
Solutions to exercises

Solutions to exercises
Exercise 1.1 When we calculated that the sky is as bright as the Sun, we
assumed that the line of sight stopped on the star, i.e. stars are opaque. When we
calculated the brightness of the sky for a S−5/2 power law, we integrated down to
zero flux, which (for any particular type of star) means integrating to r = ∞.
So the lines of sight don’t stop on stars in the latter case; stars are treated as
transparent.

Exercise 1.2 We use E = γm0c
2, where E is the energy, m0 is the

rest mass, γ = (1 − v2/c2)−1/2, and c is the speed of light. We have that
1020 eV = γc2 × 938.28 MeV/c2 1 γ × 109 eV . The quoted accuracy of the
energy does not justify carrying more than just the first significant figure on the
proton’s rest mass. The γ factor is then just γ = 1020/109 = 1011. The cosmic
ray is moving at very close to the speed of light, so it would take about 100 000
years for the proton to cross the Galaxy in the Galaxy’s rest frame. But moving
clocks run slow, so it would take 100 000/γ years in the proton’s rest frame, i.e.
105/1011 years, or 10−6 years, or about 30 seconds!

Exercise 1.3 First we differentiate Equation 1.7 with respect to time t to get

2ṘR̈ =
8πG

3

(
ρ̇R2 + 2ρRṘ

)
+

2Λc2RṘ

3
, (S1.1)

where we write ρ = ρm + ρr for brevity and the ‘dot’ notation is used to indicate
differentiation with respect to time, i.e. Ṙ = dR/dt and R̈ = d2R/dt2. The
conservation of matter energy gives

d

dt

(
ρc2R3

)
= ρ̇c2R3 + 3ρc2R2Ṙ

= −p
d(R3)

dt

= −3pR2Ṙ,

so

ρ̇c2R3 = −3pR2Ṙ − 3ρc2R2Ṙ.

Equation S1.1 has a term ρ̇R2, so we rearrange the above to find

ρ̇R2 =
−3pRṘ

c2
− 3ρRṘ

= −RṘ

(
3p

c2
+ 3ρ

)
.

Substituting this into Equation S1.1 gives

2ṘR̈ =
8πG

3

{
2ρRṘ − RṘ

(
3p

c2
+ 3ρ

)}
+

2Λc2RṘ

3

=
8πGRṘ

3

(
2ρ − 3p

c2
− 3ρ

)
+

2Λc2

3
RṘ

=
−8πGRṘ

3

(
ρ +

3p

c2

)
+

2Λc2

3
RṘ

= −8πG

(
ρ +

3p

c2

)
RṘ

3
+

2Λc2

3
RṘ.
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Dividing this by 2Ṙ gives

R̈ = −4πG

(
ρ +

3p

c2

)
R

3
+

Λc2R

3

= −4πG

(
ρm + ρr +

3p

c2

)
R

3
+

Λc2R

3
,

as required.

Exercise 1.4 If Λ = 0, then Ω
Λ

is always zero (Equation 1.17). From
Equation 1.33, we therefore have that (H/H0)

2 = (1 + z)3 when Ωm = 1 and
Λ = 0. Now, Equation 1.28 tells us that

H =
−1

1 + z

dz

dt
,

so

1

H2
0

1

(1 + z)2

(
dz

dt

)2

= (1 + z)3,

which we may write more simply as dz/dt ∝ (1+ z)5/2, or dt/dz ∝ (1+ z)−5/2.
Integrating this with respect to z, we get t ∝ (1 + z)−3/2. But 1 + z = R0/R, so
t ∝ R3/2, or

R = αt2/3, (S1.2)

where α is some constant. In particular, at the current time t = t0 we have

R0 = αt
2/3
0 , (S1.3)

and dividing Equation S1.2 by Equation S1.3 gives R/R0 = (t/t0)
2/3.

Exercise 1.5 We can rearrange Equation 1.35 to read

R = R0

(
t

t0

)2/3

. (S1.4)

From Equation 1.12, we have that H = (1/R) dR/dt. Differentiating
Equation S1.4, we get

dR

dt
=

2

3

R0

t
2/3
0

t−1/3.

At a time t = t0, this is just

dR

dt

∣∣∣∣
t=t0

=
2

3

R0

t0
.

Therefore the Hubble parameter at a time t = t0 in this model Universe is

H0 =
1

R0

dR

dt

∣∣∣∣
t=t0

=
1

R0

2

3

R0

t0
=

2

3t0
,

or t0 = 2/(3H0) as required. Putting in H0 = 72 ± 3 km s−1 Mpc−1, we find
t0 = 9.1 ± 0.4 Gyr.

Exercise 1.6 The angular diameter in degrees will be inversely proportional
to dA (Equation 1.47), so the angular area (e.g. in square degrees) will vary as
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θ2 ∝ d−2
A . The flux will be inversely proportional to d2

L (Equation 1.49), i.e.
S ∝ d−2

L . The surface brightness will therefore vary as S/θ2 ∝ d2
A/d2

L. But
dL = (1 + z)2dA (Equation 1.50), so surface brightness must vary as (1 + z)−4.

Exercise 1.7 In Section 1.5 we are given that H0 = 72 ± 3 km s−1 Mpc−1

and ΩΛ,0 = 0.742 ± 0.030. One parsec is 3.09 × 1016 m, so in SI
units, H0 = (2.3 ± 0.1) × 10−18 s−1. Equation 1.17 relates these two
quantities to Λ: ΩΛ,0 = Λc2/(3H2

0 ), so Λ = 3ΩΛ,0 H2
0/c2. Putting in the

numbers, we get Λ = (1.3 ± 0.2) × 10−52 m−2. The horizon size will be√
3/Λ = (1.5 ± 0.1) × 1026 m, or 4900 ± 300 Mpc. This cosmological event

horizon will be exceedingly distant; for comparison, the current radius of the
observable Universe in Section 1.9 is about 3.53c/H0 = 14 900 Mpc.

Exercise 2.1 The 13.6 eV photon does ionize another atom. However, the
process of recombination needn’t result in the emission of just one photon.
Sometimes the electron will bind first in a high energy state (releasing one photon
with an energy < 13.6 eV), then release the remaining energy in stages as the
electron drops down the energy levels of the hydrogen atom. Each of these stages
will involve the release of a photon, but none of these photons will have enough
energy on its own to ionize hydrogen atoms.

