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Preface

On this website is found:

• Solutions to the exercises (so far about 40 of them; more to be added)

• Corrections of errors and misprints (so far none detected)

• Other comments of mine on the text (so far none)

Comments by readers are appreciated by mail to rolfs@math.su.se
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Solutions to some exercises

Exercise 1.1. Scale factor in h(y).
Task: What is the effect of a constant factor change in h(y)?
Solution: If h(y) is multiplied by a factor c > 0, this must be compensated for in a(θ)
by division by the same factor c, or equivalently multiplication by c in the norming
constant C(θ).

Exercise 2.1. Weighted multiplicative Poisson.
Task: Characterize this family in the same way as the standard family in Example
2.5, that is find the canonical statistic and the canonical parameter, and consider the
dimensionality of the parameter vector.
Solution: The Poisson table contribution in the exponent from the observed {yi j} is∑

i j

yi j log λi j =
∑

i

log(αi) yi. +
∑

j

log(β j) y. j +
∑

i j

log(Ni j) yi j ,

where the last term is a function of only data. Thus, the canonical parameter vector and
the canonical statistic are the same, but not the factor h(data). The dimensionality is
also the same, at least when all Ni j are positive.

Exercise 2.2. Special negative binomial.
Task: Characterize the one-parametric negative binomial distribution as an exponential
family.
Solution: There are two possibilities. The direct one is to consider the probability
function for the negative binomial, f (y) =

(
y+k−1

k−1

)
πk (1 − π)y, where y is the number of

failures (y = 0, 1, 2, . . .). Rewriting (1 − π)y = eθy, it is clear that the canonical statistic
is y, and the canonical parameter is θ = log(1 − π) < 0 (π = 0 and π = 1 excluded).
A more indirect way is to use the characterization of the geometric distribution as an
exponential family and regard the negative binomial as the distribution for the canonical
statistic of the geometric over a sample of size k.

Exercise 2.3. Logarithmic distribution.
Consider the family with probability function f (y; ψ) ∝ ψy / y , y = 1, 2, 3, . . . .
Task: Find the canonical parameter and its parameter space, and the norming constant.
Solution: Obviously, t(y) = y and θ = logψ. As the distribution name indicates, the
logarithm function has a role, more precisely C(θ) = − log(1 − eθ) when 0 < eθ < 1
(check by Taylor expanding log(1 − x)).

Exercise 2.4. The beta distribution family.
The beta family has density proportional to yα−1 (1 − y)β−1 , 0 < y < 1.

Task: Find the canonical statistic and the canonical parameter and parameter space.
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Solution: The integral over the interval (0, 1) is finite when α > 0 and β > 0. The
canonical statistic is most easily taken as (log y, log(1 − y)) and θ1 = α, θ2 = β).

Exercise 2.5. Rayleigh distribution.
In the Rayleigh distribution family, y has the density

f (y; σ2) =
y
σ2 e−

y2

2σ2 y ≥ 0,

Task: Characterize the distribution type as an exponential family. Find out how the
family is related to a particular χ2 distribution.
Solution: The canonical statistic is y2 and the corresponding canonical parameter is
θ = −1/(2σ2) < 0. This is the scale-parameterized family, generated by starting with a
random variable y such that y2 is χ2(2)-distributed.

Exercise 2.6. Inverse Gaussian.
The inverse Gaussian has the two-parametric density

f (y; µ, α) =

√
α

2πy3 e
−
α(y−µ)2

2µ2y y, µ, α > 0,

where µ is in fact the mean value of the distribution (task of Exc. 3.5). Suppose we
have a sample (y1, ..., yn) from this distribution.
Tasks: Characterize the model as an exponential family by finding canonical statistic,
canonical parameter, and canonical parameter space. For later use, find an expression
for the norming constant C(θ). Let µ → ∞ and characterize the resulting distribution
family.
Solution: Expanding the quadratic, we can express the exponent in the form θ1 y +

θ2 (1/y)+ constant, where θ1 = −α/(2µ2), θ2 = −α/2. The constant term goes into the
norming constant, that is given by

log C(θ) = 2
√
θ1θ2 −

1
2

log θ2 .

Since α and µ are specified as positive, this is translated into the third quadrant in
θ, where both components are negative. However, it is seen from the expression for
log C(θ) that we can let θ1 → 0, corresponding to µ → ∞, and get a finite limit. This
shows that θ1 = 0 is an allowed value for any negative θ2, and it corresponds to a
distribution with log C(θ2) = −0.5 log θ2.

f (y; µ, α) =

√
α

2πy3 e−α/(2y) y, α > 0,

Given an inverse Gaussian sample, it is just to replace t1(y) = y and t2(y) = 1/y by
t1 =

∑
yi and t2 =

∑
(1/yi), and to multiply log C by n.

Exercise 3.1. A recursive moment formula.
Task: When u is a component of t, and ψ the corresponding component of θ, show that
∂Eθ(u)/∂ψ = varθ(u), and a corresponding formula when u is replaced by ur, r > 0 an
integer.
Solution: The first formula may be regarded as a useful special case of Proposition
3.8. By (3.5), differentiating log C(θ) by all its components of θ yields Eθ(t), of which
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Eθ(u) is the component corresponding to differentiation by ψ. By (3.6), differentiating
log C(θ) once more by ψ yields var(u), as component of the covariance matrix for t.

The more general formula, for ∂Eθ(ur)/∂ψ, is for example obtained by starting
from (3.10), with t j = u, and differentiating the right hand side as a product (with
θ j = ψ). However, formula (3.10) is valid only for integer r. For general r, the formula
is obtained by differentiation under the integral (or sum) sign in Eθ(ur).

Note that the right hand side of the formula can be written cov(ur, u), and in this
form of it, ur may be replaced by any scalar statistic r(t) having an expected value.

