
Introduction
Astronomy is a science that is not short of superlatives, and this textbook is in
keeping with this tradition as it investigates examples of extreme environments
in the cosmos, such as any that are extremely hot, extremely energetic, extremely
fast, have extremely strong gravitational fields, or all of these combined. There is
an abundance of phenomena in the sky that deserve the label extreme environment
— too many, in fact, to be dealt with in a single textbook. The specific selection
presented here is strongly driven by the research interests of the authors, and we
hope that our enthusiasm is still apparent even when arguments and derivations
become more involved.

The underlying theme of the book is accretion power — the sometimes staggering
amount of energy released when matter approaches gravitating bodies. This is
particularly potent in the vicinity of compact objects — white dwarfs, neutron
stars and black holes big and small — where the gravitational potential well is
steep and deep. Accreting matter heats up enormously and emits powerful
high-energy radiation.

This is why this textbook studies accreting systems with such compact objects.
The main focus of the text is indeed on stellar mass accretors, i.e. compact
binaries, where the accretion flows and their emission can be studied in great
detail, revealing a wealth of exciting insights into matter and radiation under
extreme conditions. Furthermore, we choose mainly to discuss disc accretion —
in fact, the theory of accretion discs, and observational signatures of discs, make
up a third of the book. As a result, the low-mass X-ray binaries receive relatively
more attention than the brighter high-mass X-ray binaries. Wherever appropriate
we present links to the much larger analogues of accretion-powered binaries,
active galactic nuclei (AGN) that host supermassive black holes. Yet we place the
emphasis firmly on the stellar systems, and do not present AGN in detail.

This book focuses on a discussion of the physical concepts underpinning our
current understanding of accreting systems, and supports this by a presentation of
key observational facts and techniques.

Our journey into the wild and wonderful world of high-energy astrophysics begins
with a short review of the basics of mass accretion, of black holes, compact
binaries and AGN, and the thermal emission that we expect from them. In
Chapter 2 we consider the host systems of stellar mass accretors and study
their evolutionary history and current evolutionary state. We then move on to
develop a simple theoretical description for a flat, Keplerian disc in a steady state
(Chapter 3). Chapter 4 presents the disc instability model for the spectacular
outbursts seen in soft X-ray transients and dwarf novae. Chapter 5 focuses on
observational properties, mainly in the optical waveband, that constitute proof of
the existence of accretion discs, and touches upon some of the more advanced
indirect imaging techniques of accretion flows. This leads to Chapter 6 (main
author Robin Barnard) on the X-ray properties of accreting objects. In the past
decade the X-ray observatories XMM-Newton and Chandra have opened up a
new window into the world of stellar mass accreting systems in galaxies other
than the Milky Way (the cover image of this book is meant to encapsulate
this), and some of the systems discovered in other worlds are stranger than
fiction. Chapter 7 (main author Hara Papathanassiou) examines the physics
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of very fast (relativistic) outflows and jets that are present in X-ray binaries,
AGN and gamma-ray bursts, paving the way for Chapter 8 (main author Hara
Papathanassiou), the culmination of the book, on the most energetic and most
extreme events known in the Universe to date: gamma-ray bursts.

This book is designed to be a self-study text, and can be used as a resource for
distance teaching courses. Moreover, even though it is pitched at the advanced
undergraduate level, by the nature of the selected topics and the depth of
presentation, an attempt is made to build on familiar concepts and develop them
further, with a minimum of higher-level mathematics, showing derivations in
more detail than similarly advanced texts do.

Part of this book draws on teaching texts of an earlier Open University course
(Active Galaxies by Carole Haswell and Interacting Binary Stars by Ulrich Kolb),
which in turn referred heavily to other sources. In particular, the influence of the
advanced textbook Accretion Power in Astrophysics by Juhan Frank, Andrew
King and Derek Raine is still apparent in this new book. Another treasure trove of
inspiration and facts has been unpublished lecture notes by Hans Ritter.

Thanks go to Carolin Crawford for critical comments on an earlier manuscript of
this book and to Philip Davis for checking the exercises and numerical examples.

Ulrich Kolb
Hara Papathanassiou
Robin Barnard
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Chapter 1 Accretion power

Introduction
In this chapter we shall consider the concept of mass accretion in astrophysics and
its importance as a source of energy. We shall identify accretion-fed compact
objects as powerful energy generators, and review the astrophysical context where
sustained accretion can occur. In preparation for a closer look at compact binary
stars and active galactic nuclei (AGN), we develop the Roche model for close
binaries, and review the evidence for the existence of supermassive black holes
in AGN. We conclude the chapter with a simple analysis of the continuum
emission expected from a plasma that accretes with angular momentum to form
an accretion disc.

1.1 Accretion as a source of energy
One of the most important astrophysical processes in the Universe is mass
accretion, where a gravitating body grows in mass by accumulating matter
from an external reservoir. The key importance of this process, which we shall
henceforth simply refer to as accretion, is that it liberates gravitational potential
energy, making accreting objects potentially very powerful sources of energy.

The concept of a test mass

Throughout this book we shall often study the physical characteristics of
accreting systems by considering the fate of a test mass. We define this to be
a gravitating body with a very small mass, so much so that the effect of the
test mass on any existing gravitational field, such as from gravitating bodies
in its neighbourhood, is negligible. The geometric size of the test mass is
also considered to be negligible, and hence the test mass is treated as a point
mass in most cases.

1.1.1 Accretion luminosity

The essence of accretion is most easily illustrated by considering a test mass m in
the gravitational field of a spherically symmetric body with mass M and radius R
(m ) M ). The gravitational potential energy of the test mass at a distance r
from the central body is

EGR(r) = −GMm

r
. (1.1)

As the test mass moves from a very large distance r → ∞ to the surface r = R of
the central body, the energy difference ΔEGR = EGR(r = ∞) − EGR(R) is
released. With r → ∞ we have 1/r → 0 and so E(r = ∞) → 0, hence

ΔEGR =
GMm

R
. (1.2)
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Chapter 1 Accretion power

Suppose now that the central body, the accretor, is accreting mass continuously
at a rate Ṁ . In the time interval Δt it will therefore accrete the mass
ΔM = Ṁ × Δt, and according to Equation 1.2 it will liberate the energy
ΔEGR = GMΔM/R. If all of this energy is radiated away at the same rate
as it is liberated, the luminosity of the object due to the accretion process is
Lacc = ΔEacc/Δt, which becomes

Lacc =
GMṀ

R
. (1.3)

The quantity Lacc in Equation 1.3 is called the accretion luminosity.

Notation for time derivatives

Often the time derivative of a quantity is denoted by a dot over the symbol
representing this quantity. As an example, the mass accretion rate is the rate
at which mass is added to an object, i.e. the rate by which the mass M of this
object increases. Therefore it can be written as

dM

dt
≡ Ṁ.

It is instructive to estimate the actual mass accretion rate needed to achieve a
significant accretion luminosity for a normal star like our Sun, and confront this
value with mass flow rates observed in the Universe. Mass accretion rates are
often expressed in solar masses per year, M% yr−1. Equation 1.4 below provides
the conversion into SI units.

Worked Example 1.1
Calculate the mass accretion rate needed to power an accretion luminosity of
1.0L% for the Sun.

Solution
We have

Lacc =
GMṀ

R
= 1L%

with M = 1M% and R = 1R%. Solving this for the accretion rate, we
obtain

Ṁ = 1
L%R%
GM%

=
3.83 × 1026 J s−1 × 6.96 × 108 m

6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

= 2.01 × 1015 kg s−1.

To convert this into M% yr−1, we note that

1M% yr−1 =
1.99 × 1030 kg

60 × 60 × 24 × 365.25 s
= 6.31 × 1022 kg s−1. (1.4)
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1.1 Accretion as a source of energy

Hence the required mass accretion rate for the Sun is

Ṁ =
2.01 × 1015

6.31 × 1022
M% yr−1 = 3.2 × 10−8 M% yr−1.

To put this value into perspective, we note that the Sun is continuously
shedding mass at the much smaller rate of about a few times 10−14 M% yr−1

in the form of the solar wind, a stream of high-energy particles emanating
from the Sun’s atmosphere. Even though massive stars and giant stars have
much stronger stellar winds than the Sun, it would be difficult for a star like
our Sun to accrete mass from the stellar wind of another star, at a rate similar
to the one calculated here — not least as in any reasonable setting only a
small fraction of the wind would be captured by the accreting star.

