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Wave Fundamentals click-throughs

Example 1 (page 8 of text)

[Statement] Example: How much does the phase of a wave with period

(T ) of 20 seconds change in 5 seconds?

Hint 1: Since the wave period T is 20 seconds, a time interval ∆t of 5

seconds represents 1/4 period (∆t/T = 5/20 = 1/4).

Hint 2: Multiplying this fraction by 2π gives π/2 radians.

Hint 3: The phase of the wave advances by π/2 radians (90◦) every 5

seconds.

Example 2 (page 15 of text)

[Statement] Example: If vector F⃗ = ı̂+4ȷ̂ and vector G⃗ = −7ı̂−2ȷ̂, what

are the magnitude and direction of vector H⃗ that results from adding F⃗

to G⃗?

Hint 1: Using the component approach, the x- and y-components of

vector H⃗ are

Hx = Fx +Gx = 1− 7 = −6

Hy = Fy +Gy = 4− 2 = 2.

Hint 2: Since Hx = −6 and Hy = +2, the vector H⃗ = −6ı̂+ 2ȷ̂.
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Hint 3: The magnitude of H⃗ is

|H⃗| =
√
H2

x +H2
y =

√
(−6)2 + (2)2 = 6.32.

Hint 4: The direction of H⃗ is

θ = arctan

(
Hy

Hx

)
= arctan

(
2

−6

)
= −18.4◦

but since the denominator of the arctan argument is negative, the an-

gle of vector H⃗ measured anti-clockwise from the positive x-axis is

−18.4◦ + 180◦ = 161.6◦.

Example 3 (page 20 of text)

Imaginary
Axis

Real
Axis

5+10i

8+5i

3-2i
-8-3i

4-6i

-5+5i

5 10-5-10

-5

-10

5

10

[Statement] Example: Find the magnitude and angle of each of the

complex numbers in Figure 1.10.

Hint 1: The rectangular-to-polar conversion equations (Eqs. 1.12 and

1.13) can be applied to the complex numbers in Figure 1.10 to deter-

mine the magnitude and angle of each.

Hint 2: For the complex number z = 5 + 10i, Re(z)=5 and Im(z)=10.

Hint 3: For this number

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√
(5)2 + (10)2 = 11.18
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and the angle measured anti-clockwise from the positive real axis is

θ = arctan

(
Im(z)

Re(z)

)
= arctan

(
10

5

)
= 63.4◦.

Hint 4: For the complex number −5 + 5i, Re(z)=-5 and Im(z)=5, so

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√

(−5)2 + (5)2 = 7.07

and the angle from the positive real axis is

θ = arctan

(
Im(z)

Re(z)

)
= arctan

(
5

−5

)
= −45◦.

Once again, since the denominator of the arctan argument is nega-

tive, the angle measured anti-clockwise from the positive real axis is

−45◦ + 180◦ = 135◦.

Hint 5: The magnitude and angle values for all six of the complex num-

bers in Fig. 1.10 are shown in Figure 1.12.

Imaginary
Axis

Real
Axis

11.18 ⁄63.4o

9.43 ⁄32o

3.6 ⁄326.3o

7.21 ⁄303.7o

8.54 ⁄200.6o

7.07 ⁄135o

5 10

-5

-10

5

10

-5-10

Example 4 (page 30 of text)

[Statement] Example: Consider a wave with wavefunction given by

y(x, t) = A sin (kx+ ωt) (1.1)

where the wave amplitude (A) is 3 meters, the wavelength (λ) is 1 meter,

and the wave period (T ) is 5 seconds. Find the value of the displacement
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y(x, t) at the position x = 0.6 m and time t = 3 seconds.

Hint 1: One approach would be make a flipbook of this wave. The wave

amplitude tells you how big to make the peaks of your wave, the wave-

length tells you how far apart to space the peaks on each page, and the

wave period tells you how much to shift the wave between the pages

of your book (since it has to move a distance of one wavelength in the

direction of propagation during each period). You could then turn to the

page in your flipbook corresponding to a time of 3 seconds and measure

the y-value (the displacement) of the wave at a distance of 0.6 meters

along the x-axis.

Hint 2: Alternatively, you can just plug each of the variables into Eq. 1.1.

Hint 3: The wavelength of 1 meter means that the wavenumber is k =

2π/1 = 2π rad/m

Hint 4: The wave period of 5 seconds tells you that the frequency is f =

1/5 s = 0.2 Hz (and the angular frequency is ω = 2πf = 0.4π rad/s).

Hint 5: Plugging in these values gives

y(x, t) = A sin (kx+ ωt)

= (3 m) sin [(2π rad/m)(0.6 m) + (0.4π rad/s)(3 s)]

= (3 m) sin (2.4π rad) = 2.85 m.

Problem 1 (page 44 of text)

[Statement] Find the frequency and angular frequency of the following

waves:

[Statement] a. A string wave with period of 0.02 s.

Hint 1: To find the frequency (f) and angular frequency (ω) if you know

the period (T ), use

f =
1

T
.

and
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ω = 2πf =
2π

T

Hint 2: Since the period T = 0.02 s,

f =
1

T
=

1

0.02 s
= 50 Hz

and

ω = 2πf =
2π

T
=

2π

0.02 s
= 314.16 rad/s.

[Statement] b. An electromagnetic wave with period of 1.5 ns.

Hint: In this case, the period T = 1.5 ns = 1.5× 10−9 s, so

f =
1

T
=

1

1.5× 10−9 s
= 6.67× 108 Hz

and

ω = 2πf =
2π

T
=

2π

1.5× 10−9
s = 4.19× 109 rad/s.

[Statement] c. A sound wave with period of 1/3 ms.

Hint: In this case, the period T = 1/3 ms = 3.33× 10−4 s, so

f =
1

T
=

1

3.33× 10−4
s = 3, 000.00 Hz

and

ω = 2πf =
2π

T
=

2π

3.33× 10−4
s = 18, 849.56 rad/s.

Problem 2 (page 44 of text)

[Statement] Find the period of the following waves:

[Statement] a. A mechanical wave with frequency of 500 Hz.

Hint 1: To find the period (T ) if you know the frequency (f), use T =

1/f .
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Hint 2: For frequency f = 500 Hz,

T =
1

f
=

1

500 Hz
= 2× 10−3 s.

[Statement] b. A light wave with frequency of 5.09× 1014 Hz.

Hint: In this case, frequency f = 5.09× 1014 Hz, so

T =
1

f
=

1

5.09× 1014 Hz
= 1.96× 10−15 s.

[Statement] c. An ocean wave with angular frequency of 0.1 rad/s.

Hint 1: To find the period (T ) if you know the angular frequency (ω),

use T = 2π/f .

Hint 2: For angular frequency ω = 0.1 rad/s,

T =
2π

ω
=

2π

0.1 rad/s
= 62.83 s.

Problem 3 (page 44 of text)

[Statement] What is the speed of an electromagnetic wave with wave-

length of 2 meters and frequency of 150 MHz?

Hint 1: To find the wave speed (v) when you know the wavelength (λ)

and frequency (f), use v = λf .

Hint 2: For a wave with wavelength λ = 2 m and frequency f = 150

MHz = 1.5× 108 Hz,

v = λf = (2 m)(1.5× 108 Hz) = 3× 108 m/s

which is the speed of light in a vacuum.

[Statement] What is the wavelength of a sound wave with frequency of

9.5 kHz, if the speed of sound is 340 m/s?
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Hint 1: To find the wavelength (λ) if you know the frequency (f) and

wave speed (v), use λ = v/f .

Hint 2: For a wave with frequency f = 9.5 kHz = 9.5×103 Hz and speed

(v = 340 m/s),

λ =
v

f
=

340 m/s

9.5× 103 Hz
= 0.036 m.

Problem 4 (page 44 of text)

[Statement] How much does the phase of an electromagnetic wave with

frequency of 100 kHz change in 1.5 µs at a fixed location?

Hint 1: To find the phase change at a fixed location (∆ϕ)constant x if you

know the time interval (∆t) and period (T = 1/f), use Eq. 1.4:

(∆ϕ)constant x = ω∆t =

(
2π

T

)
∆t = 2π

(
∆t

T

)
.

Hint 2: In this case, the time interval ∆t = 1.5µs= 1.5× 10−6 s, and the

period T = 1/f = 1/100 kHz = 1/1× 105 Hz= 1× 10−5 s.

Hint 3: Plugging the values into Eq. 1.4 gives

(∆ϕ)constant x =

(
2π

T

)
∆t =

(
2π

1× 10−5 Hz

)
(1.5× 10−6 s) = 0.94 rad.

[Statement] What is the difference in phase of a mechanical wave with

period of 2 seconds and speed of 15 m/s at two locations separated by

4 meters at some instant?

Hint 1: To find the phase change at a fixed time (∆ϕ)constant t if you

know the distance interval (∆x) and wavelength (λ), use Eq. 1.6:

(∆ϕ)constant t = k∆x =

(
2π

λ

)
∆x.
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Hint 2: In this case, the distance interval ∆x = 4 m, and the wavelength

(λ) can be found from the wave period (T ) and wave speed (v).

Hint 3: Since the wave period T = 2 s and the wave speed v = 15 m/s,

the wavelength (λ) is

λ =
v

f
= vT = (15 m/s)(2 s) = 30 m.

Hint 4: Plugging the values from Hints 2 and 3 into Eq. 1.6 gives

(∆ϕ)constant t =

(
2π

λ

)
∆x =

(
2π

30 m

)
(4 m) = 0.84 rad.

Problem 5 (page 44 of text)

[Statement] If vector D⃗ = −5ı̂−2ȷ̂ and vector E⃗ = 4ȷ̂, find the magnitude

and direction of the vector F⃗ = D⃗+E⃗ both graphically and algebraically.

[Statement] Graphical Approach

Hint 1: Draw vectors D⃗ and E⃗ on 2-D Cartesian axes.

4

-5

-2⇀
D

E
⇀

y

x

Hint 2: To graphically add the two vectors D⃗ and E⃗, imagine moving

vector E⃗ without changing its length or direction so that its tail is at

the position of the head of vector D⃗, as shown in the figure below.

Hint 3: Now draw a new vector (called vector F⃗ ) from the beginning

(tail) of vector D⃗ to the end (head) of vector E⃗. Vector F⃗ is the sum of
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4

-5

-2⇀
D

E
⇀

y

x

vectors D⃗ and E⃗ and is called the “resultant” vector (so F⃗ = A⃗ + B⃗.

The result would have been the same had you chosen to displace the

tail of vector D⃗ to the head of vector E⃗ without changing the length or

direction of D⃗.

4

-5

-2⇀
D

E⇀

y

x

⇀F 2

Hint 4: To determine the magnitude of the resultant vector F⃗ , use a

ruler to measure its length. You should get about 5.4 units.

Hint 5: To determine the direction of the resultant vector F⃗ , use a pro-

tractor to measure the angle of F⃗ measured anti-clockwise from the

positive x-axis. You should get about 158 degrees.

[Statement] Algebraic Approach
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Hint 1: To find the sum of vectors D⃗ and E⃗ algebraically, use

Fx = Dx + Ex

Fy = Dy + Ey.

Hint 2: Since Dx = −5 and Ex = 0,

Fx = Dx + Ex = −5 + 0 = −5.

Hint 3: Since Dy = −2 and Ey = 4,

Fy = Dy + Ey = −2 + 4 = +2.

Hint 4: Using unit vectors the vector F⃗ may be written as

F⃗ = −5ı̂+ 2ȷ̂.

Hint 5: To find the magnitude of vector F⃗ , use Eq. 1.5:

|F⃗ | =
√
F 2
x + F 2

y =
√

(−5)2 + (+2)2 = 5.39 units.

Hint 6: To find the direction of vector F⃗ , use Eq. 1.8:

θ = arctan

(
Fy

Fx

)
= arctan

(
+2

−5

)
= −21.8◦

but since the denominator of the arctan argument is negative, the angle

of vector F⃗ measured anti-clockwise from the positive x-axis is −21.8◦+

180◦ = 158.2◦.

Problem 6 (page 44 of text)

[Statement] Verify that each of the complex numbers in Fig. 1.10 have

the polar form shown in Fig. 1.12.
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Hint 1: To convert from rectangular to polar coordinates, use

|z| =
√
[Re(z)]

2
+ [Im(z)]

2

and

θ = arctan

(
Im(z)

Re(z)

)
.

Hint 2: For the complex number z = 5+10i, Re(z)=5 and Im(z)=10, so

the magnitude and angle of z are

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√
(5)2 + (10)2 = 11.18

and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

10

5
= 63.4◦.

Hint 3: For the complex number z = −5 + 5i, Re(z)=-5 and Im(z)=5,

so the magnitude and angle of z are

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√

(−5)2 + (5)2 = 7.07

and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

5

−5
= −45◦.

but since the denominator of the arctangent function is negative, to get

the angle from the positive real axis you must add 180◦ to the result

(assuming your calculator has a two-quadrant arctan function). So in

this case the angle measured anti-clockwise from the positive real axis

is −45◦ + 180◦ = 135◦.

Hint 4: For the complex number z = −8 − 3i, Re(z)=-8 and Im(z)=-3,

so the magnitude and angle of z are

|z| =
√

[Re(z)]
2
+ [Im(z)]

2
=
√
(−8)2 + (−3)2 = 8.54
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and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

−3

−8
= 20.55◦

but once again you must add 180◦ to the result since the denominator of

the arctangent function is negative, so the angle measured anti-clockwise

from the positive real axis is 20.55◦ + 180◦ = 200.55◦.

Hint 5: For the complex number z = 3− 2i, Re(z)=3 and Im(z)=-2, so

the magnitude and angle of z are

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√
(3)2 + (−2)2 = 3.6

and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

−2

3
= −33.69◦

Note that this result is negative because the numerator of the arctangent

function is negative, and not because the denominator is negative. So

this is not a case in which you must add 180◦ to the result; instead, the

negative result means that the direction is 33.69◦ below the real axis,

which is the same as 326.31◦ measured anti-clockwise from the real axis.

Hint 6: For the complex number z = 4− 6i, Re(z)=4 and Im(z)=-6, so

the magnitude and angle of z are

|z| =
√
[Re(z)]

2
+ [Im(z)]

2
=
√

(4)2 + (−6)2 = 7.21

and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

−6

4
= −56.31◦

which is the same as 303.69◦ measured anti-clockwise from the positive

real axis.

Hint 7: For the complex number z = 8 + 5i, Re(z)=8 and Im(z)=5, so

the magnitude and angle of z are

|z| =
√

[Re(z)]
2
+ [Im(z)]

2
=
√
(8)2 + (5)2 = 9.43
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and

θ = arctan

(
Im(z)

Re(z)

)
= arctan

5

8
= 32.0◦

Problem 7 (page 44 of text)

[Statement] Solve the differential equation dz/dθ = iz for z.

Hint 1: To solve this equation for z, collect the terms involving z on the

left side of the equation

dz

z
= idθ.

Hint 2: Integrate both sides of the rearranged equation∫
dz

z
=

∫
idθ.

Hint 3: Integrating the left side gives∫
dz

z
= ln(z)

Hint 4: Integrating the right side gives∫
idθ = iθ.

Hint 5: Plugging in these results gives

ln z = iθ.

Hint 6: Raising “e” to the powers of ln z and iθ gives

eln z = eiθ
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or

z = eiθ.

Problem 8 (page 44 of text)

[Statement] Use the power-series representation of sin θ, cos θ, and eiθ

to prove the Euler relation eiθ = cos θ + i sin θ.

Hint 1: The power series for sin θ is

sin θ = θ − θ3

3!
+
θ5

5!
+ · · ·

Hint 2: The power series for cos θ is

cos θ = 1− θ2

2!
+
θ4

4!
+ · · ·

Hint 3: The power series for ez is

ez =
∑
n≥0

zn

n!

Hint 4: This expression with z = iθ is

eiθ =
∑
n≥0

(iθ)n

n!
= 1 +

iθ

1!
+

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

or

eiθ = 1 + iθ − (θ)2

2!
− iθ3

3!
+

(θ)4

4!
+
iθ5

5!
+ · · ·

Hint 5: Separating the real and imaginary parts of this expression gives

eiθ =

(
1− θ2

2!
+

(θ)4

4!
+ · · ·

)
+ i

(
θ − (θ)3

3!
+

(θ)5

5!
+ · · ·

)
.
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Hint 6: Inserting the power series of sin θ and cos θ into this expression

gives

eiθ = cos θ + i sin θ.

Problem 9 (page 44 of text)

[Statement] Show that the wavefunction f(−x − 1) is shifted in the

negative-x direction relative to the wavefunction f(−x).

Hint 1: For the function f(x) shown in Fig. 1.19, make a table for f(−x)
and f(−x− 1) such as that shown in Fig. 1.20 (start with x = −5).