Exercise 3.2. Skew-logistic distribution.
Task: Show that the expected value and variance of log(1 + e−y) is 1/α and 1/α2, re-
spectively.
Solution: Note first that log(1 + e−y) is the canonical statistic of this exponential family.
The canonical parameter can be chosen as θ = −α (or as (α + 1), does not matter). The
norming constant is C(θ) = 1/α(θ) = −1/θ, hence log C(θ) = − log(−θ). By Propo-
sition 3.8, differentiation yields first the expected value −1/θ, next the variance 1/θ2.
Re-expressed in α, this is 1/α and 1/α2, as desired.

Exercise 3.3. Deviation from uniform model.
Task: Show that the family of densities

f (y; θ) =

{
θ {2y}θ−1 for 0 ≤ y ≤ 1/2
θ {2(1 − y)}θ−1 for 1/2 ≤ y ≤ 1

is a regular exponential family.
Solution: This is an exponential family with canonical statistic

t(y) =

{
log(2y) for 0 < y ≤ 1/2
log(2(1 − y)) for 1/2 ≤ y < 1.

For y = 0 and y = 1, t(y) is left undefined, but such outcomes have probability zero.
We can let θ be its canonical parameter (or θ − 1, if this were preferred). The density
integrates to 1 for all θ > 0, but not for θ = 0, so Θ is the open half-axis, and the family
is regular.

Exercise 3.4. Inverse Gaussian, continued from Exc. 2.6.
Task: Show that the inverse Gaussian family is not regular but steep.
Solution: Since the boundary value θ1 = 0 is allowed (for any θ2 < 0), the parameter
space is not an open set in R2, thus the family is not regular. However, the mean value
µ of t1(y) = y goes to infinity as θ1 → 0, so the family is steep. This can also be seen
by differentiating log C(θ) with respect to θ1 and letting θ1 → 0. For log C(θ), see the
solution to Exercise 2.6 above. The partial derivative w.r.t. θ1 is

√
θ2/θ1, which is seen

to go to infinity as θ1 approaches 0 for fixed θ2.

Exercise 3.5. A nonregular family, not even steep.
Consider the density f (y; θ) ∝ y−a−1 eθy, y > 1,
where a > 1 is assumed given. For θ = 0, this is the Pareto distribution.
Task (a): Show that Θ is the closed half-line, θ ≤ 0.
Solution: The integral over y > 1 of the function above is finite for θ ≤ 0.
Task (b): Eθ(t) = µt(θ) is not explicit, but show that its maximum must be a/(a−1) > 1.
Solution: Since the mean value of t(y) = y is the first derivative of the convex log-
likelihood, it is an increasing function of θ. Thus, its maximum is for θ = 0, and that
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particular value is easily found to be a/(a − 1).
Task (c): Thus conclude that the likelihood equation for a single observation y has no
root if y > a/(a − 1). However, note that the likelihood actually has a maximum in Θ

for any such y, namely θ̂ = 0.
Solution: Since y itself has no upper bound, there is a positive probability that y exceeds
the maximum a/(a− 1) for Eθ(y), and in that case the likelihood equation y = Eθ(y) has
no solution, The MLE will then be a boundary point of the likelihood function.

Exercise 3.6. Legendre transform.
The transform fF of a convex function f is defined by

fF(xF) = max
x
{xT xF − f (x)}. (1)

Consider the Legendre transform of log C(θ), representing f with θ in the role of x, and
µt denoting xF.
Task (a): Show that fF(µt) = θ̂Tµt − log C(θ̂), where θ̂ = θ̂(µt) is the invers of µt(θ).
Solution: We need only check that the maximizing argument x (or θ) in (1) is θ̂ = θ̂(µt).
The gradient must be zero in this point, so x satisfies D f (x) = xF. When f (θ) =

log C(θ), with gradient µt(θ), this implies that the maximizing θ is the MLE of θ corre-
sponding to tobs = µt, θ̂ = θ̂(µt).
Task (b): Show that D fF(µt) = θ̂(µt) and D2 fF(µt) = Vt(θ̂(µt))−1.
Solution: When differentiating we must remember that θ̂ is a function of µt, with Ja-
cobian matrix V−1

t (because the inverse function µt(θ) has Jacobian Vt, by Proposition
3.8). The first term yields D θ̂Tµt = V−1

t µt(θ) + θ̂(µt) and the second yields V−1
t µt(θ),

and together we get the desired simple result θ̂(µt).
Differentiating θ̂(µt) once more yields V−1

t , in the point θ̂(µt) to be more precise.
Task (c): Show that applying the transform once more brings back log C.
Solution: With a new argument θF, the repeated transform fFF of fF is

fFF(θF) = max
µt
{µT

t θ
F − fF(µt)} = max

µt
{µt

T θF − µT
t θ̂(µt) + log C(θ̂(µt)}.

Maximum is attained when θF = Dµt fF(µt) = θ̂(µt) + V−1
t µt − V−1

t µt = θ̂(µt).
Thus, when θ̂(µt) = θF, fFF(θF) simplifies to log C(θF), so we have got back log C.

Exercise 3.7. Expected and observed information in general parameter.
Task: Show that in a full family, I(ψ̂) = J(ψ̂), by use of the Reparameterization lemma.
Solution: By formula (3.13), I = J when expressed in the canonical parameter. Multi-
plication by the same Jacobian, as in (3.16) and (3.17), does not change this equality.
Proposition 3.14 tells that both (3.16) and (3.17) hold in the MLE ψ̂, thus I(ψ̂) = J(ψ̂).

Exercise 3.8. Normal distribution in mean value parameterization.
Task: Find µt(Θ).
Solution: For a single observation (n = 1), Θ is characterized by a strictly negative
value of θ2 = − 1

2/σ
2. Since µ1 = µ and µ2 = µ2 + σ2, this corresponds to µ2 > µ2

1,
which characterizes µt(Θ).

For general sample size n, there are two variants. If we let the canonical parameter
be sample size independent and the canonical statistic be t = (

∑
yi,

∑
y2

i ), we get the
region µ2 > µ2

1/n. If we instead let t = ( 1
n
∑

yi,
1
n
∑

y2
i ) and Θ = (n µ, −1

2 n/σ2. the
mean value parameter remains the same for all n.