For a fixed mass accretion rate, the accretion luminosity obviously increases with
the compactness M/R of the accreting object. This reflects the fact that for
a given mass M , the depth of its gravitational potential well increases with
decreasing radius R.

Exercise 1.1 The Sun would have to accrete mass at a rate of
3.2 × 10−8 M% yr−1 to generate an accretion luminosity that rivals its own energy
output powered by core-hydrogen burning.

(a) Calculate the accretion luminosity that a white dwarf with mass 1M% and
radius 10−2 R% would have with the same accretion rate.

(b) Calculate the corresponding accretion luminosity for a neutron star with mass
1.4M% and radius 20 km. ■

1.1.2 Accretion discs

Fluids and stellar plasma

Liquids and gases are collectively called fluids. In this book we are dealing
with astrophysical fluids like stellar matter. Stellar matter is a gas, often
referred to as stellar plasma or cosmic plasma. A plasma is a conducting
fluid, e.g. an ionized gas, whose properties are determined by the existence
of ions and electrons. Often stellar matter is fully ionized, but for low
enough temperatures these ions and electrons may recombine to form
neutral atoms and molecules.

Accreting matter hardly ever approaches the accretor in a straight-line trajectory.
The conservation of angular momentum will in general lead to the formation of a
flattened structure around the accretor in the plane perpendicular to the net
angular momentum vector of the material. This plane could, for example, be the
orbital plane of a binary system if the accreting material is donated from a
companion star. Individual plasma blobs in such an accretion disc (Figure 1.1) Figure 1.1 An artist’s

impression of an accretion disc.orbit the accretor many times while maintaining a slow drift inwards, thereby
losing angular momentum and gravitational potential energy. An accretion disc
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Chapter 1 Accretion power

acts as an agent to allow the accreting plasma to settle gently on the mass accretor.
In fact, accretion discs are like machines that extract gravitational potential energy
and angular momentum from plasma.

In most cases, plasma at a distance r from a spherically symmetric accretor with
mass M will orbit the accretor on a circular orbit with speed

vK =

(
GM

r

)1/2

. (1.5)

The plasma is said to execute a Kepler orbit (or Keplerian orbit), and the speed
vK is the Kepler speed.

● How does Equation 1.5 follow from the statement that the centripetal force on
a blob of plasma with mass m arises from the gravitational force?

❍ The gravitational force on a plasma blob with mass m is GMm/r2, while the
centripetal force is mv2/r. Equating these, cancelling m, and rearranging for
v = vK reproduces Equation 1.5.

The orbit of a blob of plasma in an accretion disc is in fact a Kepler orbit with a
slowly decreasing radius r. Hence the blob slowly drifts towards the accretor,
losing gravitational potential energy while gaining kinetic energy.

The kinetic energy of a blob of plasma with mass m is

EK =
1

2
mv2 =

1

2

GMm

r
,

while the gravitational potential energy is given by Equation 1.1. So we have

EK = −1
2EGR, (1.6)

and the total energy of the system is

Etot = EK + EGR = 1
2EGR. (1.7)

The virial theorem

The virial theorem is a powerful diagnostic for a self-gravitating system in
hydrostatic equilibrium, i.e. in a state where the system as a whole neither
expands nor contracts as time goes by. The virial theorem relates the total
gravitational potential energy EGR of the system to its total kinetic energy
EK as

EK = −1
2EGR. (Eqn 1.6)

Equations 1.6 and 1.7 show that half of the released gravitational potential energy
is converted into kinetic energy of the blob, while the other half is available to
heat the plasma and to power the emission of electromagnetic radiation such as
visible or ultraviolet light, or X-rays.

When calculating the accretion luminosity of disc accretion, it is therefore
appropriate to include the factor 1

2 in Equation 1.3 to take account of the fact that
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only half of the energy expressed by Equation 1.2 is available to be radiated away
by the disc itself:

Ldisc =
1

2

GMṀ

R
. (1.8)

1.1.3 Accretion efficiency

A useful measure that illustrates the power of accretion as an energy generator is
the accretion efficiency ηacc, defined by the expression

Lacc = ηaccṀc2, (1.9)

where c is the speed of light. In general, the efficiency η expresses the amount of
energy gained from matter with mass m, in units of its mass energy, E = mc2.

Exercise 1.2 Estimate the efficiency of accretion onto a neutron star. Compare
Equations 1.9 and 1.3, and use typical parameters of a neutron star, such as
M = 1M% and R = 10 km.

Exercise 1.3 (a) Compare the efficiency (= energy gain/mass energy of input
nuclei) of nuclear fusion of hydrogen into helium with the result of Exercise 1.2.
The mass defect of hydrogen burning is Δm = 4.40 × 10−29 kg.

(b) Explain why accretion can be regarded as the most efficient energy source in
the Universe. ■

The above exercises demonstrate that mass accretion has particularly significant
consequences if it involves a compact accretor, i.e. an object with a higher density
than that of normal stars or planets. Examples of stellar mass compact objects are
stellar end-states such as white dwarfs or neutron stars, and the more exotic black
holes. Both white dwarfs and neutron stars are subject to an upper mass limit. For
white dwarfs this is the Chandrasekhar limit of 1.4M%, while for neutron stars the
limit is less securely known but is thought to be " 3M%. Black holes, on the
other hand, apparently exist over a very wide range of masses. Stellar mass black
holes are seen in binary systems, and supermassive black holes with masses up to
1011 M% in the nuclei of active galaxies.

Black holes are the most exotic of the accreting compact objects that we discuss
here, so in the next section we shall review some basic facts about black holes that
are relevant for accretion physics.

1.2 Black hole accretors
A black hole forms when self-gravity causes material to collapse to such high
densities that the escape velocity reaches the speed of light.

1.2.1 Schwarzschild black holes

Using Newtonian dynamics we can calculate the magnitude of the escape velocity
vesc from the surface of a spherically symmetric gravitating body with mass M
and radius R by saying that the kinetic energy of a mass m travelling vertically

15



Chapter 1 Accretion power

upwards with speed vesc must equal the change in gravitational potential energy,
as given by Equation 1.2, required to completely escape from the body’s
gravitational field, i.e.

1
2mv2

esc =
GMm

R
.

Cancelling m and solving for vesc, we have

vesc =

(
2GM

R

)1/2

. (1.10)

To self-consistently calculate the magnitude of the escape velocity from an object
with a density so high that the escape velocity reaches the speed of light, requires
the use of general relativity. The relevant solution of Einstein’s field equations is
called the Schwarzschild solution, describing non-rotating black holes. These are
therefore often referred to as Schwarzschild black holes. By a lucky coincidence,
the correct general relativistic result for a non-rotating black hole is exactly what
we obtain by setting vesc = c in Equation 1.10. A non-rotating black hole is
formed when a mass M collapses to within a sphere of radius RS, where

RS =
2GM

c2
(1.11)

is the Schwarzschild radius, the radius of the sphere surrounding the collapsed
mass at which the escape speed equals the speed of light. Within this sphere is a
region of spacetime that is cut off from the rest of the Universe, since neither light
nor any other form of information can escape from it. The sphere itself is known
as the event horizon. Immediately outside the event horizon is a region of
spacetime in which there is an extremely strong gravitational field.

A black hole forms at the end of the life of a massive star when there is no
pressure source sufficient to oppose the self-gravitational contraction of the
remnant stellar core. Similarly, if a much larger mass collapsed under self-gravity,
a black hole would ultimately form, and indeed it is now thought that black holes
of mass M ! 106 M% are present at the cores of most (or possibly all) galaxies.

Accreting black holes offer the opportunity to study black hole properties since
the energy generated through the accretion process makes these holes quite
conspicuous. As we have discussed above, the accreting material will orbit the
black hole before it crosses the Schwarzschild radius. In general relativity there is
a minimum stable circular orbit close to the black hole, at about 3RS. Closer to
the black hole, a stable orbit does not exist, and material will plunge towards the
event horizon so swiftly that any energy is effectively trapped in the plasma and
hence disappears with the matter down the hole. The framework of general
relativity is needed to work out the accretion luminosity and accretion efficiency
of an accreting black hole; this is beyond the scope of this book. Instead, we apply
here the Newtonian expressions to obtain estimates for these quantities, and just
note the general relativistic result.

