

Outline

- System Model
- SER Analysis for DF Cooperative Communications for M-PSK and M-QAM Systems
 - 1. Closed-Form SER Analysis
 - 2. SER Upper Bound and Asymptotically Tight Approximation
 - 3. Optimum Power Allocation
 - 4. Some Special Scenarios
- SER Analysis for AF Cooperative Communications
 - 1. SER Analysis by MGF Approach
 - 2. Simple MGF Expression for the Harmonic Mean
 - 3. Closed-Form SER Expressions and Asymptotically Tight Approximation
 - 4. Optimum Power Allocation
- Comparison of DF and AF Protocols
- Trans-modulation for DF Relay Networks

System Model (1)

- Cooperation strategy over two phases:
 - Phase 1: Each user sends signals to destination also received by other users
 - Phase 2: Each user helps others by forwarding signals it received in Phase 1
- All users transmit signals through orthogonal channels by using TDMA, FDMA or CDMA
- Consider a two-user cooperation scheme

Figure: Simplified cooperation model

System Model (2)

Phase 1: Received signal y_{s,d} and y_{s,r} at the destination and the relay respectively,

$$y_{s,d} = \sqrt{P_1} h_{s,d} x + \eta_{s,d} y_{s,r} = \sqrt{P_1} h_{s,r} x + \eta_{s,r}$$
(1)

Phase 2

▶ DF Protocol: If relay decodes correctly, it forwards decoded symbol with power P
₂ = P₂; otherwise relay remains idle (i.e. P
₂ = 0)

$$y_{r,d} = \sqrt{\tilde{P}_2} h_{r,d} x + \eta_{r,d}$$
⁽²⁾

 Assumption: Relay is able to detect whether transmitted symbol is decoded correctly or not (selective-relaying)

System Model (3)

Phase 2

 AF Protocol: Relay amplifies received signal and forwards it to destination with transmitted power P₂

$$y_{r,d} = \frac{\sqrt{P_2}}{\sqrt{P_1 |h_{s,r}|^2 + N_o}} h_{r,d} y_{s,r} + \eta_{r,d}$$
(3)

Received signal at the destination can be written as

$$y_{r,d} = \frac{\sqrt{P_1 P_2}}{\sqrt{P_1 |h_{s,r}|^2 + N_o}} h_{r,d} h_{s,r} x + \dot{\eta}_{r,d}$$
(4)

$$\dot{\eta}_{r,d} = \frac{\sqrt{P_2}}{\sqrt{\frac{P_1}{h_{s,r}^2 + \mathcal{N}_0}}} h_{r,d} \eta_{s,r} + \eta_{r,d} \text{ with variance } \left(\frac{P_2 |h_{r,d}|^2}{P_1 |h_{s,r}|^2 + \mathcal{N}_0} + 1\right) \mathcal{N}_0$$

- Assumptions:
 - 1. Channel coefficients $h_{s,d}$, $h_{s,r}$ and $h_{r,d}$ are assumed independent
 - 2. Channel coefficients are assumed to be known at the receiver
 - 3. Destination utilizes Maximum Ratio Combining (MRC)
 - 4. Total transmitted power $P_1 + P_2 = P$

- Closed-form SER analysis for M-PSK and M-QAM systems
 - Combined signal at MRC detector y = a₁y_{s,d} + a₂y_{r,d} such that the instantaneous SNR of MRC output is maximized:

$$\gamma = \frac{P_1 |h_{s,d}|^2 + \tilde{P}_2 |h_{r,d}|^2}{N_0}$$
(5)

Conditional SER for M-PSK modulation

$$P_{PSK}^{h_{s,d},h_{s,r},h_{r,d}} = \Psi_{PSK}(\gamma) \triangleq \frac{1}{\pi} \int_{0}^{(M-1)\pi/M} \exp\left(-\frac{b_{PSK}\gamma}{\sin^{2}\theta}\right) d\theta$$
(6)

Conditional SER for M-QAM modulation

$$P_{QAM}^{h_{s,r},h_{r,d}} = \Psi_{QAM}(\gamma) \triangleq 4KQ\left(\sqrt{b_{QAM}\gamma}\right) - 4K^2Q\left(\sqrt{b_{QAM}\gamma}\right)$$

$$(7)$$
where $b_{PSK} = sin^2(\pi/M), \ K = 1 - \frac{1}{\sqrt{M}} \ \text{and} \ b_{QAM} = 3/(M-1)$