6

Exercise 3.9. Linear exponential families in mean value parameterization.
Task: For linear families, find ∂ log C(θ(µ))/∂µ, and show that the variance function
Vy(µ) together with the range of µ uniquely specifies the family.
Solution: The first part is simple. We have

∂ log C(θ(µ))
∂µ

=
∂ log C(θ)

∂θ
/

dµ
dθ

= µ /Vy(µ) .

Now, we use the fact that the moment-generating function, or the equivalent cumulant
function log C (see Remark 3.9) uniquely specifies the family. Suppose two linear
families have the same range for µ and the same variance function Vy(µ). Then, as
seen above, the first derivative of log C as expressed in µ is the same, and then also its
primitive function, log C itself, as function of µ. We may finally (essentially uniquely)
transform back to θ as argument in log C, since θ = θ(µ) has a specified derivative,
dθ/dµ = 1/Vy(µ). Note also that C always allows modification by an multiplicative
constant without changing the distribution family (Exercise 1.1), or equivalently by an
additive constant in log C.

Exercise 3.10. Fisher information under a mixed parameterization.
Task: Show the partitioning (3.23) of Proposition 3.12 for parameterization by µu and
θv, using the Reparameterization lemma, Prop. 3.14.
Solution: To prove (3.23) it might come natural to let ψ consist of µu and θv. This is not
the simplest way, however, because to find the Jacobian matrix we must then go via its
inverse. Simpler is to reverse roles of ψ and θ in Proposition 3.14, and use the fact that
we know the form of the result (3.23):

Iθ(θ) =

(
∂ψ

∂θ

)T

Iψ(ψ(θ))
(
∂ψ

∂θ

)
. (2)

The Jacobian
(
∂ψ
∂θ

)
has the following elements. Differentiating µu with respect to θu

yields the variance for u, i.e. Iθ(θ)uu, and with respect to θv the covariance of u and v,
i.e. Iθ(θ)uv (Prop. 3.8 and first part of Exc. 3.1). Differentiating θv with respect to θu
and θv yields a zero and an identity matrix, respectively, so(

∂ψ

∂θ

)
=

(
var(u) cov(u, v)

0 I

)
Multiplying Iψ from left and right by this Jacobian, according to formula (2) above,
yields the desired result Iθ = var(t), if we note that the lower right component of Iψ can
be written as var(v) − cov(v, u) var(u)−1 cov(u, v).

Exercise 3.11. Profile likelihoods for normal sample.
Task: Find the profile likelihoods for σ2 and µ in the two-parameter normal distribution.
Solution: To obtain the profile likelihood for σ2, it is just to insert µ̂ = y for µ, being the
MLE whether or not µ is specified. For the profile likelihood for µ, note that the MLE
of σ2 depends on the µ that is specified,

σ̂2(µ) =
1
n

∑
(yi − µ)2 =

1
n

∑
(yi − y)2 + (y − µ)2.

Inserting σ̂2(µ) for σ2 in the normal likelihood, the exponent simplifies and we find that
the profile likelihood for µ is proportional to {σ̂2(µ)}−n/2.
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Exercise 3.13. Conditioning on a Poisson sum.
Task: Show that when y1 is Po(µ1) and y2 is Po(µ2), and they are mutually independent,
the conditional distribution of y1 given y1 + y2 = u is binomial.
Solution:

f (y1 | y1 + y2 = u) ∝ f1(y1; µ1) f2(u − y1; µ2) ∝
1

y1! (u − y1)!
µ

y1
1 µ

u−y1
2 .

After multiplying by u! and dividing by (µ1 + µ2)u we recognize a binomial probability
corresponding to Bin(u, p) with p = µ1/(µ1 + µ2). Note that we did not need to know
the special property that u is Po(µ1 + µ2). This may instead be seen as a by-product.

Exercise 3.16. Structural and incidental parameters.
Task: Given k samples of size n, show that the joint MLE for the structural parameter
σ2 is biased and not consistent as k → ∞, whereas the conditional principle leads to an
unbiased and consistent conditional MLE.
Solution: The canonical statistic consists of the double sum of squares,

∑k
i=1

∑n
j=1 y2

i j,
and the set of sample sums

∑n
j=1 yi j (or equivalently the sample means yi.). Omitting

some details, the MLE of σ2 is the solution to
∑k

1
∑n

1 y2
i j = E(

∑k
1
∑n

1 y2
i j) = k nσ2 +

n
∑k

1 µ
2
i , where µi is replaced by its MLE yi.. This leads to k n σ̂2 =

∑k
1(n − 1)s2

i , and
since we know s2

i is unbiased, this MLE is not, but has the bias factor (n − 1)/n, that
does not disappear as k → ∞.
By the conditionality principle, Proposition 3.21, inference about the canonical param-
eter component −(1/2)/σ2, and therefore also about σ or σ2, should be based on the
conditional exponential family given the set of sample means. Since the latter are then
regarded as constants, we may subtract their squares from the double sum of squares
and obtain the equivalent statistic

∑k
1(n − 1)s2

i . The point is that the distribution of
this statistic is independent of the sample means, by Basu’s theorem, so when we write
down the conditional likelihood equations,

∑k
1(n − 1)s2

i = E(ditto), the expected value
is also the marginal expected value, which is

∑k
1(n − 1)σ2, since all s2

i are unbiased
variance estimators. This leads to the conditional MLE σ̂2 = (1/k)

∑k
1 s2

i , which is
unbiased, and of course also consistent as k → ∞. This is the usual ‘pooled’ estimator.
More precisely,

∑k
1(n− 1)s2

i /σ
2 is χ2 distributed with d. f . = k (n− 1) , but this property

is not needed in our analysis above.