Exercise 2.2 We are given that T = 2.725 ± 0.001 K, so the energy density
must be ρr,0 c2 = 4σT 4/c = 4 × 5.67 × 10−8 × 2.7254/(3.00 × 108) joules per
cubic metre, i.e. ρr,0 c2 = 4.17 × 10−14 J m−3, or mass-equivalent density of
ρr,0 = 4.64 × 10−31 kg m−3. Applying Equation 1.16, and remembering that
H0 = 100h km s−1 Mpc−1 = 3.24 × 10−18h s−1, we find that

Ωr,0 =
8πGρr,0

3H2
0

= 2.47h−2 × 10−5.

So

Ωr,0 h2 1 2.5 × 10−5,

as required.

Exercise 2.3 The matter energy density scales as R−3, while the
photon/neutrino energy density scales as R−4. Therefore from Equations 1.15
and 1.16, Ωr/Ωm = (1 + z) Ωr,0/Ωm,0. From Exercise 2.2 and the text following
it, we have that Ωr,0 h2 1 4.2 × 10−5(TCMB,0/2.725 K)4. The epoch of
matter–radiation equality must by definition satisfy Ωr/Ωm = 1, so

1 + zeq =
Ωm,0

Ωr,0

=
h2

4.2 × 10−5
Ωm,0 (TCMB,0/2.725 K)−4

1 23 800Ωm,0 h2(TCMB,0/2.725 K)−4,

as required.

Exercise 2.4 The analysis is the same up to Equation 1.30, where ρ this time
is ρr. However, instead of ρ = ρ0 × R3

0/R
3, we must also take into account the

fact that photons lose energy from redshifting, so ρr = ρ0 × R4
0/R

4. With Λ set to
zero, the equivalent of Equation 1.32 comes out as(

H

H0

)2

= (1 + z)2
(
1 − Ωr,0 + Ωr,0 (1 + z)2

)
,
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and inserting Ωr,0 = 1 and using H2 = (1 + z)−2 (dz/dt)2, we find that(
dz

dt

)2

= H2
0 (1 + z)6

so

dz

dt
=

d(1 + z)

dt
= H0(1 + z)3.

Now the dimensionless scale factor a is related to redshift via a = 1/(1 + z), so
we could write this as

d(a−1)

dt
= H0a

−3

thus

−a−2 da

dt
= H0a

−3

hence

a da ∝ dt.

Integrating this gives a2 ∝ t, or a ∝ t1/2 as required.

Exercise 2.5 ! is measured in J s. A Joule has dimensions of energy (like
1
2mv2) so it has dimensions ML2T−2, where we write M for the dimension of
mass, L for length, and T for time. (Note that numerical constants are ignored
in dimensional analysis.) Therefore we can write the dimensions of ! as
[!] = ML2T−1. Similarly, the dimensions of c are [c] = LT−1. To find the
dimensions of G, we can start with the familiar equation F = GMm/r2, and note
that force is mass times acceleration, so ma = GMm/r2 or G = ar2/M , so the
dimensions of G are [G] = LT−2L2/M = M−1L3T−2. Now let’s suppose that the
Planck time is given by a formula of the form !xcyGz , where the constants x, y
and z are to be determined. The result must have the dimensions of time, so

T =
(
ML2T−1

)x (
LT−1

)y (
M−1L3T−2

)z
.

Multiplying this out and rearranging gives

T = Mx−zL2x+y+3zT−x−y−2z.

The left-hand side has no mass M, so x − z must equal zero, i.e. x = z. The
left-hand side also has no length L, so 2x + y + 3z = 0. The left-hand side has
exactly one power of T, so −x − y − 2z = 1. We have three simultaneous
equations for three unknowns. Substituting in x = z into the other two equations
gives 5x + y = 0 and −3x − y = 1. Therefore y = −1 − 3x = −5x, or
x = 1/2. Since x = z, we have z = 1/2. Finally, any of the equations involving y
imply that y = −5/2. Therefore the characteristic time must be of the form
!xcyGz = !1/2c−5/2G1/2 =

√
!G/c5, as required.

Exercise 2.6 We have already that (1/R) d2R/dt2 = α(α − 1)t−2. Since t is
positive and α > 1, the right-hand side must be positive. Therefore the left-hand
side must also be positive. Since R is also positive, d2R/dt2 > 0.

Exercise 2.7 We start with

3Hφ̇ = −V ′ (Eqn 2.23)
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and then use

H2 =
8π

3m2
Pl

V. (Eqn 2.24)

Now the H dt term in the integral in the question can also be expressed as

H dt = H
dt

dφ
dφ = H

dφ

φ̇
.

Next we use Equation 2.23 to get

H dt = H
dφ

(−V ′/3H)
= −3H2 dφ

V ′ .

Finally, using Equation 2.24 this comes out as

H dt =
−8π

m2
Pl

(
V

V ′

)
dφ,

so we reach the required integral:

N =
−8π

m2
Pl

∫ φ1

φ2

V

V ′ dφ.

For the next part, we set V ′ 1 V/φ and φ1 = 0 (as advised in the question) to
write this as

N =
−8π

m2
Pl

∫ 0

φ2

V

V
φ dφ.

Evaluating this integral gives

N =
4π

m2
Pl

φ2
2 =

(
2
√

πφ2

mPl

)2

.

Thus to have N > 60 we need φ2 > mPl
√

60/(2
√

π), or in other words,
φ2 > 2.2mPl.

Exercise 2.8 No, not immediately. At first the CMB will appear very uniform,
as you receive light from only your immediate neighbourhood. As time progresses
you will receive light from larger and more distant parts of the Universe. You’ll
only be able to see the structures with wavelength λ once light has had time to
travel the distance λ, i.e. after a time δt = λ/c, where c is the speed of light. The
size of the largest acoustic peak is set by the sound horizon after inflation. Once
light has had time to travel this distance, all the acoustics will start to become
visible. Also, the acoustic peaks will have a different angular size on the sky,
because the surface of last scattering was closer. Finally, the CMB wouldn’t have
peaked at microwave wavelengths then, so perhaps we shouldn’t call it the CMB
then!

Exercise 2.9 We found in Section 2.7 that the particle horizon radius at
recombination was 2c/H = 0.46 Mpc. The sound speed is cs = c/

√
3, so the

sound horizon will be 2cs/H = (2c/H) × (cs/c) = 0.46/
√

3 Mpc = 0.27 Mpc.

Exercise 2.10 Dark matter clumps through gravitation, while dark energy
appears to be smoothly distributed through space. Dark matter is also essentially
pressureless, with Ωm dominated by the rest mass of the dark matter particles,
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while dark energy has a strong negative pressure. Dark matter makes up about
20% of the total energy density of the Universe, and at recombination made up
about 70%. Dark energy, meanwhile, was negligible at recombination and yet
dominates the present-day energy density of the Universe. (One hopes that it
will soon be possible to add that the dark matter particle has been directly
detected, though that is not yet true at the time of writing; certainly, the proposed
particle physics mechanisms for generating dark matter and dark energy are very
different.)