SER Analysis for M-PSK modulation

$$P_{PSK}^{h_{s,d},h_{s,r},h_{r,d}} = \Psi_{PSK}(\gamma)|_{\tilde{P}_2=0}\Psi_{PSK}\left(\frac{P_1|h_{s,r}|^2}{\mathcal{N}_0}\right) + \Psi_{PSK}(\gamma)|_{\tilde{P}_2=P_2}\left[1 - \Psi_{PSK}\left(\frac{P_1|h_{s,r}|^2}{\mathcal{N}_0}\right)\right]$$

$$\tag{8}$$

 After averaging the conditional SER over Rayleigh fading channels h_{s,d}, h_{s,r} and h_{r,d}

$$P_{PSK} = F_1 \left(1 + \frac{b_{PSK} P_1 \delta_{s,d}^2}{\mathcal{N}_0 \sin^2 \theta} \right) F_1 \left(1 + \frac{b_{PSK} P_1 \delta_{s,r}^2}{\mathcal{N}_0 \sin^2 \theta} \right) + F_1 \left(\left(1 + \frac{b_{PSK} P_1 \delta_{s,d}^2}{\mathcal{N}_0 \sin^2 \theta} \right) \left(1 + \frac{b_{PSK} P_2 \delta_{s,r}^2}{\mathcal{N}_0 \sin^2 \theta} \right) \right) \left[1 - F_1 \left(1 + \frac{b_{PSK} P_1 \delta_{s,r}^2}{\mathcal{N}_0 \sin^2 \theta} \right) \right]$$
(9)

• where
$$F_1(x(\theta)) = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \frac{1}{x(\theta)} d\theta$$

SER Analysis for M-QAM modulation

$$P_{QAM}^{h_{s,d},h_{s,r},h_{r,d}} = \Psi_{QAM}(\gamma)|_{\tilde{P}_{2}=0}\Psi_{QAM}\left(\frac{P_{1}|h_{s,r}|^{2}}{\mathcal{N}_{0}}\right) + \Psi_{QAM}(\gamma)|_{\tilde{P}_{2}=P_{2}}\left[1 - \Psi_{QAM}\left(\frac{P_{1}|h_{s,r}|^{2}}{\mathcal{N}_{0}}\right)\right]$$
(10)

 After averaging the conditional SER over Rayleigh fading channels h_{s,d}, h_{s,r} and h_{r,d}

$$\begin{aligned} P_{QAM} &= F_2 \left(1 + \frac{b_{QAM} P_1 \delta_{s,d}^2}{2\mathcal{N}_0 sin^2 \theta} \right) F_2 \left(1 + \frac{b_{QAM} P_1 \delta_{s,r}^2}{2\mathcal{N}_0 sin^2 \theta} \right) \\ &+ F_2 \left(\left(1 + \frac{b_{QAM} P_1 \delta_{s,d}^2}{2\mathcal{N}_0 sin^2 \theta} \right) \left(1 + \frac{b_{QAM} P_2 \delta_{s,r}^2}{2\mathcal{N}_0 sin^2 \theta} \right) \right) \left[1 - F_2 \left(1 + \frac{b_{QAM} P_1 \delta_{s,r}^2}{\mathcal{N}_0 sin^2 \theta} \right) \right] \end{aligned}$$

$$(11)$$

• where
$$F_2(x(\theta)) = \frac{4K}{\pi} \int_0^{\pi/2} \frac{1}{x(\theta)} d\theta + \frac{4K^2}{\pi} \int_0^{\pi/4} \frac{1}{x(\theta)} d\theta$$

- SER Upper Bound and Asymptotically Tight Approximation
- Theorem 1: SER of DF cooperation systems with M-PSK or M-QAM modulation can be upper-bounded as

$$P_{s} \leq \frac{(M-1)\mathcal{N}_{0}^{2}}{M^{2}} \cdot \frac{MbP_{1}\delta_{s,r}^{2} + (M-1)bP_{2}\delta_{r,d}^{2} + (2M-1)\mathcal{N}_{0}}{(\mathcal{N}_{0} + bP_{1}\delta_{s,d}^{2})(\mathcal{N}_{0} + bP_{1}\delta_{s,r}^{2})(\mathcal{N}_{0} + bP_{2}\delta_{r,d}^{2})}$$
(12)