Exercise 3.17. MLE existence in logistic regression.
Task: Characterize Θ, µt(Θ), T (the set of possible outcomes of t), and int(convex
closure(T )). Make a diagram showing T and int(convex closure(T )) as sets in R2.
Solution: First, Θ = R2, so the family is regular. Next, to see that µt(Θ) is a subset
of the rectangle 0 < µ1 < 3, −1 < µ2 < 1 is easy, but to specify this subset is a bit
more difficult, so we instead refer to Proposition 3.13 to show that the problem may be
solved by indirect methods: µt(Θ) equals int(convex closure(T ), and this is shown in
the diagram below. The set T is formed by the eight dots, and int(convex closure(T ))
is the interior of the polygon area. Only two points of T )) are inside this area; these are
where the MLE of θ exists, and in both of them the estimated slope parameter is zero.
Three observations is of course too few to be of practical interest, but also a somewhat
larger set can easily be investigated in the same way.
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Exercise 3.19. Conditional inference about an odds ratio.
Let yi, i = 1, 2, be Bin(ni, , πi) and mutually independent. Consider inference about the
log odds ratio ψ = logit π1 − logit π0 .
Task (a): Express the model with ψ and logit π0 as canonical parameters.
Solution:

f (y0, y1) = e y0 logit π0 +y1 logit π1 (1 − π0)n0 (1 − π1)n1

(
n0

y0

) (
n1

y1

)
,

where the exponent of the first factor can alternatively be expressed as

y0 logit π0 + y1 logit π1 = (y0 + y1) logit π0 + y1 (logit π1 − logit π0) .

The canonical parameter for y1 is the desired ψ.
Task (b): Motivate conditional inference and derive the adequate distribution.
Solution: For inference about the canonical component ψ, the Conditionality principle,
Proposition 3.21, is applicable, saying that inference about ψ in the presence of the
nuisance parameter logit π0 should be conditional on u = y0 +y1. Excluding all constant
factors from f (y0, y1) it is seen that f (y1 | u) ∝ eψy1

(
n0

u−y1

)(
n1
y1

)
. It only remains to divide

by the norming constant, to make it a probability distribution:

f (y1 | u) =
eψy1

(
n1
y1

) (
n0

u−y1

)
∑u

y=0 eψy
(
n1
y

) (
n0

u−y

) .
This is the so-called generalized hypergeometric distribution.

Exercise 3.25. Inverse Gaussian, continued.
Task (a): Let y have an inverse Gaussian distribution. Use the expression for log C(θ)
from Exercise 2.6 above to derive moments of y by suitable differentiation. In this way,
show that E(y) = µ and var(y) = µ3/α.
Solution: In Exercise 2.6 it was shown that

log C(θ) = 2
√
θ1θ2 −

1
2 log θ2 ,

where θ1 corresponds to t1(y) = y, and θ2 to t2(y) = 1/y. Differentiation yields E(y) =
√
θ2/θ1 and var(y) = 1

2

√
θ2/θ

3
1. Reexpression in α > 0 and µ > 0 via θ1 = − 1

2α/µ
2,
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θ2 = −1
2α yields the expressions desired.

Task (b): Suppose we have a sample from this inverse Gaussian. Derive the likelihood
equations and show that they have the explicit solution µ̂ = y and 1/α̂ = (1/y) − 1/y,
when expressed in these parameters.
Solution: Omitted.
Task (c): Derive the information matrix for the canonical θ and use for example the
Reparameterization Lemma to show that the information matrix for (µ, α) is diagonal,
i.e. that these parameters are information orthogonal.
Solution: Omitted.
Task (d): Use the theory of mixed parameterizations to conclude the result in (c) without
calculations.
Solution: µ is the mean for t1(y) = y and α is proportional to the canonical parameter
for t2(y) = 1/y. Thus, their information matrix must be diagonal, by the property of
mixed parameterizations.

Exercise 3.28. First-order ancillarity.
Eθ(u) =

∫
u eθ

T t(y) h(y) dy/C(θ) is independent of θ if and only if its derivatives with
respect to θ are identically zero.
The derivative with respect to θ j is obtained by differentiating under the integral sign,

∂Eθ(u)
∂θ j

= Eθ(u t j) − Eθ(u)
∂C(θ)
∂θ j

/C(θ) = Covθ(u, t j), (3)

cf. Prop. 3.8 and its proof. Hence, if Eθ(u) is independent of θ, then Cov(u, t) = 0, i.e.
u and t are uncorrelated for all θ, and vice versa.

Exercise 4.5. A saddlepoint approximation for an MLE.
Let y1, . . . , yn be a sample from a distribution on (0, 1), with density

f (y;α) = αyα−1, 0 < y < 1.

Task: Find the MLE α̂ and calculate the observed or expected information for α (why
are they the same?)
Derive the p∗ formula for the density of α̂, and demonstrate that it corresponds to a
gamma density for 1/α̂, except that the gamma function has been replaced by its Stirling
formula approximation. Why does the gamma density appear?
Solution: Canonical statistic is

∑
log yi. For calculations, let either α or α − 1 be the

canonical parameter. Whatever choice, log C(θ) = −n logα. Differentiation yields the
MLE α̂ = −1/ log y and I(α) = J(α) = nα2 (equality because α is canonical parameter).
Prop. 4.7 yields the saddle point approximation for the density of α̂ as

f (α̂; α0) =

√
n/α̂2
√

2π

L(α0)
L(α̂)

=
n

2π
αn

0

α̂n+1 en−nα0/α̂,

using the fact that log y = −1/ α̂ in the reexpression. The result reminds somewhat of a
gamma density, and this is explained as follows. If the density for y is transformed to a
density for − log y we get an ordinary exponential distribution with intensity α (which
explains the MLE). Since a sum or average −log y of exponentially distributed variates
is gamma distributed, it follows that 1/α̂ is gamma distributed.

Exercise 5.2. Correlation test.
Given a sample (n > 2) from a bivariate normal, use the same type of procedure as in
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Example 5.2 to derive an exact test of the hypothesis that the two variates are uncorre-
lated, that is: specify u and v, find a function of them that is parameter-free under H0,
conclude independence, and go over to marginal distribution. Finally transform to a test
statistic of known distribution.
Solution: Let the bivariate data be {xi, yi}, i = 1, . . . , n. We have u = {

∑
xi,

∑
yi,

∑
x2

i ,
∑

y2
i },

which is one-to-one with {x, y, s2
x, s2

y}, and v =
∑

xiyi. Conditioning on u, it is first seen
that v is a given linear (affine) function of the sample covariance sxy, and next sxy is seen
to be proportional to r = sxy/(sxsy), so we can consider r instead of v. From its form, r
is seen to be free from dependence on the H0 parameters {µx, µy, σx, σy} (this should
be well-known). Basu’s theorem now tells that r is independent of u, and this eliminates
the conditioning on u. It only remains to determine the distribution of r, and then it is
simpler result if we consider

√
n − 2 r /

√
1 − r2, which is a monotone function of r that

is exactly t(n − 2)-distributed under H0.

