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1 Exercises

1. Determine the velocity field within a soil specimen of height H that is compressed by a piston
moving downwards with velocity V

(a) in an oedometer test.

(b) in an undrained triaxial test

(c) in a drained triaxial test.

2. Given the vectors a and b and the orthogonal matrix Q, show that a ·Qb = QTa · b.

3. To obtain the density of a material, we measure the mass m and the volume V . The obtained
mean values are: m̄ = 2.651,2 g and V̄ = 1.003,7 cm3. The standard deviations were obtained
as : sm = 4.5 g, sV = 2.3 cm3. Calculate the standard deviation of the density ρ = m/V .

4. Determine the matrix Q that rotates the vector v (v′ = Qv) by the angle θ about the axis given
by the vector k.

5. Using cartesian coordinates in a 2D or 3D space we can express rigid body translation by the
fact that all points of the considered body have the same velocity. Now we consider the motion
of rigid tectonic plates (’cratons’) on the surface of the earth. Are there translations such that
all points of a tectonic plate have the same velocity?

6. (a) Show that shear stresses must occur in a sloping terrain.

(b) At which angle intersect the principal stress trajectories the surface of a cohesionless soil
inclined by the angle β < φ?

(c) Express the stresses σA and σB (Fig. 1) in dependence of γ · d.

(d) Calculate the maximum inclination of a cohesionless slope, which is partially immersed
in water.

(e) Plot heuristically the principal stress trajectories in a triangular earth dam and show the
distribution of vertical stress at the bottom edge (hint: use the equations of Lamé-Maxwell).
Show that it deviates from the intuitively assumed triangular distribution of Fig. 2
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Figure 1: Stresses in a slope.

Figure 2: Intuitively assumed triangular distribution of pressure q.

7. The tensile force in a rod is 60 N. Its cross section area is 2 cm2. The rod has the direction of
the vector (1, 1, 2). Express the stress tensor in the rod as a matrix in a cartesian system of
coordinates.

8. Silt particles float in a lake so that the suspension has a specific weight of 11 kN/m3. They sink
with a velocity of 1 cm per 100 years. The bottom of the lake is silt with specific weight of 20
kN/m3. Determine the velocity with which the bottom of the lake rises.
The specific weights of water and silt particles are γw = 10 and γs = 27 kg/m3, respectively.

9. In a one-lane road cars move with a velocity of 70 km/h. Their density is ρ1 = 3 cars pro 100
m. At an accident the cars have to stop and form a queue, the density of the stopped cars is
ρ2 = 16 cars pro 100 m. Determine the backwards propagation velocity u of the end of the
queue.

10. A suspension in water consists of particles floating in water and has a specific weight greater that
water (γw), e.g. a bentonite slurry can have the specific weight of γB = 11 kN/m3. According
to the principle of Archimedes, however, a body can only float if its specific weight equals the
one of water. How can we explain this contradiction?

11. Starting from Hooke’s law σij = λεkkδij + 2µεij determine the inverse relation εij = f(σij) .
Write Hooke’s law for a volume preserving deformation.
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12. A linear-elastic rod is compressed by the strain εz in axial direction z.

(a) What is the strain εr in radial direction r?

(b) What is the stiffness dσz/dεz?

(c) Calculate the stiffness for the case that the lateral expansion/contraction is inhibited.

(d) Which is the value of ν for incompressible materials?

13. (a) Calculate with barodesy the value of K0 in dependence of ϕc. K0 is defined as the ratio of
lateral (radial) to vertical (axial) stress: K0 = σr/σz.

(b) How does this value change if the soil sample is placed in a cylindrical ring with inner radius
r = 4 cm, thickness t = 3 mm, made from steel (E = 210 · 106 kN/m2)?

14. Using the barodetic constitutive equation calculate for Hostun sand

(a) the earth pressure coefficient K0

(b) the critical friction angle ϕc
(c) the ratio K1 := σ3/σ1 for undrained plane (ε33 ≡ 0) compression in direction 1.

15. The dilatancy at the peak of a triaxial test compression test with Karlsruhe sand conducted at
the lateral stress of σ3 = 400 kPa reads δ = 0.15. Calculate the peak stress σ1,max.

16. The constitutive equation of barodesy (equation 16.6 of the book) can also be written as Ṫ =
HD. Derive the expression for the stiffness matrix H.

17. Express trA4 using invariants of A,A2,A3.

18. Show that the matrix exponential expA can be represented as a1 + bA + cA2.

19. The following constitutive equations are given:

(a) σ̇ = c1ε̇

(b) σ = c2ε̇

(c) σ̇ = c3ε

Which of these constitutive equations describes creep?
Which of these constitutive equations describes relaxation?