▶ If all channel links $h_{s,d}$, $h_{s,r}$ and $h_{r,d}$ are available (i.e. $\delta_{s,d}^2 \neq 0$, $\delta_{s,r}^2 \neq 0$ and $\delta_{r,d}^2 \neq 0$) for sufficiently high SNR, the SER can be tightly approximated as

$$P_s \approx \frac{\mathcal{N}_0^2}{b^2} \cdot \frac{1}{P_1 \delta_{s,d}^2} \left(\frac{A^2}{P_1 \delta_{s,r}^2} + \frac{B}{P_2 \delta_{r,d}^2} \right)$$
(13)

- For M-PSK signals, $A = \frac{M-1}{2M} + \frac{\sin\frac{2M}{M}}{4\pi}$ and $B = \frac{3(M-1)}{8M} + \frac{\sin\frac{2M}{M}}{4\pi} \frac{\sin\frac{4M}{M}}{32\pi}$
- ► For M-QAM signals, $A = \frac{M-1}{2M} + \frac{K^2}{\pi}$ and $B = \frac{3(M-1)}{8M} + \frac{k^2}{\pi} \frac{\sin \frac{4M}{M}}{32\pi}$
- ▶ $b = b_{PSK}$ for M-PSK signals and $b = b_{QAM}/2$ for M-QAM signals

Figure: Comparison of exact SER, the upper bound and the asymptotically tight approximation with QPSK or 4-QAM signals $(\delta_{s,d}^2 = \delta_{s,r}^2 = \delta_{r,d}^2 = 1)$, $\mathcal{N}_0 = 1$, and $P_1 = P_2 = P/2$.

- Optimum Power Allocation
 - Based on the SER asymptotic approximation at high SNR
 - Optimize SER performance with constraint $P = P_1 + P_2$

$$G(P_1, P_2) = \frac{1}{P_1 \delta_{s,d}^2} \left(\frac{A^2}{P_1 \delta_{s,r}^2} + \frac{B}{P_2 \delta_{r,d}^2} \right)$$
(14)

▶ **Theorem 2:** In DF cooperation systems with M-PSK or M-QAM modulation, if all channel links are available (i.e. $\delta_{s,d}^2 \neq 0$, $\delta_{s,r}^2 \neq 0$ and $\delta_{r,d}^2 \neq 0$), then for sufficiently high SNR, the optimum power allocation is

$$P_{1} = \frac{\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8(A^{2}/B)\delta_{r,d}^{2}}}{3\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8(A^{2}/B)\delta_{r,d}^{2}}}P,$$

$$P_{2} = \frac{2\delta_{s,r}}{3\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8(A^{2}/B)\delta_{r,d}^{2}}}P$$
(15)

- Asymptotic optimum power allocation does not depend on channel link between source and destination
- Depends on channel link between source and relay and between relay and destination

- Comments on asymptotic power allocation:
 - Notice that:

$$\frac{1}{2} < \frac{P_1}{P} < 1$$
 and $0 < \frac{P_2}{P} < \frac{1}{2}$ (16)

 More power should be assigned to the source and less power to the relay

• If
$$\delta_{s,r}^2 << \delta_{r,d}^2$$
, then $P_1 \to P$ and $P_2 \to 0$

• If $\delta_{s,r}^2 >> \delta_{r,d}^2$, then both P_1 and P_2 approach P/2

• If
$$\delta_{s,r}^2 = \delta_{r,d}^2$$
, then

$$P_{1} = \frac{1 + \sqrt{1 + 8(A^{2}/B)}}{3 + \sqrt{1 + 8(A^{2}/B)}}P,$$

$$P_{2} = \frac{2}{3 + \sqrt{1 + 8(A^{2}/B)}}P$$
(17)

Examples:

1. BPSK: $P_1 = 0.5931P$ and $P_2 = 0.4069P$ 2. QPSK: $P_1 = 0.6270P$ and $P_2 = 0.3730P$ 3. 16-QAM: $P_1 = 0.6495P$ and $P_2 = 0.3505P$

Larger constellation size, more power at the source

Figure: QPSK SER of DF cooperation systems with $\delta_{s,r}^2 = 1$ and $\delta_{r,d}^2 = 1$: (a) $\delta_{s,d}^2$; (b) $\delta_{s,d}^2 = 1$; and (c) $\delta_{s,d}^2 = 10$

Some Special Scenarios

- 1. Case 1: If the channel link between relay and destination is not available (i.e. $\delta_{r,d} = 0$), the optimum power allocation is $P_1 = P$ and $P_2 = 0$ (that is, use direct transmission from source to destination)
- 2. Case 2: If the channel link between source and relay is not available (i.e. $\delta_{s,r} = 0$), the optimum power allocation is also $P_1 = P$ and $P_2 = 0$
- 3. Case 3: If the channel link between source and destination is not available (i.e. $\delta_{s,d} = 0$), then:

$$P_{1} = \frac{\delta_{r,d}}{\delta_{s,r} + \delta_{r,d}} P,$$

$$P_{2} = \frac{\delta_{s,r}}{\delta_{s,r} + \delta_{r,d}} P$$
(18)

In this case, the system reduces to a two-hop communication scenario

- SER Analysis by MGF Approach
 - Relay not only amplifies received signal but also noise
 - ► Noise at $\hat{\eta}_{r,d}$ destination in Phase 2 is zero-mean complex Gaussian random variable with variance $\left(\frac{P_2|h_{r,d}|^2}{P_1|h_{s,r}|^2+\mathcal{N}_0}+1\right)\mathcal{N}_0$
 - ▶ With knowledge of channel coefficients $h_{s,d}$, $h_{s,r}$ and $h_{r,d}$, the output of MRC detector is $y = a_1y_{s,d} + a_2y_{r,d}$, where

$$a_{1} = \frac{\sqrt{P_{1}}h_{s,d}^{*}}{\mathcal{N}_{0}} \quad \text{and} \quad a_{2} = \frac{\sqrt{\frac{P_{1}P_{2}}{P_{1}|h_{s,r}|^{2}} + \mathcal{N}_{0}}h_{s,r}^{*}h_{r,d}^{*}}{\left(\frac{P_{2}|h_{r,d}|^{2}}{P_{1}|h_{s,r}|^{2} + \mathcal{N}_{0}} + 1\right)\mathcal{N}_{0}}$$
(19)

• Instantaneous SNR at MRC output is $\gamma = \gamma_1 + \gamma_2$, where $\gamma_1 = P_1 |h_{s,d}|^2 / \mathcal{N}_0$ and

$$\gamma_2 = \frac{1}{\mathcal{N}_0} \frac{P_1 P_2 |h_{s,r}|^2 |h_{r,d}|^2}{P_1 |h_{s,r}|^2 + P_2 |h_{r,d}|^2 + \mathcal{N}_0}$$
(20)

- SER Analysis by MGF Approach
 - \blacktriangleright The instantaneous SNR γ_2 can be tightly upper bounded

$$\tilde{\gamma}_2 = \frac{1}{\mathcal{N}_0} \frac{P_1 P_2 |h_{s,r}|^2 |h_{r,d}|^2}{P_1 |h_{s,r}|^2 + P_2 |h_{r,d}|^2}$$
(21)

- Equation (21) represents the harmonic mean of two exponential random variables $X_1 = P_1 |h_{s,r}|^2 / \mathcal{N}_0$ and $X_2 = P_2 |h_{r,d}|^2 / \mathcal{N}_0$
- Conditional SER for M-PSK modulation

$$P_{PSK}^{h_{s,d},h_{s,r},h_{r,d}} \approx \frac{1}{\pi} \int_{0}^{(M-1)\pi/M} \exp\left(-\frac{b_{PSK}(\gamma_1 + \tilde{\gamma}_2)}{\sin^2\theta}\right) d\theta \qquad (22)$$