Exercise 5.3. A tool for scan tests in disease surveillance.
Task: When y1 and y2 are independent and Po(λ1A1) and Po(λ2A2), respectively, with
A1 and A2 known, > 0, construct the exact test of H0: λ1 = λ2, versus λ1 > λ2.
Solution: The joint density can be written

2∏
i=1

f (yi; λi) = h(y1, y2) exp
{
y1 log λ1 + y2 log λ2 − λ1 A1 − λ2 A2

}
= h(y1, y2) exp{(y1 + y2) log λ2 + y1 log(λ1/λ2) − λ1 A1 − λ2 A2},

an exponential family of order 2 with canonical statistic (u, v) = (y1 + y2, y1).
The Conditionality principle of Section 3.5 tells that, generally, inference about

θv = log(λ1/λ2) should be conditional on u = y1 + y2. In particular, the exact test for
H0: θv = 0, or equivalently λ1 = λ2, is based on the conditional distribution under H0
of v given u (y1 given y1 + y2). Since yi is Poisson with mean value µi = λiAi, i = 1, 2,
Exc. 3.13 tells that the desired conditional distribution is Bin(n, p) with n = u = y1 + y2
and p = A1/(A1 + A2). The one-sided test rejects H0 if the right hand tail probability of
this binomial is too small.

In applications to disease surveillance, one of the further complications is that there
are typically more than two regions, and each of them could have the role of region 1
above, against the others, which leads to a multiple testing problem.

Exercise 5.4. Model with odds ratio parameter.
Task: In a saturated multinomial model for the 2 × 2 table, show that f ({yi j}) may be
represented by the canonical statistic {y00, r0, s0}, and that the canonical parameter for
y00 is then the log odds ratio.
Solution: The multinomial exponent θT t =

∑
yi j log pi j can be re-expressed in {y00, r0, s0}

together with n by inserting y01 = r0−y00, y10 = s0−y00, y11 = n−r0−s0+y00. The result
is

∑
yi j log pi j = y00 log(p00 p11/(p01 p10))+r0 log(p01/p11)+ s0 log(p10/p11)+n log y11,

where the coefficient for y00 is seen to be the log-odds-ratio.

Exercise 5.5. Larger tables.
Task: Extend models, hypotheses and exact tests from 2 × 2 to k × l.
Solution: The three different sampling situations are:

1. Table of counts, all observations yi j independent and Po(λi j).
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2. Classification of n items by two criteria, multinomial with cell probabilities πi j.

3. Each row represents a multinomial sample, sample size is the row sum ri.

Corresponding hypotheses:

1. Multiplicativity, λi j = αi β j.

2. Independence, πi j = αi β j, with
∑
αi =

∑
β j = 1.

3. Homogeneity, the row multinomials πi = {πi j} are the same for all rows.

Exact tests:
For the Poisson table it is easily seen that under H0 the canonical statistic consists of
the row and column sums. Thus we should condition on all these marginals. If we do
this in steps, and first condition on the table total n =

∑
yi j, we get the fixed sample

size multinomial model and its test for independence, so the exact test in these cases is
the same. If we next condition on all row sums ri, we get the homogeneity hypothesis
for the model of one multinomial for each row, and again the same exact test statistic.
Finally, we condition also on the column sums to get the distribution of the test statistic.
This is technically more complicated, however, and it leads to a multivariate version of
the hypergeometric distribution.

Exercise 5.11. Test for specified multinomial distribution.
Given a sample from a multinomial distribution, {y1, . . . , yk}, with

∑
yi = n, construct

various large sample tests for the hypothesis of a particular such distribution.
Hint: The Poisson trick of Section 5.6 simplifies the calculations for the score test, even
though it changes the hypothesis from simple to composite.
Solution: Let the multinomial have probabilities θ = {πi}, say, which under H0 are
specified as θ0 = {pi}, with

∑
πi =

∑
pi = 1. The log-likelihood is log L(θ) =∑

yi log πi + constant, and the test statistic W is 2(log L(θ̂) − log L(θ̂0)), which takes
the form 2

∑
yi log(yi/(npi)).

For the score test a problem is that the k probability parameters are constrained,
summing to 1. If we eliminate one of them we obtain a nonsingular information matrix,
but it is not diagonal and therefore not simple to invert. Therefore we use the trick
to pretend n is the outcome of a Po(λ), thus n is also the MLE of λ. This makes the yi

mutually independent and Po(λi) = Po(λπI). The score components for λi are (yi−λi)/λi

and the information matrix I is diagonal with diagonal elements 1/λi. Inserting the
MLEs under H0, that is λ̂i = λ̂ pi, in formula (5.18) yields Wu =

∑
(yi − n pi)2/(n pi).

Note that this is the classical χ2 statistic for testing a specified multinomial. Under H0
both W and Wu are approximately χ2(k − 1) distributed.

Exercise 6.1. Some examples
Task: Check some examples of models following Boltzmann’s law.
Solution: All the models mentioned have an exponential type density with h(y) =constant,
as prescribed by Boltzmann’s law. In most of them the natural underlying repetitive
structure is a sample of iid observations. In a regression situation of correlation type
(rather than a controlled experiment), we may think of a large potential population of
regressor values, under suitable restrictions (not too little or too much variability). In
the Ising model example, we imagine the grid net as part of a much larger grid net.
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Exercise 7.1. Normal correlation coefficient as single parameter
Task: Characterize N2(0, 0, 1, 1, ρ) as a curved family.
Solution: The exponent

∑
θ j t j of this exponential family is represented by

−1/2
1 − ρ2 (y2

1 + y2
2 − 2ρ y1 y2) ,

a special case of Example 2.10. Thus, the statistics y2
1 + y2

2 and y1 y2 are both needed in
the minimal sufficient statistic, so we have a curved family. It is a (2, 1) family, because
it can be embedded in the full family N2(0, 0, σ2, σ2, ρ), that is, a model with the same
(but unknown) variance for both components.