Hint 2: Your table should look like this:

x f(-x) f(-x-1)

-5 f(+5)=0 f(+5-1)=f(+4)=0

-4 f(+4)=0 f(+4-1)=f(+3)=1

-3 f(+3)=1 f(+3-1)=f(+2)=2

-2 f(+2)=2 f(+2-1)=f(+1)=1

-1 f(+1)=1 f(+1-1)=f(0)=0

0 f(0)=0 f(0-1)=f(-1)=0

1 f(-1)=0 f(-1-1)=f(-2)=0

2 f(-2)=0 f(-2-1)=f(-3)=0

Hint 3: Plotting f(−x) gives

f(-x)

x-5 -4 -3 -2 -1  0 1 2 3 4 5

1
2

Hint 4: Plotting f(−x− 1) gives

which is shifted in the negative-x direction relative to f(−x).

Problem 10 (page 44 of text)
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f(-x-1)

x-5 -4 -3 -2 -1  0 1 2 3 4 5

1
2

[Statement] Find the phase speed and the direction of propagation of

each of the following waves (all units are SI):

a) f(x, t) = 5 sin (3x− t
2 )

Hint 1: To find the phase speed of a wave with wavefunction in the form

of f(kx± ωt), use v = ω/k.

Hint 2: For f(x) = 5 sin (3x− t/2), k = 3 and ω = 1/2, so

v =
ω

k
=

( 12 )

3
=

1

6
m/s.

Hint 3: To determine the direction of this wave, note that the x-term

and the t-term have opposite signs. This means that the direction of

wave propagation is toward positive x in this case.

b) ψ(x, t) = g−4x− 20t

Hint 1: For ψ(x, t) = g−4x− 20t, k = 4 and ω = 20, so

v =
ω

k
=

20

4
= 5 m/s.

Hint 2: In this case, the x-term and the t-term have the same sign, so

the direction of wave propagation is toward negative x.

c) h(y, t) = 1
2(2t+x) + 10.

Hint 1: For h(y, t) = 1
2(2t+x) + 10, the ratio of the x-term coefficient to

the t-term coefficient is 1/2, so

v =
ω

k
=

1

2
= 0.5 m/s.
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Hint 2: In this case, the x-term and the t-term have the same sign, so

the direction of wave propagation is toward negative x.
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Example 1 (page 48 of text)

[Statement] Example: For the function y(x, t) = 3x2− 5t, find the par-

tial derivative of y with respect to x and with respect to t.

Hint 1: To take the partial derivative of y with respect to x, treat t as a

constant:

∂y

∂x
=
∂(3x2 − 5t)

∂x
=
∂(3x2)

∂x
− ∂(5t)

∂x

= 3
∂(x2)

∂x
− 0 = 6x.

Hint 2: For the partial derivative of y with respect to t, treat x as a

constant:

∂y

∂t
=
∂(3x2 − 5t)

∂t
=
∂(3x2)

∂t
− ∂(5t)

∂t

= 0− 5
∂t

∂t
= −5.

Example 2 (page 65 of text)

[Statement] Example: Consider two sine waves with the following wave-

functions:

y1(x, t) = A1 sin (k1x+ ω1t+ ϵ1)

y2(x, t) = A2 sin (k2x+ ω2t+ ϵ2).

If these two waves have the same amplitude, A1 = A2 = A = 1, the same

wave number, k1 = k2 = k = 1 rad/m, and the same angular frequency,

ω1 = ω2 = ω = 2 rad/s, but the first wave y1(x, t) has a phase constant
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ϵ1 = 0 and the second wave y2(x, t) has a phase constant of ϵ2 = +π/3,

determine the charateristics of the wave that results from the addition

of these waves.

Hint 1: Since the distance term and the time term have the same sign

for both of these waves, you know that both waves are traveling in the

negative-x direction, and since the wave phase speed v = ω/k (see Eq.

1.36), they also have the same speed.

Hint 2: By comparing the phase constants for the two waves, you also

know that y2(x, t), leads y1(x, t) by a phase difference of π/3 (if you

don’t recall why more-positive phase constant results in a leading wave

in this case, look back to Section 1.6 of Chapter 1).

Hint 3: Inserting the values given above, the two wavefunctions may be

written as

y1(x, t) = A1 sin (k1x+ ω1t+ ϵ1) = sin(x+ 2t+ 0)

y2(x, t) = A2 sin (k2x+ ω2t+ ϵ2) = sin(x+ 2t+ π/3)
(2.21)

and, at x = 0, they look like this:

-2 -1 0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

π/3

y

ωt
y2

y1

Hint 4: To understand how these two waves add to produce a new wave,

take a look at the figure below. In this figure, the graphical addition of

the two waves is shown to result in another sinusoidal wave, drawn with
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-2 -1 0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

π/3

y

ωt

0.866

ytotal = 0.866+0.866=1.73

ytotal = 0+0.866
ytotal = 0.866+0

ytotal

y2

y1

a dashed line. This resultant wave has the same frequency as the two

original waves, but it has a different phase constant and larger amplitude.

Hint 5: Some algebra can show the same result, starting with the ex-

pression for the resultant wave:

ytotal(x, t) = sin(x+ 2t) + sin(x+ 2t+ π/3). (2.21)

Hint 6: A useful trigonometric identity here is

sin θ1 + sin θ2 = 2 sin

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
. (2.23)

Hint 7: Plugging in θ1 = x+ 2t and θ2 = x+ 2t+ π/3 gives

ytotal(x, t) = 2 sin

(
2(x+ 2t) + π/3

2

)
cos

(
−π/3
2

)
. (2.24)

Hint 8: The sine term in this expression simplifies to sin(x+ 2t+ π/6),

which is a wave with wave number k = 1 rad/m and angular frequency

ω = 2 rad/s (hence the same wavelength and frequency as the original

waves), but with a phase constant ϵ = π/6 (in this case, the average of

the original phases of zero and π/3).

Hint 9: What about the amplitude? The rest of Eq. 2.24 gives A =

2 cos(−π/6) ≈ 1.73. So the amplitude is larger than the original A = 1,

but not twice as large (since in this case the two original waves don’t
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reach their peak values at the same time).

Problem 1 (page 74 of text)

[Statement] Find ∂f
∂x and ∂f

∂t for the function f(x, t) = 3x2t2+ 1
2x+3t3+5.

Hint 1: To find the partial derivative with respect to x, treat t as a con-

stant.

Hint 2: The 3t3 and 5 terms are both constants and have derivatives of

zero. The derivatives of the other terms are

∂

∂x
(3x2t2) = 3(2x)t2 = 6xt2

and

∂

∂x

(
1

2
x

)
=

1

2
.

All together, the solution is ∂f
∂x = 6xt2 + 1

2 .

Hint 3: To find the partial derivative with respect to t, treat x as a con-

stant.

Hint 4: The 1
2x and 5 terms are both constants and have derivatives of

zero. The derivatives of the other terms are

∂

∂t
(3x2t2) = 3x2(2t) = 6x2t

and

∂

∂t

(
3t3
)
= 3(3t2) = 9t2.

All together, the solution is ∂f
∂t = 6x2t+ 9t2.

Problem 2 (page 74 of text)

[Statement] For the function f(x, t) of Problem 1, find ∂2f
∂x2 and ∂2f

∂t2 .

Hint 1: To find the second partial derivative with respect to x, take

the partial derivative with respect to x of the first derivative, found in
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Problem 1:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
.

Don’t forget to treat t as a constant.

Hint 2: The first derivative is ∂f
∂x = 6xt2 + 1

2 . The partial derivative of

this function with respect to x is

∂

∂x

(
6xt2 +

1

2

)
= 6t2(1) + 0 = 6t2.

So, ∂2f
∂x2 = 6t2.

Hint 3: To find the second partial derivative with respect to t, take

the partial derivative with respect to t of the first derivative, found in

Problem 1:

∂2f

∂t2
=

∂

∂t

(
∂f

∂t

)
.

Don’t forget to treat x as a constant.

Hint 4: The first derivative is ∂f
∂t = 6x2t+ 9t2. The partial derivative of

this function with respect to t is

∂

∂t

(
6x2t+ 9t2

)
= 6x2(1) + 9(2t) = 6x2 + 18t.

So, ∂2f
∂t2 = 6x2 + 18t.

Problem 3 (page 74 of text)

[Statement] For the function f(x, t) of Problem 1, show that ∂2f
∂x∂t gives

the same result as ∂2f
∂t∂x .

Hint 1: To find ∂2f
∂x∂t , take the partial derivative with respect to x of the

first derivative with respect to t, found in Problem 1:

∂2f

∂x∂t
=

∂

∂x

(
∂f

∂t

)
.

Don’t forget to treat t as a constant.



The Wave Equation click-throughs 23

Hint 2: The first derivative is ∂f
∂t = 6x2t+ 9t2. The partial derivative of

this function with respect to x is

∂

∂x

(
6x2t+ 9t2

)
= 6(2x)t+ 0 = 12xt.

So, ∂2f
∂x∂t = 12xt.

Hint 3: To find ∂2f
∂t∂x , take the partial derivative with respect to t of the

first derivative with respect to x, found in Problem 1:

∂2f

∂t∂x
=

∂

∂t

(
∂f

∂x

)
.

Don’t forget to treat x as a constant.

Hint 4: The first derivative is ∂f
∂x = 6xt2 + 1

2 . The partial derivative of

this function with respect to t is

∂

∂t

(
6xt2 +

1

2

)
= 6x(2t) + 0 = 6x2 + 12xt.

So, ∂2f
∂t∂x = 12xt, the same as ∂2f

∂x∂t .

Problem 4 (page 74 of text)

[Statement] Does the function Aei(kx−ωt) satisfy the classical wave equa-

tion? If so, prove it. If not, say why not.

Hint 1: In order for a function to satisfy the classical wave equation, the

left side of ∂2f
∂x2 = 1

v2
∂2f
∂t2 must equal the right side.

Hint 2: The left side of the classical wave equation can be found by

taking the second partial derivative with respect to x:

∂2f

∂x2
=

∂

∂x

(
∂

∂x

(
Aei(kx−ωt)

))
.

Hint 3: The derivative is easier if you rewrite the function as Aeikxe−iωt.

Because you’re taking a partial derivative with respect to x, the constant
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terms are Ae−iωt, which come out of the derivative:

Ae−iωt ∂

∂x

(
∂

∂x

(
eikx

))
= Ae−iωt ∂

∂x
ikeikx

= Ae−iωt(ik)2eikx

= −k2Ae−iωteikx

Hint 4: Because y = Aei(kx−ωt), you can rewrite the left side as −k2y.

Hint 5: The right side of the classical wave equation can be found by

taking the second partial derivative with respect to t and multiplying

by 1
v2 :

1

v2
∂2f

∂t2
=

1

v2
∂

∂t

(
∂

∂t

(
Aei(kx−ωt)

))
.

Hint 6: Again, the derivative is easier if you rewrite the function as

Aeikxe−iωt. Because you’re taking a partial derivative with respect to t,

the constant terms are Aeikx, which come out of the derivative:

1

v2
Aeikx

∂

∂t

(
∂

∂t

(
e−iωt

))
=

1

v2
Aeikx

∂

∂t
− iωe−iωt

=
1

v2
Aeikx(−iω)2e−iωt

= − 1

v2
ω2Aeikxe−iωt

Hint 7: Because y = Aei(kx−ωt), you can rewrite the left side as −ω2

v2 y.

Hint 8: Set the left side equal to the right side and see if the result is

true:

−k2y = −ω
2

v2
y.

All terms cancel except for k2 = ω2

v2 .

Hint 9: By rearranging this equation into v2 = ω2

k2 or v = ω
k , you can see

that it matches Eq. 1.36 and the wave equation is satisfied.

Hint 10: An easier way to do all of this is to recognize that Aei(kx−ωt)

is a function of the form f(kx± ωt) and hence will be a solution.



The Wave Equation click-throughs 25

Problem 5 (page 74 of text)

[Statement] Does the function A1e
i(kx−ωt)+A2e

i(kx+ωt) satisfy the clas-

sical wave equation? If so, prove it. If not, say why not.

Hint 1: You know from Problem 4 that the first term satisfies the wave

equation. Because the wave equation is linear, if two functions are solu-

tions, then their sum is also a solution.

Hint 2: The spatial part of y is the same in both terms, so the left side

of the classical wave equation is the same for A2e
i(kx+ωt).

Hint 3: The time derivatives are taken the same way as in Problem 4,

but with a changed sign (+ω instead of −ω):

1

v2
Aeikx

∂

∂t

(
∂

∂t

(
eiωt

))
=

1

v2
Aeikx

∂

∂t
iωeiωt

=
1

v2
Aeikx(iω)2eiωt

= − 1

v2
ω2Aeikxeiωt

Hint 4: The right side still condenses down to −ω2

v2 . Because the right

and left sides are the same for A2e
i(kx+ωt) as it was for A1e

i(kx−ωt), it is

also a solution, as is their sum. This is the form of two traveling waves,

one to the right (the A1 wave) and one to the left (the A2 wave).

Problem 6 (page 74 of text)

[Statement] Does the function Ae(ax+bt)2 satisfy the classical wave equa-

tion? If so, what is the speed of the wave described by this function?

Hint 1: The method to solve this problem is the same as for Problem 4:

find the left and right sides independently, then see if they equal each

other with a reasonable velocity (that is, a constant value, not a function

of x or t).

Hint 2: The left side of the classical wave equation can be found by
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taking the second partial derivative with respect to x:

∂2f

∂x2
=

∂

∂x

(
∂

∂x

(
Ae(ax+bt)2

))
.

Hint 3: Take the first partial derivative, ∂f
∂x :

∂

∂x

(
Ae(ax+bt)2

)
= A(2)(ax+ bt)(a)e(ax+bt)2

= 2Aa(ax+ bt)e(ax+bt)2

Hint 4: Take the second derivative by

∂

∂x

(
2Aa(ax+ bt)e(ax+bt)2

)
= 2Aa(a)(ax+ bt)e(ax+bt)2

+ 2Aa(ax+ bt)(2)(ax+ bt)(a)e(ax+bt)2

= 2a2 (ax+ bt) (1 + 2(ax+ bt))
(
Ae(ax+bt)2

)
= 2a2 (ax+ bt) (1 + 2(ax+ bt))y

Hint 5: You can find the second derivative with respect to t in the same

way, but especially in an algebraically intense situation like this it’s

worth looking for an easier method. Consider that x and t are not in-

herently different from each other; they’re just names for variables, just

as a and b are arbitrary names for constants. If you take the partial

derivative of a function f = ax with respect to x, it will have the same

form as the partial derivative of a function g = bt taken with respect to

t. So, ∂2f
∂t2 = ∂2f

∂x2 , with all x→ t and a→ b:

∂2f

∂t2
= 2b2 (ax+ bt) (1 + 2(ax+ bt))y

Hint 6: Set the left and right sides equal, remembering to add in the

1/v2 term to the right side:

2a2 (ax+ bt) (1 + 2(ax+ bt))y = 2
b2

v2
(ax+ bt) (1 + 2(ax+ bt))y.

Everything cancels now except for

a2 =
b2

v2
.

Hint 7: Solving for v2 gives

v2 =
b2

a2



The Wave Equation click-throughs 27

or

v = ± b

a
.

These are two possible velocities, one to the left and one to the right.

Hint 8: You can even check the units of the velocity. The argument of

e has to be unitless (or in radians, just like the argument of sine or co-

sine). So, you know that if x is in meters, a is in 1/m; similarly if t is in

seconds, b is in 1/s. The ratio of b/a therefore has units of (1/s)/(1/m),

or m/s, as expected.

Problem 7 (page 74 of text)

[Statement] Sketch the solutions to the hyperbolic equation y2

a2 − x2

b2 = 1

for various values of a and b.

Hint 1: First, solve the equation for y, which will let you plot it in

mathematical software:

y2

a2
− x2

b2
= 1

y2

a2
= 1 +

x2

b2

y2 = a2(1 +
x2

b2
)

y = ±a
√

1 +
x2

b2
.

Hint 2: Decide on which values of a and b to use in the plot. For example,

you could plot the following combinations:

• a = b = 1 (same and small values)

• a = b = 2 (same and large values)

• a = 2, b = 1 (different, with a > b)

• a = 1, b = 2 (different, with a < b)

Hint 3: Find a reasonable range of x to plot over. For the given values

of a and b, plotting from x = −2 to 2 works well.

Hint 4: The first figure below shows the first two cases, when a = b. The

second figure below shows the last two cases, when a ̸= b.
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Hint 5: The two main differences between any of these plots is 1. where

they intersect the y-axis and 2. how steeply they leave that intersection.