Exercise 2.11 One parsec is about 3.09 × 1016 m, so
H0 = 72 × 103/(106 × 3.09 × 1016) 1 2.33 × 10−18 s−1. In Chapter 1 we saw
that ΩΛ,0 = Λc2/(3H2

0 ), so Λ = 3ΩΛ,0 H2
0/c2. Putting in the numbers gives

Λ = 1.3 × 10−52 m−2.

Exercise 3.1 The luminosity contributed by a shell of radius r → r + dr will
be I(r) times the area of the shell, 2πr dr. Summing these shells, the total
luminosity will be L =

∫∞
0 I(r) 2πr dr. Let’s define L0 to be the luminosity with

I0 = r0 = 1, i.e.

L0 =

∫ ∞

0
f(r) 2πr dr.

Now let’s calculate the luminosity in the more general case:

L =

∫ ∞

0
I0 f

(
r

r0

)
2πr dr

= I0r
2
0

∫ ∞

0
f

(
r

r0

)
2π

r

r0
d

(
r

r0

)
.

But this integral has the same form as the integral defining L0, which also
integrates from 0 to ∞, so L = I0r

2
0L0.

Exercise 3.2 A shell of thickness dr and radius r will have mass
dM = 4πr2ρdr. The gravitational potential energy of this shell will be

dEGR =
−GM(< r) dM

r
, (S3.1)

where M(< r) is the mass enclosed within a radius r, i.e.

M(< r) = 4
3πr3ρ,

and the mass of the shell is

dM = 4πr2ρdr.

Substituting this into Equation S3.1 gives

dEGR =
−G4

3πr3ρ

r
dM = −G4

3πr2ρ × 4πr2ρdr

so

dEGR = −3G × (4
3πr2ρ

)2
dr.
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Integrating this from radius 0 to radius R gives

EGR = −3G

∫ R

0

(
4
3πr2ρ

)2
dr = −3G

(
4
3πρ

)2 R5

5

=
−3G

5R

(
4
3πR3ρ

)2
= −3GM2

5R
,

where M = 4
3πR3ρ is the total mass of the sphere.

Exercise 3.3 The kinetic energy will be EK = 3
2NkT , where N is the number

of gas particles. Virial equilibrium is 2EK = −EGR, i.e.

3NkT =
3

5

GM2

R
.

The requirement for gravitational collapse is therefore

3NkT <
3

5

GM2

R
.

To reach Equation 3.7, we need to eliminate N and R. To a good approximation,
at recombination we can assume that the gas particle masses are the proton
mass mp, so the number of particles must be N = M/mp. We can also use
M = 4

3πR3 to eliminate R, since R = (3M/4πρ)1/3. Inserting these
substitutions gives

3
M

mp
kT <

3

5
GM2

(
4πρ

3M

)1/3

,

which when rearranged in terms of M gives the required equation.

The current temperature of the CMB is about 2.7 K, and the redshift of
recombination is about z = 1000, so the photon temperature at recombination
must be T = 2.7(1 + z) 1 3000 K . Matter and radiation will just have been in
thermal equilibrium, so this will have been the matter temperature too. The
baryonic density will be proportional to (1 + z)3, and using Equation 1.26 and
ρb = Ωb ρcrit (Equation 1.22), we have that the baryonic density at z = 1000 will
be

ρb = ρb,0(1 + z)3

= ρcrit × Ωb,0 (1 + z)3

= 1.8789 × 10−26 × Ωb,0 h2(1 + z)3 kg m−3

= 1.8789 × 10−26 × 2.273 × 10−2 × (1 + 1000)3 kg m−3

1 4.3 × 10−19 kg m−3.

Putting in the numbers gives

M >

(
5 × (1.381 × 10−23 J K−1) × 3000 K

(6.673 × 10−11 N m2 kg−2) × (1.673 × 10−27 kg)

)3/2

×
(

3

4π × 4.3 × 10−19 kg m−3

)1/2

1 2 × 1036 kg,

or M > 106 M), as required.
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Exercise 3.4 For a flat universe, the comoving distance is the same as the
proper motion distance (Equation 1.56). This isn’t true in general (watch out!) but
it’s true in a flat universe. The proper motion distance is related to the angular
diameter distance dA by Equation 1.50, which gives dA = dcomoving/(1 + z). The
definition of angular diameter distance in Equation 1.47 gives us a relationship
between the size of an object as it was at the time of redshift z and the angular
size as it appears today. The proper size of the BAO wiggles is just the comoving
size divided by (1 + z), i.e. LBAO/(1 + z). The angular diameter distance to
redshift z is therefore dA = (LBAO/(1 + z))/θBAO. The comoving distance to
redshift z must therefore be dcomoving = dA × (1 + z) = LBAO/θBAO, as required.

Exercise 3.5 Here the trick is to use Equation 1.43. It follows from that
relation that a small comoving interval along the redshift axis must equal
δdcomoving = c δz/H(z). Setting this comoving interval to LBAO gives us
LBAO = c δz/H(z), so H(z) = c δz/LBAO, as required.

Exercise 3.6 No. The amplitude of the fluctuations could depend on the bias,
but the scale length itself is bias-independent.

Exercise 4.1 First, we need to get Equation 1.7 into a form where the only
time-dependent parameter is R. The density ρ is time-dependent and varies as
ρ = ρ0(R0/R)3 (where subscript 0 indicates present-day values), so we have(

dR

dt

)2

=
8πG

3
ρ0

(
R0

R

)3

R2 − c2 =
8πGρ0R

3
0

3
R−1 − c2

(where we’ve used k = +1). If we set dR/dt = 0 and solve, we find that
Rmax = R = 8πGρ0R

3
0/(3c

2). Therefore(
dR

dt

)2

=
Rmax

R
c2 − c2.

Using the chain rule we have that(
dR

dθ

)2

=

(
dR

dt

)2( dt

dθ

)2

=

(
dR

dt

)2(R

c

)2

and so(
dR

dθ

)2

=

(
R

c

)2(Rmax

R
c2 − c2

)
= Rmax R − R2,

as required.

We’re asked to verify that Equation 4.2 works rather than proving it, so all we
have to do is substitute it in. Differentiating Equation 4.2 with respect to θ gives

dR

dθ
=

Rmax

2
sin θ

so(
dR

dθ

)2

=
R2

max

4
sin2 θ =

R2
max

4

(
1 − cos2 θ

)
.
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Meanwhile,

Rmax R − R2 =
R2

max

2
(1 − cos θ) − R2

max

4
(1 − cos θ)2

=
R2

max

4
(2 − 2 cos θ) − R2

max

4

(
1 + cos2 θ − 2 cos θ

)
=

R2
max

4

(
2 − 2 cos θ − 1 − cos2 θ + 2 cos θ

)
=

R2
max

4

(
1 − cos2 θ

)
,

which equals (dR/dθ)2 as above.