20. A one-dimensional constitutive equation is σ̇ = c(a− σ)ε̇. The loading programme is:
σ(t = 0) = 0 und ε̇ = const > 0 für t > 0.

(a) What is the yield stress?

(b) What is the initial stiffness dσ
dε

(t = 0)?

21. A column of radius r0 = 30 cm and height h0 = 3 m consists of dry sand (ϕ = 34◦, γ = 18
kN/m3) jacketed into a rubber membrane of thickness d0 = 3 cm and tensile strength of σu =
11, 000 kN/m2 obtained at an elongation of 180%. Calculate the bearing capacity (maximum
vertical load F ) of this column assuming that the deformation of rubber is volume preserving.
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Figure 3: Pull out of a vertical strip embedded in soil.

22. The differential equation 19.31 of the book describes the process of consolidation in time but
does not predict the related amount of compression of the considered soil layer. Which quantity
determines the compression?

23. In the course of an undrained triaxial compression a sand sample gets completely liquefied.
Subsequently the drainage is opened. What happens then?

24. A method to measure the horizontal stress in soil is to pull out vertical embedded metallic strips
and measure the related force (Fig. 24). Assuming that the strip does not influence the stress
state in the soil, determine how the stress distribution e(z) can be inferred form the measured
force F (t).

25. Show that the flow of water in the narrow gap between two parallel vertical glas plates (so-called
Hele-Shaw apparatus) is governed by the Darcy equation.

26. A standpipe is filled with water, see Fig. 4, and subsequently the water runs out into the soil.
Find an approximate relation between the rate of descent v0 in the standpipe and the permeabil-
ity of the soil. Hint: Assume a central velocity field in the soil.

27. A cylindrical sample of Hostun sand carries the stress σ1 = 600 kPa, σ2 = σ3 = 300 kPa.
Calculate the stress increments ∆σ1 and ∆σ2 resulting from the strain ∆ε1 = ∆ε2 = ∆ε3 =
0.001. Set e = ec = 0.70.

28. An ice sheet of thickness d = 1 m and γice = 9.2 kN/m3 is a floating in water. Determine its
immersed depth b and the subgrade reaction modulus k.

29. Consider the constitutive equation

Ṫ = h(T,D, . . .) + b
(√

c21 + D2
)−1

Ḋ ,

where h(T,D, . . .) is a rate independent constitutive equation. Using this equation calculate

(a) the stress jump that results from a jump

D1 =

 d1 0 0
0 −d1 0
0 0 0

 → D2 =

 d2 0 0
0 −d2 0
0 0 0


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Figure 4: Standpipe in soil.

(b) the stress jump that results from a jump

D1 =

 d1 0 0
0 −d1 0
0 0 0

 → D2 = 0

30. A conical hole (radius R = 20 cm, depth h = 15 cm, is excavated into dry sand (k = 10−5 m/s)
and filled with water.

(a) How long does it take until the water is entirely run out into the soil? (Neglect effects due
to capillarity).

(b) How long does it take until the water is entirely run out into the soil if the experiment
is carried out on the surface of the moon with an identical sand (gmoon = 1.63 m/s2)?
(neglect any effects due to temperature, evaporation etc.)

31. A 4 m thick layer of water saturated silt is loaded by σ0 = 100 kPa and consolidates. Its
thickness is reduced by s0 = 30 cm. Which energy is spent to deform the soil and which energy
is spent to overcome viscosity at squeezing out water?

32. The following questions refer to Figure 19.3 of the book (tidal deformation and tidal locking).
In this figure the gravity-induced deformation of the earth is assumed as affine deformation
transforming a sphere into an ellipsoid. For simplicity we consider now plane deformation of
a cylinder with initially circular cross section. The cylinder can be deformed to an ellipse of
equal area if we squeeze it into an elliptical stencil. Subsequently this stencil is rotated.

(a) Express the deformation gradient F, the velocity field and the velocity gradient L for the
case of tidal deformation.

(b) Calculate the tangential velocity of the surface of the ’earth’.

(c) Is the deformation imposed by a rotating stencil homogeneous? If it is homogeneous and
if the ’earth’ is linearly elastic, what is the related energy consumption?
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(d) Express the deformation gradient F for the case of tidal locking.

33. A triaxial specimen of a soil with ϕ = 30◦ is tested for compression and extension at a lateral
stress of σ2 = 200 kPa. Calculate σ1,max (for compression) and σ1,min (for extension) assuming
homogeneous deformation. The friction angle is here assumed to be independent of stress.
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2 Solutions

Exercise 1:

(a): vx = vy = 0, vz = −(V/H) · z;

(b): vz = −(V/H) · z, vx = vy = −vz/2,

(c): vz = −(V/H) · z, vx = vy depend on the dilatancy δ.

