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Introduction

In the exercises attached to the Chapters 14 to 18 of the book ’Biome-

chanics: concepts and computation’ extensive use is made of Matlab-

scripts, which have to be written by students themselves, as well as a

Finite Element Code (also written in Matlab), that can be downloaded

from the website: http://www.mate.tue.nl/biomechanicsbook.

Applying this code, requires that the reader has a licence for the use of

Matlab, which can be obtained via MathWorks. For this, see the web-

site: http://www.mathworks.com.

The finite element software is called mlfem_nac. The present document

is a manual for the installation and use of this software.

The general structure of a finite element method (FEM) program is given

in Fig. (2.1):

Fig. 1.1. Flow chart of a finite element program
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2 Introduction

In the pre-processing phase the model is created. This means that the

coordinates of userpoints are defined. These are used to create curves,

surfaces and, in the three-dimensional case, volumes. This defines the

geometry of the system that is modelled. Together with information on

element types and the required mesh refinement the program uses this

information to generate a finite element mesh. After that, boundary

conditions, material and possibly additional geometrical properties have

to be added.

The information is used by the finite element program to create an ele-

ment stiffness matrix and a right-hand-side array. Subsequently the set

of equations will be solved. The result is stored in the solution array.

In the post-processing phase of the program user required information is

derived from the solution array and shown in the form of graphs and/or

contour plots.

Chapter 3 describes the installation and implementation of the software.

After that the different in- and output arrays will be discussed in Chapter

4. Their meanings will be clarified by different examples. It is important

to be familiar with these arrays before starting to activate the program.

During the ’solving phase’ the program uses element functions to com-

pute the element matrix and right-hand-side column. The meaning of

the different element functions and the way they are related will be out-

lined in Chapter 5.

In Chapters 5, 6 and 7 different ’demo files’ are discussed. These files

are given as examples on how to use mlfem_nac for one-dimensional and

two-dimensional problems. Each phase (see Fig. 2.1) will be discussed

separately.

Finally different plot functions defined in Matlab will be given in Chap-

ter 8. These may be convenient to interpret the output by for example

giving element numbers, node numbers, etc..
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Installation

Make sure you have a working version of Matlab on your computer. The

program mlfem_nac should work with any version higher than Matlab

5.1.

Download the program mlfem_nac from the website:

http://www.mate.tue.nl/biomechanicsbook.

Unpack and decode the program by means of the program WinZip (see:

http://www.winzip.com/index.htm).

After unpacking a root-directory ../mlfem_nac is created with a number

of sub-directories. In Windows Explorer this should look like:

Fig. 2.1. Directory tree of the finite element code
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4 Installation

After unpacking the following steps have to be taken:

(1) Open Matlab

(2) Select the correct ’current directory’. In this case that is the pathway

to mlfem nac.

(3) Enter startup_nac in the command window. This is a script that

sets the paths of Matlab, so all scripts in the different directories can

be found by Matlab. This script has to be run before you start to

work with mlfem nac.

(4) The program library includes a number of demo files, which are ex-

amples of simulations that can be done with the finite element code.

These demo files can be found in the directories oneD, twoD and twoDe.

To test whether the software is properly installed one of the demo files

can be run. Go to the directory twod. Run demo_cd by typing this

in the Matlab command window. This should result in the following

Fig. 3.2.
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Fig. 2.2. Installation check

When Fig. 3.2 is found after running the file demo_cd the installation

seems to be correctly performed and the software is ready to use.
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Some important arrays

In this chapter different arrays, used in the program, are outlined. These

arrays are subdivided into three categories:

• The arrays coord, top and mat.mat respectively, which are used to

specify the mesh and the material properties,

• the arrays bndcnd and nodfrc, to define the boundary conditions,

• the arrays pos and dest, that give information about the location of

the degrees of freedom in the global solution array.

The finite element mesh in Fig. 4.1 is used to explain the meaning of the

arrays. This mesh consists of one 4-noded quadrilateral element (having

element number 1) and two 3-noded triangular elements (having element

number 2 and 3). The coordinates of the user points (in this case also

the nodes of the mesh) are given.

(1)

(2)

(3)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

x

y

Fig. 3.1. Example of a finite element mesh with coordinates of the nodes
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6 Some important arrays

3.1 Mesh specification

In this section the arrays used to define the finite element mesh are

outlined. Fig. 4.2shows the same mesh as in Fig. 4.1, but now including

the node numbers.