The question is, how do the values of a and b control those properties?
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Hint 6: The y-intercept is the same as the value of ±a.

Hint 7: The plots with the same value of a and b eventually leave the

y-intercept with the same slope (this is more obvious in the third and

fourth figures below, which plot the functions between -20 and 20). If

a > b, then the slope is larger than if a < b.

Hint 8: To make sense of the previous observations, look at the form of

the function:

y = ±a
√
1 +

x2

b2
= ±

√
a2 +

a2

b2
x2.

It appears that the first term,
√
a2 = a, is the y-intercept. The a and b

part of the second term
√

a2

b2 = a
b gives the slope at large x.

Hint 9: Now compare to the homogeneous wave equation, which maps
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to x2

a2 − t2

b2 = 0. Solutions would look like

x2

a2
− t2

b2
= 0

x2

a2
=
t2

b2

x2 = a2(
t2

b2
)

x = ±a
b
t.

There is no first term, so the y-intercept is zero (you could think of it as

a · 1 in the previous case; now it’s a · 0). The fraction a
b is now literally

the slope at all values of t. If you multiply the original equation by a2,

you’ll see that the 1/v2 term identifies with a2/b2 (it’s not v2 = a2/b2

because the x and t in the wave equation are in the denominators as ∂x

and ∂t). This is a nice connection and support for the analogy between

the hyperbolic functions and the PDEs.

Problem 8 (page 74 of text)

[Statement] Make time-domain plots of y1(x, t) = A1 sin (k1x+ ω1t+ ϵ1)
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and y2(x, t) = A2 sin (k2x+ ω2t+ ϵ2) and their sum for A = 1 m, k = 1

rad/m, ω = 2 rad/s, ϵ1 = 1.5 rad, and ϵ2 = 0 rad, at positions x = 0.5

m and x = 1.0 m over at least one full period of oscillation.

Hint 1: Before plotting, you need to know what the period is. Because

the angular frequency ω is given, you can get the period from Eq. 1.3:

T =
2π

ω
=

2π

2
= π.

Hint 2: At x = 0.5 m, the wave functions simplify to

y1(x, t) = sin ((1)(0.5) + 2t+ 1.5) = sin 2.0 + 2t

and

y2(x, t) = sin ((1)(0.5) + 2t+ 0) = sin 0.5 + 2t.

Hint 3: Plotting these functions at x = 0.5 m from t = 0 to π s results

in the graph in the top portion of the figure shown below.

Hint 4: Similarly, to plot at x = 1 m, plug into the functions:

y1(x, t) = sin ((1)(1) + 2t+ 1.5) = sin 2.5 + 2t

and

y2(x, t) = sin ((1)(1) + 2t+ 0) = sin 1.0 + 2t.

Hint 5: Plotting these functions at x = 1 m from t = 0 to π s results in

the graph shown in the bottom portion of the figure.
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Problem 9 (page 74 of text)

[Statement] Sketch the phasors for the waveforms of the previous prob-

lem (and their sum) at x = 1 m at times t = 0.5 s and t = 1.0 s.

Hint 1: The simplified phasor representation is an arrow with projection

onto the vertical axis equal to the wave function’s value.

Hint 2: The length of the phasor is the amplitude, A = 1 m.

Hint 3: The angle of the phasor above the horizontal x-axis is the argu-

ment of the sine. At t = 0.5 s and x = 1 m, the arguments are

2.5 + 2(0.5) = 3.5 rad

for y1 and

1.0 + 2(0.5) = 2.0 rad
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for y2.

Hint 4: Plotting the two phasors for y1 and y2 looks like the first figure

shown below.

1.0

1.0

y1

y2

-1.0

114.6°

200.5°

Hint 5: To find the sum, add the two phasors graphically, with the result

shown in the figure below.

1.0

1.0

y1

y2

-1.0

y1 (displaced)

y1+y2

Hint 6: Similarly, the arguments for the sines in y1 and y2 at t = 1 s are

2.5 + 2(1) = 4.5 rad

for y1 and

1.0 + 2(1) = 3.0 rad

for y2.

Hint 7: The phasors and their sum at t = 1 are shown in the figure

below.
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1.0

1.0

y1

y2

-1.0

y1 (displaced)

y1+y2

-1.0

Problem 10 (page 74 of text)

[Statement] Does the function Aei(kx−ωt) satisfy the advection equation

as given in Eq. 2.27? What about the function Aei(kx+ωt)?

Hint 1: The advection equation is ∂y(x,t)
∂x = − 1

v
∂y(x,t)

∂t . If Aei(kx−ωt) sat-

isfies the equation, the left and right sides will be equal once the function

is plugged in.

Hint 2: The partial derivative ofAei(kx−ωt) with respect to x is (ik)Aei(kx−ωt) =

iky, as determined in Problem 1.

Hint 3: The partial derivative ofAei(kx−ωt) with respect to t is (−iω)Aei(kx−ωt) =

−iωy, as determined in Problem 1.

Hint 4: Plugging into the advection equation gives

iky = −i
(
−ω
v

)
y.

Everything cancels but

k =
ω

v
.

Hint 5: Solving for velocity gives v = ω/k, which is a valid velocity for

a wave moving to the right (as expected).

Hint 6: The spatial derivative of Aei(kx+ωt) is the same as before, while

the time derivative is positive instead of negative. Together, this means
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that

iky = i

(
−ω
v

)
y,

or

k = −ω
v
.

and a velocity of v = −ω/k. This is not a wave moving to the right, so

it is not a good solution.
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Example 1 (page 78 of text)

[Statement] Example: If the functions f and g in Eq. 3.10 both rep-

resent sine waves of amplitude A, how does the wavefunction y(x, t)

behave?

Hint 1: To answer this question, write f and g as

f(x+ vt) = A sin(kx+ ωt)

g(x− vt) = A sin(kx− ωt)

(if you’re concerned that v doesn’t appear explicitly in the right side of

these equations, recall from Chapter 1 that kx − ωt can be written as

k(x− ω
k t), and

ω
k = v, where v is the phase velocity of the wave).

Hint 2: Inserting these expressions for f and g into the general solution

for the wave equation (Eq. 3.10) gives

y = f(x+ vt) + g(x− vt)

= A sin(kx+ ωt) +A sin(kx− ωt).

Hint 3: But

sin(kx+ ωt) = sin(kx) cos(ωt) + cos(kx) sin(ωt)

and

sin(kx− ωt) = sin(kx) cos(ωt)− cos(kx) sin(ωt).
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Hint 4: So

y = A[sin(kx) cos(ωt) + cos(kx) sin(ωt)] +A[sin(kx) cos(ωt)− cos(kx) sin(ωt)]

= A[sin(kx) cos(ωt) + sin(kx) cos(ωt) + cos(kx) sin(ωt)− cos(kx) sin(ωt)]

= 2A sin(kx) cos(ωt).

Example 2 (page 83 of text)

[Statement] Example: Find y(x,t) for a wave with this initial displace-

ment condition:

y(x, 0) = I(x) =


5
(
1 + x

L
2

)
for L

2 < x < 0

5
(
1− x

L
2

)
for 0 < x < L

2

0 elsewhere

and initial transverse velocity condition

∂y(x, t)

∂t
|t=0 = 0.

Hint 1: Since you’re given the initial displacement (I) and transverse

velocity (V ) functions, you can use Eq. 3.16 to find y(x, t). But it’s of-

ten helpful to begin by plotting the initial displacement function, as in

the figure below. In this case, the initial transverse velocity is zero, so

there’s no need to plot that function.

Hint 2: Now that you have an idea of what the initial displacement looks

like, you’re ready to use Eq. 3.16:

y(x, t) =
1

2
I(x− vt) +

1

2
I(x+ vt) +

1

2v

∫ x+vt

x−vt

V (z)dz

=
1

2
[I(x− vt) + I(x+ vt)] + 0.

This is just the initial shape of the wave (I(x)) scaled by 1/2 and prop-

agating in both the negative- and positive-x directions while maintain-

ing its shape over time, as you can see in the figure below. In this fig-

ure, the tall triangle centered on x = 0 is the sum of 1
2 [I(x− vt)] and
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-20 -15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I(x)

x

-20 -15 -10 -5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y(x,t)

x

t0

t1
t2t2

t1

1
2 [I(x+ vt)] at time t=0, which is just I(x). At a later time t = t1, the

wavefunction I(x − vt) has propagated a distance vt1 to the right (to-

ward positive x), while the counterpropagating wavefunction I(x + vt)

has moved that same distance to the left (toward negative x), so the two
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component wavefunctions no longer overlap. As time progresses, the two

component wavefunctions continue to move apart, as can be seen by the

plots for t = t2.

Example 3 (page 89 of text)

[Statement] Example:Find the displacement y(x,t) produced by waves

on a string fixed at both ends.

Hint 1: Since the string is fixed at both ends, you know that the displace-

ment y(x, t) must be zero for all time at the locations corresponding to

the ends of the string. If you define one end of the string to have value

x = 0 and the other end to have value x = L (where L is the length of

the string), you know that y(0, t) = 0 and y(L, t) = 0. Separating y(x, t)

into the product of distance function X(x) = A cos (kx)+B sin (kx) and

time function T (t) means that

y(0, t) = X(0)T (t) = [A cos (0) +B sin (0)]T (t) = 0

[(A)(1) + (B)(0)]T (t) = 0.

Hint 2: Since this must be true at all time (t), this means that the

weighting coefficient A for the cosine term must equal zero. Applying

the boundary condition at the other end of the string (x = L) is also

useful:

y(L, t) = X(L)T (t) = [A cos (kL) +B sin (kL)]T (t) = 0

[0 cos (kL) +B sin (kL)]T (t) = 0.

Hint 3: Once again invoking the fact that this must be true over all

time, this can only mean that either B = 0 or sin (kL)=0. Since B = 0

corresponds to the supremely boring case of no displacement anywhere

on the string at any time (remember that you already know that A = 0),

you’ll have more fun if you consider the case for which B is non-zero and
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sin (kL) is zero. You know that k = 2π/λ, so in this case

sin (kL) = sin

(
2πL

λ

)
= 0

2πL

λ
= nπ

λ =
2L

n

where n can be any positive integer (taking n to be zero or negative

doesn’t lead to any interesting physics).

Example 4 (page 108 of text)

[Statement] Example: Verify the Fourier coefficients shown for the

triangle wave in Fig. 3.16. Assume that the spatial period (2L) is 1

meter, and the units of X(x) are also meters.

Hint 1: If you followed the discussion about this triangle wave, you al-

ready know that the DC term (A0) and the cosine coefficients (An)

should be non-zero and that the sine coefficients (Bn) should all be zero

(since this wave is an even function with non-zero average value). You

can verify those conclusions using Eqs. 3.30, but first you have to figure

out the period of X(x) and the equation for X(x).

Hint 2: You can read the period right off the graph: this waveform repeats

itself with a period of one meter. Since the spatial period is represented

as 2L in the Fourier series equations, this means that L = 0.5 meter.

Hint 3: To determine the equation for X(x), notice that this function is

made up of straight lines, and the equation of a straight line is y = mx+b,

where m is the slope of the line and b is the y-intercept (the value of y

at the point at which the line crosses the y-axis).

Hint 4: You can choose to analyze any of the complete cycles shown on

the graph, but in many cases you can save time and effort by selecting

a cycle that’s centered on x = 0 (you’ll see why that’s true later in this

example). So instead of considering a cycle consisting of one of the tri-

angles with the point at the top (such as the triangle between x = 0 and

x = 2L), you can consider the “inverted triangle” (with the point at the
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bottom) between x = −L and x = L.

Hint 5: The slope of the line between x = −L = −0.5 and x = 0 is -2

(because the “rise” is -1 and the “run” is 0.5, so the rise over the run is
−1
0.5 = −2) and the y-intercept is zero. So the equation for this portion

of X(x) is X(x) = mx+ b = −2x+ 0.

Hint 6: A similar analysis between x = 0 and x = L = 0.5 gives the

equation X(x) = mx + b = 2x + 0. With these equations in hand, you

can now plug X(x) into the equation for A0:

A0 =
1

2L

∫ L

−L

X(x)dx =
1

2(0.5)

[∫ 0

−0.5

−2xdx+

∫ 0.5

0

2xdx

]
= (1)

[
−2(

x2

2
)|0−0.5 + 2(

x2

2
)|0.50

]
= 0− (−0.25) + 0.25− 0

= 0.5

and into the equation for An:

An =
1

L

∫ L

−L

X(x) cos (
n2πx

2L
)dx

=
1

0.5

[∫ 0

−0.5

−2x cos (2nπx)dx+

∫ 0.5

0

2x cos (2nπx)dx

]
.

Hint 7: Using integration by parts (or looking up
∫
x cos (ax)dx in a table

of integrals), you’ll find that
∫
x cos (ax)dx = x

a sin (ax)+ 1
a2 cos (ax), so

the equation for An becomes

An =
−2

0.5

[
x

2nπ
sin (2nπx)|0−0.5 +

1

4n2π2
cos (2nπx)|0−0.5

]
+

2

0.5

[
x

2nπ
sin (2nπx)|0.50 +

1

4n2π2
cos (2nπx)|0.50

]
=

−2

0.5

[
0− −0.5

2nπ
sin (2nπ(−0.5)) +

1

4n2π2
(1− cos (2nπ(−0.5)))

]
+

2

0.5

[
0.5

2nπ
sin (2nπ(0.5))− 0 +

1

4n2π2
(cos (2nπ(0.5))− 1)

]
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Hint 8: Recall that sin (nπ) = 0 and cos (nπ) = (−1)n, so

An =
−2

0.5

[
0− 0 +

1

4n2π2
(1− (−1)n)

]
+

2

0.5

[
0− 0 +

1

4n2π2
((−1)n − 1)

]
=

−4

0.5

[
1

4n2π2
(1− (−1)n)

]
=

[
−2

n2π2
(1− (−1)n)

]
=

−4

n2π2
for odd n.

Hint 9: Fortunately, determining the Bn coefficients for this waveform is

much easier. Since

Bn =
1

L

∫ L

−L

X(x) sin (
n2πx

2L
)dx

you can see by inspection that Bn must be zero. What exactly is in that

inspection? Well, you know that X(x) is an even function, since it has

the same values at −x as it does at +x. You also know that the sine

function is odd, since sin (−x) = − sin (x), and the product of an even

function (like X(x)) and an odd function (like the sine function) is odd.

But when you integrate an odd function between limits that are sym-

metric about x = 0 (such as
∫ L

−L
), the result is zero. Hence you know

that Bn must equal zero for all values of n. This is one reason why choos-

ing the cycle between x = −L and x = L is advantageous in this case

(another reason is that
∫ L

−L
(even function)dx = 2

∫ L

0
(even function)dx,

and both X(x) and the cosine function are even, so you could have sim-

plified the calculation of the An coefficients as well).

Hint 10: So the Fourier coefficients for the triangle wave shown in Fig.

3.16 are indeed

A0 =
1

2
An =

−4

π2n2
Bn = 0

as expected from Fig. 3.16. If you’d like more practice at finding Fourier

coefficients, you’ll find additional problems like this at the end of this

chapter, with full solutions on the book’s website.

Example 5 (page 114 of text)
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[Statement] Example: Find the Fourier transform of a single rectangu-

lar distance-domain pulse X(x) with height A over interval 2L centered

on x = 0.

Hint 1: Since the pulse is a distance-domain function, you can use Eq.

3.33 to transform X(x) to K(k).

Hint 2: Since X(x) has amplitude A between positions x = −L and

x = L and zero amplitude at all other times, this becomes

K(k) =
1√
2π

∫ ∞

−∞
X(x)e−ikxdt =

∫ L

−L

Ae−ikxdt

=
1√
2π
A

1

−ik
e−ikx|L−L =

1√
2π

A

−ik

[
e−ikL − e−ik(−L)

]
=

1√
2π

2A

k

[
e−ikL − eikL

−2i

]
=

1√
2π

2A

k

[
eikL − e−ikL

2i

]
.

Hint 3: Euler says the term in square brackets is equal to sin kL, so

K(k) =
1√
2π

2A

k
sin kL

and multiplying by L/L makes this

K(k) =
A(2L)√

2π

[
sin kL

kL

]
.

This explains the sin (x)
x shape of the wavenumber spectrum of the rect-

angular pulse shown in Fig. 3.22.

[Statement] Problem 1 (page 124 of text)

[Statement] Show that the expression C sin (ωt+ ϕ0) is equivalent to

A cosωt+B sinωt, and write equations for C and ϕ0 in terms of A and

B.

Hint 1: Apply the identity

sin (A+B) = sinA cosB + cosA sinB

to the expression C = sin (ωt+ ϕ0).
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Hint 2: Set C = sin (ωt+ ϕ0) = C sinωt cosϕ0 + cosωt sinϕ0 equal to

A cosωt+B sinωt.