Exercise 2: The scalar quantity a ·Qb does not change if both vectors, A and b, are rotated by QT :

a ·Qb = (QTa) · (QTQb) = QTa · b q.e.d. (1)

Exercise 3: One obtains from equation sy =

√∑(
∂y
∂xi
si

)2
with ρ = m/V, ∂ρ/∂m = 1/V, ∂ρ/∂V =

−m/V 2:

sρ =

√
1

V 2
s2m +

m2

V 4
s2V =

√
1

1, 003.72
4.52 +

2, 651.22

1, 003.74
2.32 = 0.0075 g/cm3

Exercise 4: We use the formula of Rodriguez, v′ = v cos θ+ (k×v) sin θ+k(k ·v)(1− cos θ), and
write using the permutation symbol εpqi:

v′i = vi cos θ + εpqikpvq sin θ + ki(kpvp)(1− cos θ) (2)
= vjδij cos θ + εpqikpvjδqj sin θ + ki(kpvjδpj)(1− cos θ) (3)
= [δij cos θ + εpqikpδqj sin θ + ki(kpδpj)(1− cos θ)] vj . (4)

Hence

Qij = δij cos θ + εpqikpδqj sin θ + kikpδpj(1− cos θ) (5)
= δij cos θ + εpjikp sin θ + kikj(1− cos θ) . (6)

Exercise 5: Rigid body motions on the surface of a sphere are rotations about an axis passing through
the centre of the sphere. Consider the special case that the entire surface of the sphere (earth) is rigid.
It becomes then clear that different points thereupon (e.g. London and Sydney) will have different
velocities.

Exercise 6: (a) If the stress were hydrostatic, only normal stresses would act on the intersecting
surfaces of the triangle shown in Figure 5. Equilibrium of the horizontal forces would not be possible.

(b) We consider an infinite slope (every slope can be considered as such near to its surface) and note
that the force acting upon a cut parallel to the soil surface is vertical. Interestingly, the stress state
in the slope is not unique but depends on the mobilised friction angle ϕm, β ≤ ϕm ≤ ϕ. Figure
6 shows a Mohr circle tangent to the line τ = σ tanϕm. The pole is obtained by the intersection of
this circle with the line τ = σ tan β. We consider the angle 180◦ − β − (180◦ − α) = α − β. It is a
central angle, hence the peripheral angle reads (α− β)/2, and this is the inclination of the one family
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Figure 5: Hydrostatic stresses acting upon a triangular section of a slope.

Figure 6: Mohr circle representation of the stress state in a slope.

of principal stress trajectories. The other family is perpendicular to this one. Now we apply the sinus
theorem:

sin β

(σ1 − σ2)/2
=

sin(180◦ − α)

(σ1 + σ2)/2
; sinα =

σ1 + σ2
σ1 − σ2

sin β =
sin β

sinϕm
(7)

Hence, the inclination of the one family of trajectories reads

1

2

[
arcsin

(
sin β

sinϕm

)
− β

]
. (8)

(c) Note that σA equals the distance between the origin O of the τ -σ-diagram and the pole. Similarly,
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σB = γ · d · cos β equals the distance OB in Figure 6. Application of the sinus theorem yields:

(σ1 + σ2)/2

sinα
=

σB
sin(α + β)

(9)

(σ1 + σ2)/2

sinα
=

σA
sin(α− β)

; σA =
sin(α− β)

sin(α + β)
· cos β · γ · d = KA · γ · d (10)

(11)

with

KA :=
sin(α− β)

sin(α + β)
· cos β . (12)

(d) Equilibrating the forces acting in the direction of the slope yields:

1

2
KA (γ − γ′) d2 +

1

2

d2

tan β
(γ + γ′) sin β =

1

2

d2

tan β
(γ + γ′) cos β tanϕ (13)

i.e.
sin(α− β)

sin(α + β)
· γ − γ

′

γ + γ′
+ 1 =

tanϕ

tan β
. (14)

This is an implicit equation for β = βmax = f(ϕ). For ϕ = 30◦ and (γ − γ′)/(γ + γ′) = 1/3 we
obtain numerically the solution β = βmax = 25.85◦.

(e) We refer to Fig. 7. In the regions ABF and DEF both families of the principal stress trajectories
are straight lines with the inclinations obtained in (d). In the region BFD the one family of trajectories
is a fan of straight lines centred at point F. The other trajectories are segments of the corresponding
circles.