(1)

(2)

(3)

1 2 3

54 6

x

y

Fig. 3.2. Example of a finite element mesh with node numbers

3.1.1 Coordinates

The array coord specifies the coordinates of the different nodes in the

mesh. Depending on the number of dimensions only x-, or x- and y-

coordinates are given for each node. The coordinates in the i’th row of

the coordinate-array belong to the i’th node (inode) in the mesh.

In the two-dimensional case the coordinates of a certain node inode

can be extracted from the array coord by the following command:

[x y]=coord(inode,:)

Example: The array coord that belongs to Fig. 4.2 is structured as

follows:

coord=[0 0

1 0

2 0

0 1

1 1

2 1]
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3.1.2 Topology

The array top specifies the topology of each element. The i’th row in

this matrix refers to the i’th element of the mesh. The first maxnodelm

(maximum number of nodes per element) columns are used for the node

numbers. The last two column of the array top contain identifiers point-

ing to the structured array mat that will be outlined below. The second

last column contains a material property identifier (iimat) and the last

column contains an identifier for the element function that is used to

calculate the stiffness matrix (iitype).

top(ielem,:)=[node1 node2 ... maxnodelm ... iimat iitype]

If, in the mesh, elements are used with a different number of nodes

per element, the highest number of nodes (maxnodelm) determines the

number of columns used to specify the nodes per element. If an element

has less than maxnodelm nodes the remaining columns are filled with

zero’s.

Example:

top=[1 2 5 4 1 1

2 3 6 0 2 1

2 6 5 0 3 1]

In this case the maximum number of nodes is 4. Note, the zero’s in the

second and third row (fourth column) belonging to the 3-noded trian-

gular elements. In this example different material property identifiers

are used for each element, while the same element function is used to

compute the stiffness matrix. Note, that in this example the nodes that

define the elements are all ranked anti-clockwise. Most finite element

packages require that elements are consistently either numbered clock-

wise or anti-clockwise.

Extracting the node numbers from a certain element ielem from the

matrix top is done by the command line:

nodes=nonzeros(top(ielem,1:maxnodelm))

In this command line maxnodelm is the largest number of nodes found in

one single element. The Matlab function nonzeros extracts all numbers

from an array that have a value that is not equal to zero.
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3.1.3 Material properties and element type

The material properties and the element type are defined using the struc-

tured array mat.

mat.mat(iimat,:)=[m1 m2 ... mn]

Here mi denotes the i’th material property. The index iimat stands

for the material property identifier (see Topology). Depending on the

type of element that is used a different number of material properties

may be required. How many properties are required and the meaning of

each material property, can be found in the next chapter. These proper-

ties may actually be anything that is used within the element functions

to compute the stiffness matrix. It is necessary to know the way in which

the properties are ordered.

mat.types(iitype,:)=’element function name’

Here iitype is an identifier for the element function of a certain group of

elements (see Topology). Usually, only one type of element function will

be used in a simulation, so iitype=1. The different element functions

can be found under the directory elmlib and will be discussed in more

detail in the next Chapter. Possible choices are: ’elm1d’, ’elm1dcd’,

’elcd’, and ’ele’.

3.2 Boundary conditions

To find a unique solution for the system of equations, boundary condi-

tions are necessary. There are two different types of boundary condi-

tions (essential and natural). In the following subsections these types of

boundary conditions will be discussed.

3.2.1 Essential boundary conditions

Essential boundary conditions (number: ibnd) are specified in the array

bndcon:

bndcon(ibnd,:)=[inode idof value]

where inode denotes the node number, idof a degree of freedom and
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value the value to be assigned to this degree of freedom. The program

mlfem_nac can only be used for one- and two-dimensional problems. In

case of a one-dimensional problem idof=1.

In the two-dimensional case it depends on the type of problem.

• For convection diffusion proplems the unknown is a scalar property

and in that case idof=1.

• For elastic problems idof=1 for the nodal displacement in x-direction

and idof=2 for the nodal displacement in y-direction.

When the node numbers associated with the essential boundary condi-

tions are known the array bndcon can be defined directly with an editor

in the input file, or it can be created by means of the function addbndc.