Exercise 1.4 Estimate the accretion efficiency onto a non-rotating black hole
by assuming that the accreting material executes Kepler orbits in an accretion disc
and slowly drifts inwards. Assume that the inner edge of the accretion disc
coincides with the last stable circular orbit at 3RS. ■
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1.2 Black hole accretors

The correct general relativistic result for the accretion efficiency of a
Schwarzschild black hole that accretes from a geometrically thin accretion disc is
ηacc = 5.7%.

1.2.2 Rotating black holes

Most stars acquire angular momentum when they form, and, unless there is an
effective braking mechanism at work that removes spin angular momentum, will
keep it throughout their evolution. So the black hole remnant of a star is expected
to rotate, too. The Schwarzschild solution of Einstein’s field equations for
non-rotating black holes can be generalized in the form of the more involved Kerr
solution to describe rotating black holes, or Kerr black holes (Figure 1.2).

rotation axis

static limit

ergosphere

singularity

inner event horizon

outer event horizon
Figure 1.2 Critical
surfaces of a Kerr
black hole.

Both Schwarzschild and Kerr black holes represent gravitational singularities
where the curvature of spacetime is infinite. In the case of Kerr black holes this
singularity is a ring in the plane perpendicular to the rotational axis, while it is a
single point for Schwarzschild black holes. Both types have a spherical event
horizon where the escape speed is the speed of light. However, the (outer) event
horizon of a Kerr black hole is surrounded by a second critical surface, the static
limit, which has the shape of an oblate spheroid and touches the event horizon at
its poles. The space between these two surfaces is called the ergosphere. Within
the ergosphere the spacetime is dragged in the direction of the spinning black hole
at a speed greater than c with respect to the outside Universe at rest, while at the
static limit this speed equals c. As a consequence, matter inside the ergosphere
cannot stay at rest. The material may even be ejected from the ergosphere by
gaining energy from the black hole spin, thus spinning down the hole. If such a
process could be sustained, the spinning black hole would eventually become a
Schwarzschild black hole. There is also a maximum spin rate for a Kerr black
hole.

In the context of accretion, a significant property of Kerr black holes is that the
radius of the last stable orbit of matter orbiting the black hole outside of the event
horizon decreases with increasing black hole spin (if the spin is in the same
direction as the orbital motion of the accreting material). It is appropriate to use
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Chapter 1 Accretion power

the last stable circular orbit in the expression for the accretion luminosity of a
Kerr black hole.

● The last stable circular orbit for a Kerr black hole spinning at its maximum
rate is 0.5RS. Using the same Newtonian method as in Exercise 1.4, estimate
the accretion efficiency.

❍ With

ηacc =
1

2

GM

Rc2

and R = 0.5RS, we obtain ηacc = 0.5 = 50%. The correct general relativistic
result is ηacc = 0.32 = 32%.

1.3 Accreting systems
The accretion of mass is a very common phenomenon in the Universe. The Earth
is constantly bombarded by meteorites and interplanetary dust particles (while
also losing mass in the form of gas into space). Stars may sweep up interstellar
matter as they cruise through clouds of hydrogen gas and dust. Such incidental, if
not serendipitous, accretion rarely gives rise to appreciable accretion-powered
emission. One notable exception is the high-energy emission from apparently
isolated neutron stars that may accrete from the interstellar medium. For accretion
to power sustained emission, a large enough mass reservoir must donate matter
towards the accretor at a high enough rate.

This is the case, for example, in protoplanetary discs (proplyds). These
circumstellar discs of dense gas surrounding newly formed stars (T Tauri stars) are
the remnants of the star formation process and the birthplace of planetary systems.

Yet for accretion to power high-energy emission a compact accretor has to be
present. There are principally two different groups of astrophysical systems with
accreting compact objects, and throughout this book we shall look at each in more
detail. The first group is compact binaries, systems with a compact star accreting
matter from a companion, in most cases a normal star, either via the stellar wind
of this star, or by a process called Roche-lobe overflow. The second group
comprises supermassive black holes, with a mass in excess of 106 M%, in the
centres of galaxies, that swallow clouds of interstellar gas and dust, or even whole
stars, from their vicinity.

1.3.1 Interacting binary stars

A binary star is a system consisting of two stars that orbit the common centre
of mass. Binaries are very common as the star formation process involves
the collapse and fragmentation of interstellar clouds, favouring the formation
of protostars in close proximity to each other. Newly formed triple systems
and higher multiples are gravitationally unstable and will eventually reduce to
binary stars (or hierarchical binary stars) and single stars through the ejection of
component stars.

In very wide binaries, the two stellar components will evolve just as they would
do as single stars. If, on the other hand, two stars orbit each other in close
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1.3 Accreting systems

proximity, neither of them can get arbitrarily large without feeling the restrictive
presence of the second star. If one star becomes too large, the gravitational pull on
its outer layers from the second star will become bigger than the pull towards its
own centre of mass. Then mass is lost from one star and transferred to the other
star. (See the box on ‘Binary stars’ below.) This is called mass transfer, and it
will obviously give rise to accretion. It will also have an impact on the physical
character of the two stars. If the mass accretor is an evolved, old star, it might
rejuvenate when it acquires unspoilt, hydrogen-rich material. Conversely, once
the mass donor has lost a significant amount of material, it may look much older
than a star of its current mass usually would.

Binary stars

The binary component losing mass to the other component is called the
mass donor, while the component on the receiving end is called the mass
accretor. Here we refer to the accretor as the primary star, or just the
primary, while the mass donor is the secondary star, or simply the
secondary. This is because in many (but not all!) cases the accretor is more
massive than the donor. Quantities carrying the index ‘1’ usually refer to the
primary, while those with index ‘2’ refer to the secondary. The mass ratio

q =
donor mass

accretor mass
=

M2

M1
(1.12)

is therefore the ratio of donor mass to accretor mass, and usually (but not
always) less than unity. Unfortunately this is not a generally accepted
convention, and other books or journal papers may define the mass ratio the
other way round (M1/M2).

Pseudo-forces in a rotating frame

We shall now consider the physical foundation of the mass transfer process in
greater detail. This is most conveniently discussed in a frame of reference that
co-rotates with the binary. This frame rotates about the rotational axis of the
orbital motion, i.e. an axis perpendicular to the orbital plane and intersecting this
plane at the binary’s centre of mass, with the same angular speed ω as the binary,

ω =
2π

Porb
, (1.13)

where Porb is the orbital period. The co-rotating frame does not constitute an
inertial frame. Pseudo-forces (sometimes called fictitious forces) appear as a
result of the rotational motion. To see why, we recall Newton’s laws of motion.
Any acceleration of a body in an inertial frame results from the action of a force
on this body. In contrast, in a rotating frame a body may accelerate relative to the
observer simply because the observer himself or herself is fixed to the rotating
frame, while the body is not. The force causing this acceleration does not exist in
the inertial frame, hence is called a pseudo-force. Nonetheless, for an observer in
the rotational frame it can be very real.

In particular, there are two pseudo-forces in a rotating frame: the centrifugal force
and the Coriolis force.
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Chapter 1 Accretion power

The centrifugal force is a familiar pseudo-force that, for example, the driver of a
car experiences when following a sharp bend of the road at high speed. The driver
is an observer fixed to the rotating frame, the car. The rotational axis is vertical
and passes through the geometric centre of the bend. The driver is at rest in the
driver’s seat, but to stay there, muscle strength is needed to balance the centrifugal
force pushing the driver radially outwards, away from the centre of the bend. For
an observer in the inertial frame at rest with respect to the road — someone
standing on the pavement — the driver is of course not at rest, but travelling on a
circular path. The pedestrian concludes that there is a centripetal force acting on
the driver, which is pulling the driver off the straight line (Figure 1.3). This force

CENTRIPETAL FORCE

v

v

(a) no force

A

Fp Fp

Fp

Fp

Fp

(b) force at A
to v

(c) force always

perpendicular

perpendicular
centripetal force
Fp = −mvωr̂

to v;

Figure 1.3 The centripetal
force. The observer is in a
non-rotating frame of reference
(inertial frame).

is mediated by the friction of the tyres on the road, the structural rigidity of the
car, and the driver’s muscle strength. In fact, the centripetal force has the same
magnitude as the centrifugal force, but the opposite direction. The magnitude of
the centrifugal force on a body with mass m and distance r from the rotational
axis is

Fc = m
v2

r
= mω2r. (1.14)

Here ω is the angular speed of the rotating frame, and v = ω × r is the magnitude
of the instantaneous velocity of a point fixed to the rotating frame, with respect to
the non-rotating inertial frame.

