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Eigenfunction expansions: a simple-minded introduction

Supplement to section 1.8 of Advanced Mathematics for Applications

by Andrea Prosperetti

Here we present an expanded version of the material contained in sections 1.8 and 2.1 of the text
Advanced Mathematics for Applications. The purpose is to further clarify the geometric point of
view adopted in the book in which “unit vectors” (eigenfunctions) and scalar products play a dom-
inant role. The treatment purposely attempts to help the reader form an intuitive understanding
of these very powerful and useful concepts omitting a great deal of mathematical detail.

1 The taut string

As mentioned at the end of section 1.6 of the book, the equation governing the small-amplitude
vibrations of a taut string is

µ
∂2u

∂t2
= T

∂2u

∂2x
, (1.1)

in which u is the displacement of the string normal to the equilibrium configuration, i.e., the x-axis,
µ is the mass per unit length and T is the tension in the string (figure 1). A simple (if far from
rigorous) derivation of this equation can be given as follows.

0 L
x

u(x,t)

Figure 1: A taut string pinned at the end points

Let us consider a string which extends for 0 ≤ x ≤ L and focus on a small piece of it of length
∆x. The mass of this piece is ∆m = µ∆x, its acceleration normal to the x-axis is ∂ 2u/∂t2, and
the force acting at x + ∆x in the direction normal to the x-axis, assuming that the string slope is
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.....

Figure 2: An oscillator chain pinned at the end points

small, is T sin θ ' T tan θ = T∂u/∂x. So the net force on the short string segment between x and
x + ∆x is

T
∂u

∂x

∣

∣

∣

∣

x+∆x

− T
∂u

∂x

∣

∣

∣

∣

x

= ∆xT
∂2u

∂x2
. (1.2)

The limit of this relation for ∆x → 0 gives (1.1), which is the wave equation with a speed of
propagation

c =

√

T

µ
. (1.3)

A full mathematical specification of the problem requires also boundary and initial conditions. If,
for example, the string is pinned at the end points, then the solution of (1.1) must satisfy

u(0, t) = 0 , u(L, t) = 0 . (1.4)

As for any mechanical problem, the initial conditions must specify the initial position and initial
velocity of the degrees of freedom of the system and, i.e., the points of the string. Thus, they will
have the form

u(x, 0) = u0(x) ,
∂u

∂t
(x, 0) = v0(x) . (1.5)

Suppose one wanted to solve this numerically. The first step would be to discretize the spatial
derivative, i.e., to avoid taking the limit ∆x → 0 in (1.2) and to replace the first derivatives by
finite differences:

∂2u

∂x2

∣

∣

∣

∣

xi

=
1

∆x

(

∂u

∂x

∣

∣

∣

∣

i+1/2

− ∂u

∂x

∣

∣

∣

∣

i−1/2

)

=
1

∆x

{

1

∆x
[u(xi+1, t) − u(xi, t)] −

1

∆x
[u(xi, t) − u(xi−1, t)]

}

=
u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

∆x2
. (1.6)

For simplicity of writing let u(xi, t) = ui(t). Then

µ
∂2ui

∂t2
=

T

∆x2
(ui+1 − 2ui + ui−1) , (1.7)
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or

∆m
∂2ui

∂t2
=

T

∆x
(ui+1 − 2ui + ui−1) , (1.8)

where ∆m = µ∆x is the mass of the little piece of string ∆x and T/∆x is the tension per unit
length.

We shall now show that the same equation governs what appears to be, superficially, a very
different physical system.

2 A discrete approximation: Oscillator chain

Consider a chain of oscillators of equal mass m connected by equal linear springs of elastic constant
K; to simplify, we assume that the equilibrium length of each spring is 0 (figure 2). When the
chain is at rest the distance between the masses is ∆x and therefore, in the equilibrium state, each
spring exerts a force T = K ∆x which is analogous to the tension in the string. Let us now derive
an equation for the motion of this system in the direction normal to its equilibrium configuration.

