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Order of Growth Rates

Consider the Fibonacci sequence (0,1,1,2,3,5,...) where g(n) is
defined by

(i) Base case: g(0) =0 and g(1) = 1.

(ii) Reduction rule: g(n+2) = g(n+ 1) + g(n).
The exact value of g(n), or an analytic equation for g(n) is
interesting, but sometimes, all we need to know is how “fast” does
g(n) grow?
Does it grow faster than f(n) = n, f(n) = n?, f(n) =2"? We wish
to capture the notion of “g(n) does not grow faster than f(n)".
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big-O, big-Omega, big-Theta

Let f,g : N — RZ denote two functions.

© We say that g(n) = O(f(n)), if there exist constants
cl,0 € RZ such that, for every n € N,

g(n) <c-f(n)+ c.

Q@ We say that g(n) = Q(f(n)), if there exist constants c3 € R™
and ¢; € RZ such that, for every n € N,

g(n) > c3-f(n) + c.

© We say that g(n) = ©(f(n)), if g(n) = O(f(n)) and
g(n) = Q((n)).

If g(n) = O(f(n)), then g(n) does not grow faster than f(n).
If g(n) = Q(f(n)), then g(n) grows as least as fast as 7(n).
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
O Let g(n) =2 n. We claim that g(n) = ©(n).
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
O Let g(n) =2 n. We claim that g(n) = ©(n).
O Let g(n) = n? + n+1. We claim that g(n) = ©(n?).
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
O Let g(n) =2 n. We claim that g(n) = ©(n).

O Let g(n) = n? + n+1. We claim that g(n) = ©(n?).

Q Let g(n) = c- f(n), then g(n) = O(f(n)).
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
O Let g(n) =2 n. We claim that g(n) = ©(n).

O Let g(n) = n? + n+1. We claim that g(n) = ©(n?).

Q Let g(n) = c- f(n), then g(n) = O(f(n)).

Q YL, i=0(r)
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Examples - 1

© The notation f(n) = O(1) means that 3 ¢ ¥V n: f(n) < c.
O Let g(n) =2 n. We claim that g(n) = ©(n).

O Let g(n) = n? + n+1. We claim that g(n) = ©(n?).

Q Let g(n) = c- f(n), then g(n) = O(f(n)).

Q YL, i=0(r)

Q log(n) = O(n).
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Examples - 2

Q Ifg>1 thenY.! g =0(q").
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Examples - 2

Q Ifg>1 thenY.! g =0(q").
Q [transitivity] If f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n)).
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Examples - 2

Q Ifg>1 thenY.! g =0(q").

Q [transitivity] If f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n)).

© [addition,max] If f(n),g(n) = O(h(n)), then
f(n) + g(n), max{f(n),g(n)} = O(h(n)).
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Examples - 2

Q Ifg>1 thenY.! g =0(q").

Q [transitivity] If f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n)).

© [addition,max] If f(n),g(n) = O(h(n)), then
f(n) + g(n), max{f(n),g(n)} = O(h(n)).

@ [addition,min] If (n), g(n) = Q(h(n)), then
f(n) + g(n), min{f(n), g(n)} = Q(h(n)).
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Examples - 2

Q Ifg>1 thenY.! g =0(q").
Q [transitivity] If f(n) = O(g(n)) and g(n) = O(h(n)), then
f(n) = O(h(n)).
© [addition,max] If f(n),g(n) = O(h(n)), then
f(n) + g(n), max{f(n),g(n)} = O(h(n)).
@ [addition,min] If (n), g(n) = Q(h(n)), then
f(n) + g(n), min{f(n), g(n)} = Q(h(n)).
© [asymmetry] f(n) = O(g(n)) does not imply that
g(n) = O(f(n)).
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Big-O: equivalent definition

We study functions that describe the cost of a circuit, the delay of
a circuit, the running time of an algorithm, etc. In all these cases it
is natural to assume that

VneN: f(n)>1.

Assume f(n) > 1, for every n. Then, g(n) = O(f(n)) iff there
exist constants ¢ € RZ and N € N, such that,

Yn> N:g(n) <c-f(n).
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Big-Omega: equivalent definition

Assume f(n) > 1, for every n. Then, g(n) = Q(f(n)) iff there exist
constants ¢ € RZ and N € N, such that,

Vn> N:g(n)>c-f(n).
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Big-Omega: equivalent definition

Assume f(n) > 1, for every n. Then, g(n) = Q(f(n)) iff there exist
constants ¢ € RZ and N € N, such that,

Vn> N:g(n)>c-f(n).

| A\

Corollary

Assume f(n),g(n) > 1, for every n. Then,

f(n) = O(g(n)) < g(n)=Q(f(n)).
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Recurrence Equations

In this section we deal with the problem of solving or bounding the
rate of growth of functions f : NT — R that are defined recursively.
We consider the typical cases that we will encounter later.
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Recurrence 1

Consider the recurrence

A 1 if n=1
“M:{ ) ifn>1. o

S
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The rate of growth of the function f(n) is ©(n).

What about f(n) = n+f([5])?
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Is it enough to solve for powers of 27

In the following lemma we show that, under reasonable conditions,
it suffices to consider powers of two when bounding the rate of
growth.

Lemma

Assume that:

© The functions f(n) and g(n) are both monotonically
nondecreasing.

© The constant p satisfies, for every k € N,

g(2*+1)
g(2k)

If £(2%) = O(g(2%)), then f(n) = O(g(n)).

p>
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What about big-Omega?

Lemma

Assume that:

©Q The functions f(n) and g(n) are both monotonically
nondecreasing.

© The constant p satisfies, for every k € N,

g(2*+1)
g(2k) -

I‘f f(25) = Q(g(2%)), then f(n) = Q(g(n)).

p<
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Recurrence 2.

Consider the recurrence

N E! ifn=1
f("):{njuz.fqgj) ifn>1, @

The rate of growth of the function f(n) is ©(nlog n).

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©



Recurrence 3.

Consider the recurrence

N E! ifn=1
fw):{n+3fq§p ifn>1, ®)

The rate of growth of the function f(n) is ©(n'°€23).

hint: £(2K) = 3k+1 — ok+1,
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Example - 1

Consider the recurrence

A ]c ifn=1
fn) = {a~n+b+f(LgJ) if n>1, )

where a, b, ¢ are constants.

The rate of growth of the function f(n) is ©(n).

proof: f(2K) =2a-2k+ b -k +c—2a...
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Example -2

Consider the recurrence

A cC ifn=1
f(n):{a-n+b+2-f(LgJ) ifn>1, (5)

where a, b, c = O(1).

The rate of growth of the function f(n) is ©(nlog n).

proof: We claim that f(2X) = a- k2k + (b +c¢c) -2k — b....
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Example - 3

Consider the recurrence

~ )1 ifk=0
F(k):{2k+2-F(k—1) if k> 0, (©)

F(k) = (k+1)-2%

Proof: Define f(n) = F([log, n]). Observe that £(2¥) = F(x)....

Guy Even, Moti Medina Digital Logic Design: a rigorous approach ©



Examples with floor and ceiling

(%)
A (1 ifn=1
“m:{1+agp ifn>1,
o
~ )1 ifn=1
fn) = {n+ F(l2])+F(12]) ifn>1,
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