Finally, we just need to differentiate Equation 4.3, which gives

dt

dθ
=

Rmax

2c
(1 − cos θ) =

R

c
,

as required.

Therefore Equations 4.2 and 4.3 are a solution.

Exercise 4.2 To show this, we’ll first get things in terms of H . It’s a flat
matter-dominated universe, so Ωm = 1 = 8πGρm/(3H2), thus 4πGρm = 3H2/2.
We also know that H(t) = ȧ/a. Substituting this into Equation 4.9, we have

δ̈ + 2H(t) δ̇ = 3H2(t) δ/2.

Next we use H(t) = 2/(3t) to reformulate this in terms of a differential equation
involving just δ and time:

δ̈ +
4

3t
δ̇ =

3

2

(
2

3t

)2

δ =
2

3t2
δ.

Next, let’s try power law solutions δ = btc where b and c are constants. Then
δ̇ = bctc−1 and δ̈ = bc(c − 1)tc−2. Substituting in, we find

bc(c − 1)tc−2 +
4

3t
bctc−1 =

2

3t2
btc.

Collecting the terms together, we find that

bc(c − 1)tc−2 + 4
3bctc−2 = 2

3btc−2,

and dividing through by btc−2 gives

c(c − 1) + 4
3c = 2

3 .

The solution to this quadratic equation is c = 2/3 or c = −1. The −1 solution is
known as the decaying mode, and is not physically relevant in this universe (it
decays more rapidly than the growing mode grows and is quickly negligible). The
2/3 power law time-dependence (which we found ultimately from linearized fluid
dynamic equations) is identical to Equation 4.8, which is why the latter is known
as the linear theory.

Exercise 4.3 The redder colour will be the one with the larger V-band
to B-band flux ratio SV/SB. The fluxes are related to the magnitudes by
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V = −2.5 log10 SV + cV and B = −2.5 log10 SB + cB, where cV and cB are
constants (not necessarily identical). Therefore

(B–V) = −2.5 log10 SB + cB + 2.5 log10 SV − cV

= −2.5(log10 SB − log10 SV) + (cB − cV)

= −2.5 log10(SB/SV) + (cB − cV)

= 2.5 log10(SV/SB) + (cB − cV),

which gives

2.5 log10(SV/SB) = (B–V) − (cB − cV)

so

log10(SV/SB) = (B–V)/2.5 − (cB − cV)/2.5

thus

(SV/SB) = 10(B–V)/2.5−(cB−cV)/2.5

= 10(B–V)/2.5 × 10−(cB−cV)/2.5

= 10(B–V)/2.5 × constant.

Therefore the larger the value of (B–V), the larger the value of SV/SB. Therefore
(B–V) = 1 is redder than (B–V) = 0.

Exercise 4.4 We haven’t specified the geometry yet, so let’s keep things
simple. Let’s take the dust and stars to be in a cylinder facing us, with
cross-sectional area A. Let’s set the length of the cylinder to be h, and measure
distances along this length with the variable x. An infinitesimal layer would have
thickness dx and volume Adx. The bigger the volume, the more stars it will
contain, so let’s set the luminosity of the shell to be dL = ρAdx, where ρ is a
constant (the luminosity density). By the time the light emerges from the end of
cylinder, it will have been extinguished by a factor of eτ(x), where τ(x) is
the optical depth at a distance x into the cylinder. This optical depth must be
proportional to x, because each increment δx will suppress the light by the same
factor, which we could write as eδτ , so let’s write that as τ = kx. We could,
for example, write the optical depth from one end of the cloud to the other as
τ total = kh. The light that emerges from the shell at x → x + dx will therefore be
dLout = L × e−τ(x) = ρAdx × e−kx. If we integrate that from x = 0 to x = h,
we get

Lout =

∫ h

x=0
ρA e−kx dx =

ρA

k

(
1 − e−kh

)
.

Some quick checks: note that k has dimensions of one over length (because
τ = kx and τ is dimensionless), so A/k has dimensions of volume, and so ρA/k
is luminosity density times volume, which is a luminosity. Note also that kh is
dimensionless.

Now, what would happen if there were no dust? The luminosity would just be
Lno dust = ρAh. The dust has therefore reduced the output luminosity by a factor

Lout

Lno dust
=

ρA/k

ρAh

(
1 − e−kh

)
=

1

kh

(
1 − e−kh

)
.
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This ratio is independent of the geometrical cross section A and of the luminosity
density ρ. If the cloud is deep enough, then the term in brackets is 1 1, so we just
have Lout/Lno dust = 1/(kh). We can now write this for Hα light:

Lout(Hα)

Lno dust(Hα)
=

1

kHα h
.

For Hβ, we have that τ Hβ 1 1.45 τ Hα, so kHβ = 1.45 kHα, thus

Lout(Hβ)

Lno dust(Hβ)
=

1

kHβ h
=

1

1.45 kHα h
=

1

1.45

Lout(Hα)

Lno dust(Hα)
.

Therefore

Lout(Hα)

Lout(Hβ)
= 1.45

Lno dust(Hα)

Lno dust(Hβ)
. (S4.1)

This is independent of h, so we’ve now removed all dependence on the geometry.
So even if kh is enormous and Lout * Lno dust, the luminosity ratio of Hα and Hβ
is only ever 1.45 times the ratio that you get with no dust, when enough dust is
evenly mixed with the gas emitting the emission lines.

Now suppose that you wrongly assumed that it’s a simple dust screen with an
optical depth of τ Hα for Hα and τ Hβ = 1.45 τ Hα for Hβ. Your luminosities
would be

Lout(Hα) = Lno dust(Hα) × e−τ Hα ,

Lout(Hβ) = Lno dust(Hβ) × e−1.45 τ Hα ,

so the luminosity ratio would be

Lout(Hα)

Lout(Hβ)
=

Lno dust(Hα)

Lno dust(Hβ)
e0.45 τ Hα . (S4.2)

Comparing this to Equation S4.1, we have 1.45 = e0.45 τ Hα , or
τ Hα = ln(1.45)/0.45 1 0.83. Since τ Hα 1 0.7AV, we have AV 1 1.2. So, if you
have an optically-thick cloud in which the dust is well-mixed with the gas, but you
wrongly assumed a foreground dust screen, you’d infer a V-band extinction of just
1.2 magnitudes, regardless of what the real extinction τtotal is from one end of the
cloud to the other.