Conditional SER for M-QAM modulation

$$P_{QAM}^{h_{s,d},h_{s,r},h_{r,d}} \approx 4KQ\left(\sqrt{b_{QAM}(\gamma_1+\tilde{\gamma}_2)}\right) - 4K^2Q\left(\sqrt{b_{QAM}(\gamma_1+\tilde{\gamma}_2)}\right)$$
(23)

$$\mathbf{k} \text{ where } b_{PSK} = \sin^2(\pi/M), \ K = 1 - \frac{1}{\sqrt{M}} \text{ and } b_{QAM} = 3/(M-1)$$

- SER Analysis by MGF Approach
 - Let the MGF of a random variable Z be defined as

$$\mathcal{M}_{Z}(s) = \int_{\infty}^{\infty} \exp(-sz) p_{Z}(z) dz$$
 (24)

• By averaging over the Rayleigh fading channel coefficients $h_{s,d}$, $h_{s,r}$ and $h_{r,d}$

$$P_{PSK} \approx \frac{1}{\pi} \int_{0}^{(M-1)\pi/M} \mathcal{M}_{\gamma_1} \left(\frac{b_{PSK}}{\sin^2\theta}\right) \mathcal{M}_{\tilde{\gamma}_2} \left(\frac{b_{PSK}}{\sin^2\theta}\right) d\theta \qquad (25)$$

$$P_{QAM} \approx \left[\frac{4K}{\pi} \int_{0}^{\pi/2} -\frac{4K^{2}}{\pi} \int_{0}^{\pi/4} \right] \mathcal{M}_{\gamma_{1}}\left(\frac{b_{QAM}}{2\sin^{2}\theta}\right) \mathcal{M}_{\tilde{\gamma}_{2}}\left(\frac{b_{QAM}}{2\sin^{2}\theta}\right) \quad (26)$$

► Since $\gamma_1 = \frac{P_1|h_{s,d}|^2}{N_0}$ has an exponential distribution with parameter $\frac{N_0}{P_1\delta_{s,d}^2}$, hence $\mathcal{M}_{\gamma_1}(s) = \frac{1}{1 + \frac{sP_1\delta_{s,d}^2}{N_0}}$

- SER Analysis by MGF Approach
 - The MGF of γ_2 is given by

$$\mathcal{M}_{\tilde{\gamma}_{2}}(s) = \frac{16\beta_{1}\beta_{2}}{3(\beta_{1}+\beta_{2}+2\sqrt{\beta_{1}\beta_{2}}+s)^{2}} \times \left[\frac{4(\beta_{1}+\beta_{2})}{\beta_{1}+\beta_{2}+2\sqrt{\beta_{1}\beta_{2}}+s} + {}_{2}F_{1}\left(3,\frac{3}{2};\frac{5}{2};\frac{\beta_{1}+\beta_{2}-2\sqrt{\beta_{1}\beta_{2}}+s}{\beta_{1}+\beta_{2}+2\sqrt{\beta_{1}\beta_{2}}+s}\right)_{2}F_{1}\left(2,\frac{1}{2};\frac{5}{2};\frac{\beta_{1}+\beta_{2}-2\sqrt{\beta_{1}\beta_{2}}+s}{\beta_{1}+\beta_{2}+2\sqrt{\beta_{1}\beta_{2}}+s}\right)\right]$$
(27)

where $\beta_1 = N_0/(P_1\delta_{s,r}^2)$, $\beta_2 = N_0/(P_2\delta_{r,d}^2)$, and $_2F_1(\cdot, \cdot; \cdot; \cdot)$ is the hypergeometric function

Simple MGF Expression for the Harmonic Mean

▶ **Theorem 3:** Suppose that X_1 and X_2 are two independent random variables with pdf $p_{X_1}(x)$ and $p_{X_2}(x)$ defined for all $x \ge 0$. Then the pdf of $Z = \frac{X_1X_2}{X_1+X_2}$ is given by

$$p_{Z}(z) = \left(z \int_{0}^{1} \frac{1}{t^{2}(1-t)^{2}} p_{X_{1}}\left(\frac{z}{1-t}\right) p_{X_{2}}\left(\frac{z}{t}\right)\right) \cdot U(z)$$
(28)
in which $U(z) = 1$ for $z \ge 0$ and $U(z) = 0$ for $z < 0$