The force in the normal direction exerted on the j-th mass due to the spring at its right is
(figure 3)

Kl sin θ = Kl
uj+1 − uj

l
= K (uj+1 − uj) (2.1)

and similarly for the spring on the left. Hence the equation of motion of the j-th mass in the

θ

u

u
j

j+1

x x
j j+1

l

l
e

Figure 3: The spring connecting masses j and j + 1 of the oscillator chain of figure 2.
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direction normal to the equilibrium configuration is

m
d2uj

dt2
= K (uj+1 − uj) − K (uj − uj−1)

= K(uj+1 − 2uj + uj−1) . (2.2)

If we write m = µ∆x, K∆x = T ,1 this equation becomes identical to the discretized wave equation
(1.8). Since the left end of the first string does not move, the general equation of motion (2.2) may
be applied to the first oscillator of the chain, j = 1, by simply setting formally u0 = 0 to find:

m
d2u1

dt2
= K(u2 − 2u1) . (2.3)

Similarly, for the last oscillator, j = N , we set uN+1 = 0 and we have.

m
d2uN

dt2
= K(−2uN + uN−1) . (2.4)

The conditions u0 = 0, uN+1 = 0 are similar to (1.4) for the string pinned at the two ends.2

In order to introduce the central idea of the method of eigenfunction expansions, we now show
that not only there is a parallelism between the mathematical formulation of the problems for the
taut string and for the oscillator chain, but also that there is an exact correspondence between the
methods of solution.

With the natural frequency of a single mass-spring system defined by

ω2 =
K

m
(2.5)

we can rewrite the system of equations (2.2), (2.3), (2.4) as

d2

dt2

u1

u2

·
·
·

uN−1

uN

+ ω2

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0

. . .
0 . . . −1 2 −1
0 . . . −1 2 −1
0 . . . −1 2

u1

u2

·
·
·

uN−1

uN

= 0 . (2.6)

Written in this form, this equations suggests to introduce the matrix

M =

2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0

. . .
0 . . . −1 2 −1
0 . . . −1 2 −1
0 . . . −1 2

. (2.7)

1Since the springs have been taken to have zero equilibrium length, each one of them exerts a force equal to the
separation of the bodies ∆x times the elastic constant K.

2One may think of a chain consisting of N + 2 oscillators, the first and last of which are constrained to have
a zero displacement, so that u0 = 0, uN+1 = 0. The dynamics of such a system can therefore be described in a
N -dimensional subspace of the N + 2 dimensional space, and Eq. (2.2) is applicable to all the bodies that can move,
1 ≤ j ≤ N .
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and the vector

u(t) =

u1(t)
u2(t)
·
·
·

uN−1(t)
uN (t)

= u1(t)

1
0
·
·
·
0
0

+ u2(t)

0
1
·
·
·
0
0

+ . . . + uN (t)

0
0
·
·
·
0
1

=

N
∑

k=1

uk(t) ik , (2.8)

where all the elements of each ik vanish except the k-th one, which equals 1. Evidently, this set of
unit vectors constitutes a basis in the N -dimensional space to which u(t) belongs, in the same sense
in which the unit vectors along the x-, y-, and z-directions are a basis in the usual three-dimensional
space. Each component uk of u is the projection of u along one of these basis vectors and we may
write

uk = ik · u (2.9)

or, with a different notation which will become useful later,

uk = (ik,u) . (2.10)

With these definitions, (2.6) becomes

d2
u

dt2
+ ω2

Mu = 0 , (2.11)

with initial conditions
u(0) = u

0 , u̇(0) = v
0 . (2.12)

To solve this problem we expand the solution u onto a basis of eigenvectors of M:

u =

N
∑

k=1

Uk(t) e
(k) , (2.13)

where
M e

(k) = λk e
(k) . (2.14)

It is evident that, if we know the Uk’s and the e
(k)’s, we immediately recover the components of u

in the original representation (2.8) by taking the scalar product of (2.13) with i`:

u`(t) =
N
∑

k=1

Uk(t)
(

i`, e
(k)
)

=
N
∑

k=1

Uk(t) e
(k)
` ` = 1, 2, . . . , N , (2.15)

in which e
(k)
` =

(

i`, e
(k)
)

is the component of e
(k) in the direction of i`.