Exercise 4.5 Astronomical absolute magnitudes are defined as
m = −2.5 log10 L + constant, so

dm = −2.5 d(log10 L) = −2.5
d(ln L)

ln 10
=

−2.5

ln 10

1

L
dL. (S4.3)

Therefore
dN

dm
=

− ln 10

2.5
L

dN

dL
. (S4.4)

The − sign just indicates that the magnitude increment dm is in the opposite
sense to the luminosity increment dL, and is usually neglected.

Exercise 4.6 The variance of a probability distribution p(x) is the mean of the
squares minus the square of the mean, i.e.

Var(x) =

∫ 1

0
x2 p(x) dx −

(∫ 1

0
x p(x) dx

)2

.
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Now, our probability distribution is uniform, so p(x) = 1 for all x from 0 to 1,
hence this is just

Var(x) =

∫ 1

0
x2 dx −

(∫ 1

0
xdx

)2

=

[
x3

3

]x=1

x=0

−
[(

x2

2

)2
]x=1

x=0

= 1
3 − 1

4 = 1
12 ,

as required. The standard deviation is the square root of the variance, so the
standard deviation of the uniform distribution is 1/

√
12. The central limit theorem

states that if you have N measurements, each with an uncertainty σ (i.e. taken
from the same distribution with standard deviation σ), then the standard deviation
of the mean average of these measurements is σ/

√
N . Now, if our null hypothesis

holds, then V/Vmax is uniformly distributed, so each measurement of V/Vmax is
taken from a distribution with standard deviation 1/

√
12. Therefore the standard

deviation of the average N measurements of V/Vmax must be 1/
√

12N , as
required.

Exercise 4.7 Yes, provided that the selection function has been correctly stated.

Exercise 4.8 No, not necessarily. Suppose that you had a volume-limited
sample with Vmax = V (zmax) for all galaxies. Now suppose that half the galaxies
exist at exactly z = 0, half are at z = zmax, and there are none in between.
Clearly, the numbers of galaxies are evolving very strongly and discontinuously,
but 〈V/Vmax〉 = 1/2.

Exercise 4.9 The amount of light emitted per unit volume will be given by the
number density of galaxies multiplied by their luminosity, i.e. L × φ(L). At
luminosities far below the break, φ(L) ∝ L−α, so L φ(L) ∝ L1−α. Since we’re
given that the faint-end slope α satisfies α < 1, this must be increasing with
luminosity. At the bright end we have that φ ∝ exp(−L/L∗), which tends to zero
faster than 1/L, so L φ(L) (which is proportional to L exp(−L/L∗)) must also
tend to zero. We’d expect one turning point — but where? We can differentiate
L φ(L), set the result equal to zero and rearrange. This gives

d(Lφ)

dL
= φ∗(−e−L/L∗(L/L∗)−α+1 + (1 − α)e−L/L∗(L/L∗)−α) = 0.

Dividing by φ∗e−L/L∗ gives (L/L∗)1−α = (1 − α)(L/L∗)−α. Further dividing
by (L/L∗)−α gives L/L∗ = 1−α, or L = (1−α)L∗. The galaxies that dominate
the cosmic luminosity density are therefore those with luminosities of (1 − α)L∗.

Exercise 4.10 PDE is vertical translations, while PLE is horizontal translations.

Exercise 4.11 Active galaxies can be seen to much higher redshifts than the
elliptical galaxies used in the Tolman test in Chapter 3, and as the predicted
redshift-dependence of surface brightness is strong, i.e. (1 + z)4, it might appear
that the radio lobes of radiogalaxies have a strong advantage. The attraction of the
Tolman test is that the (1 + z)4 surface brightness prediction is independent of
the cosmological parameters. In order to apply it, we need a population of
objects whose luminosity per unit area (in, for example, square parsecs) is
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constant. In this case, rearranging the relation in the question gives us
L/r2 ∝ Q7/6r−4/3ρ7/12. We might hope to find active galaxies with the same
Q on average if we match other properties of the central engine (e.g. optical
emission lines and continuum) on average. We might also be able to calibrate out
any variations in density through other observations as indicated in the question,
but we’re still left with a surface brightness that depends on the linear size of the
system. Without additionally having a standard rod as a comparison, we can’t
apply the Tolman test as it stands.

Exercise 4.12 There are 60 × 60 = 3600 arcseconds in a degree, so
there are 36002 1 1.30 × 107 square arcseconds in a square degree.
Therefore the number of random 5σ noise spikes in one square degree would
be (1.30 × 107)/(3.5 × 106) 1 3.7. So we’d expect one 5σ noise spike in
1/3.7 square degrees, or about 0.27 square degrees. In practice, noise spikes can
occur more frequently than this for a variety of reasons (including instrumental
effects).

Exercise 4.13 Suppose that your camera or detector covers an area A on the
sky. Let’s say that you invest all your time in a pencil-beam survey, and it reaches
a flux S. The number counts are Euclidean, so N(> S) = kS−1.5, where k is
some constant. Therefore the number of galaxies seen in the pencil-beam survey is

npencil = A × N(> S) = AkS−1.5.

Now suppose that instead of doing a pencil-beam survey, you spread your
integration time over m fields of view, each of which has area A. The total area
that you cover is m×A, but the images would be shallower by a factor of

√
m, so

the total number of galaxies in the wide-field survey would be

nwide = mA(
√

mS)−1.5 = mAm−0.75S−1.5 = m0.25AS−1.5.

Comparing this to npencil, we see that nwide = m0.25 npencil, so the wide-field
survey finds more galaxies by a factor of m0.25.

A similar calculation shows that if the source counts are steeper than
N(> S) ∝ S−2, then the pencil-beam survey would see more. However, only
rarely are source counts that steep (we’ll see an example in Chapter 5). In the vast
majority of cases, wide-field surveys find more objects in a given observing time
than pencil-beam surveys. In practice, though, there’s often a limit to how wide
you can make a survey, because the time spent simply moving the telescope or
reading out the detector becomes significant (we’ve neglected both effects here).

Exercise 5.1 Iν dν is the background intensity in an interval ν → ν + dν.
The background per decade is the background in a logarithmic interval,
ν → ν + d log10 ν. Let’s write this as B d log10 ν. If we can set this
equal to something times dν, then that something must be Iν . Now,
d log10 ν = (d ln ν)/ ln(10), so B d log10 ν = (B/ ln(10)) d ln ν. But
d ln ν = (1/ν) dν, so

B d log10 ν = B
1

ν ln(10)
dν.