- Simple MGF Expression for the Harmonic Mean
 - ▶ **Theorem 4:** Let X_1 and X_2 be two independent exponential random variables with parameters β_1 and β_2 , respectively. Then, the MGF of $Z = \frac{X_1X_2}{X_1+X_2}$ is given by

$$\mathcal{M}_{Z}(s) = \frac{(\beta_{1} - \beta_{2})^{2} + (\beta_{1} + \beta_{2})s}{\Delta^{2}} + \frac{2\beta_{1}\beta_{2}s}{\Delta^{3}} \ln \frac{(\beta_{1} + \beta_{2} + s + \Delta)^{2}}{4\beta_{1}\beta_{2}}$$
(29)

for any s > 0, in which $\Delta = \sqrt{(\beta_1 - \beta_2)^2 + 2(\beta_1 + \beta_2)s + s^2}$. Furthermore, if β_1 and β_2 go to zero, then the MGF of Z can be approximated as $\mathcal{M}(s) \approx \frac{\beta_1 + \beta_2}{s}$

- Closed-Form SER Expressions and Asymptotically Tight Approximations
 - SER formulation for M-PSK signals can be approximated as

$$P_{PSK} \approx \frac{B}{b_{PSK}^2} \beta_0 (\beta_1 + \beta_2), \tag{30}$$

where $B = \frac{1}{\pi} \int_0^{(M-1)\pi/M} \sin^4\theta d\theta = \frac{3(M-1)}{8M} + \frac{\sin\frac{2\pi}{M}}{4\pi} - \frac{\sin\frac{4\pi}{M}}{32\pi}$

- Closed-Form SER Expressions and Asymptotically Tight Approximations
 - SER formulation for M-QAM signals can be approximated as

$$P_{QAM} \approx \frac{4B}{b_{QAM}^2} \beta_0 (\beta_1 + \beta_2), \qquad (31)$$

where $B = \left| \frac{4\kappa}{\pi} \int_0^{\pi/2} -\frac{4\kappa^2}{\pi} \int_0^{\pi/4} \right| \sin^4\theta d\theta = \frac{3(M-1)}{8M} + \frac{\kappa^2}{\pi}$

Theorem 5: At sufficiently high SNR, the SNR of the AF cooperation systems with M-PSK or M-QAM modulation can be approximated as

$$P_s \approx \frac{B\mathcal{N}_0^2}{b^2} \cdot \frac{1}{P_1 \delta_{s,d}^2} \left(\frac{1}{P_1 \delta_{s,r}^2} + \frac{1}{P_2 \delta_{r,d}^2} \right)$$
(32)

► For M-PSK signals, $b = b_{PSK}$ and $B = \frac{3(M-1)}{8M} + \frac{\sin \frac{2\pi}{M}}{4\pi} - \frac{\sin \frac{4\pi}{M}}{32\pi}$ ► For M-QAM signals, $b = b_{QAM}/2$ and $B = \frac{3(M-1)}{8M} + \frac{K^2}{\pi}$

Figure: Comparison of the SER approximations for AF cooperation system with QPSK or 8-QAM - $\delta_{s,d}^2 = \delta_{s,r}^2 = \delta_{r,d}^2 = 1$, $\mathcal{N}_0 = 1$, and $P_1/P = 2/3$ and $P_2/P = 1/3$

- Optimum Power Allocation
 - For fixed total power $P = P_1 + P_2$, minimize

$$G(P_1, P_2) = \frac{1}{P_1 \delta_{s,d}^2} \left(\frac{1}{P_1 \delta_{s,r}^2} + \frac{1}{P_2 \delta_{r,d}^2} \right)$$
(33)

 Theorem 6: For sufficiently high SNR, the optimum power allocation for the AF cooperation systems with either M-PSK or M-QAM modulations is given by

$$P_{1} = \frac{\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8\delta_{r,d}^{2}}}{3\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8\delta_{r,d}^{2}}}P \quad and \quad P_{2} = \frac{2\delta_{s,r}}{3\delta_{s,r} + \sqrt{\delta_{s,r}^{2} + 8\delta_{r,d}^{2}}}P \quad (34)$$