Hint 3: If

C sinωt cosϕ0 + cosωt sinϕ0 = A cosωt+B sinωt

then it must be true that

A = C sinϕ0

and

B = C cosϕ0

which are the desired relationships of A and B to C and ϕ0.

Hint 4: To find ϕ0 in terms of A and B, divide this expression for A by

the expression for B, which gives

A

B
=
C sinϕ0
C cosϕ0

= tanϕ0

so

arctanϕ0 =
A

B
.

Hint 5: To find C in terms of A an B, square and add the expressions

for A and B

A2 +B2 = (C sinϕ0)
2 + (C cosϕ0)

2

= C2(sin2 ϕ0 + cos2 ϕ0) = C2.

So C =
√
A2 +B2.

[Statement] Problem 2 (page 124 of text)

[Statement] Sketch the two-sided wavenumber spectrum of the function

X(x) = 6 + 3 cos (20πx− π/2)− sin (5πx) + 2 cos (10πx+ π).

Hint 1: Look at each of the four terms of X(x), and notice that the first

term has no x-dependence. So it’s the k = 0 term, and it has amplitude

of 6. So its contribution to the spectrum of X(x) looks like this:
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6

 k

Amplitude

-20π

5

4

3

2

1

-15π -10π -5π 5π 10π 15π 20π0

Hint 2: The second term 3 cos (20πx− π/2) is equivalent to 3 sin (20πx),

since cos (θ − π/2) = sin θ. This term has wavenumber k = 20π and am-

plitude of 3, so its positive and negative wavenumber components each

have height of 1.5:

6

 k

Amplitude

-20π

5

4

3

2

1

-15π -10π -5π 5π 10π 15π

20π

0
-1

-2

Hint 3: The third term − sin (5πx) is equivalent to 3 sin (20πx), has

wavenumber k = 5π and amplitude of -1, so its positive and negative

wavenumber components each have height of 0.5:
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6

 k

Amplitude

-20π

5

4

3

2

1

-15π -10π

-5π

5π 10π 15π 20π0
-1

-2

Hint 4: The fourth term 2 cos (10πx+ π) is equivalent to −2 cos (10πx),

since cos (θ + π) = − cos θ. This term has wavenumber k = 10π and

amplitude of -2, so its positive and negative wavenumber components

each have height of 1.0:

6

 k

Amplitude

-20π

5

4

3

2

1

-15π

-10π

-5π 5π

10π

15π 20π0
-1

-2
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Hint 5: Combining the contributions of all four terms, the spectrum of

X(x) is:

6

 k

Amplitude

-20π

5

4

3

2

1

-15π

-10π -5π

5π

10π

15π

20π
0

-1

-2

[Statement] Problem 3 (page 124 of text)

[Statement] Find the Fourier series representation of a periodic function

for which one period is given by f(x) = x2 for x between −L and +L.

Hint 1:To find the DC term A0, use A0 = 1
2L

∫ L

−L
X(x)dx with X(x) =

x2 between the limits of −L and L.

Hint 2: Integrating gives

A0 =
1

2L

∫ L

−L

X(x)dx =
1

2L

∫ L

−L

x2dx

=
1

2L

(
1

3
x3|L−L

)
=

1

2L

(
1

3
L3 − 1

3
(−L)3

)
=

1

2L

(
2

3
L3

)
=
L2

3
.
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Hint 1:To find the cosine coefficientsAn, useAn = 1
L

∫ L

−L
X(x) cos

(
n2πx
2L

)
dx

with X(x) = x2 between the limits of −L and L:

An =
1

L

∫ L

−L

X(x) cos

(
n2πx

2L

)
dx =

1

L

∫ L

−L

x2 cos (
n2πx

2L
)dx

Hint 2: This can be integrated with the help of∫
x2 cos (ax)dx =

2x

a2
cos (ax) +

(
x2

a
− 2

a3

)
sin (ax)

in which a represents nπ/L in this case.

Hint 3: Integrating gives

An =
1

L

{
2L2

n2π2
x cos

(nπx
L

)
+

[
x2L

nπ
− 2L3

n3π3

]
sin
(nπx
L

)}∣∣∣∣L
−L

=
1

L

2L2

n2π2

[
(L) cos

(
nπL

L

)
− (−L) cos

(
nπ(−L)

L

)]
+ 0

=
1

L

2L2

n2π2

[
2 cos

(
nπL

L

)]
=

4L2

n2π2
cos (nπ)

Hint 4: Since the function x2 is even (because (−x)2 = (+x)2), the sine

coefficients (Bn) must be zero for all n.

[Statement] Problem 4 (page 124 of text)

[Statement] Verify the coefficients A0, An, and Bn for the periodic

triangle wave shown in Fig. 3.15.

Hint 1: Before you can use Eqs. 3.30 to find A0, An, and Bn, it’s neces-

sary to write a functionX(x) that describes the waveform over one cycle.

Hint 2: Consider one cycle of the waveform shown in Fig. 3.15 between

x = −L and x = L, which consists of straight lines, each of which may

be written as an equation of the form y = mx+ b, where m is the slope

of the line and b is the line’s y-intercept.

Hint 3: The first segment of this cycle, between x = −L and x = −L/2,
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has slope m = −2/L, as you can see by taking the rise (−1) divided

by the run (L/2). The y-intercept for this segment is -2. Thus for this

segment, the equation for X(x) is

X(x) = mx+ b =
−2

L
x+ (−2) = −2

( x
L

+ 1
)
.

Hint 4: The second segment of this cycle, between x = −L/2 and x =

+L/2, has slope m = 2/L, which is the rise of 2 divided by the run of

L; in this case the y-intercept is 0. Thus for this segment, the equation

for X(x) is

X(x) = mx+ b =
2

L
x+ 0 =

2

L
x.

Hint 5: The third segment of this cycle, between x = L/2 and x = L,

has the same slope as the first segment (m = −2/L), since the rise is

again −1 and the run is L/2. But in this case the y-intercept is +2, so

for this segment, the equation for X(x) is

X(x) = mx+ b =
−2

L
x+ (+2) = −2

( x
L

− 1
)
.

Hint 6: With the equations forX(x) for each of the segments in hand, you

can now integrate X(x) over the appropriate limits to find the Fourier

coefficients. For the DC (k = 0) term, you can find A0 by doing the in-

tegration A0 = 1
2L

∫ L

−L
X(x)dx, but you can save time by observing that

the area under the X(x) function over one cycle is zero, since there’s

exactly as much area under the horizontal axis as there is above the

axis. Thus A0 = 0 for this waveform.

Hint 7: For the Fourier cosine coefficients, you can find An by doing the

integration An = 1
L

∫ L

−L
X(x) cos

(
n2πx
2L

)
dx, but once again you can save

time by examining the function X(x) before you integrate. In this case,

notice that the function X(x) is odd, so the integral between symmetric

limits (−L and L in this case) of the product of this function with the

even cosine function must give zero (since multiplying an odd function

by an even function gives an odd function, and the integral of an odd
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function between symmetric limits is zero). Thus An = 0 for this wave-

form.

Hint 8: For the Fourier sine coefficients, you can find Bn by doing the

integration Bn = 1
L

∫ L

−L
X(x) sin

(
n2πx
2L

)
dx. Using the equations for each

of the three segments of X(x) (between −L and −L/2, between −L/2
and L/2, and between L/2 and L) makes three integrals.

Bn =
1

L

∫ −L/2

−L

−2
( x
L

+ 1
)
sin

(
n2πx

2L

)
dx+

1

L

∫ L/2

−L/2

2

L
x sin

(
n2πx

2L

)
dx

+
1

L

∫ L

L/2

−2
( x
L

− 1
)
sin

(
n2πx

2L

)
dx

Hint 9: The first of these integrals expands into two integrals:

First Segment =
−2

L

[∫ −L/2

−L

( x
L

)
sin
(nπx
L

)
dx+

∫ −L/2

−L

(1) sin
(nπx
L

)
dx

]

=
−2

L2

{
L2 sin

(
nπx
L

)
n2π2

−
Lx cos

(
nπx
L

)
nπ

−
L2 cos

(
nπx
L

)
nπ

}∣∣∣∣∣
−L/2

−L

in which the relations
∫
x sin (ax)dx = sin (ax)

a2 −x cos (ax)
a and

∫
sin (ax)dx =

− cos (ax)
a were used, with a representing nπ

L in this case.

Plugging in the limits gives these terms:

First Segment =
2 sin

(
nπ
2

)
n2π2

− 0−
cos
(
nπ
2

)
nπ

+
2 cos (nπ)

nπ
+

2 cos
(
nπ
2

)
nπ

− 2 cos (nπ)

nπ

=
2 sin

(
nπ
2

)
n2π2

+
cos
(
nπ
2

)
nπ

Hint 10: The integral of the second segment (between −L/2 and L/2)

gives:

Second Segment =
2

L2

{
L2 sin

(
nπx
L

)
n2π2

−
Lx cos

(
nπx
L

)
nπ

}∣∣∣∣∣
L/2

−L/2

=
4 sin

(
nπ
2

)
n2π2

−
2 cos

(
nπ
2

)
nπ

.
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Hint 11: Like the first segment, the integral of the third segment (between

L/2 and L) expands into two integrals:

Third Segment =
−2

L

[∫ L

L/2

( x
L

)
sin
(nπx
L

)
dx−

∫ L

L/2

(1) sin
(nπx
L

)
dx

]

=
−2

L2

{
L2 sin

(
nπx
L

)
n2π2

−
Lx cos

(
nπx
L

)
nπ

+
L2 cos

(
nπx
L

)
nπ

}∣∣∣∣∣
L

L/2

Plugging in the limits gives these:

Third Segment = 0 +
2 sin

(
nπ
2

)
n2π2

+
cos (nπ)

nπ
−

cos
(
nπ
2

)
nπ

− 2 cos (nπ)

nπ
+

2 cos
(
nπ
2

)
nπ

=
2 sin

(
nπ
2

)
n2π2

+
cos
(
nπ
2

)
nπ

Hint 12: Adding the terms from all three segments gives

Bn =
2 sin

(
nπ
2

)
n2π2

+
cos
(
nπ
2

)
nπ

+
4 sin

(
nπ
2

)
n2π2

−
2 cos

(
nπ
2

)
nπ

+
2 sin

(
nπ
2

)
n2π2

+
cos
(
nπ
2

)
nπ

=
8 sin

(
nπ
2

)
n2π2

.

[Statement] Problem 5 (page 124 of text)

[Statement] If a string (fixed at both ends) is plucked rather than struck

(non-zero initial displacement, zero initial velocity), show that the dis-

placement at position x and time t is

y(x, t) =
∞∑

n=1

Bn sin
(nπx
L

)
cos

(
nπvt

L

)
.

Hint 1: For a plucked string, the initial displacement of each segment of

the string is specified by some function of x, and the initial velocity of

each segment is zero.



52 Wave Components click-throughs

Hint 2: As in the case of the struck string discussed in Section 3.2, begin

by writing the displacement as the product of a spatial function X(x)

and a temporal function T (t):y(x, t) = X(x)T (t).

Hint 3: Write the time function T (t) as

T (t) = C cos (kvt) +D sin (kvt) = C cos

(
2π

λ
vt

)
+D sin

(
2π

λ
vt

)
and take the derivative of T (t) with respect to time:

∂T (t)

∂t
= −2π

λ
vC sin

(
2π

λ
vt

)
+

2π

λ
vD cos

(
2π

λ
vt

)
.

Hint 4: Since the initial velocity of each string segment must be zero, set

this expression for ∂T (t)
∂t equal to zero at time t = 0:

−2π

λ
vC sin

(
2π

λ
vt

)
+

2π

λ
vD cos

(
2π

λ
vt

)
= 0

which, at t = 0, gives

2π

λ
vD cos

(
2π

λ
v(0)

)
= 0

which means D = 0.

Hint 5: Thus

T (t) = C cos (kvt) +D sin (kvt) = C cos

(
2π

λ
vt

)
+ 0.

Hint 6: Using λ = 2L/n for a string fixed at both ends, this is

T (t) = C cos
(nπ
L
vt
)
+ 0.

Hint 7: This means that the general solution for T (t) is the sum of the

cosine terms for each value of n:

T (t) =

∞∑
n=1

Cn cos
(nπ
L
vt
)
.
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Hint 8: Combining the expressions for X(x) an T (t) and absorbing the

Cn weighting coefficients into Bn makes the solution for displacement

y(x, t) = X(x)T (t) =
∞∑

n=1

Bn sin
(nπx
L

)
cos

(
nπvt

L

)
.

[Statement] Problem 6 (page 124 of text)

[Statement] Find the Bn coefficients for the plucked string of the previ-

ous problem if the initial displacement is given by the function shown

below.

y(x,0)

y0

xL/2 L

Hint 1: To make the displacement into a periodic function, extend the

function as shown in the figure below. This is the odd extension of the

function, since y(−x, t) = −y(x, t), which means that the An coefficients

will be zero and the Bn coefficients will be non-zero. You could choose

to form an even extension by making y(−x, t) = y(x, t), in which case

the Bn coefficients would be zero and the An coefficients (and A0) would

be non-zero.

y(x,0)

y0

x

L/2 L-L/2-L

Hint 2: This is now similar to the wavefunction in Problem 4, with the

exception that the height of the wavefunction is y0 in this case (rather
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than one). Thus the Fourier coefficients A0 and An are zero, and you

can find the Bn coefficients using the same approach as in Problem 4.

Hint 3: In this case, the first segment of this cycle, between x = −L
and x = −L/2, has slope m = −2y0/L, as you can see by taking the

rise (−y0) divided by the run (L/2). The y-intercept for this segment is

−2y0. Thus for this segment, the equation for X(x) is

X(x) = mx+ b =
−2y0
L

x+ (−2y0) = −2y0

( x
L

+ 1
)
.

Hint 4: The second segment of this cycle, between x = −L/2 and x =

+L/2, has slope m = 2y0/L, which is the rise of 2y0 divided by the run

of L; in this case the y-intercept is 0. Thus for this segment, the equation

for X(x) is

X(x) = mx+ b =
2y0
L
x+ 0 =

2y0
L
x.

Hint 5: The third segment of this cycle, between x = L/2 and x = L,

has the same slope as the first segment (m = −2y0/L), since the rise is

again −y0 and the run is L/2. But in this case the y-intercept is +2y0,

so for this segment, the equation for X(x) is

X(x) = mx+ b =
−2y0
L

x+ (+2y0) = −2y0

( x
L

− 1
)
.

Hint 6: Using these equations the segments of X(x), the integrals for Bn

are identical to those of Problem 4 with an additional factor of y0 in the

numerator.

Hint 7: The resulting Fourier sine coefficients differ from those of Prob-

lem 4 only by the factor y0:

Bn =
8y0 sin

(
nπ
2

)
n2π2

.

[Statement] Problem 7 (page 124 of text)
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[Statement] Find the Bn coefficients for a hammered string with initial

displacement of zero and initial velocity given by the function shown

below.

v(x,0)

v0

xL/2 L

Hint 1: As described in Section 3.2, for a hammered or struck string

initially at equilibrium, one boundary condition specifies that the initial

displacement y(x, 0)=0 at each location at time t = 0, and another

boundary condition specifies that the initial transverse velocity ∂y(x,t)
∂t

equals the imparted velocity v0 at time t = 0. The solution for the

displacement y(x, t) is

y(x, t) = X(x)T (t) =
∞∑

n=1

Bn sin
(nπx
L

)
sin

(
nπvt

L

)
. (3.1)

Hint 2: In this case, the initial velocity function v(x) is given by the

graph, and this must equal the time derivative of the displacement y(x, t)

at time t = 0. Taking the time derivative of y(x, t) gives

∂y(x, t)

∂t
= X(x)

∂T (t)

∂t
=

∞∑
n=1

Bn sin
(nπx
L

)
cos

(
nπvt

L

)(nπv
L

)
.

which, at time t = 0, is

v0 =

∞∑
n=1

Bn sin
(nπx
L

)
cos (0)

(nπv
L

)
=

∞∑
n=1

Bn

(nπv
L

)
sin
(nπx
L

)
.

Hint 3: Comparing this expression for v0 to the expression for the spatial

component (X(x)) of y(x, t) in Problem 5 (y(x, t) =
∑∞

n=1Bn sin
(
nπx
L

)
),
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you can see that the only difference is the presence of the factor nπv/L

in the expression for v0. That means you can apply Fourier analysis to

this velocity function in the same way you applied Fourier analysis to

the displacement function in Problem 6.