The distribution of vertical pressure q in the sections AB and DE can be obtained as follows. At a
point in a horizontal distance x from the left edge there are contributions from σ2 acting along the
trajectory inclined by δ := (α − β)/2 and from σ1 acting along the trajectory inclined by 90◦ − δ.
From the Lamé-Maxwell equations it can be seen that σ2 = γ ·a and σ1 = γ ·b (see Fig. 7 below). I.e.,
the integral of a principal stress along a straight trajectory equals γ ·∆h, where ∆h is the difference
of elevation between initial and end points of the trajectory.

Application of the sinus theorem yields

a = x · sin β sin δ

sin(β + δ)
, b = x · sin β cos δ

cos(β + δ)
. (15)

From Mohr’s circle (see Fig. 6, right) it follows

q =
σ1 + σ2

2
+
σ1 − σ2

2
· cos(2δ) (16)

E.g., for β = 30◦, ϕm = 35◦ we obtain from Equation 7:

α = arcsin
sin 30◦

sin 35◦
= 60.66◦ ; δ = (60.66◦ − 30◦)/2 = 15.33◦ (17)

From equations 15 and 16 follows

a = 0.1859 · x, b = 0.6859 · x ; q = 0.6509 · γ x . (18)
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Thus, q is larger than the value γ · x · tan 30◦ = 0.5774 · γ · x, which corresponds to the triangular
distribution of Figure 2. To preserve the global equilibrium of vertical forces, the stresses in the
central region BD (Fig. 7) must be smaller than the ones corresponding to the triangular distribution.

Now we estimate the vertical stress acting at point C. We consider the principal stress trajectory FC.
At a depth z below F, this trajectory is crossed by a curved trajectory (see Fig. 8) with curvature 1/z.
We consider equilibrium of vertical stresses using the equations of Lamé-Maxwell (cf. Equation 9.24
of the book). With y being the length of FG we have y = z/ sin

(
α+β
2

)
and

x = y · sin β = z · sin β

sin
(
α+β
2

) = z · k (19)

The horizontal principal stress at z is σ2 = γ ·(z−x) = γ ·z ·(1−k). According to the Lamé-Maxwell
equation, vertical equilibrium reads

dσ1
dz

= γ − σ1 − σ2
z

= γ − σ1 − γ · z · (1− k)

z
= γ · (2− k)− σ1

z
. (20)

The solution of this differential equation is

σ1 = γ · 2− k
2
· z . (21)

With k = sinβ

sin(α+β2 )
= sin 30◦

sin 45.33◦
= 0.7031 we have (2 − k)/2 = 0.6485 < 1. I.e., σ1 at point C is less

than the value corresponding to the triangular distribution. The total stress distribution is shown in
Fig. 8 right.

Exercise 7: With t = 60/2 = 30 N/cm2, n = 1√
6
(1, 1, 2) and the unit vectors i, j,k in the Cartesian

directions, the stress tensor reads T = tn⊗ n. The first column of T is given by the vector t1 = Ti.
Similarly, t2 = Tj and t3 = Tk. Hence, t1 = n1n, t2 = n2n and t3 = n3n, i.e.

T =
30√

6

 1 1 2
1 1 2
2 2 4


Exercise 8: The volume fractions of grains and water are αs = 1−n and αw = n, respectively, where
n is the porosity. From γ = γs + γw = (1− n)γs + nγw we obtain

n =
γs − γ
γs − γw

,

hence n1 = 0.94 and n2 = 0.41. With γs = αsγ
s we obtain:

γs1 = (1− 0.94) · 27 = 1.62 kN/m3, γs2 = (1− 0.41) · 27 = 15.93 kN/m3

From the jump relation for conservation of mass it follows
γ1(u− v1) = γ2u; u = γ1

γ1−γ2v1 = 1.62
1.62−15.93 · 1 = −0.118 cm in 100 years.

The minus sign indicates that u is directed upwards.
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Figure 7: Principal stress trajectories in a pile of sand.

Figure 8: Principal stress trajectory in axis of symmetry and distribution of vertical stress at the basis
of a sand pile. Dashed: triangular distribution.
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Exercise 9: Mass conservation: [ρ(u− v)] = 0, i.e. ρ1(u− v1) = ρ2(u− v2), hence

u =
ρ1v1 − ρ2v2
ρ1 − ρ2

=
0.03 · 70− 0.16 · 0

0.03− 0.16
= −16.15 km/h (22)

The negative sign indicates that u is oriented in the counter direction of the cars.