Exercise 7.2. Poisson table under additivity
Task: Show that a 2 × 2 Poisson table under additivity of means is a curved family.
Solution: The exponent for the full family with mean values λi j is

∑
i j log λi j yi j. For

dimension reduction of this sufficient statistic, a linear relation in the canonical param-
eters log λi j is required. Additivity of λi j themselves is a nonlinear restriction in log λi j,
reducing only the parameter vector dimension, from 4 to 3 in the 2 × 2 table.

Exercise 7.3. Mean values under type I censoring
Task: Verify formulas (7.12) for E(d) and E(

∑
yi).

Solution: In type I censoring, d is the binomially distributed number of units failing
before time y0. Since the probability for an outcome < y0 is (1 − e−λy0), the for-
mula for E(d) follows. For the other mean value, E(

∑
yi) = n E(y), we need E(y) =∫ y0

0 λye−λydy + y0e−λy0 . Elementary calculations yield the desired formula.

Exercise 7.4. Invariance of statistical curvature
Task: Use formula (7.15) to verify in three steps, (a), (b) and (c), that the statistical
curvature is invariant under reparameterizations, λ = λ(ψ).
Solution: First, for the score function we conclude by reference to (3.15) that uλ = b uψ.
Differentiation once more, noting that the right hand side is a product, and change of
sign, yields jλ = b2 jψ − c uψ. This was step (a).
Next, in (b), regression of jλ on any of the regressors uλ or uψ differs only in the re-
gression coefficient, since uλ and uψ are proportional. In particular, the residuals are
not affected. Further, since c uψ is a linear function of the regressor, subtraction of c uψ
also changes the regression coefficient but not the residuals. Thus the only change in
the residuals is due to the scale factor b2 in front of jψ, which makes the variance of the
residuals (the numerator of (7.15)) change by the factor b4 when jψ is replaced by jλ.
Finally, in (c), it only remains to conclude by the reparameterization lemma, or by
taking expected values of the expression for jλ above, that Iλ = b2 iψ. Hence, both
numerator and denominator change by the factor b4, and their ratio is unaffected.

Exercise 7.5. Correlation parameter model, continued from Exerecise 7.1
Task (a): Investigate the ocurrence of multiple roots to the likelihood equation for the
N2(0, 0, 1, 1, ρ) model.
Solution: For curved famiies, the score function is generally given by (7.7). Here,
θ1 = −n (1 − ρ2)−1, θ2 = nρ (1 − ρ2)−1, and(

∂θ

∂ρ

)T

=
n

(1 − ρ2)2 (−2ρ, 1 + ρ2) ∝ (−2ρ, 1 + ρ2).
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The canonical statistic components u and v have E(u) = 1, E(v) = ρ. This yields the
likelihood equation

2ρ (u − 1) − (1 + ρ2) (v − ρ) = 0. (4)

This equation could of course, alternatively, have been derived by direct differentiation
of log L, but in the present context the derivation above is instructive.
Now, (i), when uobs = 1 (= E(u)) we see that (4) has a unique root ρ̂ = vobs.
Next, (ii), when vobs = 0, (4) has the natural root ρ̂ = 0, irrespective of u. It is not
necessarily alone, however. Other possible roots of equation (4) must satisfy 2(u− 1) +

1 + ρ2 = 0, or 2u = 1 − ρ2. For an admissible value of ρ2, this requires u ≤ 1/2, and in
this case there are two such roots, ρ̂ = ±

√
1 − 2u, with ρ̂ = 0 in between.

Task (b): Consider lines of type L̃ for ρ, see (7.16), and relate with the results in (a).
Solution: Since the line (7.16) should go through the point (1, ṽ), it must have ρ̃ = ṽ.
When v = 0, the same line thus crosses the u-axis in u = (1− ρ̃2)/2, which corresponds
to the result in (a).

Exercise 7.6. Bivariate normal with mean on a parabola
Task (a): Assume y = (y1, y2) is N2(ψ, bψ2, 1, 1, 0), b > 0 known. Derive the likeli-
hood equation for ψ, and consider its roots, in particular when y1 = 0.
Solution: The full family has exponent θ1 y1 + θ2 y2, with θi = µi, but in the present
model θ is restricted to the curve (ψ, bψ2) in Θ. The Jacobian is

(
∂θ
∂ψ

)T
= (1, 2bψ).

This immediately yields the score function uψ(ψ) = (y1 − ψ) + 2bψ (y2 − bψ2) and the
likelihood equation

2b2 ψ3 + (1 − 2b y2)ψ − y1 = 0 .

When y2 < 1/(2b), the coefficients for ψ3 and ψ are both positive, so the score function
is a monotone function of ψ. When y2 > 1/(2b), however, the score is not monotone,
having a max and a min on opposite sides of ψ = 0. Depending on y1, this corresponds
to one or three roots.

Simplest case is for y1 = 0, when the equation is explicitly solvable. One root is
ψ = 0, and, if y2 > 1/(2b), there are two additional roots ψ = ±

√
( y2 − 1/2b)/b. Note

that when ψ = 0 is the single root, it is a maximum point for the likelihood, but when
there are three roots, the middle root ψ = 0 represents a local minimum. Note also
that a large positive values of y2 (indicating a large ψ), is not consistent with y1 = 0
(indicating a small ψ), so there is a connection between presence of three roots and bad
model fit. A high negative value of y2 also indicates a bad model fit, of course, but it
does not indicate a high ψ-value.
Task (b): Calculate the statistical curvature γψ, and find where it is highest possible.
Solution: By elementary calculations we obtain jψ = 1−2b y2 +6b2 ψ2, iψ = 1+6b2 ψ2,
var( jψ) = 4b2, cov( jψ, uψ) = −4b2 ψ2, and 1 − ρ2( jψ, uψ) = 1/iψ. Finally, insertion in
(7.15) yields

γ2
ψ =

4 b2

(1 + 4b2 ψ2)3 .