Hint 4: Begin by making the initial velocity into a periodic function

by extending the function as shown in the figure below. As in Problem

6, this is the odd extension of the function, since v(−x, 0) = −v(x, 0),
which means that the An coefficients will be zero and the Bn coefficients

will be non-zero.

v(x,0)

v0

x

L/2 L-L/2-L

Hint 5: This is now similar to the wavefunction in Problem 6, with the

exception that the height of the wavefunction is v0 in this case (rather

than y0). Thus the Fourier coefficients A0 and An are zero, and you can

find the Bn coefficients using the same approach as in Problem 6.

Hint 6: In this case, the first segment of this cycle, between x = −L
and x = −L/2, has slope m = −2v0/L, as you can see by taking the

rise (−v0) divided by the run (L/2). The y-intercept for this segment is

−2v0. Thus for this segment, the equation for X(x) is

X(x) = mx+ b =
−2v0
L

x+ (−2v0) = −2v0

( x
L

+ 1
)
.

Hint 7: The second segment of this cycle, between x = −L/2 and x =

+L/2, has slope m = 2v0/L, which is the rise of 2v0 divided by the run

of L; in this case the y-intercept is 0. Thus for this segment, the equation

for X(x) is

X(x) = mx+ b =
2v0
L
x+ 0 =

2v0
L
x.
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Hint 8: The third segment of this cycle, between x = L/2 and x = L,

has the same slope as the first segment (m = −2v0/L), since the rise is

again −v0 and the run is L/2. But in this case the y-intercept is +2v0,

so for this segment, the equation for X(x) is

X(x) = mx+ b =
−2v0
L

x+ (+2v0) = −2y0

( x
L

− 1
)
.

Hint 9: Using these equations the segments of X(x), the integrals for

Bn are identical to those of Problem 6 with v0 in place of y0 in the

numerator.

Hint 10: The resulting Fourier sine coefficients differ from those of Prob-

lem 6 only by the factor v0:

Bn =
8v0 sin

(
nπ
2

)
n2π2

.

Hint 11: Since these are the Fourier sine coefficients for the velocity func-

tion, the displacement-function Fourier coefficients can be found from

Bn(velocity) =
8v0 sin

(
nπ
2

)
n2π2

= Bn(displacement)
(nπv
L

)
or

Bn(displacement) =
Bn(velocity)(

nπv
L

) =
8v0 sin

(
nπ
2

)
n2π2

(
L

nπv

)
=

8v0L sin
(
nπ
2

)
n3π3v

.

[Statement] Problem 8 (page 124 of text)

[Statement] Find the Fourier Transform of the Gaussian function T (t) =√
α
π e

−αt2 .

Hint 1: You can use Eq. 3.35 to find the Fourier Transform of a time-

domain function:
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F (f) =

∫ ∞

−∞
T (t)e−i(2π t

T )dt =

∫ ∞

−∞
T (t)e−i(2πft)dt.

Hint 2: In this case, T (t) =
√

α
π e

−αt2 , so

F (f) =

∫ ∞

−∞

√
α

π
e−αt2e−i(2πft)dt =

√
α

π

∫ ∞

−∞
e−αt2e−i(2πft)dt

Hint 3: You can integrate this expression by parts or use an integral

table; here’s a helpful identity:∫ ∞

−∞
e−ax2

e−2bxdx =

√
π

a
e

b2

a a > 0

Hint 4: Applying this with x = t, a = α and b = iπf gives

F (f) =

√
α

π

√
π

α
e

(−iπf)2

α

= e−
π2

α f2

which is also a Gaussian function. Thus the Fourier Transform of a

Gaussian function in one domain is a Gaussian function in the trans-

form domain.

[Statement] Problem 9 (page 124 of text)

[Statement] Show that the complex-exponential version of the Fourier

series (Eq. 3.31) is equivalent to the version using sines and cosines (Eq.

3.25).

Hint 1: To show that the complex-exponential version of the Fourier

Series

X(x) =

∞∑
n=−∞

Cne
i(n2πx

2L ).

is equivalent to the version using sines and cosines

X(x) = A0 +

∞∑
n=1

[
An cos

n2πx

2L
+Bn sin

n2πx

2L

]
.
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begin by expanding the sine and cosine terms using the Euler relations:

cos θ =
eiθ + e−iθ

2

and

sin θ =
eiθ − e−iθ

2i
.

Hint 2: Using these Euler relations with θ = n2πx
2L makes X(x)

X(x) = A0 +
∞∑

n=1

[
An

ei
n2πx
2L + e−in2πx

2L

2
+Bn

ei
n2πx
2L − e−in2πx

2L

2i

]

= A0 +
∞∑

n=1

[
An

ei
n2πx
2L + e−in2πx

2L

2
− iBn

ei
n2πx
2L − e−in2πx

2L

2

]
since 1

i = −i.

Hint 3: Gathering terms gives

X(x) = A0 +
∞∑

n=1

[
An − iBn

2

] [
ei

n2πx
2L

]
+

∞∑
n=1

[
An + iBn

2

] [
e−in2πx

2L

]

Hint 4: Setting these two terms equal to the complex-exponential version

of the Fourier series gives

X(x) = A0 +
∞∑

n=1

[
An − iBn

2

] [
ei

n2πx
2L

]
+

∞∑
n=1

[
An + iBn

2

] [
e−in2πx

2L

]
=

∞∑
n=−∞

Cne
i(n2πx

2L )

which is true if Cn = (An−iBn)/2 for positive n and Cn = (An+iBn)/2

for negative n.

[Statement] Problem 10 (page 124 of text)

[Statement] Under certain conditions, the dispersion relation for deep-

water waves is ω =
√
gk, in which g is the acceleration of gravity. Com-

pare the group velocity to the phase velocity for this type of wave.
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Hint 1: You can find the group velocity using vgroup = dω
dk and the phase

velocity using vphase =
ω
k .

Hint 2: In this case ω =
√
gk, so the group velocity is

vgroup =
dω

dk
=
d(gk)

1
2

dk
=

1

2
(gk)−

1
2 (g) =

1

2

g√
gk

=
1

2

√
g

k

Hint 3: For ω =
√
gk the phase velocity is

vphase =
ω

k
=

√
gk

k
=

√
g

k

which is twice the group velocity.
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Example 1 (page 133 of text)

[Statement] Example: Compare the displacement, velocity, and accel-

eration for a transverse harmonic wave on a string.

Hint 1: If the displacement y(x, t) is given by A sin (kx− ωt), the trans-

verse velocity of any segment of the string is given by vt = ∂y
∂t =

−Aω cos (kx− ωt).

Hint 2: The transverse acceleration is at = ∂2y
∂t2 = −Aω2 sin (kx− ωt).

Note that this wave is moving in the positive x-direction, since the sign

of the kx term is opposite to the sign of the ωt term.

x

y = A sin(kx - ωt)

= -Aω cos(kx - ωt) = vt

�y
�t

= -Aω2 sin(kx - ωt) = at

�2y
�t2

All waveforms
shown at time
t= 0

ω = 1

A

-A

Transverse
velocity = vt

Displacement = y

Transverse
acceleration = at

x1 x3x2

Hint 3: Plotting the displacement, transverse velocity, and transverse
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acceleration on the same graph, as in figure shown above, reveals some

interesting aspects of wave behavior. This figure is a snapshot of y, vt,

and at at time t=0, and the angular frequency has been taken as ω = 1

in order to scale all three waveforms to the same vertical size.

Example 2 (page 141 of text)

[Statement] Example: Determine the speed of sound in air.

Hint 1: Sound is a type of pressure wave, so you can use Eq. 4.12 to

determine the speed of sound in air, if you know the values of the bulk

modulus and density of air. Since the air pressure may be more readily

available than bulk modulus in the region of interest, you may find it

helpful to write this equation in a form that explicitly includes pressure.

Hint 2: To do that, use the definition of bulk modulus (Eq. 4.7) to write

Eq. 4.12 as

v =

√
K

ρ0
=

√√√√ dP
dρ
ρ0

ρ0
=

√
dP

dρ
. (4.13)

Hint 3: The quantity dP
dρ can be related to the equilibrium pressure (P0)

and density (ρ0) using the adiabatic gas law. Since an adiabatic process is

one in which energy does not flow between a system and its environment

by heat, using the adiabatic law means that we’re assuming that the re-

gions of compression and rarefaction produced by the sound wave will

not lose or gain energy by heating as the wave oscillates. That’s a good

assumption for sound waves in air under typical conditions, because the

flow of energy by conduction (molecules colliding and transferring kinetic

energy) occurs over distances comparable to the mean free path (the

average distance molecules travel between collisions). That distance is

several orders of magnitude smaller than the distance between regions of

compression and rarefaction (that is, half a wavelength) in sound waves.

So the squeezing and stretching of the air by the wave produces regions

of slightly higher and slightly lower temperature, and the molecules do

not move far enough to restore equilibrium before the wave causes the

compressed regions to rarefy and the rarified regions to compress. Thus

the wave action may indeed be considered to be an adiabatic process1.

1 When Newton first calculated the speed of sound in his great Principia, he
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Hint 4: To apply the adiabatic gas law, write the relationship between

pressures (P ) and volume (V ) as

PV γ = constant (4.14)

in which γ represents the ratio of specific heats at constant pressure

and constant volume and has a value of approximately 1.4 for air under

typical conditions.

Hint 5: Since volume is inversely proportional to density ρ, Eq. 4.14 can

be written as

P = (constant)ργ

so

dP

dρ
= (constant)γργ−1 = γ

(constant)ργ

ρ
.

Hint 6: But (constant)ργ = P , so this is

dP

dρ
= γ

P

ρ
.

Hint 7: Inserting this into Eq. 4.13 gives

v =

√
γ
P

ρ
.

For typical values of air of P = 1×105 Pa and ρ = 1.2 kg/m3, this yields

a value for the speed of sound of

v =

√
1.4

1× 105

1.2
= 342 m/s

which is very close to the measured value.

Example 3 (page 147 of text)

[Statement] Example: What are the kinetic, potential, and total me-

chanical energy of a segment of string of length dx with wavefunction

y(x, t) = A sin (kx− ωt)?

instead used a constant-temperature law (Boyle’s Law), which caused him to
underestimate the speed of sound by about 15%.
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Hint 1: For this wavefunction, the transverse velocity is vt = ∂y
∂t =

−Aω cos (kx− ωt), so by Eq. 4.15 the kinetic energy (KE) is

KEsegment =
1

2
(µdx)

(
∂y

∂t

)2

=
1

2
µA2ω2 cos2 (kx− ωt)dx (4.20)

Hint 2: The slope of the wavefunction is ∂y
∂x = Ak cos (kx− ωt), so by

Eq. 4.16 the potential energy (PE) is

PEsegment = T

[
1

2

(
∂y

∂x

)2

dx

]
= T

[
1

2
A2k2 cos2 (kx− ωt)dx

]
.

Hint 3: The tension (T ) can be eliminated from this equation using the

relationships vphase =
√

T
µ and vphase = ω

k , which can be combined to

give T = µω2

k2 . Thus

PEsegment =

(
µ
ω2

k2

)
1

2
A2k2 cos2 (kx− ωt)dx

or

PEsegment =
1

2
µA2ω2 cos2 (kx− ωt)dx. (4.21)

Hint 4: If you compare Eq. 4.21 with Eq. 4.20, you’ll see that the seg-

ment’s kinetic and potential energies are identical. Adding these expres-

sions together gives the total energy density:

MEsegment = µA2ω2 cos2 (kx− ωt)dx (4.22)

Example 4 (page 150 of text)

[Statement] Example: Find the power in a transverse mechanical wave

with wavefunction y(x, t) = A sin kx− ωt.

Hint 1: As discussed earlier in this section, for this type of harmonic

wave the transverse velocity is vphase =
√

T
µ , which can be combined

with the expression vphase =
ω
k to give T = µω2

k2 . Thus

P = (
√
µT )v2t =

[√
µ

(
µ
ω2

k2

)]
v2t

= µ
ω

k
v2t .
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Hint 2: But for this wave vt = −ωA cos (kx− ωt), so

P = µ
ω

k
[−ωA cos (kx− ωt)]2

= µ
ω3

k
[A2 cos2 (kx− ωt)].

Hint 3: To find the average power, recall that the average value of cos2

over many cycles is 1/2, so the average power in a harmonic wave of

amplitude A is

Pavg = µ
ω3

k

[
A2

(
1

2

)]
=

1

2
µA2ω2

(ω
k

)
or

Pavg =
1

2
µA2ω2vphase =

1

2
ZA2ω2. (4.24)

We’ve written this in several forms to emphasize the relationships be-

tween the string parameters of linear mass density µ, phase velocity

vphase, and impedance Z (which is
√
µT =

√
µ2 ω2

k2 = µvphase).

Example 5 (page 159 of text)

[Statement] Example:Consider a transverse pulse with maximum dis-

placement of 2 cm propagating in the positive-x direction on a string

with mass density of 0.15 g/cm and tension of 10N. What happens if

the pulse enounters a short section of string with twice the mass density

and the same tension?

Hint 1: A sketch of this situation is shown in the figure below. As you can

see in the top portion of the figure, there are two interfaces between the

two strings. At the first (left) interface, a pulse traveling in the positive-

x direction will be going from a medium with impedance Zlight into a

medium with impedance Zheavy. So for the rightward-moving pulse at

the left interface, Z1 = Zlight and Z2 = Zheavy.

As you can see in the lower portion of the figure, some fraction of

the pulse will be reflected (leftward) from the left interface, and the re-

mainder of the pulse will be transmitted (rightward) through the first

interface. After propagating through the heavy section of string, that

transmitted pulse will encounter the second (right) interface. At that

interface it will be going from a medium with impedance Zheavy into a

medium with impedance Zlight. So for a rightward moving pulse at the

right interface Z1 = Zheavy and Z2 = Zlight. As happened at the left
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Zlight = (µlightTlight)
1/2 Zheavy = (µheavyTheavy)

1/2

Original
pulse

Pulse transmitted
through interface 1

Pulse transmitted
through interface 2

Pulse re�ected
from interface 1

Pulse re�ected
from interface 2

Zlight = (µlightTlight)
1/2

Interface 1 Interface 2

x

interface, some portion of the pulse will be reflected (leftward) from the

second interface, and another portion will be transmitted (rightward)

through that interface.

Hint 2: To determine the amplitude of the pulse transmitted through

each interface, you can use Eq. 4.28 with the appropriate values of

impedances Z1 and Z2.

Hint 3: You can use Eq. 4.26 to find the impedances after converting the

linear mass density to SI units (0.15 g/cm = 0.015 kg/m):

Z1 =
√
µlightTlight =

√
(0.015kg/m)(10N) = 0.387 kg/s

Z2 =
√
µheavyTheavy =

√
2(0.015kg/m)(10N) = 0.548 kg/s.

So the transmission coefficient at the left interface is

t =
2Z1

Z1 + Z2
=

(2)(0.387)

0.387 + 0.548
= 0.83.

Hint 4: Thus in propagating from the light string to the heavy string,

the amplitude of the pulse is reduced to 83% of its original value. That

reduced-amplitude pulse propagates rightward and is further reduced in

amplitude at the second (right) interface. In that case, the heavy string is

the medium in which the incident wave propagates, and the light string

is the medium of the transmitted wave. Since Z1 refers to the medium

in which the incoming and reflected waves propagate and Z2 refers to
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the medium in which the transmitted wave propagates, for this interface

the impedances are Z1 = 0.548 kg/s and Z2 = 0.387 kg/s. This makes

the transmission coefficient at the right interface

t =
2Z1

Z1 + Z2
=

(2)(0.548)

0.548 + 0.387
= 1.2

which means that in propagating past both interfaces, the amplitude of

the pulse is reduced by a factor of 0.83 times 1.2, so the final amplitude

is about 97% of its original value of 2 cm.

Problem 1 (page 163 of text)

[Statement] Show that the expression
√

T
µ in Eq. 4.6 has dimensions of

velocity.

Hint 1: The units of tension are N and the units of linear density are

kg/m.

Hint 2: 1 N = kg m/s2 (which you can determine from F = ma, if you

don’t have it memorized).

Hint 3: So, together the units are√
N

kg/m
=

√
kg m

s2
· m
kg

=

√
m2

s2

=
m

s

which are the units of velocity.

Problem 2 (page 163 of text)

[Statement] If a string with length of 2 meters and mass of 1 gram is

tensioned with a hanging mass of 1 kg, what is the phase velocity of

transverse waves on the string?

Hint 1: To find the phase velocity, you need to know the tension and the

linear density, since v =
√

T
µ .
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Hint 2: The tension is being applied by a hanging mass, so its value is

the weight of the mass: T = mg = (1 kg)(9.8 m/s
2
) = 9.8 N. The lin-

ear density is the mass of the string divided by its length: µ = M/L =

1× 10−3 kg/2 m = 0.5× 10−3 kg/m.