Exercise 10: Particles heavier than water can only float if they interact with a repulsive force. This
interaction force can be seen as a sort of effective hydrostatic stress tensor qδij . Thus, the ’real’
specific of the suspension equals the one of water, γw, but the total hydrostatic stress of the suspension
at a depth z is given by [γw + (γB − γw)]zδij .

Exercise 11:

σij = λεkkδij + 2µεij (23)
σii = λεkk3 + 2µεii (24)

; εii =
1

2µ
(σii − 3λεkk), εkk ≡ εii , (25)

; εij = − λ

2µ

σkk
(3λ+ 2µ)

δij +
1

2µ
σij . (26)

For a volume-preserving deformation, Hooke’s law reads: σij = 2µεij .

Exercise 12: We denote the z-direction with 1, and the radial directions x and y with 2 and 3. We
apply Equation 12.5 (right) of the book.

(a): With σ22 = σ33 = 0 and σkk = σ11 we obtain

ε22 = − 1

E
νσ11 = −νε11 . (27)

(b):
dσ11
dε11

= E . (28)

(c): We set ε22 = ε33 = 0 in Equation 12.5 (left) and obtain:

σ11 = 2G

(
ε11 +

ν

1− 2ν
ε11

)
= 2G

1− ν
1− 2ν

ε11 = E
1− ν

1− ν − 2ν2
ε11. (29)

The stiffness reads: E 1−ν
1−ν−2ν2

(d): ε11 + ε22 + ε33 = (1− 2ν)ε11 = 0 ; ν = 1/2.

Exercise 13: (a) For oedometric compression we have δ = −1 and

D0 =

 −1 0 0
0 0 0
0 0 0

 , D0? =
1

3

 −2 0 0
0 1 0
0 0 1

 .
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Figure 9: Relation between K0 and ϕc. Dashed: Jaky’s relation between K0 and ϕ.

Thus we have

R2 = − exp

(
c1 ·

1

3

)
− c2 (30)

R1 = − exp

(
c1 ·
−2

3

)
− c2 (31)

hence

K0 =
R2

R1

=
exp(c1/3) + c2

exp(−2c1/3) + c2
(32)

With the relation 17.26 from the book,

c1 =

√
2

3
ln

(
1− sinϕc
1− sinϕc

)
, (33)

we obtain a relation between K0 and ϕc as plotted in Fig. 13 together with the relation K0 = 1− sinφ
(dashed line). Note that Jaky’s relation, K0 = 1 − sinϕ, does not refer to the critical friction angle
ϕc.

(b) The relation between the stress σ2 = σ3 = σr in the soil and the tensile stress σe in the steel ring
reads: r ·σr = d ·σe. Hence, σ̇2 = (r/d) ·E · ε̇2 = (r/d) ·E ·D2. The numerical calculation proceeds
in the same way as for the drained triaxial test. Instead of the equation σ̇2 = 0, the aforementioned
equation must be numerically solved at each step to determine D2. The ratio σ2/σ1 changes in the
course of the deformation.

Exercise 14: The equation R(D) = − exp (c1D
0?) + c2δ1 is used.

(a) For oedometric deformation we have D = D0 =

 −1 0 0
0 0 0
0 0 0

, und D0? =

 −2/3 0 0
0 1/3 0
0 0 1/3

.

With c1 = −1.025, c2 = 0.50 and δ = −1 we get: R1 = − exp(−2c1/3) − c2 = −2, 48 und
R2 = − exp(c1/3)− c2 = −1.21 ; K0 = R2/R1 = 1, 21/2, 48 = 0, 49. (4)
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(b) For undrained triaxial compression is D =

 −1 0 0
0 1/2 0
0 0 1/2

; D0? =
√

2
3

 −1 0 0
0 1/2 0
0 0 1/2

;

R1 = − exp(−
√

2
3
c1) = −2, 31 undR2 = − exp(

√
2
3
c1/2) = −0, 66 ; sinϕc = R1−R2

R1+R2
= 0.556 ;

ϕc = 33, 8◦. (4)

(c) For undrained plane compression is D =

 −1 0 0
0 1 0
0 0 0

; D0? =
√

1
2

 −1 0 0
0 1 0
0 0 0

;

R1 = − exp(−
√

1
2
c1) = −2, 06 und R3 = − exp(0) = −1 ; K1 = R3/R1 = 0, 48. (4)

Exercise 15: First we calculate the unit tensor D0 that corresponds to the dilatancy δ. We set

D0 =

 − sinα 0 0

0 (cosα)/
√

2 0

0 0 (cosα)/
√

2

; − sinα +
√

2 cosα = δ.