The latter method will be explained in Chapter 6.

Example:

Suppose that in the example of the mesh in Fig. 4.1 the displacements

at node 1 and 4 are suppressed in both the x- (idof=1) and y-direction

(idof=2), while the displacement in the x-direction at node 6 is set to

10−3, then:

bndcon=[1 1 0

1 2 0

4 1 0

4 2 0

6 1 1e-3]

3.2.2 Natural boundary conditions

The definition of natural boundary conditions (nodal forces in case of a

mechanical problem) is similar to the definition of the essential bound-

ary conditions. The array used is nodfrc:

nodfrc(ibnd,:)=[inode idof value]

where inode denotes the node number, idof the related degree of free-

dom number and value the value to be assigned to this nodal right-hand

side component.
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In principle natural boundary conditions have to be prescribed

in each direction at each boundary node, where no essential

boundary conditions are prescribed. To avoid unnecessary

complicated preprocessing, automatically in all directions at

all boundary nodes for which no essential boundary conditions

are prescribed, the natural boundary condition is taken as zero,

unless stated otherwise. In other words, the default value of

the natural boundary condition is zero. The user only has to

define nonzero boundary conditions if that is necessary for the

problem at hand.

Example:

Suppose that for node 3 the nodal force in the y-direction is prescribed,

say 3*102, then:

nodfrc=[3 2 3e2]

3.3 Location of degrees of freedom in the global solution

array

The solution array sol for time-independent problems is a single col-

umn containing all degrees of freedom of the finite element mesh (in an

ordinary two-dimensional elastic problem this means that the number

of entries in the column is twice the number of nodes). The numbers

attributed to these degrees of freedom can be randomly assigned and

are not related to the node numbers. That is why the program uses

two arrays (dest and pos) to keep track of which degrees of freedoms in

the array sol belong to which element and which node. Both arrays are

available for the user after the solution of the problem to extract specific

information from the solution column sol.

3.3.1 The array pos

The array pos contains the position of the degrees of freedom within the

global solution array of the nodes of each specific element:

pos(ielem,:)=[locdof1 locdof2 ...]

Here ielem stands for the element number and locdofi for the location

of the degrees of freedom, belonging to this element, in the global solu-

tion array sol. The degrees of freedom associated with element ielem

may be extracted from the solution array by:
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ii=nonzeros(pos(ielem,:))

uelem=sol(ii)

The command nonzeros is used because of the fact that not every el-

ement has an equal number of degrees of freedom defined. Zero’s are

used to fill the array. The number of columns of the array is determined

by the highest number of degrees of freedom for an element defined.

Example

For example the pos array for the problem in Fig. 4.2 might look as:

pos = [ 1 2 11 12 3 4 9 10

11 12 5 6 7 8 0 0

11 12 7 8 3 4 0 0]

Note, that again the rows are completed with zeros for the elements with

less degrees of freedom. The above specifiactions pf pos would mean that

the sol array would contain the following displacement solution:

sol =













































u1

x

u1

y

u5

x

u5

y

u3

x

u3

y

u6

x

u6

y

u4

x

u4

y

u2

x

u2

y













































,

where the subscript indicates the direction and the superscript the node

number. It is clear that the degrees of freedom are completely mixed.

3.3.2 The array dest

The array dest contains the position of the degrees of freedom within

the solution array of each specific global node:

dest(inode,:)=[locdof1 locdof2]
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Here inode stands for the node number and locdof1 and locdof2 for

the positions in the solution array sol of the degrees of freedom in the

x- and y-direction. In the present course this is only the case for two-

dimensional linear elastic problems. In this case each node has 2 degrees

of freedom. For two-dimensional convection-diffusion problems only one

degree of freedom (e.g. a concentration or a temperature) in each node

is found and the array dest consists of one single column.

Example

For the example in Sub-section 4.3.1 the dest array would look like:

dest =



















1 2

11 12

5 6

9 10

3 4

7 8



















.