The maximal curvature is at ψ = 0, when γ2
ψ = 4 b2.

Task (c): Extend to a sample of size n.
Solution: If we keep the same canonical parameter vector, the exponential family likeli-
hood is expressed with the sample sum vector n(y1, y2) as canonical statistic. The Jaco-
bian remains the same. The score function is increased by the factor n, when (y1, y2) is
replaced by (y1, y2). The effect on the likelihood equation is the same. Thus, the results
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about multiple roots carry over directly, with y1 and y2 replaced by y1 and y2. In the
curvature calculation, all information quantities jψ and iψ are increased by the factor n.
The variances and covariances of jψ and uψ needed for the calculation are increased by
n2/n = n because the sample means involved have variances proportional to 1/n. In the
end, this means that γ2

ψ decreases by the factor n. This was the third item in the list of
properties of the statistical curvature in Section 7.3 above, stating that γψ decreases by
the factor

√
n.

Exercise 7.7. Bivariate normal with mean on a circle
Task: Investigate the curved bivariate normal model for (y1, y2) wi th mean vector on
the circle |µ| = ρ, ρ known, and identity covariance matrix.
Solution: Let the mean be parameterized by polar coordinates, µ(ψ) = ρ (cosψ, sinψ),
where 0 ≤ ψ ≤ 2π. The first task is to find MLE and observed information. The
Jacobian is

(
∂θ
∂ψ

)T
=

(
∂µ
∂ψ

)T
= (−ρ sinψ, ρ cosψ), which yields the following score

function for ψ:

u(ψ; y1, y2) = −ρ sinψ (y1− ρ cosψ) + ρ cosψ (y2− ρ sinψ) = ρ (−y1 sinψ+ y2 cosψ) .

Setting the score to zero gives tanψ = y2/y1, which has two roots. One is the MLE
direction ψ̂, in the (y1, y2) quadrant, and the other is the opposite direction, correspond-
ing to a likelihood minimum. Note also that cos ψ̂ = y1/|y| and sin ψ̂ = y2/|y|. From the
score function we immediately get the observed information

jψ(ψ) = ρ (y1 cosψ + y2 sinψ) = ρ |y|(cos ψ̂ cosψ + sin ψ̂ sinψ) ,

its expected value iψ(ψ) = ρ2, and its particular value jψ(ψ̂) = ρ |y|. The latter shows
how the log-likelihood function of ψ around ψ̂ is flatter for small |y| than for large |y|,
and quantifies how the precision in the MLE depends on the ancillary vector length |y|.
The observed information should be used, and not the expected one.

A technically more difficult question concerns the conditional distribution for ψ̂,
given |y|. A further complication is the formulation of this question in the book, asking
for the distribution of a variate z. This notation does not appear in Exercise 7.7, but is the
one used in Example 2.14 for the variate corresponding to ψ̂. Given |y|, or |y|2 = y2

1 + y2
2,

the only random component in the density for (y1, y2) is the factor

e ρ (y1 cosψ+ y2 sinψ) = e ρ |y| (
y1
|y| cosψ+

y2
|y| sinψ) , (5)

where y/|y| is a direction vector (i.e. of unit length).
Compare now with Example 2.14, and note that we have a von Mises distribution

for the direction vector, with canonical parameter ρ |y|. We stop here, because since the
direction vector is an explicit one-to-one function of the angle ψ̂, it is enough that we
know the distribution for one of them.

Task (d) is to show that the statistical curvature is γψ = 1/ρ. We need the ex-
pressions for uψ and jψ, and the result iψ = ρ2, which were all given above. Easy
calculations yield var( jψ) = ρ2 and corr(uψ, jψ) = 0. Inserting this into (7.15) verifies
that γ2

ψ = 1/ρ2.
Finally, (e), with a sample of size n, using same canonical parameter vector as

above, the canonical statistic is n (y1, y2). That is, we must introduce a factor n at the
same time as (y1, y2) is replaced by the sample mean vector (y2, y1). This start, and
the rest of the arguments for the information quantities and the statistical curvature are
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precisely the same as in task (c) of Exercise 7.6. In particular, the MLE must satisfy
tanψ = y2/y1. Finally, for the conditional distribution argument, note that when (y1, y2)
is replaced by (y2, y1) in formula (5), the factor n also comes in. It can be absorbed in
the factor ρ, thus simply increasing the von Mises canonical parameter by the factor n
(making this distribution more concentrated).

Exercise 7.8. Why is Basu’s theorem not applicable?
Task: In Example 7.12, a sample from N(µ, c2µ2), the statistic a = (

∑
yi)2/

∑
y2

i is
ancillary, so its distribution is parameter-free. Then, why cannot we conclude by Basu’s
theorem (Proposition 3.24) that a and the minimal sufficient vector (y, s2) are mutually
independent?
Solution: Basu’s theorem requires that the family is complete, which is true for a full
exponential family. This model, however, is a curved model, and is therefore not rich
enough to be complete. Basu’s theorem is not applicable to ancillary statistics as defined
in Definition 7.3.

Exercise 7.9. Conditional versus unconditional inference
Task: Compare conditional and unconditional inference in the setting of Example 7.10.
Solution: The MLE for ψ is the same conditionally as unconditionally, since the like-
lihoods differ only by the parameter-free factor f (a), which vanishes from the Fisher
score function. The MLE is explicitly given by ψ̂ = y1/(y1 + y2) = y1/a. The observed
observation is also the same, of course. The (expected) Fisher informations are different
however, being a/(ψ(1−ψ)) and its expected value c/(ψ(1−ψ)), respectively. This im-
plies that the asymptotic variances according to large sample theory are different (even
though ‘large sample´ implies that a and c will both be large, with ratio close to 1). The
conditional quantities are more relevant than the unconditional.

