.50). The algorithm is a kludge: draw
all the interlandmark segments for which all the other landmarks lie on one side or the
other of the segment.

> F.convexhull
function(points)
{

npoints<-length(points)
for (i1 in 1:(npoints-1)) {
for (i2 in (i1+1):npoints) {

if(!(min(Im((points-points[i1])/
(points[i2]-points[i1])))*

max((Im((points-points[i1])/
(points[i2]-points[i1]))))<-1e-06)){

lines(points[c(i1,i2)])
}}}}

C.6 Fshapecoords

This maneuver, utilized throughout Section 5.2, is just one line when called with a
matrix of complex numbers as argument:

> Fshapecoords
function(coords,base.0=1,base.1=2)
{

(c2-c2[,base.0])/(c2[,base.1]-c2[,base.0])
}

16 C Diverse Additional Drawing Tools

C.7 Farea

This little routine implements the formula 1
2

∑k
i (xiyi+1 − xi+1yi) (where the sub-

script k + 1 is interpreted as 1) for the area of a closed polygon on the points
(x1, y1), . . . , (xk, yk) in that order. When the input is a list of complex numbers, this
is typed for Splus or R as follows:

> Farea
function(coords)
{

nland<-dim(coords)[[2]]
0.5*apply(Re(coords)*Im(coords[,c(2:nland,1)])-

Im(coords)*Re(coords[,c(2:nland,1)]),1,sum)
}

C.8 Ftpsoutlinelmks

This is the last of the basic algebraic spline manipulations that the main text introduces
– it is delayed until Section 5.5, when the semilandmarks are introduced. The code
is instructive enough to be worth including in this appendix. Ftpsoutlinelmks
is called, as the name suggests, with three arguments: a configuration of left points
lpoints, a commensurate configuration of right points rpoints, and a list
sliplist of the entries of these lists that are semilandmarks allowed to slide. (The
real landmarks are presumably the points that are not slipping.) Many versions of this
routine add a step that projects the slid points rpointsmin down onto some sort
of smoothed or splined version of the curve presumed to have been responsible for
generating the list of right points; my version does not. Sliding directions are simply
set by the chords under the semilandmarks. You can follow the algebra of Section 5.5.4
in the Splus code. This routine was used, along with a color randomization, to produce
Figure 5.71.

> Ftpsoutlinelmks
function(lpoints,rpoints,sliplist)
{

npt<-length(lpoints)
nslip<-length(sliplist)
linv<-solve(FLmatrix(lpoints))[1:npt,1:npt]
xchord<-rpoints[c(2:npt,1)]

-rpoints[c(npt,1:(npt-1))]
biglinv<-rbind(cbind(linv,matrix

(0,nrow=npt,ncol=npt)),
cbind(matrix(0,nrow=npt,ncol=npt),linv))

bigz<-c(Re(rpoints),Im(rpoints))
bigy<-matrix(0,ncol=nslip,nrow=2*npt)
for (i in 1:nslip) {
bigy[sliplist[i],i]<-Re(xchord[sliplist[i]])

C.10 circle 17

bigy[sliplist[i]+npt,i]<-Im(xchord[sliplist[i]])
}
tmin<-rep(0,npt)
tmin[sliplist]<- -solve(t(bigy)%*%biglinv%*%bigy,

t(bigy)%*%biglinv%*%bigz)
rpointsmin<-rpoints+tmin*xchord
be1<-t(bigz)%*%biglinv%*%bigz
be2<-t(c(Re(rpointsmin),Im(rpointsmin)))
%*%biglinv%*%c(Re(rpointsmin),Im(rpointsmin))

list(params=tmin,points=rpointsmin,be1=be1,
be2=be2)

}
Variant version: Ftpsoutline, no sliplist – no actual landmark points, every-

thing a semilandmark allowed to slide. This is the version used with the footprint
data set.

C.9 Fpls2

This routine repackages the singular-value decomposition of the crosscovariance matrix
of two blocks X, Y of data with the same count of rows (cases). It relies on the built-
in Splus function svd, which returns a structure with elements u, d, and v in the
eponymous slots.

> Fpls2
function(X,Y)
{

s.v.d.<-svd(var(X,Y))
xscores<-X%*%s.v.d.$u
yscores<-Y%*%s.v.d.$v
list(d=s.v.d.$d,xscores=xscores,yscores=yscores)

}

C.10 circle

One line:

circle<-complex(r=cos((0:100)*2*pi/100),
i=sin((0:100)*2*pi/100))

This construction is easily modified to supply ellipses corresponding to covariance
structures in two dimensions:

some.data.matrix<-matrix(some.data,N,2)
some.mean<-mean(complex(r=some.data.matrix[,1],

18 C Diverse Additional Drawing Tools

i=some.data.matrix[,2]))
some.cov.structure<-princomp(some.data.matrix)
lines(some.mean+complex(

r=some.cov.structure$loadings[1,1],
i=some.cov.structure$loadings[2,1])

*complex(r=some.cov.structure$sdev[1]*Re(circle),
i=some.cov.structure$sdev[2]*Im(circle)))

as in Figure 3.44 of the text.

C.11 F.LLR2D

This is a dense routine for plotting the quadratic likelihood ratio surface corresponding
to any pair of covariance structures on the same two variables. It is used for the book’s
Figure 3.44.

Appendix D Source Code for Select Figures

This final appendix includes my explicit source code for most of the empirical (i.e.,
data-based) figures in the book, plus a few others. These 124 files are intended as
resources for readers who would like to emulate some of these analytic diagrams
for their own data sets, but who do not wish to sort out the syntax of their graphical
niceties and other details of presentation. Some of these fragments (you will consider
these the more legible ones) simply pass elementary derived structures to standard
plotting engines for lines or scatters. Others, which bundle the extraction of the essential
geometrical parameters as prefatory command sequences, would surely be recoded as
functions if they were to be used more than once, and still others render methodological
points in the text or algrebraic properties of descriptors by diagrams of which I am
particularly proud (e.g., Figure 2.24). The online resource is organized by chapter and
subchapter as follows:

Chapter 2: Section 2.2, Figures 2.7 and 2.8; Section 2.3, Figures 2.9, 2.10, 2.12,
and 2.24; Section 2.4, Figure 2.25, 2.28, and 2.31; Section 2.5, Figure 2.36; Section 2.6,
Figures 2.37 through 2.40, 2.42 through 2.44, and 2.49.

Chapter 3: Section 3.1, Figures 3.1 through 3.9; Section 3.2, Figures 3.12 through
3.15; Section 3.3, Figures 3.16 through 3.19, 3.20c, 3.21, and 3.23 through 3.26;
Section 3.4, Figures 3.27 through 3.32; Section 3.5, Figures 3.36 through 3.40; Section
3.6, Figures 3.43 through 3.45 and 3.47 through 3.51.

Chapter 4: Section 4.2, Figures 4.4, 4.7, 4.9, and 4.10; Section 4.3, Figures 4.16,
4.17, and 4.20 through 4.23.

Chapter 5: Section 5.1, Figures 5.3, 5.21, and 5.22; Section 5.2, Figures 5.29
through 5.36; Section 5.3, Figures 5.43 and 5.44; Section 5.4, Figures 5.47 through
5.60 (top); Section 5.5, Figures 5.64, 5.65, 5.67 through 5.71 and 5.73; Section 5.6,
Figures 5.74 through 5.82, 5.84, 5.85, 5.87, 5.88, 5.92 through 5.95, and 5.97 through
5.99.

19