If sol contains the solution vector, the degrees of freedom associated

with global node inode may be extracted from the solution vector by:

ii=(dest(inode,:)

unode=sol(ii)
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Element functions

The demo-files in the directories oneD, twoD and twoDe show that indeed

every demo consists of a pre-processing part (defining the mesh, material

properties and the boundary conditions), followed by a call of a script for

the solution process and finally a post-processing part. Different scripts

are used for different problem types:

(1) The script fem1d is used to solve one-dimensional diffusion problems

(2) The script fem1dcd is used to solve one-dimensional convection-dif-

fusion problems

(3) The script femlin_cd is used to solve two-dimensional convection-

diffusion problems

(4) The script femlin_e is used to solve two-dimensional linear elastic

problems.

These scripts read and interpret the input arrays, calculate the element

contributions to the stiffness matrix and right-hand side of each element,

assemble the global stiffness matrix, partition the stiffness matrix in ac-

cordance with the used boundary conditions and solve the problem. To

calculate the element contribution different element functions are used:

elm1d: linear one-dimensional diffusion element

elm1dcd linear one-dimensional convection diffusion element

elcd: two-dimensional convection diffusion element

ele: two-dimensional linear elasticity element

It is worthwhile to have a look at these element files because they illus-

trate the theory as presented in the book quite clearly.

To each element function elmfnc additional functions have to be speci-

fied, namely:

13



14 Element functions

• elmfnc i These functions provide all sorts of information such as the

number of degrees of freedom for each node, the shape function identi-

fiers to be used in elmfnc_s, information about the number of derived

quantities at each integration point and nodal points as computed by

elmfnc_d.

• elmfnc s These functions compute the shape functions and their

derivatives locally (per element) based on information of elmfnc.

Next to these, two more additional element functions exist:

• elmfnc d When the solution has been determined for a number of

problems so-called derived quantities may be computed, such as stress

components at the integration points and nodes of each element.

• elmfnc a Only for the element function elcd this additional function

exists. This function (elcd_a) is used to define the convective velocity.

In the next section each element function will be described in detail.

4.1 Description of the available element functions

4.1.1 elm1d

The function elm1d calculates the element contribution in case of the

one-dimensional diffusion equation:

d

dx

(

c
du

dx

)

+ f = 0;

The theory behind this element is described in Chapter 14 of the book:

’Biomechanics: concepts and computation’.

In the structured array mat.mat only the entries 1, 3 and 4 have a

meaning:

mat.mat(1) = c % the diffusion coefficient

mat.mat(3) = f % the distributed load or source term

mat.mat(4) = norder % norder=1 linear element

% norder=2 quadratic element
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4.1.2 elm1dcd

The function elm1dcd calculates the element contribution in case of the

one-dimensional convection-diffusion equation:

∂u

∂t
+ v

∂u

∂x
=

∂

∂x

(

c
∂u

∂x

)

.

The theory behind this element is described in Chapter 15 of the book:

’Biomechanics: concepts and computation’.

In the structured array mat.mat the entries 1 to 3 and 5 have the mean-

ing:

mat.mat(1) = c % the diffusion coefficient

mat.mat(2) = v % the convective velocity

mat.mat(3) = f % the distributed load or source term

mat.mat(5) = norder; % norder=1 linear element

% norder=2 quadratic element

The function can be used for stationary as well as time-dependent prob-

lems (See Chapter 5).

4.1.3 elcd

The function elcd calculates the element contribution in case of the

two-dimensional convection-diffusion equation:

∂u

∂t
+ ~v · ~∇u = ~∇ ·

(

c~∇u
)

+ f

The theory behind this element is described in Chapter 16 of the book:

’Biomechanics: concepts and computation’.

In the structured array mat.mat the entries 1 to 4 and 11 have the

meaning:

mat.mat(1) = c % diffusion coefficient

mat.mat(2) = fx % parameter used in elcd_a to

% determine fluid velocity

mat.mat(3) = fy % parameter used in elcd_a to

% determine fluid velocity

mat.mat(4) = axi % Optional parameter. Default value is 0.

% axi = 0 : planar flow

% axi = 1 : axi-symmetric problem
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mat.mat(11)=norder+2 % norder=1 linear element

% norder=2 quadratic element

It should be clear that in this case the parameters fx and fy should be

used to define a fluid velocity profile. This profile can be defined by

means of the function elcd_a (also see chapter 6.

The function elcd can be used for stationary as well as time-dependent

problems (See Chapter 5).