The exact test statistic for ψ = ψ0 is defined only for the conditional model. Turning
to the likelihood ratio test statistics, they are the same conditionally and uncondition-
ally, because both their numerators and their denominators differ only by a factor f (a),
so this factor cancels from the ratio. For the score and other large sample statistics
their conditional and unconditional versions are different when their (expected) Fisher
information are used.

Finally we make diagrams and check the orthogonality referred to in Section 7.2.
We use parameters θ1 = log(cψ), θ2 = log(c(1 − ψ)) in the canonical parameterization,
and we exemplify by choosing y = (6, 2), and c = 10, which means the range for
θi (i = 1, 2) in the curved model is (−∞, log 10). The projection arrow of y on the
curve in the mean value space has direction (3, 1) (the ratio between the components is
the same in the MLE as in y). In the canonical parameter space, ∂θ1/∂µ1 = 1/µ1 and
∂θ2/∂µ1 = −1/(c−µ1), so with c = 10 and µ̂1 = 7.5, the tangent slope in the MLE point
is −7.5/2.5 = −3, which is the orthogonal direction, as asserted by theory.

Exercise 8.1. Folded binomial distribution.
Task: Characterize the folded binomial as an incomplete data model.
Solution: Let the chromosome types be called A and B (imagined to be distinguishable).
The number x of labels attached to A is Bin(m, π) for some probability π, and m − x are
attached to B. Thus we can imagine complete data according to this ordinary binomial
model. In the observed data, y and m− y, A and B are not distinguishable, which means
we do not know if y is the number attached to A or B. The probability for an observed
pair (y, m − y) is the sum of the two binomial probabilities for y = x and y = m − x,
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Figure 1: Illustration of orthogonality of two direction vectors.

unless m is even and y = m/2, when x = m − x.

Exercise 8.2. Wrapped normal distribution.
Task: Characterize the wrapped normal as incomplete data from an exponential family.
Solution: Let x be from a normal distribution. When observing y on the unit circle, we
cannot distinguish x and x ± 2π, x ± 4π, etc. The probability density for y is the sum of
the densities of all these x-values.

Exercise 8.3. Rate of convergence and sample size.
Task: Show that the expected rate of convergence does not depend on the sample size,
when x- and y-data form samples of size n.
Solution: When dim(θ) = 1, the rate of convergence is given by formula (8.9), and its
expected value is 1− Iy(θ)/Ix(θ). Here both information quantities are proportional to n,
which cancels in the ratio. In higher dimensions, we consider the rate of convergence
with expected values inserted for the observed informations in formula (8.10), and again
the sample size cancels.

Exercise 8.4. Observed components of t.
Task: If a component of t, say t1, is included in the observed data y, what are the
consequences for the EM algorithm?
Solution: When t1 is observed, the MLE of the parameter component or parameter
function µ1 = E(t1) is known without iterations, µ̂1 = t1. Also, var(t1 | y) = 0, and
likewise cov(t1, t j | y) = 0 for j > 1. When the first row and first column of the matrix
(8.10) are zero, one eigenvalue is zero. The interpretation is that irrespective of starting
point, the algorithm already in the first iteration converges to the surface where µ̂1 = t1,
and it stays within that surface during subsequent iterations.

Exercise 8.5. Geno- and phenotype data under H–W equilibrium.
Task (a): Characterize the multinomial model of Table 8.1a.
Solution: Let the multinomial have a count vector x = (xAA, . . . , xBB) with the fixed
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total n and corresponding probability vector π. The probability function for x is

f (x; π) = h1(x)
∏

k

πxk
k = h2(x) (p2)xAA (pr)xA0 (pq)xAB (r2)x00 (qr)xB0 (q2)xBB

= h2(x) (p/r) 2xAA+xA0+xAB (q/r) 2xBB+xB0+xAB r2n = h3(x) eθ1t1+θ2t2

where θ1 = log(p/r) = log(p/(1 − p − q)), θ2 = log(q/r) = log(q/(1 − p − q)), t1 =

t1(x) = 2 xAA + xA0 + xAB, t2 = 2 xBB + xB0 + xAB. This shows that we have a full
exponential family of order 2. There is also a 1–1 correspondence between (θ1, θ2) and
(p, q). The interpretation of the canonical statistics t1 and t2 is as the sample numbers
of alleles A and B, respectively (the total, with alleles 0 included, being 2n).
Task (b): Characterize the multinomial model of Table 8.1b.
Solution: Like in (a), but for the aggregated data {yk}, we have the probability function

f (y; π) = h(y) (p2 + 2pr)y1 (q2 + 2qr)y2 (2pq)y3 (r2)y4

where we have the restrictions y1 +y2 +y3 +y4 = n and r = 1− p−q. The first restriction
makes it correspond to an exponential family of order at most 3, but due to the nonlinear
relationships between the corresponding canonical parameters, a simplification to order
2 is not possible. The dimension of the parameter vector, however, is only 2 (parameters
p and q). Thus we have a curved (3, 2) family.

Exercise 8.6. Matrix identity in factor analysis.
Task: Show that I + ΛT Ψ−1Λ and I − ΛT Σ−1Λ are each other’s inverses, where I is the
q × q identity matrix.
Solution: We want to prove that the matrix product equals the identity matrix I:

(I + ΛT Ψ−1Λ) (I − ΛT Σ−1Λ) = I − ΛT Σ−1Λ + ΛT Ψ−1Λ − ΛT Σ−1ΛΛT Ψ−1Λ

Using the basic relation Σ = ΛΛT + Ψ to replace ΛΛT in the last term makes all terms
cancel, except the first term, I.

Exercise 9.1. Log-link for binary data.
Task: For Bernoulli type data, the log-link is rarely used. What could be the reason?
Consider in particular a case when xTβ > 0.
Solution: For binary data, it is the same type of problem with log-link as with the
identity link. The expected values µ are probabilities. With the canonical logit link
the probabilities fall in the unit interval, as they should. But for log-link we get µ =

g−1(xT β) = exp(xT β) > 1 as soon as xT β > 0.


