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TRANSPORT AND SCATTERING OF CARRIERS
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In a perfectly periodic material, electrons suffer no scattering and obey the 
equation

dk
dt

= Force 

If an electric field is applied the electrons will oscillate in k-space—from the 
k=0 to zone edge k-value, as shown. Such oscillations are called Bloch Zener 
oscillations and can, in principle, generate terrahertz radiation. However, in real 
semiconductors scattering occurs and destroys the possibility of these 
oscillations.
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The motion of an electron in a band in the absence of any 
scattering and in the presence of an electric field. The electron 
oscillates in k-space gaining and losing energy from the field.



SCATTERING OF ELECTRONS

© Prof. Jasprit Singh www.eecs.umich.edu/~singh

In semiconductor physics scattering is described by first (or if necessary, 
second) order perturbation theory.

Full problem: H = H0 + V
Simple problem: H0 ψk = Eψk The periodic structure
Perturbation: V Source of scattering

The perturbation causes scattering of electrons from a state k to k'. The 
scattering rate is given (in first order) by the Fermi Golden Rule:

Initial electron

+

V(r)

Final electron

k'k

Scattering potential

Scattering rate α     How strongly V(r) couples 
        the initial and final states.

α     How many final states 
        there are to scatter into.

V(r,t) = V(r) exp (iωt) 

Scattering rate: Wif =       Mij  
2  δ(Ei ± hω – Ef) 2π

Matrix element: Mij =     ψf V(r)ψid
3r*

 h



TRANSPORT IN THE PRESENCE OF SCATTERING:
A PHYSICAL VIEW
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A schematic view of an electron as it moves under an electric field in a 
semiconductor. The electron suffers a scattering as it moves. In between scattering 
the electron moves according to the “free” electron equation of motion.
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In the presence of scattering the electron moves in the band in a random manner. 
The presence of an electric field produces a net drift.

Motion in 
real space

Motion in 
k-space
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SCATTERING THEORY: DISTRIBUTION FUNCTION
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In scattering theory we are trying to find the distribution function for the 
carriers in the presence of external perturbations (electric field, magnetic 
field, etc.).

fk(E)     equilibrium distribution function0

E–EF
kBT

exp +1

1=

=

fk(E) =     non-equilibrium distribution function = ?

0

fk
0

fk

The displaced distribution function shows the effect of 
an applied electric field.

MACROSCOPIC PHYSICAL PARAMETERS: drift velocity
average energy
.
.
.

<A> =
 fk(E) A d3k

(2π)3

 fk(E) d3k
(2π)3



TRANSPORT THEORY: TWO APPROACHES
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How do we obtain the non-equilibrium distribution function?

• BOLTZMANN TRANSPORT THEORY:
Distribution function changes due to: • Diffusion of carriers

• External forces
• Scattering

Write a balance equation for these changes Transport equation

Boltzmann transport equation (BTE) can be solved numerically to 
obtain fk(E)

• MONTE CARLO METHOD:
This is a computer simulation method where electrons are followed 

in real space, momentum space, and energy space as they move through 
a material. Scattering processes are simulated by the use of random 
numbers. By keeping track of the electrons' properties we can obtain 
macroscopic properties of the electron gas.



BOLTZMANN TRANSPORT EQUATION
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Distribution function fk(E) can change due to three reasons:
1. Due to the motion of the electrons (diffusion), carriers will be 
moving into and out of any volume element around r.

2. Due to the influence of external forces, electrons will be changing 
their momentum (or k-value) according to h dk/dt = Fext.

3. Due to scattering processes, electrons will move from one k-state to another.

DIFFUSION-INDUCED EVOLUTION OF  fk(r)
At time t = 0 particles at position r – δtvk reach the position r at a later time δt. 

This simple concept is important in establishing the Boltzmann transport equation.

n(r)

Position

Time t = 0

r = δtvk
n(r)

Position

Time t = δt

δtvk

r 

EXTERNAL FIELD-INDUCED EVOLUTION OF  fk(r) e
h

k̇ =    [E + vk x B]

which leads to the equation
 fk
  t   ext.forces

= –e
 h

E +[           ] v x B
 fk
  k   

 fk(r,δt) =  fk–kδt(r,0)˙

 fk
  k = –k̇

•

 fk(r,δt) =  fk(r – δt vk,0)

 fk(r,0) +       • δt =  fk(r,0) –        • δt vk
 fk
  t 

 fk
  r 

 fk
  t   diff

 fk
  r • vk=  –

or



BOLTZMANN TRANSPORT EQUATION
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SCATTERING-INDUCED EVOLUTION OF  fk(r) 

W(k',k): rate of scattering into state k

In steady state:

 fk
  t    scattering

d3k'
(2π)3   

=      [fk'(1 –  fk) W(k',k) –  fk(1 – fk') W(k,k')]