The second pseudo-force in the rotating frame, the Coriolis force, acts only on
bodies that are moving in this frame. The Coriolis force is always perpendicular
to the direction of motion, and also perpendicular to the rotation axis. It is easy to
see why such a force in addition to the centrifugal force must exist. A body at rest
in an inertial frame would appear to move in a circle around the rotational axis
in the rotating frame (Figure 1.4b). Hence the observer in the rotating frame
concludes that there is a force at work that not only overcomes the outward
centrifugal force, but also provides the inward centripetal force necessary to
maintain the circular motion.

Worked Example 1.2
Use the example of a body at rest in the inertial frame to show that the
Coriolis force has the magnitude 2mωv. Consult Figure 1.4.

Solution
The body of mass m is at rest in the non-rotating frame. Its distance from
the rotational axis is r. In the frame rotating with angular speed ω, the same
body appears to move on a circle with radius r and speed v = rω.

The observer in the rotating frame concludes that there is a net force, the
centripetal force Fp, of magnitude mω2r = mωv acting on the body. This
force points towards the centre of the circle. The observer knows that there
are two pseudo-forces acting on the body: the centrifugal force Fc of
magnitude mω2r = mωv, pointing away from the centre, and the Coriolis
force F Coriolis. From the vector sum

Fnet = Fp = Fc + F Coriolis

(see Figure 1.4b), we have

F Coriolis = Fp − Fc.
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Fnet = Fp = Fc + FCorFnet = 0(b)

FCor

Fnet = Fspring + Fc = 0Fnet = Fp = Fspring

Fspring

(a)

body at restbody moves on circle

body at rest body moves on circle

x′x

Fp

Fp

Fc

Fc

v

v

y′

x′

y′

y

x

y

rotating framenon-rotating frame

Figure 1.4 The Coriolis force. (a) A body is attached to a spring and
moves on a circle with constant angular speed (as seen in the inertial frame).
In the co-rotating frame the body is at rest; the net force on the body is zero
— the spring force just balances the centrifugal force. (b) A body at rest in
the inertial (non-rotating) frame is seen to move on a circle with constant
angular speed in the rotating frame. The necessary centripetal force Fp for
circular motion is given by the sum of the centrifugal force Fc and the
Coriolis force F Coriolis.

As Fp and Fc point in opposite directions, it is clear that the magnitude
of the Coriolis force is just the sum of the magnitudes of Fp and Fc,
i.e. 2mωv, as required. (The expression for the Coriolis force is slightly
more complicated if the velocity is not perpendicular to the rotation axis; it
involves the vector product

F Coriolis = −2mω × v, (1.15)

so only the velocity component perpendicular to the axis is involved.)
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Chapter 1 Accretion power

We do, in fact, live in a rotating frame of reference ourselves: on Earth. The
Coriolis force is responsible for the motion of clouds around low-pressure weather
systems, as seen in satellite images of the Earth (Figure 1.5). On the northern
hemisphere, the Coriolis force deflects air moving towards a low-pressure region
in a clockwise direction as seen from space. The air flow thus joins the
anticlockwise, circular movement around the low-pressure area, a so-called
cyclonic flow.

Figure 1.5 Earth as seen
from space, with a cyclonic
depression.

The magnitude and direction of the centrifugal force depends only on the position
in the rotating frame. It can therefore be expressed as the gradient of a
potential V , such that Fc ∝ ∇V . In contrast, the Coriolis force depends on
position and velocity, and cannot be derived from a potential. In the context of the
Roche model below, the most important thing to remember about the Coriolis
force is that it vanishes if v = 0 in the rotating frame!

The Roche model

To arrive at a useful and yet simple quantitative description of a close binary
system with mass exchange, we now make three simplifying assumptions. These
will allow us to express the force F on a test mass m in the system in terms of the
Roche potential ΦR in the co-rotating frame as

F = −m∇ΦR.

● Express the physical meaning of this equation in words.

❍ The direction of the force on the test mass, as seen in the co-rotating frame, is
in the opposite direction to the gradient of the potential. In the x-direction the
gradient of ΦR is just the derivative dΦR/dx.

The first simplifying assumption is that the orbits of the binary components are
circular. Close binaries with elliptical orbits do exist, but if one component has an
extended envelope, then strong tidal forces within this envelope will act to reduce
the eccentricity of the orbit on a short timescale. Most mass-transferring binaries
do indeed have circular orbits.

The second assumption is that the two components are in effect point masses —
which they clearly are not. However, the gas density inside stars increases
markedly towards the centre. The bulk of the stellar mass is in fact concentrated in
a small, massive core region that is practically unaffected by the presence of a
companion, and hence the star can safely be approximated by a point mass.

The third assumption is that the outer layers of each of the stars rotate
synchronously with the orbit. In close interacting binaries, tidal forces are indeed
very effective in establishing the tidal locking of spin and orbit.

We consider now a test mass m fixed in the co-rotating frame (binary frame) at a
position that we specify by the position vector r (see Figure 1.6). The primary
with mass M1 is at the position r1, the secondary with mass M2 is at r2, and the
centre of mass is at rc. The test mass is subject to the gravitational force of the
primary, the gravitational force of the secondary, and the centrifugal force. The
Coriolis force vanishes as the test mass is at rest in the binary frame.
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Figure 1.6 Definitions for the Roche model. The arrows representing rc and
r2 are slightly displaced for clarity but they are coincident with the x-axis over
the length of the vector in each case.

The Roche potential is then

ΦR(r) = − GM1

|r − r1| −
GM2

|r − r2| −
1
2 (ω × (r − rc))

2 . (1.16)

Exercise 1.5 In the expression 1.16 for the Roche potential ΦR(r), explain the
functional form of the three terms on the right-hand side.

Exercise 1.6 Assume that the x-axis goes through the centres of the two
stellar components, and the origin is at the centre of the primary. Write down the
Roche potential as a function of x, and determine the direction and magnitude of
the force on a test mass m at the centre of mass of the system. ■

The significance of the Roche potential is that in equilibrium, for negligible fluid
flow velocities, the surfaces of constant Roche potential, the Roche equipotentials,
are also surfaces of constant pressure. In particular, the surface of a star, i.e. the
layer with an optical depth of about 1 (see the box entitled ‘Cross-section, mean
free path and optical depth’ in Section 6.2 for a definition of optical depth),
coincides with a Roche equipotential. Hence the shape of the Roche equipotential
determines the shape of the stellar components in binary systems.

(a)

(b)

(e)

(d)

(c)

Figure 1.7 Roche
equipotential surfaces for
different values of ΦR.

Figure 1.7 illustrates the shape of the Roche equipotentials. Close to the centre of
one of the stars, say the secondary, the equipotentials are nearly spherical,
somewhat flattened along the rotational axis — in the z-direction in the figure
(panel (a) in Figure 1.7). As long as the stellar radius is small compared to the
orbital separation, the star adopts the characteristic shape of a single star rotating
with the orbital period of the binary. With increasing distance from the stellar
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centre, the value of the Roche potential ΦR increases (i.e. becomes less negative),
and the corresponding equipotentials become more and more pointed towards the
primary, while still excluding the primary’s centre (panel (b) in Figure 1.7). The
closed equipotential surface with the largest value of ΦR (or smallest value
of |ΦR|) that still excludes the primary’s centre touches the corresponding
equipotential surface that encloses the primary’s centre in one critical point, the
L1 point, or inner Lagrangian point (panel (c) in Figure 1.7). The L1 point is a
saddle point of the Roche potential.

Figure 1.8 A familiar surface
with a saddle point.

● Describe the characteristics of a saddle point (see Figure 1.8).