- Optimum power allocation for AF cooperation systems is not modulation-dependent (due to the fact that relay amplifies-and-forwards received signals despite its modulation)
- As in DF cooperation systems, optimum power allocation does not depend on the channel link between source and destination

SER Analysis for DF and AF Protocols

SER performance of DF systems can be approximated as

$$P_{s} \approx \frac{\mathcal{N}_{0}^{2}}{b^{2}} \cdot \frac{1}{P_{1}\delta_{s,d}^{2}} \left(\frac{A^{2}}{P_{1}\delta_{s,r}^{2}} + \frac{B}{P_{2}\delta_{r,d}^{2}} \right) \Rightarrow P_{s} \approx \Delta_{DF}^{-2} \left(\frac{P}{\mathcal{N}_{0}} \right)^{-2}, \quad (35)$$

where
$$\Delta_{DF} = \frac{2\sqrt{2}b\delta_{s,d}\delta_{s,r}\delta_{r,d}}{\sqrt{B}} \frac{\left(\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8(A^2/B)\delta_{r,d}^2}\right)^{1/2}}{\left(3\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8(A^2/N)\delta_{r,d}^2}\right)^{3/2}}$$

SER performance for AF systems can be approximated as

$$P_s \approx \frac{B\mathcal{N}_0^2}{b^2} \cdot \frac{1}{P_1 \delta_{s,d}^2} \left(\frac{1}{P_1 \delta_{s,r}^2} + \frac{1}{P_2 \delta_{r,d}^2} \right) \Rightarrow P_s \approx \Delta_{AF}^{-2} \left(\frac{P}{\mathcal{N}_0} \right)^{-2}, \quad (36)$$

where
$$\Delta_{AF} = \frac{2\sqrt{2}b\delta_{s,d}\delta_{s,r}\delta_{r,d}}{\sqrt{B}} \frac{\left(\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8\delta_{r,d}^2}\right)^{1/2}}{\left(3\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8\delta_{r,d}^2}\right)^{3/2}}$$

• Define cooperation gain ratio $\lambda = \Delta_{DF} / \Delta_{AF}$ which is given by

$$\lambda = \left(\frac{\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8(A^2/B)\delta_{r,d}^2}}{\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8\delta_{r,d}^2}}\right)^{1/2} \left(\frac{3\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8\delta_{r,d}^2}}{3\delta_{s,r} + \sqrt{\delta_{s,r}^2 + 8(A^2/B)\delta_{r,d}^2}}\right)^{3/2}$$
(37)

Cases	Cooperation Gain Ratio λ (M Large)
Case 1: $\delta_{s,r}^2 \ll \delta_{r,d}^2$	M-PSK: $\lambda \approx 1.2247 > 1$ and M-QAM: $\lambda \approx 1.0175 > 1$
Case 2: $\delta_{s,r}^2 >> \delta_{r,d}^2$	Almost the same for M-PSK and M-QAM
Case 3: $\delta_{s,r}^2 = \delta_{r,d}^2$	M-PSK: $\lambda \approx 1.0635 > 1$ and M-QAM: $\lambda \approx 1.0058 > 1$

Comments:

- 1. Case 1: Cooperation gain for DF is always larger than AF (but more significant for M-PSK than M-QAM)
- 2. Case 2: It is preferred to use AF to reduce complexity (since cooperation gain is almost the same)
- 3. Case 3: For large modulation size, gain of DF compared to AF is negligible

Figure: Performance of DF cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = \delta_{r,d}^2 = 1$ and $\mathcal{N}_0 = 1$

Figure: Performance of DF cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = 1$, $\delta_{r,d}^2 = 10$ and $\mathcal{N}_0 = 1$

Figure: Performance of AF cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = \delta_{r,d}^2 = 1$ and $\mathcal{N}_0 = 1$

Figure: Performance of AF cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = 1$, $\delta_{r,d}^2 = 10$ and $\mathcal{N}_0 = 1$

Figure: Performance comparison of the cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = \delta_{r,d}^2 = 1$ and $\mathcal{N}_0 = 1$

Figure: Performance comparison of the cooperation systems with BPSK: optimum power versus equal power allocation - $\delta_{s,r}^2 = 1$, $\delta_{r,d}^2 = 10$ and $\mathcal{N}_0 = 1$