4.1.4 ele

The function ele calculates the element contribution in case of a two-

dimensional linear elastic problem:

~∇ · σ + ~f = ~0 ,

with the isotropic Hooke’s law describing the material behaviour. The

theory behind this element is described in Chapter 18 of the book:

’Biomechanics: concepts and computation’.

In the structured array mat.mat the entries 1 to 3 and 11 have the

meaning:

mat.mat(1) = E % the Young’s modulus

mat.mat(2) = nu % Poisson’s ration

mat.mat(3) = axi % axi = 0 : plane strain

% axi = 1 : axi-symmetric problem

% axi = 2 : plane stress

mat.mat(11)= ieltop % parameter defines element topology

The parameter ieltop requires some explanation. In the case of a lin-

ear elastic element it is possible to make a choice between quadrilateral

elements or triangles. This is done by means of the parameter itype

that has to be specified before the routine crmesh is called. In case of a

quadrilateral itype=1, in case of a triangular element itype=20. Beside

that, a choice can be made between elements with a linear interpolation

(norder=1) of the displacements or an element with quadratic interpola-

tion (norder=2). This leads to the following available choices for ieltop:

ieltop = 1 : linear triangle

ieltop = 2 : quadratic triangle

ieltop = 3 : bi-linear quadrilateral element

ieltop = 4 : quadratic quadrilateral element
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The demo files in the directory OneD

Chapter 14 and 15 of the book ’Biomechanics: Concepts and Computa-

tion’ are devoted to one-dimensional diffusion and convection-diffusion

problems. To determine approximate solutions the scripts fem1d and

fem1dcd are used respectively, which can be found in the directory oneD.

In the present chapter the demo files that make use of these scripts will

be explained. These demo files can also be found in the directory OneD.

As a typical example the demo file demo_fem1dcd is explained here.

The pre-processing starts by defining the nodes and the mesh. For one-

dimensional problems a sophisticated mesh generation program is not

necessary. The arrays coord and top can be filled in a straightforward

way.

% demo of fem1dcd

% this code solves the 1D convection diffusion problem

%

% du/dt + a du/dx = d/dx(c du/dx) + f

clear all % clears memory

close all % closes all figures

%%%%%%%%%%%%%%%%%%% DEFINE THE MESH %%%%%%%%%%%%%%%%%%%%%%%

xmin = 0; % domain = [xmin xmax]

xmax = 1; %

nelem = 10; % number of elements

norder = 1; % element order

17



18 The demo files in the directory OneD

% coordinates

dx=(xmax-xmin)/nelem ; % the distance between the nodes

coord=(xmin:dx:xmax)’ ; % the column with nodal coordinates

% element topology

top=[(1:nelem)’ (2:nelem+1)’ ones(nelem,2)];

%%%% CONTROLPARAMETERS FOR TIME INTEGRATION %%%%%%%%%%%%%%

istat = 2; % 1: steady state problem

% 2: unsteady problem

dt = 0.01; % magnitude of the time step

ntime = 10; % number of time steps

theta = 0.5; % theta parameter of theta-time

% integration scheme

Before the mesh is generated the minimum and maximum value of x

(xmin and xmax) in the domain, the number of elements (nelem) and

the order of the elements (norder) have to be specified. After that, the

mesh is generated by calculating the distance between the nodes (dx),

the corresponding nodal coordinates (coord) and the element topology

array (top).

The flag istat defines, whether the problem is time dependent or not.

If istat=1 it is not time dependent and if istat=2 it is. Furthermore

dt is the time step for each time increment and ntime the total number

of time steps. The variable theta stands for θ used in the θ-scheme.

%%%%%%%%%% DEFINE THE MATERIAL PROPERTIES %%%%%%%%%%

mat.mat(1)=1; % c: diffusion coefficient

mat.mat(2)=1; % v: convective velocity

mat.mat(3)=0; % f: source term

mat.mat(4)=norder; % norder: element order

mat.types=[’elm1dcd’]; % element type
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In this part the different material properties are specified as well as

the element type. As discussed earlier (see (4.1.3) it is necessary to

know where the different properties are specified in the structured array

mat.mat. Furthermore the used element function is defined in the array

mat.types. In this case elm1dcd is used as element function. This

element can only be used to solve one-dimensional convection-diffusion

problems. See Chapter 5.