❍ A saddle point of a potential is a point where the spatial gradient of the
potential Φ vanishes, such that the potential is a maximum in one direction,
e.g. along the x-axis, but a minimum in a direction perpendicular to the
former, i.e. along the y-axis. Mathematically,

∂Φ

∂x
=

∂Φ

∂y
= 0

and the second partial derivative ∂2Φ/∂x2 is negative, while ∂2Φ/∂y2 is
positive. (See the box entitled ‘Partial derivatives’ in Subsection 3.2.2 for the
meaning of the symbol ∂.)

The two lobes of the critical Roche equipotential surface that contains the
L1 point are the Roche lobe of the secondary and the Roche lobe of the primary
star, respectively. Mass exchange between these stars will proceed through the
immediate vicinity of the L1 point. A stellar component of the binary can expand
only until its surface coincides with this critical Roche equipotential. If such a
Roche-lobe filling star attempts to expand further, mass will flow into the
direction of decreasing values of ΦR, i.e. into the lobe of the second star. This is
called Roche-lobe overflow.

For somewhat larger values of ΦR (smaller values of |ΦR|), the equipotentials
surround both stars, adopting a dumbbell-like shape (panel (d) in Figure 1.7),
while at distances large compared with the orbital separation, the centrifugal
component of the potential dominates, and near the orbital plane the
equipotentials appear as nested cylinders aligned with the binary’s orbital axis.

The values of the Roche potential along a line through the centres of the two
binary star components provide an instructive illustration of Roche-lobe overflow
(see Figure 1.9, where this line is the x-axis). The most notable features of the
curve in this figure are the effect of the centrifugal repulsion at large distances
from the binary’s centre of mass (ΦR falls off at large |x|), and the two deep
valleys caused by the gravitational attraction of the corresponding star in the
respective valley. A star can fill these valleys only up to the ‘mountain pass’ in
between, the L1 point. If the star attempts to grow further, mass flows over into
the neighbouring valley. In a phase with a continuous flow of mass, the donor star
will fill the maximum volume available to it, its Roche lobe. The mass flows to
the less extended accretor, which resides well inside its own lobe. The binary is
said to be semi-detached.

x

contact binary

semi-detached binary

detached binaryΦR

ΦR

ΦR

Figure 1.9 Schematic view of
the potential wells of a detached,
semi-detached and contact
binary.

Roche-lobe overflow starts either when one of the stars attempts to grow beyond
its lobe, or because the lobe closes in on the star. The former can occur simply as
a result of the star’s nuclear evolution, e.g. when the star expands to become a
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1.3 Accreting systems

giant. The latter can occur if the orbit shrinks by losing orbital angular
momentum. We shall come back to both possibilities in Chapter 2.

Roche-lobe overflow

wind accretion

Figure 1.10 Schematic view
of Roche-lobe overflow and
wind accretion.

There is yet another way to establish mass transfer, as indicated in the lower panel
of Figure 1.10. Massive stars and giant stars display rather strong stellar winds
(see also Chapter 7). The accretor can capture some fraction of the matter lost by
the other star in its wind. Hence mass is transferred even though the mass-losing
star is well inside its Roche lobe. This mode of mass transfer is called wind
accretion. Most of the mass in the wind is lost from the binary, however.

Figure 1.11 depicts an artist’s impression of a semi-detached binary with a white
dwarf accretor, while Figure 1.12 presents a sketch of the black hole binaries
known at the time of writing (2008), drawn to scale. The images show that matter
leaving the donor star through the L1 point settles into an accretion disc around
the compact star. We now turn to accreting compact objects on much larger scales.

Figure 1.11 An artist’s
impression of a cataclysmic
variable star — a compact
binary where a white dwarf
accretes from a Roche-lobe
filling normal star.

companion
star

Sun Mercury
accretion
disc and
black hole

LMC X-3 LMC X-1 V1357 Cygni

V1485 Aquilae

XTE J1650-500

KV Ursae Majoris V406 Vulpeculae

V4641 Sagittarii

GU MuscaeMM Velorum

QZ Vulpeculae V2107 Ophiuchi
V1033 Scorpii

V616 Monocerotis V518 Persei

V381 Normae

V404 Cygni BW Circini V821 Arae IL Lupi

Figure 1.12 Known compact binaries with a black hole accretor, on a scale
based on the distance between the Sun and Mercury, indicated at the top of the
figure. The colour of the companion (donor) star indicates its surface temperature:
dark red is cool, bright yellow is hot. (Courtesy of Jerry Orosz.)
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1.3.2 Active galactic nuclei

An active galaxy contains a bright, compact nucleus that dominates its host
galaxy’s radiation output in most wavelength ranges. These active galactic
nuclei (or AGN) are thought to be powered by a supermassive black hole (the
engine) that accretes from a large hot accretion disc. The disc is the source of the
continuum emission in the ultraviolet and X-ray bands, while an obscuring dust
torus surrounding the disc emits in the infrared (Figure 1.13).

narrow emission-line region

jet

jet

broad emission-line region accretion disc

distance from centre

gas and

(a)

10−5

10−4

10−3

10−2

10−1

1

in parsecs (b)

black holedust torus

radio lobe

host galaxy

Figure 1.13 A generic model for an active galaxy. (a) A supermassive black
hole is surrounded by an accretion disc; jets emerge perpendicular to it. An
obscuring torus of gas and dust encloses the broad-line region (a few light-days
across) with the narrow-line region (a few hundred parsecs across) lying further
out. (b) The entire AGN appears as a bright nucleus in an otherwise normal
galaxy, while jets (hundreds of kiloparsecs in length) terminate in radio lobes.

Active galaxies come in many disguises, and consequently they can be grouped in
numerous classes with quite diverse observed properties. Unified models attempt
to explain this range of AGN on the assumption that they differ only in luminosity
and the angle at which they are viewed.

One broad classification criterion is based on the observed activity in the
radio band; there are weak and strong radio emitters. The most important
representatives of AGN that display no or only a very weak radio emission are
Seyfert galaxies and quasars (although " 10% of quasars are strong radio
sources; it is these that created the name quasars — quasi-stellar radio sources).
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Seyfert galaxies look like normal galaxies, but with an unusual luminous nucleus.
The host galaxies of quasars are so distant and so much fainter than the point-like
(quasi-stellar) nucleus that they are seen only on deep images taken with the most
powerful telescopes. The point-like nucleus, on the other hand, can be easily
detected.

Among the strong radio-emitting active galaxies are radio galaxies and blazars
which, like quasars, appear star-like. Many radio-bright active galaxies display
prominent, narrowly focused jets that emanate from the AGN in opposite
directions and often extend to distances exceeding the size of the host galaxy.

The active nucleus of Seyfert galaxies easily outshines its entire host galaxy,
demonstrating that the intrinsic AGN luminosity must be very large indeed.
Values in the range 1011–1015 L% are commonly derived from the observed flux
and the large distances implied by the observed cosmological redshift of AGN
emission lines. The evidence for the existence of an accreting supermassive black
hole that could generate the enormous emitting power of AGN is circumstantial
but very compelling. The AGN central engine must fit in a very small volume of
space, and this small volume must contain a very large amount of gravitating
mass. We now look at both of these facts in detail.

Compactness

Not only do the active nuclei of even the closest Seyfert galaxies appear as
unresolved point sources of light, but the luminosities of some AGN are also seen
to vary significantly over a few days. This means that the time Δt for light to
travel across the entire source must be only a few days, because otherwise the
changes in luminosity would be smoothed out by the delayed arrival times of the
photons from the more distant regions of the source. This can be expressed by the
general requirement that

l " Δt × c,

where l is the size of the emitting source and Δt is the timescale for observed
variability. Using this to work out the size limit corresponding to a light travel
time of a few days, we have

l " 10 × 24 × 60 × 60 × 3 × 108 m,

where we have adopted a typical value of Δt = 10 days, converted this into
seconds, and used an approximate value for the speed of light: c ≈ 3 × 108 m s−1.
Evaluating, and retaining only 1 significant figure, we have

l " 3 × 1014 m,

which can be converted into length units more convenient for astronomical
objects:

l " 3 × 1014 m

1.5 × 1011 m AU−1 , i.e. l " 2 × 103 AU. (1.17)

Thus the observations require that a luminosity of perhaps a 100 times that of the
entire Milky Way galaxy be generated within a region with diameter only about
1000 times that of the Earth’s orbit!