After substitution of (2.13) into (2.11), by (2.14), we find

N
∑

k=1

(

Ük + ω2λkUk

)

e
(k) = 0 . (2.16)
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This is a vector equation from which we generate N scalar equations in the usual way by taking
the scalar product in turn with each one of the v

(n)’s:

(

e
(n),

N
∑

k=1

(

Ük + ω2λkUk

)

e
(k)

)

= 0 n = 1, 2, . . . , N . (2.17)

or, since the scalar procudt of a sum is the sum of the scalar products,

N
∑

k=1

(

Ük + ω2λkUk

) (

e
(n), e(k)

)

= 0 n = 1, 2, . . . , N . (2.18)

We will see later that all the scalar products in this sum vanish except the one for which n = k,
i.e. that

(

e
(n), e(k)

)

∝ δkn. Thus, upon taking, in turn, n = 1, 2 . . . , N , we find from (2.18)3

Ün + ω2λnUn = 0 , n = 1, 2, . . . , N , (2.19)

the solution of which is of course

Un(t) = Cn cos ω
√

λn t + Dn sin ω
√

λn t , (2.20)

with the constants Cn, Dn determined from the initial conditions (2.12).
The essential step is therefore to solve the eigenvalue problem (2.14). From the algebraic point

of view, this is a linear homogeneous system that possesses non-trivial solutions if and only if the
following solvability condition is satisfied:

DN ≡ det (M − λkI) = 0 , (2.21)

where I is the identity matrix. After determining the λ’s in this way, one would go back to the system
(2.14) and find the eigenvectors. As we show later, this procedure does indeed work. However,
having in mind a parallelism with what we will be doing later for the string problem (1.1), we
proceed slightly differently, namely (i) we first attempt to solve the algebraic system (2.14) for
general λ; (ii) the condition that the first and last equations of the system (2.3) and (2.4) be
satisfied will then give an equation which determines λ.

2.1 First step: Eigenvalues

Written out in detail, the eigenvalue problem (2.14) is

2 − λk −1 0 0 0 . . . 0
−1 2 − λk −1 0 0 . . . 0
0 −1 2 − λk −1 0 . . . 0

. . .
0 . . . −1 2 − λk −1
0 . . . −1 2 − λk −1
0 . . . −1 2 − λk

e
(k)
1

e
(k)
2

. . .

. . .

. . .

e
(k)
N−1

e
(k)
N

= 0 , (2.22)

3More generally, we would find the same result simply provided that all the eigenvectors are linearly independent.
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where, in the symbol e
(k)
j , the upper index k matches the index of λk and denotes the particular

(eigenvalue, eigenvector) pair that we are considering while the lower index labels the components
of this eigenvector.

The generic equation of this system is:

−e
(k)
j+1 + (2 − λk)e

(k)
j − e

(k)
j−1 = 0 . (2.23)

This is a difference equation determining the dependence of e
(k)
j on its variable j.4 Since this

relation links e
(k)
j+1 to the two preceding values e

(k)
j , e

(k)
j−1, it is classified as a difference equation of

the second order. Furthermore, since the coefficients do not depend on j, it is a difference equation
of the second order with constant coefficients. Just as ordinary differential equations with constant
coefficients, such equations have exponential solutions.5 We assume therefore

e
(k)
j ∝ exp (jνk) , (2.24)

and substitute into (2.23).6 The result is

2 cosh νk = 2 − λk , (2.25)

and therefore

νk = cosh−1 2 − λk

2
, (2.26)

Since the hyperbolic cosine is even, −νk also satisfies (2.25). Thus, just as in the case of ordinary
differential equations, we write down the general solution of (2.23) by superposing the two possible
values of νk

e
(k)
j = αk exp (νkj) + βk exp (−νkj) . (2.27)

2.2 Second step: Eigenvectors

We call (2.27) the general solution of the difference equation (2.23) by analogy with the case
of ordinary differential equations. The integration constants αk, βk will now be determined by
imposing suitable “boundary conditions”. These conditions are found by writing out explicitly the
first and the last equations of the system (2.22):

−e
(k)
2 + (2 − λk)e

(k)
1 = 0 , (2 − λk)e

(k)
N − e

(k)
N−1 = 0 . (2.28)