W(k,k'): rate of scattering out of k into k'

 fk
  t    scattering

 fk
  t    fields

 fk
  t    diffusion

= 0++

Let us define

gk = fk –  fk
0

where fk is the equilibrium distribution.0

Substituting fk = fk + gk
0

–vk •  r fk –     (E + vk x B)  k  fk
0 0∆ ∆e

h

 fk
  t    scattering

= – +vk •  r gk +    (E +vk x B) •   k gk
∆ ∆e

h

Evaluating the derivatives of fk  we get0

 f
  Ek

– • vk •   –
(Ek – µ)

T
∆ ∆

T + eE –   µ 
0

 f
  t   scattering

= – + vk •  r gk +    (vk x B) •   k gk
∆ ∆e

h

k'

k

k'

k

[                     ]



BOLTZMANN TRANSPORT EQUATION:
AN APPROXIMATE TREATMENT
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We now introduce a time constant τ called the relaxation time:

 f
  Ek 

–
 fk
  t    scattering

t = τ

f(k)

t = 0.5 τ
t = 0

k = 0
k 

ASSUMPTIONS: Electric field is small, uniform 
Magnetic field is zero
No temperature variations in space

0
vk • eE = –

 fk
  t    scattering

– =
 gk
  τ

This figure shows that at time t = 0, the distribution function is distorted by some 
external means. If the external force is removed, the electrons recover to the 
equilibrium distribution by collisions.

 fk
  t    scattering

– • τ gk  =

= τvk • eE
 – f
  Ek

0



BOLTZMANN TRANSPORT EQUATION:
SHIFTED DISTRIBUTION
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Using the relaxation time approximation
 fk

  Ek

0 eτvk • Efk = fk  –
0

Using the relation 

 k
  Ek

0 • eτvk • E= fk  – (  k fk ) •
∆

 k
  Ek

• vk = 1h

We have
0 eτE

h
fk = fk  – (  kfk ) •

∆ 0

0 eτE
h

= fk    k –

0

fk
0

eτE
h

0 eτE
h

f    k –

Change in carrier momentum:

This gives, for the mobility,

µ= eτ
m*

If the electron concentration is n, the current density is
J = neδv

= ne2τE
m*

or the conductivity of the system is

σ = ne2τ
m*

0

δp = hδk = –eτE
eτE
m*

δv = –

This equation relates a microscopic quantity τ to a macroscopic quantity σ.
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How do we obtain the relaxation time τ?

E(k) = E(k')

Elastic collisions:

 f
 t   scattering

=    [ f(k') – f(k)] W(k,k')

Alloy scatering, ionized impurity scattering, interface roughness scattering...are elastic 
processes.

d3k'
(2π)3

W(k,k') = W(k',k)

The collision integral is now simplified as

=    [ g(k') – g(k)] W(k,k') d3k'
(2π)3

0– f
 Ek

vk • eE =    (gk – gk') W(k,k') d3k'
(2π)3

 – f
 t     scattering

= 

 – f
 E 

gk = 
0

 – f
 t      scattering

eE • vk • τ

= • τ

The simple form of the Boltzmann equation is

Substituting this value in the integral on the right-hand side, we get

0– f
 Ek

vk • eE =   d3k'
(2π)3

 (vk – vk') W(k,k')
0– f

 Ek
eτE •  

or

vk • E =  τ   (vk – vk') W(k,k') d3k' • E

and

=    W(k,k')   1 –1
τ

vk' • E

vk • E
d3k'
(2π)3

=    W(k,k')   1 – d3k'
(2π)3

cosθ'
cosθ

=    W(k,k')(1 – cos α) d3k'
(2π)3

The larger the scattering angle, α, the greater the effect on mobility.

θ'
θ

φ

y

x

z

k

k'

E

α

Coordinate system illustrating a 
scattering event.

According to the principle of microscopic reversibility:



MICROSCOPIC VERSUS MACROSCOPIC: 
AVERAGING PROCEDURES FOR DRIFT MOBILITY
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An experiment measures the averaged response of all electrons—
how does one go from scattering time of a single electron to the 
average value for an ensemble?

The displaced distribution function shows the effect of an applied 
electric field.

eτF
h

fk

0

0 )eτF
h

fk = f 0  k – )

d3k
(2π)3

Drift current: 

J =     e vk fk

<Jx> = ne2

m*
<Eτ>
<E>

; µ = e
m*

<Eτ>
<E>

<  > averaging with respect to equilibrium 
distribution function



TRANSPORT IN WEAK MAGENTIC FIELD: 
HALL MOBILITY
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Why Hall Effect: Carrier density and Hall mobility can both be obtained

A rectangular Hall sample of an n-type semiconductor.

At low magnetic field:

σxx = σ0 = conductivity in the absence of a B-field

<<τ2>>
<<τ>>2

Hall mobility: µH =

σxy = σ0 µH B 

µ; <<A>> = <EA>

µH
µHall factor: rH =
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