Exercise 1.7 Convert the length scale in Equation 1.17 into parsecs (pc). ■
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Mass

The second piece of evidence for the existence of a supermassive black hole as the
engine of AGN is based on the virial theorem (see the box on page 14). In the
AGN context this can be recast in terms of the mean (or typical) velocity of a
large number of individual bodies that are all part of the gravitating system. If
the total mass of the gravitating system is M and its radial extent is r, then
Equation 1.6 can be written as

1

2
m〈v2〉 ( 1

2

GMm

r
, (1.18)

where m is a typical mass of these bodies, and 〈v2〉 is the mean value of the
squares of their speeds with respect to the centre of mass. Hence

〈v2〉 ( GM

r
. (1.19)

The motion of these bodies — stars and clouds or blobs of gas — will give rise to
Doppler broadening of the spectral lines that they emit. As the AGN emitting
region is so small, the observer will only see the superposition of the emission
lines from individual emitters, all Doppler-shifted by their corresponding radial
velocity. The combined emission line will therefore have a line profile width that
reflects the average velocity 〈v〉 of the individual emitters. This is also called the
velocity dispersion.

The velocity dispersion measured for the so-called broad-line region of AGN,
which is contained within the torus of infrared emitting dust (see Figure 1.13),
is typically observed to be 103–104 km s−1. The observed variability of the
line-emitting region implies that it is a few tens of light-days across. (We shall
discuss the broad-line region in more detail in Section 5.4 below.) Hence the virial
theorem gives the mass of the central black hole as approximately 107–1011 M%.
The label supermassive seems to be well justified.

Exercise 1.8 Confirm the above statements by calculating the mass of the
central black hole if the emitting region is ≈ 30 light-days across, and displays
Doppler broadening of 6000 km s−1. ■

Supermassive black holes in galactic nuclei

It is now thought that most galaxies harbour a supermassive black hole (with mass
! 106 M%) in the centre. In active galaxies this black hole is accreting and a
strong power source, while in normal galaxies such as the Milky Way the black
hole lies dormant. The crucial evidence comes from the observation of the motion
of stars near the centre of the galaxy.

Perhaps the most dramatic example is the case of the supermassive black hole at
the centre of our own Milky Way galaxy. This region is impossible to study in
optical light because there is a lot of gas and dust in the plane of the galaxy,
which obscures our view of the central regions. At other wavelengths, however,
the optical depth is less, and it has long been known that the centre of our
galaxy harbours a compact radio source, which is called Sgr A* and is shown in
Figure 1.14. Apart from Sgr A*, the radio emission apparent from Figure 1.14 is
diffuse and filamentary. The stars near the centre of the Galaxy are not visible
because they are not strong radio sources. The infrared view shown in the left

28



1.3 Accreting systems

8 arcsec
1 light-year

Figure 1.14 A radio image of the centre of the Milky Way.
White areas indicate intense radio emission, and the red and
black areas are progressively less intense. This image was
taken with the Very Large Array (VLA) by Jun-Hui Zhao and
W. M. Goss. The white dot at the centre of the image is the
Sgr A* compact radio source.

panel of Figure 1.15 is very different. The image is diffraction-limited, and
gives a resolution of 0.060 arcseconds. The blobs are individual stars within
60 light-days of the Sgr A* radio source, whose position is marked with the small
cross at the centre of Figure 1.15.

SgrA*

1992.23
1994.32 1995.53

1996.25
1996.43

1997.54
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1999.47

2000.47

2001.50

2002.252002.33
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2002.50
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S2 orbit around SgrA*

0.05′′

(2 light-days)

NACO May 2002

SgrA*

S2

Figure 1.15 (a) An infrared image from May 2002 at 2.1µm wavelength of the region near
Sgr A* (marked by the cross). The image is about 1.3 arcseconds wide, corresponding to about
60 light-days. (b) The orbit of S2 as observed between 1992 and 2002, relative to Sgr A* (marked
with a circle). The positions of S2 at the different epochs are indicated by crosses, with the dates
(expressed in fractions of the year) shown at each point. The solid curve is the best-fitting elliptical
orbit — one of the foci is at the position of Sgr A*.
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● How do the scales of the images in Figure 1.14 and Figure 1.15 (left panel)
compare?

❍ The bar in Figure 1.14 represents 8 arcseconds, while the image in
Figure 1.15 is less than 2 arcseconds across.

The left panel of Figure 1.15 is only one frame of a series of high spatial
resolution infrared images of the centre of our galaxy, which were taken starting
in the early 1990s. The motions of individual stars are clearly apparent when
subsequent frames are compared. The right panel of Figure1.15 shows the
example of the star S2, which can be clearly seen to orbit Sgr A* with a period of
about 15 years! A number of such stellar orbits have now been measured, and
from Kepler’s law the gravitating mass inside the orbit can be determined. This is
analogous to the determination of the Sun’s gravitational field (and hence the
Sun’s mass) by studying the orbits of the planets in the solar system. The stars at
the centre of the Galaxy are not neatly aligned in a plane analogous to the ecliptic
in the solar system. Instead, the stars follow randomly oriented orbits. The
observed motions require the presence of a dark body with mass 4 × 106 M% at
the centre of our galaxy. This dark central body is almost certainly a black hole.

In galaxies where the orbits of stars or clouds cannot be mapped in this detail,
the virial theorem is used to deduce the gravitational field from the observed
dispersion of the velocity of the detected individual moving sources.

1.4 Radiation from accretion flows
As accretion flows often take the form of a disc-like structure, we now investigate
the basic appearance of such accretion discs, as indicated by the temperature of
the disc. We shall return to the physics of accretion discs in greater detail in
Chapters 3 and 4.

1.4.1 Temperature of an accreting plasma

We wish to arrive at a quantitative estimate for the temperature of the accretion
disc plasma as it approaches the accretor. To this end we make two assumptions.
First, all of the locally liberated gravitational potential energy is instantly
converted into thermal energy. Second, photons undergo many interactions with
the local stellar plasma and are thermalized before they emerge from the surface
of the disc. In other words, the plasma is optically thick and radiates locally like
a black body.

As we shall see in Subsection 3.4.4, the accretion disc surface temperature Teff of
a geometrically thin, optically thick steady-state accretion disc varies with
distance r from the accretor as

T 4
eff(r) (

3GMṀ

8πσr3
. (1.20)

This relation holds if r is large compared to the inner disc radius. The exact form
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of the profile peaks very close to the inner disc radius R, at a temperature

Tpeak ( 0.5 ×
(

3GMṀ

8πσR3

)1/4

. (1.21)

In a steady-state disc, the local mass accretion rate at each radius r is the same in
each disc annulus, and in fact equals the mass accretion rate Ṁ onto the central
object.

It is easy to see that a relation of the form T 4
eff ∝ GMṀ/r3 must apply. Consider

a disc annulus at radius r and width Δr (hence area ∝ rΔr). The gravitational
potential energy (Equation 1.1) changes across the annulus per unit time by

dEGR

dr
∝ d(GMṀ/r)

dr
∝ GMṀ

r2
.

The energy dissipated per unit area in the annulus is therefore ∝ GMṀ/r3. By
assumption, the liberated energy heats up the disc annulus to a temperature Teff,
which in turn radiates as a black body through thermal emission. The flux F
emitted by a black body source, i.e. the energy emitted per unit time per unit area,
is given by the Stefan–Boltzmann law

F = σT 4
eff, (1.22)

where σ is the Stefan–Boltzmann constant. Now F must equal the rate of energy
generation, so F ∝ T 4

eff ∝ GMṀ/r3. (A more detailed derivation is presented in
Chapter 3.)

Equation 1.20 states that accreting plasma heats up with decreasing distance from
the centre as Teff ∝ r−3/4, so material will become very hot as it approaches a
compact object. Temperatures in excess of 105 K in the case of white dwarfs and
107 K for neutron stars are the norm.

Exercise 1.9 Calculate the peak temperature of an accretion disc:
(a) around a white dwarf with mass 0.6M% and radius R = 8.7 × 106 m for an
accretion rate of 10−9 M% yr−1 (which is typically observed in cataclysmic
variables with a few hours orbital period);
(b) around a neutron star with mass 1.4M% and radius R = 10 km for an
accretion rate of 10−8 M% yr−1 (observed in some bright neutron star X-ray
binaries).