Therefore

Iν = B
1

ν ln(10)
,
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so B = ln(10) νIν . Therefore the background intensity per decade of frequency is
proportional to νIν . Looking at Figure 5.1, we see that the far-infrared bump has a
similar height and area to the optical/near-infrared bump, each over roughly
the same logarithmic frequency interval of about Δlog10 ν = 1.5. Therefore
there’s about the same energy output in the far-infrared bump as in the
optical/near-infrared bump.

Exercise 5.2 This will be the one in which Sν dN/d ln Sν is a maximum, and
since d ln Sν = S−1

ν dSν , we can also express this as S2
ν dN/dSν . This is similar

(though not quite identical) to Figure 5.2.

Exercise 5.3 The angular resolution in radians is
1.22λ/D = 1.22 × 500 × 10−6/3.5 = 1.7429 × 10−4 (we’ll carry some
extra significant figures until the end of the calculation). In degrees this
is 1.7429 × 10−4 × 360◦/(2π) = 0.009 985 8◦. In arcseconds this is
0.009 985 8 × 3600 = 35.95′′, or 36.0′′ to the accuracy of the initial numbers.

Exercise 5.4 (a) The fractional range would be 0.09/0.15 = 0.6 or 60%,
which we could also quote as a possible variation of a factor of 1/0.6 = 1.7.

(b) The variation in β changes the extrapolation from the 800µm quoted to the
rest frame, which is 850/(1 + z) µm = 850/4µm = 212.5µm. The wavelength
dependence is λ−β , so

kd(800µm)

kd(212.5µm)
=

(
800

212.5

)−β

= 3.765−β ,

i.e. 0.0705–0.2656 when β = 1–2, or a further variation of a factor of 3.8. The
total variation so far is 1.7 × 3.8 1 6.5.

(c) Using the black body spectrum given in Equation 2.2
and putting in the numbers for a wavelength of 212.5µm (i.e.
ν = c/212.5µm = 2.998× 108m s−1/(212.5× 10−6 m) = 1.411× 1012 Hz) and
temperatures of T = 20 K and 40 K, we find that

B(1.411 THz, 40 K)

B(1.411 THz, 20 K)
=

exp(hν/kT1) − 1

exp(hν/kT2) − 1

=
exp(6.626 × 10−34 J s × 1.411 × 1012 Hz/1.381 × 10−23 J K−1 × 20 K) − 1

exp(6.626 × 10−34 J s × 1.411 × 1012 Hz/1.381 × 10−23 J K−1 × 40 K) − 1

= 6.435.

The range of allowed temperatures therefore gives an additional fractional range
of 6.4, so the total fractional range is 1.7 × 3.8 × 6.4 1 41, i.e. we cannot even
quote a dust mass to within an order of magnitude!

However, if we measure fluxes at more wavelengths, we might be able to reduce
these uncertainties by constraining the value of β on the Rayleigh–Jeans tail, and
determining the temperature from the wavelength λmax of the location of the peak
of the spectral energy distribution. This is quantified with the Wien displacement
law, which can be expressed in astrophysically-useful quantities as

λmax

100µm
= 1.45

20 K
T

.

There is, however, still the issue that galaxies do not have single temperatures.
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Exercise 5.5 Suppose that there were no background. In some fixed
observing time, suppose that we collect N photons from a distant object. Using
Poisson statistics, the variance on this number will also be N , so the standard
deviation (i.e. the noise) will be

√
N . The signal-to-noise ratio will therefore

be N/
√

N =
√

N . Now suppose that there’s a strong background, so
we observe N + Nback photons, with Nback 0 N . The noise on this will be√

N + Nback 1 √
Nback 0 √

N . What we want is N and not N + Nback, so we
have to observe an additional blank bit of sky to estimate Nback. This can be done
if we have a small object in our camera, so we can use blank bits of the image, but
if our detector has only one or a small number of pixels, we have to spend extra
time observing blank sky. However, even neglecting the uncertainty on our Nback

estimate, we still have a signal-to-noise ratio of N/
√

Nback, which is much less
than the N/

√
N that we’d have in the case of no background. So once Nback ≥ N

we enter the background-limited regime where good signal-to-noise is harder to
get. In the case of the SCUBA camera, the faintest objects are 1 105–106 times
fainter than the sky background. Worse, the background varies on timescales of
less than a second, so observing techniques at submm wavelengths are often
geared towards making the best background subtraction.

Exercise 5.6 See Figure S5.1.
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Figure S5.1 This is the same as Figure 5.15, but with the approximate location
of one possible flux limit marked as a thick black line.

Exercise 6.1 Suppose that we wanted to separate a human being into protons
and electrons, then hold them one metre apart. For a 60 kg mass, the force
required would be F = (ne)2/(4πε0r

2), where r = 1 m, n = 60 kg/mp and
ε0 is the vacuum permittivity of free space. This comes out as a gigantic
F 1 3 × 1029 kg m s−2. The luminosity of the Sun is L) = 3.83 × 1026 W, so the
momentum flux from the Sun is L)/c = 1.28 × 1018 kg m s−2. If we could
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employ all the momentum flux from all the 1 1011 stars in the Galaxy in keeping
the positive and negative parts separate, it would be just sufficient to maintain a
1 m separation for just 60 kg. The potential barrier for separating the charged
components of a plasma accreting around a black hole is clearly insuperable for
radiation pressure.

Exercise 6.2 Putting the numbers into Equation 6.6 gives

LE =
4π × (6.67 × 10−11 N m2 kg−2) × (3.00 × 108 m s−1) × (1.99 × 1030 kg) × (1.67 × 10−27 kg)

6.65 × 10−29 m2

= 1.26 × 1031 W.

The luminosity of the Sun is 3.83 × 1026 W, which is far below the Eddington
limit.

Exercise 6.3 Assuming that the mass of a 100 W light bulb is (say) about 50 g,
we get an Eddington limit of just 0.2 W . Clearly, a light bulb radiates at much
more than the Eddington limit. Light bulbs don’t blow themselves apart because
they are not gravitationally bound.

Exercise 6.4 To obtain Equation 6.26 we start with Equation 1.53, then use
Equation 1.41. It immediately follows that

dV = d2
A(1 + z)3

4πcdz

(1 + z) H(z)
= 4πd2

A(1 + z)2
cdz

H(z)
.

(We ignore the − sign, which just refers to the directions in which the
infinitesimal increments are measured.) Next, putting in the relationship between
angular diameter and luminosity distance, dL = (1 + z)2dA (Equation 1.50), gives

dV =
4πd2

L

(1 + z)4
(1 + z)2

cdz

H(z)
=

4πd2
L

(1 + z)2
cdz

H(z)
.