Hint 3: The phase velocity is

v =

√
T

µ
=

√
9.8

0.5× 10−3
= 99 m/s.

Problem 3 (page 163 of text)

[Statement] Show that the expression
√

K
ρ in Eq. 4.12 has dimensions

of velocity.

Hint 1: The bulk modulus K has units of Pascals, which is the same as

N/m2 (you can figure this out from pressure = force/area, if you don’t

have it memorized). The units of ρ, a volume density, are kg/m3.

Hint 2: The units are √
N/m

2

kg/m
3 =

√
kg m/s

2
/m2

kg/m
3

=

√
kg m

s2m2
· m

3

kg

=

√
m2

s2

=
m

s
,

the units of velocity.

Problem 4 (page 163 of text)

[Statement] What is the phase speed of pressure waves in an 8 m3 steel

cube, which has a bulk modulus of approximately 150 GPa and mass of

63,200 kg?
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Hint 1: Using Eq. 4.12, the velocity is

v =

√
K

ρ
=

√
150× 109 Pa

63200 kg/8 m3
= 545 m/s,

where the volume density is the total mass divided by its volume.

Hint 2: You can compare this velocity to the speed of waves in air, which

is 342 m/s: 545/342 = 1.59. The speed of sound in steel is roughly one

and a half times faster than the speed of sound in air.

Problem 5 (page 163 of text)

[Statement] A transverse harmonic wave with amplitude of 5 cm and

wavelength of 30 cm propagates on a string of length 70 cm and mass

of 0.1 gram. If the string is tensioned by a hanging mass of 0.3 kg, what

are the kinetic, potential and total mechanical energy densities of the

wave?

Hint 1: The energy densities KEsegment, PEsegment, and MEsegment are

given in Eqs. 4.20, 4.21, and 4.22 respectively:

KEsegment =
1

2
µA2ω2 cos2 (kx− ωt)dx

PEsegment =
1

2
µA2ω2 cos2 (kx− ωt)dx

MEsegment = µA2ω2 cos2 (kx− ωt)dx.

You know A (the amplitude), λ (the wavelength), M (the mass of the

string), L (the length of the string), and m (the hanging mass), so you

still need µ (the linear density), ω (the angular frequency), and k (the

wavenumber).

Hint 2: The wavenumber k can be found from

k =
2π

λ
=

2π

0.3 m
= 20.9 m−1,

remembering to convert the wavelength into meters. The linear density

µ is found from

µ =
M

L
=

0.1× 10−3 kg

0.7 m
= 1.42× 10−4 kg/m.

Hint 3: To find ω, you can use the phase velocity equations v =
√
T/µ
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and v = ω/k, which combine to give

ω = k

√
T

µ
= (20.9 m−1)

√
2.94 N

1.42× 10−4 kg/m
= 3000 rad/s

and

ω2 = k2
T

µ
= 9× 106 rad2/s

2
,

where the tension T is created by the weight of the hanging mass, so

T = mg =(0.3 kg) (9.8 m/s2) = 2.94 N.

Hint 4: Plugging in these values gives

KEsegment =
1

2
(1.42× 10−4 kg/m)(0.05 m)2(9× 106 rad2/s

2
) cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

= 1.61 kg m/s
2
cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

PEsegment =
1

2
(1.42× 10−4 kg/m)(0.05 m)2(9× 106 rad2/s

2
) cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

= 1.61 kg m/s
2
cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

MEsegment = (1.42× 10−4 kg/m)(0.05 m)2(9× 106 rad2/s
2
) cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

= 3.22 kg m/s
2
cos2

[
(20.9 m−1)x− (3000 rad/s)t

]
dx

The units kg m/s2 are the equivalent of N = (N m)/m = J/m, an energy

density.

Problem 6 (page 163 of text)

[Statement] How much power is carried by the wave in the previous

problem, and what is the maximum transverse velocity of the string?

Hint 1: According to Eq. 4.24, the average power of a harmonic wave is

Pavg =
1

2
ZA2ω2.

Hint 2: The impedance Z is equal to
√
µT , which makes the average

power

Pavg =
1

2

√
µTA2ω2

=
1

2

√
(1.42× 10−4 kg/m)(2.94 N)(0.05 m)2(9× 106 rad2/s

2
)

= 230 J/s.
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Hint 3: To find the transverse velocity, use

P = (
√
µT )v2t .

Solving for vt gives

vt =

√
Pavg√
µT

=

√
230 J/s√

(1.42× 10−4 kg/m)(2.94 N)

= 106 m/s.

Problem 7 (page 163 of text)

[Statement] Consider two strings. String A is 20 cm long and has mass

of 12 milligrams, while String B is 30 cm long and has mass of 25 mil-

ligrams. If each string is put under tension by the same hanging mass,

how do the phase velocities of two transverse waves and impedances of

the two strings compare?

Hint 1: The phase velocities are determined by v =
√
T/µ; comparing

vA to vB gives

vA
vB

=

√
TA/µA√
TB/µB

.

Hint 2: The strings are under the same tension, so TA = TB. That

simplifies the expression to

vA
vB

=

√
µB

µA

=

√
MB/LB

MA/LA

=

√
25/30

12/20

= 1.18,

where you can leave the masses in mg and lengths in cm because the

units mg/cm of the linear densities cancel in their ratio.
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Hint 3: Because Z =
√
µT , the ratio of impedances is

ZA

ZB
=

√
TAµA√
TBµB

.

Hint 4: Once again the tensions will cancel out, leaving

ZA

ZB
=

√
µA

µB
.

This is the reciprocal of the previous result: 1.18−1 = 0.85. The lower

density String A has waves with higher velocities and has a lower impedance.

Problem 8 (page 163 of text)

[Statement] If a short segment of the light string of Problem 7 is inserted

into the heavy string of that problem, find the amplitude reflection co-

efficients for waves at both interfaces (light-to-heavy and heavy-to-light).

Hint 1: The amplitude reflection coefficient r is given in Eq. 4.27:

r =
Z1 − Z2

Z1 + Z2
.

Hint 2: Because Z =
√
µT , this equation can be rewritten as

r =

√
µ1T1 −

√
µ2T2√

µ1T1 +
√
µ2T2

.

The tension in both strings is still the same, so T1 = T2 and cancels out

in the ratio:

r =

√
µ1 −

√
µ2√

µ1 +
√
µ2
.

Hint 3: For the light-to-heavy interface, String 1 is String A and String

2 is String B, which gives

rL to H =

√
µA −√

µB√
µA +

√
µB

=

√
MA/LA −

√
MB/LB√

MA/LA +
√
MB/LB

=

√
12/20−

√
25/30√

12/20 +
√
25/30

= −0.0819

which indicates that the reflected wave from this interface has a small
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amplitude and is inverted.

Hint 4: For the heavy-to-light interface, String 1 is String B and String

2 is String A, which gives

rH to L =

√
µB −√

µA√
µB +

√
µA

=

√
MB/LB −

√
MA/LA√

MA/LA +
√
MB/LB

=

√
25/30−

√
12/20√

12/20 +
√
25/30

= +0.0819

which indicates that the reflected wave from this interface has a small

amplitude and is not inverted.

Problem 9 (page 163 of text)

[Statement] Find the amplitude transmission coefficients for waves at

both interfaces (light-to-heavy and heavy-to-light) in the previous prob-

lem.

Hint 1: The amplitude transmission coefficient is given by Eq. 4.28:

t =
2Z1

Z1 + Z2
.

Hint 2: Because Z =
√
µT , this equation can be rewritten as

t =
2
√
µ1T1√

µ1T1 +
√
µ2T2

.

The tension in both strings is still the same, so T1 = T2 and cancels out

in the ratio:

t =
2
√
µ1√

µ1 +
√
µ2
.

Hint 3: For the light-to-heavy interface, String 1 is String A and String
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2 is String B, which gives

tL to H =
2
√
µA√

µA +
√
µB

=
2
√
MA/LA√

MA/LA +
√
MB/LB

=
2
√
12/20√

12/20 +
√
25/30

= 0.918

Hint 4: For the heavy-to-light interface, String 1 is String B and String

2 is String A, which gives

tH to L =
2
√
µB√

µB +
√
µA

=
2
√
MB/LB√

MA/LA +
√
MB/LB

=
2
√
25/30√

12/20 +
√
25/30

= 1.082

which indicates that the transmitted wave has an amplitude of (1.082)(0.918)

= 0.993 of the original wave’s amplitude.

Problem 10 (page 163 of text)

[Statement] Verify that the power of the transmitted and reflected waves

in the previous two problems add up to power of the incoming wave.

Hint 1: If the sum of the power reflection coefficient R and the power

transmission coefficient T for each interface is 1, then the power is the

same for outgoing and incoming waves.

Hint 2: The power reflection coefficient R is given in Eq. 4.30:

R = r2

The power transmission coefficient T is given in Eq. 4.29

T =

(
Z2

Z1

)
t2 =

(√
µ2

µ1

)
t2,
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since Z =
√
µT and the tensions cancel. Their sum is

r2 +

(√
µ2

µ1

)
t2.

Hint 3: Plugging in numbers for the light-to-heavy interface, where 1 is

A and 2 is B, gives

r2L to H +

(√
µB

µA

)
t2L to H

= (−0.0819)2 +

(√
25/30

12/20

)
(0.918)2

= 0.9999 ≈ 1

Hint 4: Plugging in numbers for the heavy-to-light interface, where 1 is

B and 2 is A, gives

r2H to L +

(√
µA

µB

)
t2H to L

= (0.0819)2 +

(√
12/20

25/30

)
(1.082)2

= 0.9999 ≈ 1

Hint 5: This problem can also be solved in the general case, using the

impedance forms for the amplitude coefficients:

r2 +

(
Z2

Z1

)
t2 =

(
Z1 − Z2

Z1 + Z2

)2

+

(
Z2

Z1

)(
2Z1

Z1 + Z2

)2

=

(
1

Z1 + Z2

)2(
Z2
1 − 2Z1Z2 + Z2

2 +
4Z2Z

2
1

Z1

)
=

(
1

Z1 + Z2

)2 (
Z2
1 + 2Z1Z2 + Z2

2

)
=

(
Z1 + Z2

Z1 + Z2

)2

= 1
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Example 1 (page 175 of text)

[Statement]Example: If an electromagnetic plane wave is propagating

along the positive z-direction and its electric field at a certain location

points along the positive x-axis, in what direction does the wave’s mag-

netic field point at that same location?

Hint 1: If the electric field points along the positive x-axis, you know that

E0x is positive and E0y = 0. That means that the magnetic field must

have a non-zero component along the positive y-axis, since B0y = E0x

and E0x is positive.

Hint 2: The fact that E0y = 0 means that B0x (which equals −E0y must

also be zero.

Hint 3: And if B0y is positive and B0x is zero, then B⃗ must point entirely

along the positive y-axis at this location.

Example 2 (page 183 of text)

[Statement]Example: At the surface of the Earth, the average power

density of sunlight on a clear day is approximately 1300 W/m2. Find

the average magnitude of the electric and magetic fields in sunlight.

Hint 1: To find the average electric field strength, solve Eq. 5.22 for
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|E⃗|avg:

|S⃗|avg =
1

2

√
ϵ0
µ0

|E⃗0|2

|E⃗0| =

√√√√2|S⃗|avg√
ϵ0
µ0

=

√
2|S⃗|avg

√
µ0

ϵ0
.

Hint 2: Plugging in values gives

|E⃗0| =

√√√√(2)1300 W/m2

√
(4π × 10−7 H/m)

(8.8541878× 10−12 F/m)
≈ 990 V/m.

Hint 3: Once you know the electric field magnitude, you can use Eq. 5.15

to find the magnitude of the magnetic field:

|B⃗0| =
|E⃗0|
c

=
990 V/m

3× 108 m/s
≈ 3.3× 10−6 T.

Example 3 (page 185 of text)

[Statement]Example: Use the definition of the Poynting vector from

Eq. 5.26 to find the vector power density S⃗ of an electromagnetic plane

wave propagating along the positive z-axis.

Hint 1: From Fig. 5.5 and Eq. 5.26, the Poynting vector is

S⃗ =
1

µ0
E⃗ × B⃗

=
1

µ0
|E⃗||B⃗| sin θk̂.

Hint 2: Since E⃗ is perpendicular to B⃗, θ is 90◦.
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Hint 3: You also know that |B⃗| = |E⃗|/c, so this can be written as

S⃗ =
1

µ0
|E⃗||B⃗| sin 90◦k̂ =

1

µ0
|E⃗||B⃗|k̂

=
1

µ0
|E| |E⃗|

c
k̂ =

1

µ0
|E⃗| |E⃗|√

1
µ0ϵ0

k̂

=

√
µ0ϵ0

µ0
|E⃗|2k̂ =

√
ϵ0
µ0

|E⃗|2|k̂ =
|E⃗|2

Z0
k̂

as expected from Eq. 5.24.

Problem 1 (page 186 of text)

[Statement] If the electric field in a certain region is given by E⃗ =

3x2yı̂− 2xyz2ȷ̂+x3y2z2k̂ in SI units, what is the electric charge density

at the point x=2, y=3, z=1?

Hint 1: To find the electric charge density (ρ) if you know the vector

electric field E⃗, solve ∇⃗ ◦ E⃗ = ρ/ϵ0 for ρ.

Hint 2: ρ = (ϵ0)∇⃗ ◦ E⃗.

Hint 3: The divergence of E⃗ = 3x2yı̂− 2xyz2ȷ̂+ x3y2z2k̂ is

∇⃗ ◦ E⃗ =
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
= 6xy − 2xz2 + 2x3y2z.

Hint 4: Thus

ρ = (ϵ0)∇⃗ ◦ E⃗ = (ϵ0)(6xy − 2xz2 + 2x3y2z).

Hint 5: Plugging in values gives

ρ = (ϵ0)∇⃗◦E⃗ = (8.85×10−12)[6(2)(3)−2(2)(12)+2(23)(3)2(1)] = 1.56×10−9 C/m3.

Problem 2 (page 186 of text)

[Statement] If the magnetostatic field in a certain region is given by
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B⃗ = 3x2y2z2 ı̂+ xy3z2ȷ̂− 3xy2z3k̂ in SI units, what is the magnitude of

the electric current density at the point x=1, y=4, z=2?

Hint 1: To find the electric current density if you know the magnetostatic

field, solve ∇⃗ × B⃗ = µ0J⃗ for J⃗ .

Hint 2: J⃗ = ∇⃗×B⃗
µ0

.

Hint 3: The curl of B⃗ is

∇⃗ × B⃗ = ı̂

(
∂Bz

∂y
− ∂By

∂z

)
+ ȷ̂

(
∂Bx

∂z
− ∂Bz

∂x

)
+ k̂

(
∂By

∂x
− ∂Bx

∂y

)
.

Hint 4: Taking the partial derivatives of B⃗ = 3x2y2z2 ı̂+xy3z2ȷ̂−3xy2z3k̂

gives

∇⃗× B⃗ = ı̂
(
−6xyz3 − 2xy3z

)
+ ȷ̂
(
6x2y2z − 3y2z3

)
+ k̂

(
y3z2 − 6x2yz2

)
.

Hint 5: Plugging in values gives the curl of B⃗ at the point x=1, y=4,

z=2:

∇⃗ × B⃗ = ı̂
[
−6(1)(4)(23)− 2(1)(43)(2)

]
+ ȷ̂
[
6(12)(42)(2)− 3(42)(23)

]
+ k̂

[
(43)(22)− 6(12)(4)(22)

]
= ı̂ [−448] + ȷ̂ [−192] + k̂ [160] T/m.

Hint 6: Thus the magnitude of the curl of B⃗ is

|∇⃗ × B⃗| =
√
(−448)2 + (−192)2 + (160)2 = 513 T/m

Hint 7: Dividing by the magnetic permeability µ0 gives the magnitude

of the electric current density J⃗ :

|J⃗ | = |∇⃗ × B⃗|
µ0

=
513

4π × 10−7
= 4.08× 108 A/m3.
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Problem 3 (page 186 of text)

[Statement] If the magnetic field at a certain location is changing with

time according to the equation B⃗ = 3t2 ı̂ + tȷ̂ in SI units, what are the

magnitude and direction of the curl of the induced electric field at that

location at time t = 2 seconds?

Hint 1: To find the curl of the induced electric field, use ∇⃗×E⃗ = −∂B⃗/∂t.

Hint 2: The time derivative of B⃗ = 3t2 ı̂+ tȷ̂ is

∂B⃗

∂t
=
∂(3t2 ı̂+ tȷ̂)

∂t
= 6t̂ı+ 1ȷ̂.