With cos2 α = 1 − sin2 α, this is a quadratic equation for sinα leading to sinα = 1
3
(
√

6− 2δ2 − δ).
For δ = 0.15 we obtain sinα = 0.7634 and, hence,

D0 =

 −0.7634 0 0
0 0.4567 0
0 0 0.4567

; D0∗ =

 −0.8134 0 0
0 0.4067 0
0 0 0.4067


In the limit state we have R0 = T0. Hence σ1 = R1

R2
σ2. This is a relation between stress and dilatancy.

With c1 = −1.025, c2 = 0.50 (for Hostun sand) we obtain:

R1 = − exp(−c1 · 0.8134) + c2 · 0.15 = −2.2269 (34)
R2 = − exp(c1 · 0.4067) + c2 · 0.15 = −0.5841 (35)

Hence,

σ1,max =
2.2269

0.5841
400 = 1, 525.0 (kPa) . (36)

Exercise 16: With N := h[fR0 + gT0] we write the barodetic constitutive equation as Ṫ = N |D| =
(N ⊗D0)D. Hence, H = N ⊗D0. Considering stress and strain increments and using the actual
configuration as the reference one, we can write ∆T = H∆E. H depends on T and D0 = (∆E)0.

Exercise 17: We use the invariants J1 = trA, J2 = trA2, J3 = trA3 as well as the invariants I1, I2, I3
as given in Section 8.5 of the book. It holds: I1 = J1, I2 = 1

2
(J2

1 − J2), I3 = 1
3
(J3 + 1

2
J3
1 − 3

2
J1J2).

We now consider the characteristic polynom

−λ3 + I1λ
2 − I2λ+ I3 = 0 , (37)

replace λ by A and multiply by A obtaining thus

A4 = I1A
3 − I2A2 + I3A ; trA4 = I1trA3 − I2trA2 + I3trA . (38)
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Exercise 18: Besides the approximation given by equation 17.25 of the book, the matrix exponential
expA can in fact be strictly represented as a1+ bA+ cA2, and this is a consequence of the CAYLEY-
HAMILTON theorem, according to which every function of A can be represented in this form. Let the
principal values of A be A1, A2, A3. We consider the equations

expA = a1 + bA + cA2 (39)
A expA = aA + bA2 + cA3 (40)
A2 expA = aA2 + bA3 + cA4 (41)

Now we form the traces of these equations, noting that tr1 = 3, tr(A expA) = A1 expA1 +
A2 expA2 + A3 expA3, etc.:

tr(expA) = a tr1 + b trA + c trA2 (42)
tr(A expA) = a trA + b trA2 + c trA3 (43)

tr(A2 expA) = a trA2 + b trA3 + c trA4 (44)

We thus have a system of three linear equations the solution of which yields a, b and c.

Exercise 19: Creep is described by the constitutive equation (b), because for σ = const it gives ε̇ 6= 0.
Relaxation is described by the constitutive equation (c), because for ε = const it gives σ̇ 6= 0.

Exercise 20: For σ = a, this constitutive equation yields σ̇ = 0 for ε̇ > 0. So, a is the yield stress.
The initial stiffness is dσ

dε
= σ̇

ε̇
= ca.

Exercise 21: The following solution is based on the assumption that the deformation of the column
is uniform and that no buckling occurs.
When the collapse load is reached, the radius of the column is ru and the thickness of the membrane
is du. With ru = 1.80 · r0 we obtain for a volume-preserving deformation of the rubber (note that
deformations are large) du = d0/1.80. Using the known equation that relates the tensile stress in the
containment with the internal pressure p in a vessel,

p =
d

r
σ ,

we obtain the radial stress σr prevailing in the sand column as

σr =
(d0/1.80)

(r0 · 1.80)
σu =

3

30 · 1.802
· 1, 200 = 37 kPa

The maximum axial stress prevails at the lower edge of the column and reads

1 + sinϕ

1− sinϕ
σr =

F

πr2u
+ γuhu

Assuming hu ≈ h0 and γu ≈ γ0 we obtain

F = π · r2u ·
[(

1 + sinϕ

1− sinϕ

)
· σr − γ0h0

]
= π · (0.3 · 1.80)2 ·

[(
1 + sin 34◦

1− sin 34◦

)
· 37− 18 · 3

]
= 70 kN

Exercise 22: Interestingly, equation 19.31 predicts the same consolidation time for a layer loaded by
a small and by a large load. It is the load that controls the amount of compression in dependence of
the compressibility of the grain skeleton.
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Figure 10: The curved stress path A→O leads to complete liquefaction

Exercise 23: With opening of the drainage, the sample undergoes a hydrostatic compression (path
O→A in Figure 10). This path corresponds to reloading, hence the associated densification is small.
In accordance with this result, cone penetration tests indicate that earthquake-induced liquefaction
does not induce any significant densification.