Dividing by dz and multiplying by H0/H0 gives

dV

dz
=

4πcd2
L

(1 + z)2H(z)
=

c

H0

4πd2
L

(1 + z)2H(z)/H0
,

as required.

We can rearrange this as

4πd2
L

dV/dz
= (1 + z)2

H(z)

c
.

Finally, we use Equation 1.28: |dz/dt| = (1 + z) H(z) (again we’ll not worry
about the sign). Therefore

4πd2
L

dV/dz
dt =

1

c
(1 + z) dz,

which is Equation 6.24, as required.

Exercise 6.5 The angular size θ will satisfy θ 1 tan θ = rh/D,
where D = 10 Mpc and rh is given by Equation 6.29:
rh = (108/108) × (220/200)−2 pc = 0.83 pc. Plugging in the numbers, we
have θ 1 r/D = 0.83 pc/10 Mpc = 8.3 × 10−8 radians. In arcseconds this is
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θ = 8.3 × 10−8 × (360◦/2π) × 60 × 60 = 0.017′′. This is clearly a lot smaller
than the seeing limit of ground-based telescopes.

Exercise 6.6 The e-folding timescale for Eddington-limited black hole growth
is the Salpeter timescale tE divided by the efficiency η, i.e. te-fold = 4 × 108/η yr.
There have been 3 × 109/te-fold e-foldings since the start of the Universe, or
0.75(η/0.1) e-foldings. To reach 106 M), one needs loge(10

6/101) = 11.5
e-foldings. Even if η = 1, you have only 7.5 e-foldings, so 3 Gyr is not long
enough.

Exercise 7.1 Comoving distances add, so rS = rL + rLS. Therefore
rLS = rS − rL. In flat space, angular diameter distance is simply comoving
distance divided by (1 + z) (Chapter 1), but in this case we need the redshift of
the background source as seen from the lens. We could write this factor as
(1 + zLS). This is the factor by which the Universe expanded between the source
redshift and the lens redshift, i.e. RL/RS, where R is the scale factor. But

RL

RS
=

RL/R0

RS/R0
=

R0/RS

R0/RL

(where the subscript 0 refers to the present day), so (1+ zLS) = (1+ zS)/(1+ zL).
Therefore our final expression for the angular diameter distance DLS is

DLS = (rS − rL) × (1 + zL)

(1 + zS)
.

Exercise 7.2 First, matching distances along the top of Figure 7.7 shows that
θDS = βDS + α̂DLS. But α = α̂DLS/DS, so θDS = βDS + αDS. Dividing
out the scalar DS gives θ = β + α, which we can rearrange to β = θ − α, as
required.

Exercise 7.3 We set β = 0 in Equation 7.8. We can rearrange this to show that

θ =

√
4GM

c2

DLS

DLDS
.

But what would this look like? The background object is exactly behind the lens
and it’s deflected by an angle θ. Is it deflected to the left or right or up or down?
In fact, there is nothing to give the deflection any particular direction, so the
background source is lensed into a ring. These are very rare, but an example is
shown in Figure S7.1.

Exercise 7.4 β2 + 4θ2
E is always positive, but the square root of it can be

positive or negative.
√

β2 + 4θ2
E > β unless θE = 0, so the negative root must

always give a negative θ. This is indeed a physical solution and represents an
angle measured in the opposite direction: as shown in Figure 7.7, the image is on
the other side of the lens. Note that one image is at θ > θE and the other is at
θ < θE, unless θ = θE and the system is an Einstein ring.
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Figure S7.1 The gravitational lens 0038+4133 (an Einstein ring) from the
COSMOS survey, taken by the HST . The image is 15′′ by 15′′.

Exercise 7.5 From the previous exercise, a source can have multiple images, so
there is not necessarily a unique image position θ for a given source position β.
In mathematical terms, we would speak of the mapping β → θ as being
one-to-many. However, each image position θ does map in a one-to-one way onto
a source position β, i.e. each image position can correspond to only one position
in the background source. To see why, consider Equation 7.4. The function α(θ)
must be a single-valued function, i.e. any particular input θ can give only one
possible output α. Therefore there can be only one value of β for a given input θ.

Exercise 7.6 We’re asked to differentiate Equation 7.12, which gives
dβ/dθ = 1 + (θ2

E/θ2). This gives us one of the fractions in Equation 7.16. The
magnification is therefore

θ

β

dθ

dβ
=

θ

β

(
1 +

θ2
E

θ2

)−1

= θ

(
θ − θ2

E

θ

)−1(
1 +

θ2
E

θ2

)−1

=

(
1 − θ2

E

θ2

)−1(
1 +

θ2
E

θ2

)−1

=

(
1 +

θ2
E

θ2
− θ2

E

θ2
− θ4

E

θ4

)−1

=

(
1 − θ4

E

θ4

)−1

,

as required.

Exercise 7.7 A negative magnification means that the image is mirror-reversed.
For example, a positive change dβ would have a corresponding dθ in the opposite
direction, so dθ is negative. Therefore dθ/dβ is negative in Equation 7.16.

Exercise 7.8 We start from Equation 7.24. The mass enclosed is Σπξ2 and we
set ξ = DLθ:

α̂ =
4GM(ξ)

c2ξ
=

4G

c2ξ
× Σπξ2 =

4G

c2
× Σπ × DLθ.
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Now,

α =
DLS

DS
α̂, (Eqn 7.6)

so

α =
4πGΣ

c2

DLDLS

DS
θ,

as required.

If we then set Σ = Σcr, we find that α(θ) = θ for any θ, so β = 0. This means
that the gravitational lens is acting as a perfect focusing lens! However, this is a
very special case — gravitational lenses in general do not focus light. As ‘lenses’
in the optical sense, they have all forms of aberration, except of course chromatic
aberration since gravitational lensing is strictly achromatic.

Exercise 7.9 From left to right, they are a saddle point, a maximum and a
minimum.

Exercise 7.10 The time delay of the image at the centre increases. In a diagram
like Figure 7.15, the central panel showing the gravitational time delay would be
acquiring a sharper and higher point in the centre. When the lens potential
becomes a singular isothermal sphere, the time delay becomes infinite, so the
image disappears. Photons would take an infinite amount of time to climb out of
the infinitely-deep potential well, and (by symmetry) spend another infinite
amount of time falling in beforehand. But a more thoughtful answer is that this
deep potential well would form a black hole. Right from Equation 7.1, we’ve been
assuming a weak-field limit, so a better answer is that these simple assumptions
break down as the potential becomes more extreme.