Hint 3: Thus the curl of E⃗ at time t = 2 seconds is

∇⃗ × E⃗ = −∂B⃗
∂t

= −6(2)̂ı− 1ȷ̂ = [−12ı̂− 1ȷ̂] V/m2.

Hint 4: The magnitude of the vector curl of E⃗ at t = 2 seconds is

|∇⃗ × E⃗| =
√
(−12)2 + (−1)2 = 12.04V/m2.

Hint 5: The angle of the vector curl of E⃗ is

θ = arctan

(
−1

−12

)
= 4.8◦

and, since the denominator of the arctan argument is negative, adding

180◦ to the answer gives the angle measured anti-clockwise from the

positive x-axis as

θ = 4.8◦ + 180◦ = 184.8◦.

Problem 4 (page 186 of text)

[Statement] Show that the x-component of Faraday’s Law for a plane

wave propagating in the positive z-direction leads to the equation E0y =
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−cB0x.

Hint 1: The relation between the curl of the electric field and the time

derivative of the magnetic field is ∇⃗ × E⃗ = −∂B⃗/∂t.

Hint 2: The x-component of this equation is(
∇⃗ × E⃗

)
x
=

(
∂Ez

∂y
− ∂Ey

∂z

)
= −∂Bx

∂t
.

Hint 3: For a plane wave propagating in the positive z-direction, the

components of the electric and magnetic field may be written as

Ex = E0x sin (kz − ωt)

Ey = E0y sin (kz − ωt)

Ez = 0

Bx = B0x sin (kz − ωt)

Bx = B0y sin (kz − ωt)

Bz = 0.

Hint 4: Thus the x-component of the curl of the electric field is(
∂Ez

∂y
− ∂Ey

∂z

)
= 0− ∂[E0y sin (kz − ωt)]

∂z
= −kE0y cos (kz − ωt).

Hint 5: The x-component of the time derivative of the magnetic field is

−∂Bx

∂t
= −∂[B0x sin (kz − ωt)]

∂t
= −[−ωB0x cos (kz − ωt)].

Hint 6: Thus

−kE0y cos (kz − ωt) = ωB0x cos (kz − ωt)

−kE0y = ωB0x

so

E0y = −ω
k
B0x = −cB0x
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Problem 5 (page 186 of text)

[Statement] Show that the y-component of Faraday’s Law for a plane

wave propagating in the positive z-direction leads to the equation E0x =

cB0y.

Hint 1: The relation between the curl of the electric field and the time

derivative of the magnetic field is ∇⃗ × E⃗ = −∂B⃗/∂t.

Hint 2: The y-component of this equation is(
∇⃗ × E⃗

)
y
=

(
∂Ex

∂z
− ∂Ez

∂x

)
= −∂By

∂t
.

Hint 3: For a plane wave propagating in the positive z-direction, the

components of the electric and magnetic field may be written as

Ex = E0x sin (kz − ωt)

Ey = E0y sin (kz − ωt)

Ez = 0

Bx = B0x sin (kz − ωt)

Bx = B0y sin (kz − ωt)

Bz = 0.

Hint 4: Thus the y-component of the curl of the electric field is(
∂Ex

∂z
− ∂Ez

∂x

)
=
∂[E0x sin (kz − ωt)]

∂z
− 0 = kE0x cos (kz − ωt).

Hint 5: The y-component of the time derivative of the magnetic field is

−∂By

∂t
= −∂[B0y sin (kz − ωt)]

∂t
= −[−ωB0y cos (kz − ωt)].



The Electromagnetic Wave Equation click-throughs 83

Hint 6: Thus

kE0x cos (kz − ωt) = ωB0y cos (kz − ωt)

kE0x = ωB0y

so

E0x =
ω

k
B0y = cB0y

Problem 6 (page 186 of text)

[Statement] Show that the two Eqs. 5.13 and 5.14 mean that E⃗ and B⃗

are perpendicular to one another.

Hint 1: One way to show that two vectors are perpendicular to one

another is to show that the dot product between the two vectors is zero.

To do that, begin by writing E⃗0 and B⃗0 as

E⃗0 = E0x ı̂+ E0y ȷ̂

B⃗0 = B0x ı̂+B0y ȷ̂.

Hint 2: Using the expressions for E0x and E0y from Eqs. 5.13 and 5.14

gives

B⃗0 = −E0y

c
ı̂+

E0x

c
ȷ̂.

Hint 3: Now form the dot product between E⃗ and B⃗:

E⃗ ◦ B⃗ = E⃗0 ◦ B⃗0 = (E0x ı̂+ E0y ȷ̂) ◦
(
−E0y

c
ı̂+

E0x

c
ȷ̂

)
= −E0xE0y

c
+
E0yE0x

c
= 0

and zero dot product means that these two vectors are perpendicular to

one another.

Problem 7 (page 186 of text)
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[Statement] Show that
√

1
µ0ϵ0

has units of meters per second.

Hint 1: The SI units of the electric permittivity ϵ0 are farads per meter

(F/m), and farads represent coulombs per volt (C/V).

Hint 2: Since volts represent newtons time meters over coulombs (Nm/C),

coulombs per volt (C/V) are C/(Nm/C)=C2/(Nm). So the units of ϵ0
are equivalent to C2/(Nm2).

Hint 3: The SI units of the magnetic permeability µ0 are henries per

meter (H/m), and henries represent volts times seconds squared over

coulombs (Vs2/C).

Hint 4: Again using the fact that volts represent newtons time me-

ters over coulombs (Nm/C), volts times seconds squared over coulombs

(Vs2/C) are Nms2/C2. So the units of µ0 are equivalent to Nms2/C2m=Ns2/C2.

Hint 5: Multiplying the units of ϵ0 by the units of µ0 gives

ϵ0µ0 (units) =

(
C2

Nm2

)(
Ns2

C2

)
=

s2

m2

Hint 6: Thus the units of
√

1
µ0ϵ0

are√
1

ϵ0µ0
(units) =

√
1
s2

m2

=
m

s

Problem 8 (page 186 of text)

[Statement] According to the inverse-square law, the power density of

an electromagnetic wave transmitted by an isotropic source (that is, a

source that radiates equally in all directions) is given by the equation

|S⃗| = Ptransmitted

4πr2

where Ptransmitted is the transmitted power and r is the distance from the

source to the receiver. Find the magnitude of the electric and magnetic

fields produced by a 1,000-watt radio transmitter at a distance of 20 km.
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Hint 1: To find the magnitude of the electric and magnetic field, begin

by finding the magnitude of the Poynting vector S⃗, which is related to

the field magnitudes through the equations of Section 5.5.

Hint 2: The magnitude of the Poynting vector at a distance of 20 km

(2× 104 m) from a 1,000-W transmitter is

|S⃗| = Ptransmitted

4πr2
=

1000

4π(2× 104)2
= 1.99× 10−7 W/m2.

Hint 3: Solving Eq. 5.24 for the magnitude of the electric field gives

|E⃗| =
√
Z0|S⃗|

where Z0 represents the impedance of free space.

Hint 4: Plugging in the value for the magnitude of the Poynting vector

and the impedance of free space (377Ω) gives

|E⃗| =
√
Z0|S⃗| =

√
(377)(1.99× 10−7) = 8.66× 10−3 V/m

Hint 5: Once you know the magnitude of the electric field E⃗, you can

find the magnitude of the magnetic field B⃗ using Eq. 5.15:

|B⃗| = |E⃗|
c

=
8.66× 10−3

3× 108
= 2.89× 10−11 T.

Problem 9 (page 186 of text)

[Statement] If vector A⃗ = 8ı̂ + 3ȷ̂ + 6k̂ and vector B⃗ = 12ı̂ − 7ȷ̂ + 4k̂,

what are the magnitude and direction of the vector cross-product A⃗×B⃗?

Hint 1: The vector cross-product between vectors A⃗ and B⃗ can be found

using

A⃗× B⃗ =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣
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or

A⃗× B⃗ =(AyBz −AzBy )̂ı

+ (AzBx −AxBz)ȷ̂

+ (AxBy −AyBx)k̂.

Hint 2: Inserting the values for the components of A⃗ and B⃗ gives

A⃗× B⃗ =

∣∣∣∣∣∣
ı̂ ȷ̂ k̂

8 3 6

12 −7 4

∣∣∣∣∣∣
or

A⃗× B⃗ =[(3)(4)− (6)(−7)]̂ı

+ [(6)(12)− (8)(4)]ȷ̂

+ [(8)(−7)− (3)(12)]k̂

= 54ı̂+ 40ȷ̂− 92k̂.

Hint 3: The magnitude of the vector A⃗× B⃗ is

|A⃗× B⃗| =
√
(54)2 + (40)2 + (−92)2 = 113.93

Hint 4: To find the angle (θx) of the vector A⃗×B⃗ with the x-axis, find the

dot product of the unit vector ı̂ with A⃗ × B⃗ (which gives x-component

of the vector A⃗× B⃗) and then use

θx = arccos

[
ı̂ ◦ (A⃗× B⃗)

|A⃗× B⃗|

]

= arccos

[
54

113.93

]
= 61.7◦

Hint 5: To find the angle (θy) of the vector A⃗×B⃗ with the y-axis, find the

dot product of the unit vector ȷ̂ with A⃗ × B⃗ (which gives y-component
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of the vector A⃗× B⃗) and then use

θy = arccos

[
ȷ̂ ◦ (A⃗× B⃗)

|A⃗× B⃗|

]

= arccos

[
40

113.93

]
= 69.4◦

Hint 6: To find the angle (θz) of the vector A⃗×B⃗ with the z-axis, find the

dot product of the unit vector k̂ with A⃗× B⃗ (which gives z-component

of the vector A⃗× B⃗) and then use

θz = arccos

[
k̂ ◦ (A⃗× B⃗)

|A⃗× B⃗|

]

= arccos

[
−92

113.93

]
= 143.9◦

Problem 10 (page 186 of text)

[Statement] In certain plasmas (such as the Earth’s ionosphere), the dis-

persion relation of electromagnetic waves is ω2 = c2k2 + ω2
p, where c is

the speed of light and ωp is the natural “plasma frequency” that depend

on the particle concentration. Find the phase velocity (ω/k) and the

group velocity (dω/dk) of electromagnetic waves in such a plasma, and

show that their product equals the square of the speed of light.

Hint 1: You can find the group velocity using vgroup = dω
dk and the phase

velocity using vphase =
ω
k .

Hint 2: In this case ω =
√
c2k2 + ω2

p, so the group velocity is

vgroup =
dω

dk
=
d[(c2k2 + ω2

p)
1
2 ]

dk

=
1

2

(2c2k)√
c2k2 + ω2

p

=
c2√

c2 +
ω2

p

k2

.
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Hint 3: For ω =
√
c2k2 + ω2

p the phase velocity is

vphase =
ω

k
=

√
c2k2 + ω2

p

k
=

√
c2 +

ω2
p

k2
.

Hint 4: Multiplying the group velocity by the phase velocity gives

vgroup × vphase =

 c2√
c2 +

ω2
p

k2

[√c2 + ω2
p

k2

]
= c2.
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Example 1 (page 193 of text)

[Statement] Example: What is the de Broglie wavelength of a 75-kg hu-

man walking at a speed of 1.5 m/s ?

Hint 1: The human in this example has momentum p = 75 kg×1.5 m/s =

113 kg m/s, which gives a de Broglie wavelength of

λ =
6.626× 10−34 Js

113 kg m/s
= 5.9× 10−36 m. (6.4)

Hint 2: This is not only billions of times smaller than the spacing be-

tween atoms in a typical solid, but billions of times smaller than the

protons and neutrons that make up the atoms’ nuclei. Hence an object

with the mass of a human is not a good candidate for demonstrating the

wave behavior of matter. However, for a very small mass with very low

velocity, the de Broglie wavelength can be large enough to be measured.

Example 2 (page 193 of text)

[Statement] Example: What is the de Broglie wavelength of an electron

that has passed through a potential difference of 50 volts?

Hint 1: After passing through a potential difference of 50 volts, an elec-

tron has 50 electron volts (eV) of energy. One eV is 1.6×10−19 J, so the

electron’s energy in SI units is

50 eV
1.6× 10−19 J

1 eV
= 8× 10−18 J. (6.5)

Hint 2: To relate this energy to the electron’s momentum, you can use
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the classical expression for kinetic energy

KE =
1

2
mv2 (6.6)

and then multiply and divide the right side by the mass:

KE =
1

2
mv2 =

1

2m
m2v2 =

p2

2m
. (6.7)

Hint 3: In this case, the electron’s energy (E) is all kinetic, so E = KE,

and the momentum is:

p =
√
2mE. (6.8)

Applying this to the electron with 8 ×10−18 J of energy, the momentum

is

p =
√

2× 9.1× 10−31 kg× 8× 10−18 J

= 3.8× 10−24 kg m/s.

Hint 4: Putting this result into de Broglie’s equation (Eq. 6.3) gives a

wavelength of

λ =
6.626× 10−34 Js

3.8× 10−24 kg m/s
= 1.7× 10−10 m, (6.9)

or 0.17 nanometers. This is similar to the spacing between atoms in a

crystal array, so such an array can be used to experimentally determine

a moving electron’s wavelength.

Example 3 (page 200 of text)

[Statement] Example: What is the time-independent Schrödinger equa-

tion for a free particle?

Hint 1: In this context, “free” means that the particle is free of the

influence of external forces, and since force is the gradient of potential

energy, a free particle travels in a region of constant potential energy.

Since the reference location of zero potential energy is arbitrary, you can

set V = 0 in the Schrödinger equation for a free particle. Thus Eq. 6.22

becomes

EΨ =
−ℏ2

2m

∂2Ψ

∂x2
(6.23)

or
∂2Ψ

∂x2
= −2mE

ℏ2
Ψ. (6.24)
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Hint 2: Since the total energy of a free particle equals the particle’s

kinetic energy, you can set E = p2

2m :

∂2Ψ

∂x2
= −p

2

ℏ2
Ψ. (6.25)

Example 4 (page 206 of text)

[Statement] Example: Determine the probability of finding a particle at

a given location if the particle’s wavefunction is defined as

ψ(x) =

(
0.2

π

)1/4

e−0.1x2

eikx

Hint 1: In this case, the width constant a is 0.1, which makes the prob-

ability density

ψ∗(x)ψ(x) =

[(
0.2

π

)1/4

e−0.1x2

e−ikx

][(
0.2

π

)1/4

e−0.1x2

eikx

]

=

(
0.2

π

)1/2

e−0.2x2

which is a Gaussian distribution, as shown in the figure below.
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0.5
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0.3
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0
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x

P(x)
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Hint 2: To find the probability of the particle with this wave function

being located in a particular spot, you have to integrate the density

around that place. In this example, the likelihood of finding the particle

at x = 1 m, give or take 0.1 m, is

P(1± 0.1) =

(
0.2

π

)1/2 ∫ 1.1

0.9

e−0.2x2

dx

= 0.041,

or 4.1%.

Hint 3: You can check the normalization of this function by integrating

over all space:

Pall space =

(
0.2

π

)1/2 ∫ ∞

−∞
e−0.2x2

dx = 1.

So the probability of finding this particle somewhere in space is indeed

100%.

Example 5 (page 207 of text)

[Statement] Example: Normalize the triangular pulse wave function in

the figure shown below.

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
-0.5 0 0.5 1.0 1.5

x

ψ(x) Normalized

Non-normalized
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Hint 1: The equation for this triangular pulse can be written as

ψ(x) =


Ax 0 ≤ x ≤ 0.5

A(1− x) 0.5 ≤ x ≤ 1

0 else.

Hint 2: The equation can be plugged into the probability density integral:

Pall space = 1 =

∫ ∞

−∞
ψ∗(x)ψ(x)dx.

Thus

1 =

∫ 0.5

0

(A∗x)(Ax)dx+

∫ 1

0.5

(A∗(1− x)) (A(1− x)) dx.

Hint 3: Pulling out A∗A from each integral leaves

1 = A∗A

(∫ 0.5

0

x2dx+

∫ 1

0.5

(1− x)2dx

)
1 = A∗A

(
1

24
+

1

24

)
.

In this case, all factors in the equation are real, so A∗A = A2.

Hint 4: Solving for the normalization constant A gives

A2 = 12

A =
√
12

Hint 5: This figure shows the probability density before and after normal-

ization. As desired, the area under the normalized probability density is

one, but the shape of both the normalized wave function and the nor-

malized probability density haven’t changed from the non-normalized

functions; only their scale has changed.

Problem 1 (page 216 of text)

[Statement] Find the de Broglie wavelength of a water molecule, with

mass 2.99×10−26 kg, traveling at 640 m/s (a likely speed at room tem-

perature).