Exercise 1.10 (a) Express the peak temperature of an accretion disc around a
Schwarzschild black hole in terms of the mass accretion rate in units of M% yr−1

and the black hole mass in units of M%. Assume that the inner edge of the
accretion disc is at a radius 3RS.

(b) Calculate the peak disc temperature for a black hole with mass 10M% and
accretion rate 10−7 M% yr−1, as in bright low-mass X-ray binaries.

(c) Calculate the peak disc temperature for a black hole with mass 107 M% and
accretion rate 1M% yr−1, as in AGN. ■

1.4.2 Continuum emission

Stellar matter at such high temperatures emits electromagnetic waves of very high
frequencies, so compact binaries are powerful sources of high-energy radiation.
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The brightest sources in the X-ray sky are in fact accreting neutron star and black
hole binaries (see Figure 1.16). Several hundreds of these X-ray binaries reside
in the Milky Way, and many more are known in distant, external galaxies.

Figure 1.16 An all-sky map of the X-ray sky as seen by the X-ray satellite
ROSAT. The colour of the dots indicates the ‘X-ray colour’, i.e. the spectral
characteristics of the X-ray source. The size of the dots indicates the intensity of
the emitted X-rays. The celestial sphere has been mapped into the plane of the
page such that the Galactic Equator (the band of the Milky Way on the sky)
appears as the horizontal line in the middle of the diagram. Along the Galactic
Equator the Galactic longitude changes from −180◦ at the left to +180◦ at the
right. The Galactic Centre is in the middle. The vertical line in the middle joins
the Galactic North Pole (top) with the Galactic South Pole (bottom).

The mass M2 of the compact object’s companion star can be used to separate
X-ray binaries into two main groups with distinct properties, which we shall
discuss in Chapters 2 and 6. In low-mass X-ray binaries, or LMXBs
(Figure 1.17), the companion star is a low-mass star (M2 " 2M%), while in
high-mass X-ray binaries, or HMXBs (Figure 1.18), this is a massive star
(M2 ! 10M%). Companion stars with masses in between these limits are much
less commonly observed but theoretically implied, and are sometimes referred to
as intermediate-mass X-ray binaries.

The discs in AGN are much larger than in X-ray binaries, but they are not quite as
hot (see Exercise 1.10). The observed AGN X-ray emission is likely to be
reprocessed thermal emission from the underlying accretion discs. This will be
discussed further in Chapter 6 (Subsection 6.3.2 and Section 6.7). AGN still emit
about 10% of their total energy budget in the X-ray band, and the fact that the
emission is highly variable demonstrates that it is generated in the innermost
regions near the compact object. Therefore AGN are much more powerful X-ray
emitters than X-ray binaries, but the nearest AGN is so far away that the X-ray
flux we receive from it is smaller than the received flux from bright X-ray binaries
in the Galaxy. Yet AGN are ubiquitous across the X-ray sky and are the dominant
X-ray source group for faint X-ray fluxes. In nearby galaxies it is often difficult to
tell if an X-ray source is an X-ray binary residing in this galaxy, or an unrelated,
distant AGN that happens to be in the same line of sight as the nearby galaxy.
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jet
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hot spot

accretion stream

X-ray heating

companion star

Figure 1.17 Artist’s
impressions of the low-mass
X-ray binary V1033 Scorpii
(also known as GRO J1655-40),
which is a superluminal jet
source (see also Chapter 7). The
black hole accretes matter from
a Roche-lobe filling low-mass or
intermediate-mass companion
star. The orbital period is
2.6 days. (Courtesy of Rob
Hynes.)

Figure 1.18 Artist’s
impression of the
high-mass X-ray binary
Cygnus X-1. The black
hole accretes from the
wind of the massive
companion star. The
orbital period is 5.6 days.
(Courtesy of Rob Hynes.)

To better understand the continuum emission of accretion discs with compact
accretors, we now recall the properties of black body radiation. In the idealized
case considered above, each disc annulus radiates as a black body with the surface
temperature Teff of the annulus.

Black body radiation

Black body radiation is in thermal equilibrium with matter at a fixed temperature.
Often the emission from astronomical objects is a close approximation to this
thermal radiation. Many thermal sources of radiation, for instance stars, have
spectra which resemble the black body spectrum, which is described by the
Planck function

Bν(T ) =

(
2hν3

c2

)
1

exp(hν/kT ) − 1
. (1.23)

The quantity Bν is the power emitted by per unit area per unit frequency per unit
solid angle (and has the units W m−2 Hz−1 sr−1); k is the Boltzmann constant,
and h is Planck’s constant.
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Figure 1.19 illustrates the way that black body spectra peak at wavelengths that
depend on temperature. This is quantified by the Wien displacement law, which
states that the maximum value of Bν shown in Figure 1.19 occurs at a wavelength
λmax determined by

λmaxT = 5.1 × 10−3 m K. (1.24)
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Figure 1.19 The black body spectrum for various temperatures. The peak
emission occurs at a wavelength described by the Wien displacement law. The
shape at substantially longer wavelengths is known as the Rayleigh–Jeans tail; at
substantially shorter wavelengths it is the Wien tail.

The figure also shows that the emitted power of a black body increases at all
wavelengths as the temperature increases. So a hotter black body will be brighter
than a cooler black body even at the peak wavelength of the latter.

A useful way of characterizing the black body emission is in terms of its mean
photon energy

〈Eph〉 = 2.70kT. (1.25)
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1.4 Radiation from accretion flows

The typical thermal energy of particles in a gas with temperature T is the same as
the mean photon energy 〈Eph〉.

Photon temperature

Photon energies are often expressed in electronvolts rather than joules,
where 1 eV = 1.602 × 10−19 J. In the context of the high-energy emission
of astrophysical bodies, it is common practice to quote the photon energy as
a temperature, T ( Eph/k, obtained by inverting Equation 1.25. This
concept of a radiation temperature is enormously useful when attempting
to estimate the radiation expected from a gas or plasma with a certain
temperature. The rule of thumb

1 eV corresponds to 104 K (1.26)

is worth remembering.

Exercise 1.11 Verify Equation 1.26.

Exercise 1.12 (a) Calculate the typical photon energies for the accretion
discs considered in Exercises 1.9 and 1.10. Express the results in eV.

(b) Calculate the corresponding wavelengths, and compare them to the
wavelength range of visible light. ■

The shape of the Planck function at substantially shorter wavelengths than the
peak (high energies) is known as the Wien tail, which is described by

Bν(T ) = (2hν3/c2) exp(−hν/kT ). (1.27)

The shape of the Planck function at substantially longer wavelengths than the
peak (low energies) is known as the Rayleigh–Jeans tail, which is described by

Bν(T ) = 2kTν2/c2. (1.28)

These ‘tails’ at both extremes of wavelength are sometimes referred to
as the long-wavelength (or low-energy) cut-off and the short-wavelength (or
high-energy) cut-off.

Exercise 1.13 Show that the Planck function (Equation 1.23) depicted in
Figure 1.19 adopts the functional form expressed in Equation 1.27 for large
frequencies, and the functional form expressed in Equation 1.28 for small
frequencies. ■

Multi-colour black body spectrum

Accretion discs can be thought of as composed of a series of annuli with different
radii r, all emitting locally as a black body (Equation 1.23) with temperature
T (r) = Teff(r) as calculated in Equation 1.20. The resulting continuum emission
spectrum is a sum of black body spectra at different T , but the dominant
contribution will come from the region where the accreting plasma is hottest,
i.e. from the vicinity of the inner edge of the disc. We consider this now in detail.
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Chapter 1 Accretion power

The total output from the disc is obtained by summing the contributions of all disc
annuli, i.e. by the integral

Fν ∝ 1

D2

∫ rout

rin

(
2hν3

c2

)
1

exp(hν/kTeff(r)) − 1
2πr dr (1.29)

from the inner disc radius rin to the outer disc radius rout. The flux Fν per unit
frequency received by the observer scales as 1/D2, where D is the distance
between observer and emitter. The azimuthal part of the integral in Equation 1.29
has already been carried out and gave the factor 2π.

We have T 4
eff ∝ r−3, so the hottest black body that contributes has approximately

the temperature Teff(rin) ≡ Tin, while the coolest black body that contributes has
the temperature Teff(rout) ≡ Tout.