Exercise 24: F is given by F = W +µ
∫ l
0
e(z)dz where W is the weight of the strip, µ is the friction

coefficient and l(t) = H − vt. v is the pull-out velocity (assumed as constant) and H is the initial
length of the embedded strip. With F = F (l(t)) we have dF/dt = (dF/dl)dl/dt = −vdF/dl =
−ve(l), hence

e(z) = −v
dF (t = H−l

v
)

dt
. (45)

Exercise 25: The dimensional analysis of the problem refers to exactly the same variables as the ones
used for the derivation of Darcy’s law in Section 19.4 of the book. Here, the spacing d between two
grains denotes the spacing between the glas plates.

Exercise 26: For an assumed central field vr = f(r), vφ = vθ = 0, the condition divv = 0 implies
vr(r) = v0

(
r0
r

)2. Introducing Darcy’s law vr = −k ∇h yields

h = −v0
k
r20

∫ r

r0

dr

r2
= −v0

k
r20

(
1

r
− 1

r0

)
+H

Setting h→ 0 for r →∞ yields finally

v0 =
kH

r0
.

Exercise 27: We set D = −1 and obtain δ = −
√

3. With D0∗ = 0 we obtain R0 = −1. We
furthermore have σ = 735 and

T0 =
−1√

6

 2 0 0
0 1 0
0 0 1

; Ṫ = c4 · 735c5 · [−(ec − c3 ·
√

3)1 + (−e− c3 ·
√

3)T0] ·
√

3 ;
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Ṫ =

 −177, 896 0 0
0 −211, 776 0
0 0 −211, 776

 .

The stiffnesses are:
∆T1
∆ε1

=
Ṫ1
D1

= 177, 896;
∆T2
∆ε2

=
Ṫ2
D2

= 211, 776;

∆σ1 ≈ 177, 896 · 0.001 = 178 kPa; ∆σ2 ≈ 211, 776 · 0.001 = 212 kPa.

Exercise 28: Equating pressure and buoyancy at the bottom edge of the ice sheet gives d · γice =
b · γw ; b = (γice/γw)d = 0.92 m. A downwards displacement ∆z of the ice sheet causes an
increase of buoyancy ∆p = γw∆z. Hence, the subgrade reaction modulus equals γw.

Exercise 29: The rate-independent part, h(T,D, . . .), does not have any contribution to stress due to
a jump of D. So, it is not further considered here.

Differentiating the expression

G = Arsinh
(

1

c
D

)
with respect to t we obtain

Ġ =
dG

dt
=

Ḋ√
c21 + D2

=
(√

c21 + D2
)−1

Ḋ

Thus, the increase of stress due to a change of D reads

∆T =

∫ t2

t1

Ṫdt = b Arsinh
(

1

c
D

)t2
t1

= b ln

(
1

c
D +

√
1 +

1

c2
D2

)t2

t1

(46)

With D1 := D(t = t1) and D2 := D(t = t2) we thus have:

∆T = b ln

(
1

c
D2 +

√
1 +

1

c2
D2

2

)
− b ln

(
1

c
D1 +

√
1 +

1

c2
D2

1

)
(47)

Taking that for large positive values of x (x� 1) holds:

ln(x+
√

1 + x2) ≈ ln(x+
√
x2) = ln(2x) ,

we can retrieve the logarithmic relation (19.24) of the book for c� |D|.

Exercise 30: For groundwater percolating above the water table the downwards oriented hydraulic
gradient equals 1.

1. Thus, the vertical filter velocity equals k and, hence, the run-out time on the earth equals te =
h/k = 0.15 · 105 s = 4.17 h.
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Figure 11: The works for deformation of the soil and squeezing the water correspond to the triangular
areas shown. Herein, a constant compressibility of the grain skeleton is assumed.

2. With k/kmoon = g/gmoon we obtain kmoon = k · (gmoon/g) = k · (1.63/9.81). Hence, the
run-out time on the moon equals 4.17 · (9.81/1.63) = 25.1 h.

Exercise 31: Assuming a constant compressibility of the soil (this is the usual assumption in the con-
solidation theory) leads to the partition of work shown in Fig. 11, i.e. the works spent for deformation
and for water flow read both:

W =
1

2
σ0s0

This presupposes that the load σ0 is applied instantaneously.