%%%%%%%%%% DEFINE THE BOUNDARY CONDITIONS %%%%%%%%%%

% essential boundary conditions

bndcon=[1 1 0

nelem+1 1 1];

% natural boundary conditions

nodfrc=[];

In this part the essential (bndcon) and natural (nodfrc) boundary con-

ditions are specified. In this case at x = 0 a value u = 0 is prescribed

and at x = 1 a value of u = 1 is prescribed. So we have two essen-

tial boundary conditions and no natural boundary conditions. For the

meaning of the arrays see Section 4.2.

%%%% SOLVE THE PROBLEM USING FEM1DCD %%%%

fem1dcd

With the information given earlier (mesh, material properties and bound-

ary conditions) the script fem1dcd is used to solve the problem. The

script fem1dcd produces different output arrays which can be used for

postprocessing.

In case of time dependent problems also an initial condition has to be

given. This can be done in the script fem1dcd. The following lines can

be found in this script:

% determine whether this program is time dependent or not
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% and define the initial condition

if istat==1, % steady solution

sol=zeros(ndof,1);

elseif istat==2, % unsteady solution

sol=zeros(ndof,ntime);

% sol(:,1) contains the initial condition

end

In case of an instationary problem the solution array sol is a matrix with

dimensions: ndof × ntim. This means that each column represents

a time step. All entries in the column represent nodal values of the

unknown u at a certain time. In the case presented here, all initial values

of the solution array sol are set to zero. This is not really necessary,

but in this way the memory is already reserved for the total matrix sol.

When the program is running it starts with the initial values at t = 0

and in a recursive manner replaces the zero values at higher time steps

with the correctly calculated values.

Running the demo-file as presented in the present chapter should lead

to the result given in Fig. 5.1.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u

u as a function of position and time

Fig. 5.1. Result of demo file demo fem1dcd
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The demo files in the directory TwoD

For two-dimensional convection-diffusion problems the script femlin_cd

is used, that can be found in the directory twoD. The general structure

of the script for pre- and post-processing is the same as in the one-

dimensional case, but there are some differences. The script will be

explained by means of the demo demo_cd.

Let us first look at the procedure to create a finite element mesh. The

mesh definition starts by defining user points (corner points) of the do-

main for which a mesh has to be defined. This is done by filling a matrix

called points with x- and y-coordinates. The i’th row specifies the x-

and y-coordinates of user point i.

%%%%%%%%%% DEFINE THE MESH %%%%%%%%%%

% Define user points of the domain

points=[ 0 0

1 0

2 2

0 1];

After that these points are connected by defining curves. This is done

by filling the matrix curves. The i’th row defines curve i. A row in the

matrix has to be defined as follows:

curves(i) = [point1 point2 nel dummy1 bias]

The first two entries are the numbers of the points that are used, nel

defines the number of elements the mesh generator has apply along the

curve. The fourth number is a dummy parameter that is not used. The

21



22 The demo files in the directory TwoD

fifth number is a so-called bias parameter that is used, if a mesh has

to be refined because high gradients of the unknown are expected. By

definition:

bias =
length of last element

length of first element

If this parameter is 1 all elements have equal lengths along the current

curve. If bias > 1 the last element is larger than the first element, if

bias < 1 the last element is shorter than the first element. In demo cd

are defined as follows:

% definition of curves

n=5; % number of elements in the x-direction

m=5; % number of elements in the y-direction

curves=[ 1 2 n 1 1

2 3 m 1 1

3 4 n 1 1

4 1 m 1 1];

0 1 2

1

2

x

y

1 2

3

4

(1)

(2)
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Fig. 6.1. Definition of userpoints and curves in demo cd

Fig. 6.1 illustrates the consequences of the selections that were made so

far. Two items are important to keep in mind at this point:
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• It should be clear that the user points in this figure are not node

numbers, but points to define a domain that is used at a later stage

to create a mesh.

• Moreover, to the curves a direction has been attributed (depicted in

the figure) which is defined by the first user point and the second

user point given in the rows of the matrix curves. This direction is

important when surface areas are defined in the next step.

At this point a surface has to be defined by connecting curves, that were

defined earlier. This is done with the following Matlab script:

definition of subareas

subarea=[1 2 3 4 1];

In this case the curves 1, 2, 3 and 4 specify the boundaries of subarea

1. The 5th entry in the row defines an element group. If more subareas

have to be defined and subareas have different material properties this

last entry allows the definition of different element groups.