As noted earlier in connection with (2.3) and (2.4), if we were to introduce two fictitious points e
(k)
0

and e
(k)
N+1 at the beginning and end of the chain, these two equations would have the same general

form (2.23) provided that e
(k)
0 and e

(k)
N+1 were defined to be zero. So, rather than substituting (2.27)

into (2.28) (which of course is fine and leads to exactly the same results, but after messier algebra),

we can directly impose e
(k)
0 = 0 and e

(k)
N+1 = 0 on the general solution (2.27). For j = 0 we find

αk + βk = 0 , (2.29)

4As mentioned earlier the index k indicates the particular vector we are focusing on and remains therefore fixed.
5This rule for the solution of these equations is derive in section 5.3 of the book.
6In the case of an ordinary differential equation we would look for solutions in the form e(x) ∝ exp(νx). In the

present instance, the analog of x is j while ν depends only on the function itself. Since the various e’s are labelled
by the index k, we affix the same index to ν.
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while, for j = N + 1,
αk exp (N + 1)ν + βk exp −(N + 1)ν = 0 . (2.30)

From the first one βk = -αk so that

e
(k)
j = 2αk sinh (νkj) . (2.31)

Upon setting here j = N + 1 and requiring the result to vanish as demanded by (2.30) we have

2αk sinh (N + 1) νk = 0 . (2.32)

Hence, either αk = 0, which would give e
(k)
j = 0 and therefore the trivial solution, or

sinh (N + 1) νk = 0 , (2.33)

from which
(N + 1) νk = iπ k . (2.34)

Upon redefining the as yet undetermined constant αk we thus have

e
(k)
j = αk sin

(

πk

N + 1
j

)

. (2.35)

Upon recalling (2.25), (2.34) gives

λk = 2 (1 − cosh νk) = 2

(

1 − cos
π k

N + 1

)

= 4 sin2 kπ

2(N + 1)
. (2.36)

Note that k = 0 is not acceptable as, from (2.26), it would give ν = 0 and therefore again the trivial

solution. If we were to take k = N + 1, we would find νN+1 = iπ and again all the e
(N+1)
j ’s would

vanish. Furthermore, for values of k greater than N + 1, we would be repeating the same values of
λk that we find by choosing k = 1, 2, . . ., N . Hence we only have N distinct eigenvalues. A similar
argument shows that we only have N distinct eigenvectors. Indeed, consider for instance, purely

formally, e
(N+2)
j :

e
(N+2)
j = αN+2 sin

(N + 1 + 1)πj

N + 1
= αN+2 sin

(

jπ +
jπ

N + 1

)

= αN+2(−1)j sin
jπ

N + 1
. (2.37)

On the other hand

e
(N)
j = αN sin

Njπ

N + 1
= αN sin

(N + 1 − 1)jπ

N + 1
= αN sin

(

jπ − jπ

N + 1

)

= αN (− cos jπ) sin
jπ

N + 1
= −αN (−1)j sin

jπ

N + 1
(2.38)

from which we see that e
(N+2) would be proportional to e

(N), and therefore it would not be linearly
independent. In a similar way we can convince ourselves that any other choice of k would result in
vectors that we have already found by choosing k = 1, 2, . . . , N .
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Written out in detail, the components of the N distinct eigenvectors satisfying (2.14) are there-
fore

e
(k) = αk

sin
(

πk
N+1

)

sin
(

2 πk
N+1

)

sin
(

3 πk
N+1

)

. . .

sin
(

(N − 1) πk
N+1

)

sin
(

N πk
N+1

)

. (2.39)

The arbitrary constant αk is present as expected, due to the homogeneity of the problem. Indeed,
it is evident from Eq. (2.14) that, given one e

(k) which satisfies the equation, we are at liberty to
multiply all its components by the same arbitrary non-zero constant and still have a solution of the
equation. We shall choose a convenient value for αk later by imposing a normalization condition.
But before we do this, let us verify that the solvability condition (2.21) is indeed satisfied by our
results for the λk’s. For this purpose we first calculate DN as a function of λ and then we verify
that it vanishes when we replace λ by the values (2.36) just determined.

2.3 Another derivation of the eigenvalues

As noted before, a natural way to solve the eigenvalue problem (2.14) is to find the eigenvalues by
setting the determinant of the system to 0. Since we have followed a slightly different route before,
it is worth while to show that this alternative procedure leads to the same result.