Exercise 32:

(a) Tidal deformation: With i and j being the unit vectors in x and y directions, and if the moon is
in the direction of j and elongates the earth radius by the factor λ, the deformation is given by

x1 = λ−1X1 (48)
x2 = λX2 (49)

Consequently, we have

F0 =

(
λ−1 0
0 λ

)
.

Now we let this deformation rotate with the angular velocity ω, i.e.

F = RF0R
T with R =

(
cosωt − sinωt
sinωt cosωt

)
, (50)
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and obtain

F =

(
λ−1 cos2 ωt+ λ sin2 ωt (λ−1 − λ) sinωt cosωt
(λ−1 − λ) sinωt cosωt λ cos2 ωt+ λ−1 sin2 ωt

)
(51)

=
1

2

(
λ−1(1 + cos 2ωt) + λ(1− cos 2ωt) (λ−1 − λ) sin 2ωt

(λ−1 − λ) sin 2ωt λ(1 + cos 2ωt) + λ−1(1− cos 2ωt)

)
(52)

=

(
Λ1 + Λ2 cos 2ωt Λ2 sin 2ωt

Λ2 sin 2ωt Λ1 − Λ2 cos 2ωt

)
(53)

with
Λ1 =

1

2
(λ−1 + λ) and Λ2 =

1

2
(λ−1 − λ) . (54)

We can easily check that detF = 1, i.e. this deformation is volume (or, here, area) preserving.

The relation x(X, t) reads:

x1 = (Λ1 + Λ2 cos 2ωt) X1 + Λ2 sin 2ωt X2 (55)
x2 = Λ2 sin 2ωt X1 + (Λ1 − Λ2 cos 2ωt) X2 . (56)

This is an affine (linear) relation between x = (x1 ;x2) and X = (X1 ;X2). Straight lines remain
straight. x(X, t) describes the trajectory of the particle X. In our case, the trajectories are circles
(check!).

Differentiating equation 53 with respect to t yields v = ẋ = ḞX. The velocity gradient L refers,
however, to the spatial coordinates x. To express v in dependence of x, we invert (48) and (49)
obtaining X = F−1x and, hence, L = ḞF−1. To invert F we use the relation

A−1 =

(
a b
c d

)−1
=

1

detA

(
d −b
−c a

)
, (57)

hence

F−1 =

(
Λ1 − Λ2 cos 2ωt −Λ2 sin 2ωt
−Λ2 sin 2ωt Λ1 + Λ2 cos 2ωt

)
(58)

and

L = 2ωΛ2

(
−Λ1 sin 2ωt Λ1 cos 2ωt+ Λ2

Λ1 cos 2ωt− Λ2 Λ1 sin 2ωt

)
(59)

Again, divv = trL = 0 indicates constant volume (area).

(b) Uniqueness: In Section 18.2 of the book is stated that an affine deformation x = AX can be
obtained if the constitutive condition given by equation 18.8 is fulfilled and the imposed boundary
velocity is also given by the matrix A, i.e.v = Ax. However, a rotating stencil can only impose
a velocity normal to its surface, whereas the tidal deformation implies also velocities that are not
normal to the stencil. Consider e.g. the point x = (1 ; 0) at the right apex of the stencil at the time
t = 0. Its velocity v = Lx reads (0 ; −2ωΛ2λ) and thus has only a component tangential to the
stencil. So, the deformation imposed by the rotating stencil is not necessarily affine (homogeneous).

A cyclic deformation of an elastic body requires no energy in addition to the one spent for the initial
deformation. This is similar to a 1D wave that propagates within an elastic rod. Once this rod is
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deformed, no additional energy is needed. In the course of time, the deformation affects different
particles, but the deformation itself is not altered. Of course, in reality we always have damping.

Referring to tidal deformation, it is conceivable that the outer parts of the earth, being softer, get more
and more involved in tidal locking, i.e. they start rotating, and the angular velocity (being initially very
small) increases with increasing distance from the center of the earth. In this way, initially straight
lines through the center become spiral.

(c) Tidal locking: We have a rigid body rotation: F = R.

Exercise 33: At the peak of the triaxial compression σ1 is the maximum stress. Es gilt σ1−σ2
σ1+σ2

=

sinϕ; σ1
σ2

= 1+sinϕ
1−sinϕ . With ϕ = 30◦ follows σ1 = 3σ2 = 3 · 200 = 600 kPa.

At the peak of the triaxial extension, σ1 is the minimum principal stress. It holds σ2−σ1
σ2+σ1

= sinϕ ;
σ1
σ2

= 1−sinϕ
1+sinϕ

. With ϕ = 30◦ follows σ1 = 1
3
σ2 = 1

3
· 200 ≈ 67 kPa.