As mentioned earlier the direction of the curves is important. They

should either all be in anti-clockwise direction or all in clock-wise direc-

tion.

Example

Assume that the third curve was defined by means of the line: 4 3 n 1 1

In that case the curve does not match the anti-clockwise direction as is

shown in Fig. 6.1. The definition of the subarea should in that case be

done with the statement:

subarea=[1 2 -3 4 1]

Finally, the element order has to be defined and the function crmesh

has to be called to create the finite element mesh:

norder=2; % element order 1: bi-linear elements

% 2: bi-quadratic elements

% create the mesh

[top,coord,usercurves]=crmesh(curves,subarea,points,norder);

The above procedure leads to the mesh that is shown in Fig. 6.2
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Fig. 6.2. Finite element mesh

The user is allowed to choose between solving a stationary problem or

solving an instationary time dependent problem. The choice is made by

means of a ’flag’ istat. In the case istat=1 a stationary problem is

solved. In case istat=2 the problem is time dependent. In that case

the number of time steps (ntime), the magnitude of the time step (dt)

and the value of theta used in the θ-scheme have to be specified.

%%%%% CONTROL PARAMETERS FOR TIME-INTEGRATION %%%%%

istat=1; % 1: steady state solution, 2: unsteady solution

if istat==2,

ntime = 10; % Number of time-steps

dt = 0.1; % Magnitude of the time-step

theta = 0.5; % Value of theta used in the

% theta-scheme

end

The only real material property in a convection diffusion problem is the

diffusion constant c. This parameter has to be defined in mat.mat(1).

In a convection-diffusion problem the fluid velocity profile is required.

This fluid profile can be a function of the x- and y-coordinates, implying

that in each integration point of each element of the simulation the

convective velocity has to be calculated. This can be done by means of

the user defined function elcd_a. This function can also be found in

directory twod. The heading of the function is:
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function [ax,ay]=elcd_a(x,y,fx,fy);

The input parameters are the x- and y-coordinate of the integration

point of an element, for which the function is called, and the constant

parameters fx and fy, to be defined by the parameters mat.mat(2) and

mat.mat(3). The output parameters are the convective velocities ax

and ay, in x- and y-direction respectively.

So the part of the input file defining the material properties may look

like:

%%%%%%%%%% DEFINE THE MATERIAL PROPERTIES %%%%%%%%%%

mat.mat(1)=1; % c : diffusion coefficient

mat.mat(2)=0; % fx: parameter used in elcd_a

mat.mat(3)=0; % fy: parameter used in elcd_a

mat.mat(11)=norder+2;

mat.types=’elcd’; % convection-diffusion element

In this case the convective velocity is zero.

The boundary conditions are also a bit more complicated than in the

one-dimensional case, where only values at nodal points can be pre-

scribed. Boundary conditions in two-dimensional problems are usually

prescribed along a curve. This can be done my means of the function

addbndc. The function heading is defined as:

function bndcon = addbndc(bndcon,coord,top,mat

,usercurves,crv,dof,string,iplot);

The input parameter bndcon is used to reserve memory. The param-

eters coord, top, mat, usercurves are necessary information about

the mesh. The parameters crv, dof, string and iplot have to be

supplied by the user:

• crv is an array that defines the curves for which a specific boundary

condition will be prescribed.

• dof For convection-diffusion problems dof=1.

• string defines the value of the boundary value to be prescribed. This

can either be a numerical value that is input as a string (in Matlab
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format ’0’ or ’1e-3’ for example), or it can be a function of x and/or

y (for example: ’x^2’ or ’y.^2’)

• iplot = 1 when the user would like a plot of the mesh including

boundary conditions

For each different specification of a boundary condition the function

addbndc has to be called once. An example of boundary conditions,

referring to the mesh in Fig. 6.2 could be:

%%%%%%%%%% DEFINE THE BOUNDARY CONDITIONS %%%%%%%%%%

% inflow boundary

bndcon=[];

crv=1;

dof=1;

iplot=0;%=1: plots the mesh and boundary conditions; =0: no-plot

string=’x’;

bndcon=addbndc(bndcon,coord,top,mat,usercurves,crv,dof,string,iplot);

% outflow boundary

crv=3;

dof=1;

iplot=0;%=1: plots the mesh and boundary conditions; =0: no-plot

string=’y.^2’;

bndcon=addbndc(bndcon,coord,top,mat,usercurves,crv,dof,string,iplot);

% no natural boundary conditions

nodfrc=[];

With the information given earlier (mesh, material properties and bound-

ary conditions) the script femlin_cd is used to solve the problem. femlin_cd

supplies different output arrays which can be used for postprocessing.