We need to calculate DN defined by (2.21), i.e.

DN = det

2 − λ −1 0 0 0 . . . 0
−1 2 − λ −1 0 0 . . . 0
0 −1 2 − λ −1 0 . . . 0

. . .
0 . . . −1 2 − λ −1
0 . . . −1 2 − λ −1
0 . . . −1 2 − λ

. (2.40)

We do this by deriving a recurrence relation. Begin by expanding the determinant by the first row.
The result is

DN = (2 − λ)DN−1 − (−1) det

−1 −1 0 0 . . . 0
0 2 − λ −1 0 . . . 0
0 −1 2 − λ −1 . . . 0

. . .
0 . . . −1 2 − λ −1
0 . . . −1 2 − λ −1
0 . . . −1 2 − λ

(2.41)
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The second determinant can be calculated by expanding by the first column, with which it is found
to equal (−1)DN−2. Thus we are led to

DN − (2 − λ)DN−1 + DN−2 = 0 . (2.42)

This is a difference equation identical to the one previously derived for the e
(k)
j ’s, Eq. (2.23), and

we now know how to solve it. Let
DN ∝ exp µN , (2.43)

and substitute into (2.42) to find

2 cosh µ = 2 − λ ⇒ λ = 2 (1 − cosh µ) . (2.44)

We are seeking DN as a function of λ. Since cosh is even, for each value of λ, this equation gives
us two values of µ and therefore the solution for DN has the form (cf. the previous Eq. 2.27 and
the usual procedure in the case of ordinary differential equations with constant coefficients)

DN = A exp (µN) + B exp (−µN) , (2.45)

with A, B to be determined by the “initial conditions” on DN , i.e. by the values of DN for N = 1
and 2. These can be calculated explicitly. For N = 1

D1 = det |2 − λ| = 2 − λ . (2.46)

Similarly, for N = 2,

D2 = det
2 − λ −1
−1 2 − λ

= (2 − λ)2 − 1 . (2.47)

In principle, we could just take (2.45), evaluate it for N = 1 and N = 2, and equate the results to
the explicit ones just found to evaluate A and B. In practice the algebra is a little simpler if we
note that, from (2.42) written for N = 2, we have, formally,

D0 = (2 − λ)D1 − D2 = 1 , (2.48)

where the last step follows by substituting the results (2.46), (2.47). Using this we find

D0 = A + B = 1 , D1 = A exp µ + B exp −µ = 2 − λ . (2.49)

The solution of this system in A, B is

A =
2 − λ − exp (−µ)

2 sinhµ
, B =

λ − 2 + exp µ

2 sinhµ
. (2.50)

Upon substitution into (2.45), and use of (2.44) to eliminate λ, we find

DN =
sinhµ(N + 1)

2 sinhµ
. (2.51)

Upon substitution of the values (2.36) into (2.44) we find

µk =
iπ k

N + 1
, (2.52)

which, upon substitution into (2.51), indeed gives DN = 0 as expected.
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2.4 Third step: Normalization

We noted before that each e
(k) is determined up to an arbitrary non-zero multiplicative constant,

which we have denoted by αk in (2.39). We can fix this constant by imposing any convenient
normalization. We will see that it is often useful – although by no means necessary – to render
these vectors of unit length:

(

e
(k), e(k)

)

=

N
∑

j=1

[

e
(k)
j

]2
= 1 . (2.53)

Upon substituting the explicit form (2.35) of e
(k)
j , we thus have7

1 = |αk|2
N
∑

j=1

[

sin

(

πk

N + 1
j

)]2

= |αk|2
N
∑

j=0

[

sin

(

πk

N + 1
j

)]2

=
1

2
|αk|2

N
∑

0

(

1 − cos
2kπj

N + 1

)

=
1

2
|αk|2







N + 1 − Re

N
∑

j=0

exp

(

2kπi

N + 1
j

)





=
1

2
|αk|2

[

N + 1 − Re
1 − exp(2kπi)

1 − exp i 2kπ
N+1

]

=
1

2
|αk|2(N + 1) (2.54)

from which

αk =

√

2

N + 1
. (2.55)

With this choice of αk, the eigenvectors (2.39) are then

e
(k) =

√

2

N + 1

sin πk
N+1

sin 2 πk
N+1

sin 3 πk
N+1

. . .

sin (N − 1) πk
N+1

sin N πk
N+1

(2.56)

Upon setting N = 1 in this formula we find

λ1 = 2 , e
(1) = 1 , (2.57)

which are the exact results for a single mass connected to two springs. Similarly, with N = 2, we
find the results for the two-oscillator system which can be solved by elementary means.