We consider now the shape of the disc spectrum Fν in three different regimes.

For hν ) kTout, i.e. for low-energy photons, cooler than the coolest part of
the disc, the Planck function adopts the form of the Rayleigh–Jeans tail
(Equation 1.28), and the integral can be written as

Fν ∝
∫

ν2Teff(r)r dr ∝ ν2

∫
Teff(r)r dr, (1.30)

i.e. the disc spectrum at low frequencies also has the characteristic Rayleigh–Jeans
tail shape, Fν ∝ ν2, as the integral in Equation 1.30 is independent of ν.

For hν & kTin, i.e. for high-energy photons, hotter than the hottest part of the
disc, the Planck functions adopts the form of the Wien tail (Equation 1.27), and
the integral can be written as

Fν ∝ ν3

∫
exp(−hν/kTeff(r))r dr. (1.31)

The integral is proportional to the difference in the values of exp(−hν/kTeff(r))
at the inner and outer disc radii. As hν/kTout is much larger than hν/kTin, the
term with Tout is negligible. So the integral scales as exp(−hν/kTin), and we have

Fν ∝ ν3 exp(−hν/kTin), (1.32)

i.e. the disc spectrum has a Wien tail that corresponds to the temperature of the
innermost disc.

For the intermediate range of photon energies, much larger than the thermal
energies at the outer disc but much smaller than those at the inner disc, i.e. for
kTout ) hν ) kTin, we define

x =
hν

kTeff(r)
= ενr3/4, (1.33)

where ε is a constant for a system with a given mass and mass accretion rate. Weε = (h/k)(8πσ/3GMṀ)1/4

can be obtained from
Equation 1.20 when Teff is
expressed in terms of r.

therefore have r = (x/εν)4/3 and

dr

dx
=

4

3

x1/3

(εν)4/3
. (1.34)

Expressing Equation 1.29 in terms of x, we obtain

Fν ∝
∫ xout

xin

ν3 1

ex − 1
×

(x

ν

)4/3 × x1/3

ν4/3
dx

∝ ν1/3

∫ xout

xin

x5/3

ex − 1
dx.
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Summary of Chapter 1

As xin ) 1 and xout & 1, the integral is approximately equal to∫ ∞

0

x5/3

ex − 1
dx,

and is therefore independent of ν. So we have

Fν ∝ ν1/3, (1.35)

which is a spectral shape that is often quoted as characteristic for an accretion
disc. The width of the frequency range over which the disc spectrum does indeed
follow the ν1/3 relation depends on the difference between the inner and outer
disc temperatures; see Figure 1.20.
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Figure 1.20 The spectrum of an accretion disc that emits locally like a black
body, for different ratios of outer to inner disc radius.

Summary of Chapter 1
1. The process where a gravitating body grows in mass by accumulating matter

from an external reservoir is called mass accretion. The accretion luminosity
of a body with mass M and radius R is

Lacc =
GMṀ

R
, (Eqn 1.3)

where Ṁ is the accretion rate. A useful unit for the accretion rate is

1M% yr−1 = 6.31 × 1022 kg s−1. (Eqn 1.4)

2. The conservation of angular momentum implies that the accreting material
will in general settle into an accretion disc around the accretor. The orbital
motion of disc material can be approximated well by Kepler orbits, with a
slow, superimposed radial drift towards the accretor. As the accreting plasma
slowly drifts inwards, gravitational potential energy is lost. Half of this
energy is converted into kinetic energy, while the other half is available to
heat the plasma and to power the emission of electromagnetic radiation.
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Chapter 1 Accretion power

3. The accretion efficiency ηacc, defined by

Lacc = ηaccṀc2, (Eqn 1.9)

expresses the rate of energy gained by the accretion of matter, in units of the
mass energy of that matter. Accretion onto compact objects (white dwarfs,
neutron stars and black holes) returns a very large accretion efficiency, much
larger than the efficiency for hydrogen burning, the energy source powering
main-sequence stars.

4. A non-rotating (Schwarzschild) black hole is formed when a mass M
collapses to within a sphere of radius RS, where

RS =
2GM

c2
. (Eqn 1.11)

The Schwarzschild radius RS is the radius of the sphere surrounding the
collapsed mass at which the escape speed equals the speed of light. The
general relativistic result for the accretion efficiency of a disc-accreting
Schwarzschild black hole is ηacc = 5.7%. For a Kerr black hole with
maximum pro-grade spin this efficiency is ηacc = 32%.

5. Both Schwarzschild and Kerr black holes represent gravitational
singularities where the curvature of spacetime is infinite. In the case of Kerr
black holes this singularity is a ring in the plane perpendicular to the
rotational axis, while it is a single point for Schwarzschild black holes. Both
types have a spherical event horizon where the escape speed is the speed of
light. A Kerr black hole is surrounded by a second, larger critical surface,
the static limit, which has the shape of an oblate spheroid and touches the
event horizon at its poles. The space between these two surfaces is called the
ergosphere.

6. A binary star is a system consisting of two stars that orbit the common
centre of mass. A compact binary is a close binary system where one
component is a compact star. If the orbital separation is of order the stellar
radii, the binary components can interact by exchanging mass.

7. Mass transfer in binaries is best described in a frame of reference that
co-rotates with the binary orbital motion. In such a frame there are two types
of pseudo-forces: the centrifugal force of magnitude

Fc = m
v2

r
= mω2r, (Eqn 1.14)

and the Coriolis force

F Coriolis = −2mω × v, (Eqn 1.15)

which vanishes for a test mass at rest in the co-rotating frame.

8. The force on a test mass m in the binary frame can be obtained as
F = −m∇ΦR, where the Roche potential ΦR is given by

ΦR(r) = − GM1

|r − r1| −
GM2

|r − r2| −
1
2 (ω × (r − rc))

2 . (Eqn 1.16)

The surface of a binary stellar component coincides with a Roche
equipotential surface.
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Summary of Chapter 1

9. The inner Lagrangian point (L1 point) is the point between the two stars
where the force on a test mass vanishes. The L1 point is a saddle point of the
Roche potential. The Roche equipotential surface that contains L1 consists
of two closed surfaces that meet at L1. The enclosed volume is the Roche
lobe of the respective star. A stellar component of the binary can expand
only until its surface coincides with this critical Roche equipotential. If such
a Roche-lobe filling star attempts to expand further, mass will flow into the
direction of smaller values of ΦR, i.e. into the lobe of the second star. This is
called Roche-lobe overflow. The binary is said to be semi-detached.

10. An active galaxy contains a bright, compact nucleus that dominates its host
galaxy’s radiation output in most wavelength ranges. These active galactic
nuclei (or AGN) are thought to be powered by accretion onto supermassive
black holes. AGN are very compact. From the timescale of AGN variability,
the light-crossing time can be deduced to be only a few days.

11. The velocity dispersion in the broad-line region of AGN is typically
observed to be several 103 km s−1, while the emitting region is seen to be
smaller than a few tens of pc. Hence the virial theorem suggests that the
mass of the central black hole is approximately 108–1011 M%.

12. Most galaxies harbour a supermassive black hole (with mass ! 106 M%) in
the centre. In active galaxies, this black hole is a strong power source, while
in normal galaxies such as the Milky Way it lies dormant.

13. The radial temperature profile of an optically thick, steady-state accretion
disc is approximately

T 4
eff(r) (

3GMṀ

8πσr3
. (Eqn 1.20)

14. Accretion onto compact objects leads to very high plasma temperatures,
105–107 K. The corresponding black body emission peaks in the ultraviolet
and X-ray regimes. The brightest sources in the X-ray sky are accreting
neutron star and black hole binaries. In low-mass X-ray binaries, the
companion star is a low-mass star (M2 " 2M%), while in high-mass X-ray
binaries, the companion star is a massive star (M2 ! 10M%).

15. The thermal emission from an optically thick accretion disc is like a
stretched-out black body. At high frequencies, the flux distribution Fν has a
Wien tail that corresponds to the temperature of the innermost disc. At low
frequencies, the disc spectrum has the familiar Rayleigh–Jeans tail shape.
The disc spectrum has a characteristic flat part Fν ∝ ν1/3 at intermediate
frequencies.
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