Trans-Modulation in Wireless Relay Networks (1)

- Trans-modulation design for Decode-and-Forward relay networks
 - Re-mapping of constellation points at relay nodes to minimize symbol error rate (SER) - increases Euclidean distance between different transmitted symbols
 - Repetition coding vs. constellation re-assignment
- DF relay node decides whether received signal decoded correctly before re-transmission to destination

Figure: Simplified system model for the single-relay DF

Trans-Modulation in Wireless Relay Networks (2)

▶ Received signals $y_{s,d}$ and $y_{s,r}$ at the destination and relay nodes

$$y_{s,d} = \sqrt{P_s} h_{s,d} x_s + \eta_{s,d} y_{s,r} = \sqrt{P_s} h_{s,r} x_s + \eta_{s,r}$$
(38)

 Received signal at destination from the relay after DF (assuming correct decoding)

$$y_{r,d} = \sqrt{P_r} h_{r,d} x_r + n_{r,d} \tag{39}$$

 Pairwise symbol error probability (PSEP) between two possible transmitted symbols at destination

 $Pr\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2}\} = Pr\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} | \mathbf{x}_{1}, relay \ decodes \ erroneously\} \times Pr\{relay \ decodes \ erroneously\} + Pr\{\mathbf{x}_{1} \rightarrow \mathbf{x}_{2} | \mathbf{x}_{1}, relay \ decodes \ correctly\} \times Pr\{relay \ decodes \ correctly\}$ (40)

• where
$$\mathbf{x}_1 = \left[\sqrt{P_s} x_{s_1} \sqrt{P_r} x_{r_1}\right]$$
 and $\mathbf{x}_2 = \left[\sqrt{P_s} x_{s_2} \sqrt{P_r} x_{r_2}\right]$

Trans-Modulation in Wireless Relay Networks (3)

Let PSEP_r = Pr{x₁ → x₂|x₁, relay decodes correctly} which can be shown to be

$$PSEP_{r} = E\left\{Q\left(\sqrt{\frac{1}{2N_{o}}(P_{s}|h_{s,d}|^{2}|x_{s_{1}}-x_{s_{2}}|^{2}+P_{r}|h_{r,d}|^{2}|x_{r_{1}}-x_{r_{2}}|^{2})}\right)\right\}$$
(41)

An upper bound on PSEP_r can be shown to be

$$PSEP_{r} \leq \frac{3N_{o}^{2}}{\sigma_{s,d}^{2}\sigma_{r,d}^{2}P_{s}P_{r}|x_{s_{1}}-x_{s_{2}}|^{2}|x_{r_{1}}-x_{r_{2}}|^{2}}$$
(42)

- ► Constellation reassignment at relay to better separate symbols by maximizing $|x_{s_1} x_{s_2}|^2 |x_{r_1} x_{r_2}|^2$
- Exhaustive search over all possible relay constellation assignments is complex and impractical
- Heuristic approach: rearrange rows and then columns to ensure any two adjacent rows (columns) in the source constellation

Trans-Modulation in Wireless Relay Networks (4)

(a) Source constellation (b) Relay constellation

Figure: Trans-modulation for 16-QAM constellation

Figure: Trans-modulation for 64-QAM constellation

Trans-Modulation in Wireless Relay Networks (5)

Two cases:

1. Relay close to source
$$(\sigma_{s,r}^2 = 10, \sigma_{r,d}^2 = 1)$$

- 2. Relay close to destination ($\sigma_{s,r}^2 = 1, \sigma_{r,d}^2 = 10$)
- 2 dB gain for 16-QAM and about 3 dB gain for 64-QAM when relay is sloe to source

Figure: SER for single-relay DF using 16-QAM and 64-QAM constellations

Conclusions

- ► For DF cooperation systems:
 - Optimum power allocation does not depend on the direct link between source and destination – only on channel links relay to the relay
 - Optimal power allocation is modulation-dependent (i.e. depends on specific M-PSK or M-QAM modulation)
- ► For AF cooperation systems:
 - Optimum power allocation is modulation-independent
- In general, the performance of DF cooperation is better than that of its AF counter part; but more complex
- Trans-modulation can significantly improve the performance of DF cooperation systems