Exercise 7.11 The background objects have the same redshift, so we
could think of the luminosity function as differential source counts, thus
dN/dS ∝ S−α. Therefore the number of objects per unit area brighter than a
flux S0 will be N(> S0) ∝ S1−α

0 , which we could write as

N(> S0) = kS1−α
0 .

If the background galaxies are gravitationally magnified by a factor of µ, the
intrinsic fluxes will be Sintrinsic = S/µ, while the comoving volume sampled will
be smaller by a factor of 1/µ. Therefore the number of galaxies brighter than an
observed flux S0 will be

Nlensed(> S0) =
k

µ

(
S0

µ

)1−α

= kµ−1S1−α
0 µα−1 = kS1−α

0 µα−2 = N(> S0) µα−2.

Therefore for a magnification of µ (where µ > 1), the lensing changes the number
of background galaxies per unit area by a factor of µα−2. For this factor to be
bigger than 1 we need

µα−2 > 1,

so log(µα−2) > log(1) = 0,
thus (α − 2) log(µ) > 0.
We already know that log(µ) > 0 (because µ > 1), so this can happen only if
α > 2. For example, if the source counts have a Euclidean slope (α = 2.5), then
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lensing would increase the number of objects. The effect of sampling less
volumes due to lensing, and so finding fewer objects than the flux magnification
on its own would suggest, is known as the Broadhurst effect. (See Broadhurst,
T.J., Taylor, A.N. and Peacock, J.A., 1995, Astrophysical Journal, 438, 49.)

Exercise 8.1 There’s no guarantee that the re-emitted photon comes out in the
same direction — in fact, it probably won’t. A corollary is that any Lyman α
cloud should glow faintly in Lyman α light in all directions from these re-emitted
photons, even if the cloud is not intercepting our line of sight to a quasar (because
there will always be some line of sight that does). This re-emission is in general
too faint to detect. However, Lyman α emission can sometimes be seen if there are
internal ionizing sources (e.g. star formation) within damped Lyman α systems,
which you will meet later in the chapter.

Exercise 8.2 The column density through the centre will be the same as that
seen through a cubical cloud with a side 2 Mpc, facing the observer (because the
absorption doesn’t depend on the distribution of material that the light doesn’t
pass through). One Mpc is about 3 × 1024 cm, so we can write the density as
(3 × 1024)3 cm−3 = 2.7 × 1073 Mpc−3. The total number of neutral hydrogen
atoms in the cube must be 2.7 × 1073 Mpc−3 × 8 Mpc3 = 21.6 × 1073, which is
spread over a projected area of 2 × 2 Mpc2 = 36 × 1048 cm2. Therefore the
column density must be 21.6 × 1073/(36 × 1048) cm−2 1 6 × 1024 cm−2.

Exercise 8.3 In order for a hydrogen atom to absorb an Hα photon, the
photon must have the right energy, and there must be an atom with an electron in
the n = 2 energy level ready to absorb the photon. This energy level is at
E = −13.6/n2 eV = −13.6/4 eV = −3.4 eV. In order to be in such a state, the
atom must have absorbed a photon of energy (−3.4 eV) − (−13.6 eV) = 10.2 eV.
Photons of this energy require a black body temperature of order

T 1 E/k =
10.2 eV × 1.602 × 10−19 J eV−1

1.381 × 10−23 J K−1 = 120 000 K.

This is hotter than the surface of an O star, and is much hotter than the typical
temperatures in the intergalactic medium. Lyman α clouds are too cold to have
many atoms with electrons already excited to the n = 2 level, so the clouds have
almost no Hα absorption.

Exercise 8.4 We can write σ(ν) = σ0(ν/νlimit)
−3, where

σ0 = 7.88 × 10−22 m−2, and νlimit is the frequency of the Lyman limit. Writing
Jν = kν−α and plugging the terms in, we find

τ = NH I

∫∞
νlimit

(σJν/(hν)) dν∫∞
νlimit

(Jν/(hν)) dν
= NH I σ0

∫∞
νlimit

(ν/νlimit)
−3 kν−α−1 dν∫∞

νlimit
kν−α−1 dν

=
NH I σ0

ν−3
limit

∫∞
νlimit

ν−α−4 dν∫∞
νlimit

ν−α−1 dν
=

NH I σ0

ν−3
limit

ν−α−3
limit

α + 3

α

ν−α
limit

=
NH I σ0α

α + 3
,

where we first cancelled the h terms, then cancelled the k terms. Setting τ > 1,
we find NH I > 1.3 ((α + 3)/α) × 1021 m−2, as required.
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Solutions to exercises

Exercise 8.5 Equation 1.28 relates dz/dt to H(z). Taking the modulus
and reciprocal of that equation gives (1 + z) |dt/dz| = 1/H(z).
A population with constant proper sizes has constant A in Equation 8.2,
and a constant comoving density is constant nco in the same equation.
Therefore d2N ∝ (1 + z)3 |dt/dz| ∝ (1 + z)2/H(z). If we write
dX/dz = (1 + z)2H0/H(z), then

d2N = nco A × (1 + z)2c

∣∣∣∣ 1

H(z)

∣∣∣∣ dNH I dz

gives

d2N = nco A
c

H0
dX dNH I,

which is constant.

Exercise 8.6 Gravitational lensing of the background quasar by the damped
Lyman α system could cause such an effect. The strength of this effect, and the
biases that it creates on the measured cosmic evolution of neutral gas, are still the
subject of debate. However, it turns out that this is probably only a 10–20% effect
on ΩH I at z > 2.

Exercise 8.7 Dust in the damped Lyman α systems should redden the quasar
spectra, so one might compare the optical spectral indices or B–V colours of
quasars with and without damped Lyman α absorbers. However, if damped
systems are very dusty, they may induce so much reddening that the quasars drop
out of the parent sample, so bright quasar catalogues would be biased to detecting
low-reddening systems. Statistical analyses suggest that this latter effect does not
dominate, but direct results on quasar reddening are currently conflicting.

Exercise 8.8 The energy of the hydrogen Lyman limit is E = 13.6 eV,
i.e. E = 13.6 × 1.602 × 10−19 J = 2.179 × 10−18 J. This corresponds
to a frequency of ν = E/h, where h is Planck’s constant, which comes
out as ν = 3.289 × 1015 Hz. The wavelength of this light is λ = c/ν,
where c is the speed of light, which comes out as λ = 9.116 × 10−8 m, or
91.2 nm (i.e. 912 Å) to three significant figures. For the helium Lyman limit,
λHe = λ × 13.6/54.4 = 22.8 nm.

The redshifted hydrogen Lyman limit in Figure 8.20 is at a wavelength of
912 × (1 + z) Å = 912 × (1 + 3.2) Å = 3830 Å.
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