Hint 1: The water molecule has a momentum of mv = (2.99×10−26 kg)

(640 m/s) = 1.91×10−23 kg m/s.
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3.0

2.5

2.0

1.5

1.0

0.5

0
-0.5

P(x)

0 0.5 1.0 1.5

x

Normalized

Non-normalized

Area = 1

Hint 2: At that momentum, the molecule’s de Broglie wavelength is

λ =
6.626× 10−34 Js

1.91× 10−23 kg m/s
= 3.46× 10−11 m.

Hint 3: This result is around 0.3 Å, less than the (approximate) radius

of a hydrogen atom. So, it’s often reasonable to treat water vapor like a

collection of classical particles.

Problem 2 (page 216 of text)

[Statement] What is the de Broglie wavelength of a proton, with mass

1.67×10−27 kg, when it has an energy of 15 MeV?

Hint 1: The momentum is related to the energy by p =
√
2mE.

Hint 2: One eV is 1.6×10−19 J, so the proton’s energy in SI units is

15× 106 eV
1.6× 10−19 J

1 eV
= 2.4× 10−12 J.

Hint 3: Therefore, the momentum is

p =
√
2× 1.67× 10−27 kg× 2.4× 10−12 J

= 8.95× 10−20 kg m/s.

Hint 4: Putting this result into de Broglie’s equation gives a wavelength
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of

λ =
6.626× 10−34 Js

8.95× 10−20 kg m/s
= 7.4× 10−15 m.

Hint 5: Compare this result to the example in Section 6.2. There, the

electron’s energy was 10−6 and its mass was 10−4 of the proton’s. You’d

expect the electron’s de Broglie wavelength, which is proportional to

1/
√
mE, to be 1/

√
10−10 = 105 the size. Comparing orders of magni-

tude shows that the electron’s wavelength is roughly 105 the wavelength

of this proton’s.

Problem 3 (page 216 of text)

[Statement] The spread in measured positions of an ensemble of electrons

is 1 micron. What is the best case spread in the measured momenta of

a similar ensemble?

Hint 1: Heisenberg’s uncertainty principle says that ∆x∆p ≥ ℏ/2. So,

∆p ≥ ℏ
2∆x

.

Hint 2: ℏ is the reduced Planck’s constant, h/(2π). Plugging values in

gives

∆p ≥ 6.626× 10−34 Js

4π(1× 10−6 m)
= 5.3× 10−29 kg m/s.

A relatively wide spread in position (1 × 10−6 m) results in a narrow

spread in momentum (5.3× 10−29 kg m/s).

Problem 4 (page 216 of text)

[Statement] Normalize the wavefunction ψ(x) = xe−x2/2 over all space.

Hint 1: Include a normalization constant, A, in the wavefunction: ψ(x) =

Axe−x2/2.
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Hint 2: Plug the wave function into the probability density integral:

1 =

∫ ∞

−∞
ψ∗(x)ψ(x)dx

=

∫ ∞

−∞
(Axe−x2/2)(Axe−x2/2)dx

= A2

∫ ∞

−∞
x2e−x2

dx

Hint 3: The integral
∫∞
−∞ x2e−x2

dx is equal to
√
π/2 (which you can

determine either via mathematical software or by looking it up in an

integral table).

Hint 4: The equation now reduces to

1 = A2

√
π

2

or

A2 =
2√
π
.

Solving for A gives (2/
√
π)1/2.

Problem 5 (page 216 of text)

[Statement] Normalize the wavefunction ψ(x) = sin(15x) when 0 ≤ x ≤
π/5, zero elsewhere.

Hint 1: Include a normalization constant, A, in the wavefunction: ψ(x) =

A sin(15x).

Hint 2: Plug the wave function into the probability density integral:

1 =

∫ ∞

−∞
ψ∗(x)ψ(x)dx

=

∫ π/5

0

(A sin(15x))(A sin(15x))dx

= A2

∫ π/5

0

sin2(15x)dx
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where the limits of integration have been changed to 0 and π/5 since

the function, and integral, is zero everywhere else.

Hint 3: The integral
∫ π/5

0
sin2(15x)dx is equal to π/10 (which you can

determine either via mathematical software or by looking it up in an in-

tegral table). If you want to do it by hand, you can use the trigonometric

identity

sin2(ax) =
1

2
(1− cos(2ax)).

The integral becomes ∫ π/5

0

1

2
(1− cos(30x))dx

which separates into two integrals,∫ π/5

0

1

2
dx−

∫ π/5

0

1

2
cos(30x)dx.

The first integral is 1
2x|

π/5
0 = π/10−0 = π/10. The second integral gives,

ignoring constants, sin(6π)− sin(0) = 0.

Hint 4: The probability equation now reduces to

1 = A2 π

10

or

A2 =
10

π
.

Solving for A gives
√
10/π.

Problem 6 (page 216 of text)

[Statement] Determine the probability of finding the particle of the pre-

vious problem between 0.1 and 0.2 meters.

Hint 1: The probability of finding a particle between two points is given

by

Pab =

∫ b

a

ψ∗(x)ψ(x)dx.
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Hint 2: Plugging in the normalized wavefunction gives

P =

∫ 0.2

0.1

(

√
10

π
sin(15x))(

√
10

π
sin(15x))dx

=
10

π

∫ 0.2

0.1

sin2(15x)dx,

which can be solved as in Problem 5.

Hint 3: The value of the integral is 0.057. Multiplying by 10/π gives a

probability of 0.18, or 18%.

Hint 4: Is this a reasonable probability? Looking at the graph of the

wave function squared (shown below) can help you see that it is. The

area from 0.1 to 0.2 represents roughly half of one of three bumps, or

1/6 the total probability. 18% is very close to 1/6 = 17%.

Problem 7 (page 216 of text)

[Statement] Show that the wavenumber distribution ϕ(k) for the wave-

function in Eq. 6.39 is ϕ(k) =
(

σ2
x

π

)1/4
e

σ2
x
2 (k0−k)2 .

Hint 1: The Fourier transform finds the wavenumber distribution for a

given wavefunction:
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ϕ(k) =
1√
2π

∫ ∞

−∞
ψ(x)e−ikxdx.

Plugging in the wave packet function from Eq. 6.39 gives

ϕ(k) =
1√
2π

∫ ∞

−∞

(
1

πσ2
x

)1/4

e−x2/(2σ2
x)eik0xe−ikxdx,

which simplifies to

ϕ(k) =
1√
2π

(
1

πσ2
x

)1/4 ∫ ∞

−∞
e−x2/(2σ2

x)ei∆kxdx,

where ∆k ≡ k0 − k for ease of notation.

Hint 2: The previous equation can be solved with mathematical software,

but if you want to see how to solve it by hand, read on. Concentrate on

the arguments of the exponentials–you need to convert them to a simple

form that will be easy to integrate.

e−x2/(2σ2
x)ei∆kx = exp

(
− x2

2σ2
x

+ i∆kx

)
= exp

(
−(ax2 − bx)

)
where a = 1/(2σ2

x) and b = i∆k.

Hint 3: If you complete the square for the term ax2 − bx, you’ll be able

to write the argument as (rk − s)2 − t2.

Hint 4: Expand (rk − s)2 − t2 into r2k2 − 2rsk + s2 − t2. This must be

equivalent to ax2 − bx, so you can match terms:

r2 = a

r =
√
a,

2rs = b

s =
b

2r

s =
b

2
√
a
,
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and

s2 − t2 = 0

t2 = s2

t2 =
b2

4a
.

Hint 5: Rewriting the argument in terms of a and b gives:(√
ax− b

2
√
a

)2

− b2

4a
=

(
1√
2σx

x− σxi∆k√
2

)2

+
∆k2σ2

x

2

(It’s a good idea to check that this form is equivalent to the original.)

Replacing the a and b form in the integral (for simplicity) gives

1√
2π

(
1

πσ2
x

)1/4 ∫ ∞

−∞
exp

[
−
(√

ax− b

2
√
a

)2

− b2

4a

]
dx

Hint 6: Now that the square has been completed, u substitution will fin-

ish bringing the integral into its integrable form. Set u =
(√

ax− b
2
√
a

)
,

which means that du =
√
adx or dx = (1/

√
a)du:

1√
2πa

(
1

πσ2
x

)1/4

e−
b2

4a

∫ ∞

−∞
e−u2

du

Hint 7: The integral can now be found in a table:∫ ∞

−∞
e−u2

du =
√
π.

The solution is therefore, replacing the values for a and b,

ϕ(k) =

√
π√

2π(1/(2σ2
x))

(
1

πσ2
x

)1/4

e
− (i∆k)2

4(1/(2σ2
x))

Hint 8: Algebraic simplification leads to

ϕ(k) = σx

(
1

πσ2
x

)1/4

e−
(i∆k)2σ2

x
2

=

(
σ2
x

π

)1/4

e−
i(k0−k)2σ2

x
2

as expected.

Problem 8 (page 216 of text)
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[Statement] a. Determine the probability of finding a particle with wavenum-

ber between 6.1×104 rad/m and 6.3×104 rad/m if it has the wavenum-

ber distribution of the previous problem with the values k0 = 6.2× 104

rad/m and σx = 250 microns.

Hint 1: The probability of finding a particle with a wavenumber between

two values is given by

Pab =

∫ b

a

ϕ∗(k)ϕ(k)dk.

Hint 2: Plugging in the wavenumber distribution gives

P =

∫ b

a

(
σ2
x

π

)1/4

e
σ2
x
2 (k0−k)2

(
σ2
x

π

)1/4

e
σ2
x
2 (k0−k)2dk.

=

(
σ2
x

π

)1/2 ∫ b

a

eσ
2
x(k0−k)2dk.

Hint 3: With numbers plugged in, this becomes(
(240× 10−6)2

π

)1/2 ∫ 6.3×104

6.1×104
e(240×10−6)2(6.2×104−k)2dk.

which is equal to 0.288, or 29%.

[Statement] b. Compare to the result if σx = 400 microns.

Hint 1: Replace σx with its new value to get(
(400× 10−6)2

π

)1/2 ∫ 6.3×104

6.1×104
e(400×10−6)2(6.2×104−k)2dk.

which is equal to 0.476, or 48%.

Hint 2: Is this reasonable? With a wider spread in position (larger σx),

you’d expect the distribution in k to become narrower; for a normalized

function, this means that the probability of finding a wavenumber near

k0 becomes bigger.

Problem 9 (page 216 of text)

[Statement] Show that inserting a Gaussian wave packet (Eq. 6.40) into

Eq. 6.44 leads to the expression for Ψ(x, t) given in Eq. 6.45.
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Hint 1: Inserting ϕ(k) =
(

σ2
x

π

)1/4
e

σ2
x
2 (k0−k)2 into

Ψ(x, t) = 1√
2π

∫∞
−∞ ϕ(k)ei[kx−ω(k)t]dk gives

Ψ(x, t) =

(
σ2
x

4π3

)1/4 ∫ ∞

−∞
e

σ2
x
2 (k0−k)2ei[kx−ω(k)t]dk,

where ω(k) = ℏk2

2m .

Hint 2: As in Problem 7, focus on the arguments of the exponentials in

order to simplify the problem:

exp

[
−σ

2
x

2
(k0 − k)2 + i(kx− ℏk2

2m
t)

]
.

Unlike Problem 7, here it’s easiest to do a u substitution before complet-

ing the square. The first term has k0 − k, although to switch variables

from k it’s easier to use u = k − k0 (and, handily, in that first term the

negative sign squares away, so this choice will be simplest to work with).

This also means that k = u+ k0:

exp

[
−σ

2
x

2
u2 + i

(
(u+ k0)x− (u2 + 2uk0 + k20)

ℏ
2m

t

)]
Hint 3: Collecting powers of u gives

exp

[
u2
(
−σ

2
x

2
− iℏt

2m

)
+ u

(
ix− iℏk0t

m

)
+

(
ixk0 −

iℏk20t
2m

)]
.

This can be expressed as

exp
[
−Au2 −Bu+ C

]
,

with

A =
σ2
x

2
+
iℏt
2m

,

B = −ix+
iℏk0t
m

,

C = ixk0 −
iℏk20t
2m

.

Hint 4: The integral now has the form

Ψ(x, t) =

(
σ2
x

4π3

)1/4 ∫ ∞

−∞
exp

[
−Au2 −Bu+ C

]
du,

where the earlier substitution u = k − k0 makes du = dk and retains
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the ±∞ integration limits. The constant term can be pulled out of the

integral as eC , which, because ω0 =
ℏk2

0

2m , is equal to exp [i(k0x− ω0t)]:

Ψ(x, t) =

(
σ2
x

4π3

)1/4

exp [i(k0x− ω0t)]

∫ ∞

−∞
exp

[
−Au2 −Bu

]
du.

Hint 5: To solve the integral
∫∞
−∞ exp

[
−Au2 −Bu

]
du, you can either

complete the square (as in Problem 7), or you can look up this form in

an integral table:∫ ∞

−∞
exp

[
−Au2 −Bu

]
du =

√
π

A
eB

2/(4A)

which is consistent with the result in Problem 7.

Hint 6: The final result is

Ψ(x, t) =
1√
2π

(
σ2
x

π

)1/4

exp [i(k0x− ω0t)]

√
π

A
exp

[
B2/(4A)

]
.

Rewritten in terms of the original variables gives

Ψ(x, t) =

(
σ2
x

4π3

)1/4

exp [i(k0x− ω0t)]

√
π

σ2
x

2 + iℏt
2m

exp

[
(−ix+ iℏk0t

m )2

4(
σ2
x

2 + iℏt
2m )

]
.

Hint 7: Pulling a factor of (−i)2 = −1 from (−ix + iℏk0t
m )2 makes the

expression into

Ψ(x, t) =

(
σ2
x

4π3

)1/4

exp [i(k0x− ω0t)]

√
π

σ2
x

2 + iℏt
2m

exp

[
−
(x− ℏk0t

m )2

4(
σ2
x

2 + iℏt
2m )

]
.

which matches Eq. 6.45.

Problem 10 (page 216 of text)

[Statement] A very different situation than the free particle is the trapped

one: a particle in a potential well. The simplest case is the particle in a

box: an infinitely deep, constant potential well as shown below.

[Statement] a. In this case, the wavefunction does not penetrate the side

walls and ψ(0) = ψ(a) = 0. Show that ψ(x) = sin(nπx/a) satisfies both

Eq. 6.21 and the boundary conditions. What values may n have?

Hint 1: Plug ψ(x) = sin(nπx/a) into EΨ = −ℏ2

2m
∂2Ψ
∂x2 + VΨ. Because the
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x

V=∞ V=∞

V=0
0 a

potential is zero between 0 and a, the VΨ term disappears. You’re left

with

E sin
(nπx

a

)
=

−ℏ2

2m

∂2

∂x2
sin
(nπx

a

)
.

Hint 2: Find the partial derivatives of sin(nπx/a):

∂2

∂x2
sin
(nπx

a

)
=

∂

∂x

(
∂

∂x
sin
(nπx

a

))
=

∂

∂x

(nπ
a

cos
(nπx

a

))
= −

(nπ
a

)2
sin
(nπx

a

)
Hint 3: Plug this result back into the Schrödinger equation:

E sin
(nπx

a

)
=

ℏ2

2m

(nπ
a

)2
sin
(nπx

a

)
,

where the two negatives on the right side have canceled. At this point

the sines also cancel, leaving

E =
ℏ2n2π2

2ma2
.

This seems like a valid energy; it has the right units

J2 s2

kg m2 =
J2

kg m2/s2
=

J2

J
= J

and is a constant value for a given n and a.

Hint 4: To see if the wavefunction satisfies the boundary conditions, plug

in 0 and a to see if ψ(x) = 0:

sin(0) = 0

sin(nπa/a) = sin(nπ).

The latter equals zero only when n is an integer. In other words, the

valid solutions to the particle in the box have discrete values of energy,

corresponding to integer n. These quantized states are one reason for
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the name “quantum mechanics.”

[Statement] b. Normalize ψ(x).

Hint 1: Neither the Schrödinger equation nor the boundary conditions

set the normalization constant. Instead, you (as always) must impose

the fact that the sum of all probability must be one.

1 =

∫ ∞

−∞
ψ∗(x)ψ(x)dx

=

∫ a

0

(A sin
(nπx

a

)
)(A sin

(nπx
a

)
)dx

= A2

∫ a

0

sin2
(nπx

a

)
dx

Hint 2: Using the methods of Problem 5, the integral is equal to a/2.

So, the probability equation now reduces to

1 = A2 a

2

or

A2 =
2

a
.

Solving for A gives
√
2/a.

[Statement] c. Plot several wavefunctions with the three smallest n val-

ues and compare to Fig. 3.5 for standing waves on a string.

Hint: Set a = 1 for easier comparison with Fig. 3.5. The plots look like

standing waves, each with their own energy.