Some convenient plot functions are given in Chapter 8.
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The demo files in the directory TwoDe

The demo files in the twoDe directory solve two-dimensional elastic prob-

lems. These programs are structured in the same way as demo_cd (see

Section 6) except for some small differences. These differences are de-

scribed in this chapter.

The variable itype defines the geometry of the element and is used in

the function crmesh. Two types can be chosen. If itype=1 quadrilateral

elements are used and if itype=20 regular triangular elements.

The material properties have to be given in these two-dimensional elastic

problems. These properties are Young’s Modulus (E), Poisson’s ratio

(nu). Additionally a parameter called axi has to be specified, which

defines whether a problem can be characterized as ’plane strain’ (axi=0),

’axi-symmetric’ (axi=1) or ’plane stress’ (axi=2).

Parameter mat.mat(11) defines the element topology (See: Section:

5.1.4).

An example on how this could be implemented in the demo files could

be:

%%%%%%%%%% DEFINE THE MATERIAL PROPERTIES %%%%%%%%%%

E = 1; % Young’s modulus

nu = 0.3; % Poisson’s ratio

axi = 2; % =0 plane strain

% =1 axi symmetric

% =2 plane stress

27
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mat.mat=[E nu axi];

if itype<10,

mat.mat(11)=norder+2;

else

mat.mat(11)=itype-20+norder;

end

mat.types=’ele’; % linear elastic element
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Plot functions in the mlfem nac toolbox

In the directory pllib several plot functions can be found. This chapter

gives an overview of the different functions is given. The same informa-

tion is given, when the help function of Matlab is used.

plbound

plots boundary of 2d mesh,

h = plbound(coord,top,mat);

h = plbound(coord,top,mat,colorstyle);

input:

coord : nodal coordinates

top : element topology

mat : material parameters

colorstyle (’y-’) : style and color i.e. ’y-’ (optional)

pldisp

plots original and deformed mesh

h = pldisp(sol,coord,top,dest)

h = pldisp(sol,coord,top,dest,mat,scale,original,idim)

input:

sol : displacements, may be either in solution type form or as

nodal displacements

coord : nodal coordinates

top : element topology

dest : destination array

mat : material parameters (optional)

scale : scale factor (optional)

29
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original : choice parameter, indicating whether the original mesh

must be drawn fully (2), boundary only (1) or not (0)

if (original==-1), only deformed boundary is shown

(optional)

idim : plot dimension choice parametes

idim=2: 2 d plot

idim=3: 3 d plot

(optional)

pldofnum

plots the numbers of the dofs in the current meshplot

h = pldofnum(coord,dest);

input:

coord : nodal coordinates

dest : destination array

plelem

plots elements in an existing mesh

h = plelem(coord,top,mat)

h = plelem(coord,top,mat,color,style)

input:

coord : nodal coordinates

top : element topology

mat : material parameters (optional)

color : color of the nodes i.e. ’y’ (optional)

style : style of the nodes i.e. ’o’ (optional)

plelnum

add element numbers of the elements represented by top

h = plelnum(coord,top);

input:

coord : nodal coordinates

top : element topology
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plmesh

plots mesh, essential boundary conditions, nodal forces

h = plmesh(coord,top,mat)

h = plmesh(coord,top,mat,bndcon,nodfrc)

input:

coord : nodal coordinates

top : element topology

mat : material properties

bndcon : definition of essential boundary conditions (optional)

nodfrc : definition of nodal forces (optional)

plnodes

plots nodes

h = plnodes(coord)

h = plnodes(coord,color,style);

input:

coord : nodal coordinates

color : color of the nodes i.e. ’y’ (optional)

style : style of the nodes i.e. ’o’ (optional)

plnodnum

plots the numbers of the nodes in the current meshplot

h = plnodnum(coord);

input:

coord : nodal coordinates