7The way in which the summation is calculated is explained in Example 8.2.1 p. 225 of the book.
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With a similar calculation one can easily show that the eigenvectors are orthogonal to each
other, i.e.

(

e
(k), e(`)

)

= 0 if k 6= `, (2.58)

so that we can write the orthonormality relation

(

e
(k), e(`)

)

= δk` (2.59)

Clearly, the eigenvectors are linearly independent, as it would be impossible to represent one as a
linear combination of the others, given that the others are are all orthogonal to it.

The fact that we have found N distinct, linearly independent vectors justifies our initial idea
of expanding the solution of the original problem in the form (2.13). Indeed, in an N -dimensional
space, any vector can be written as a linear combination of N linearly independent vectors (whether
orthogonal – as here – or not).

2.5 Fourth step: Initial conditions

The last step in the solution of the problem is the determination of the constants Ck, Dk in (2.20).
As expected, this step requires the imposition of the initial conditions (2.12).

For this purpose we write u(0) according to (2.13):

u(0) = u
0 =

N
∑

k=1

Uk(0)e
(k) , (2.60)

and take the scalar product of this equation with e
(`), for ` = 1, 2, . . . , N . By using (2.59) and

(2.20), we find

U`(0) = C` =
(

e
(`),u0

)

` = 1, 2, . . . , N . (2.61)

Similarly, upon taking the time derivative of (2.13) and evaluating it at t = 0 we find

u̇(0) = v
0 =

N
∑

k=1

U̇k(0)e
(k) , (2.62)

from which, as before,

U̇`(0) = ω
√

λ` D` =
(

e
(`),v0

)

` = 1, 2, . . . , N . (2.63)

3 The continuous problem

Let us try to proceed formally in the same way for the case of a taut string. The equation is (1.1),
which we rewrite using the definition (1.3) of the speed of propagation:

∂2u

∂t2
− c2 ∂2u

∂x2
= 0 , (3.1)

with boundary conditions
u(0, t) = 0 u(L, t) = 0 , (3.2)
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and initial conditions (1.5).
Let us blind ourselves to the fact that the operator in the second term is a derivative instead

of a matrix as in (2.11) and simply write

∂2u

∂t2
+ c2 Mu = 0 , (3.3)

where

Mu ≡ −∂2u

∂x2
. (3.4)

Next, as in (2.13), we write

u(x, t) =
∑

k

Uk(t)ek(x) . (3.5)

Note that we have not indicated the range of the summation because we don’t know how many
“eigenvectors” we will find. For the time being we proceed formally and blindly.

Given the definition of M, the analog of the eigenvalue equation (2.14) would be

−∂2ek

∂x2
= λk ek . (3.6)

A differential equation needs boundary conditions. If we want u represented in the form (3.5)
to vanish at 0 and L for all times, as required by (3.2), the only option is to impose the same
conditions on the ek(x):

ek(0) = 0 , ek(L) = 0 , (3.7)

for all k’s. The solution of (3.6) satisfying the first one is clearly

ek(x) = Ak sin
√

λk x . (3.8)

Satisfaction of the second condition requires either that Ak = 0, which is clearly unacceptable if
we want non-zero ek’s, or

sin
√

λkL = 0 , (3.9)

from which
√

λkL = kπ , ⇒ λk =
k2π2

L2
. (3.10)

With this result, the eigenvectors (3.8) become

ek(x) = Ak sin
kπx

L
. (3.11)

If k = 0, e0 vanishes identically and therefore we do not need to consider this value of k. If we
consider the pair ±k, it is obvious the the corresponding ek’s are one the negative of the other,
i.e. they are proportional to each other. Given one of them, we can obtain the other one by
multiplying by a constant. Hence we do not miss any ek by restricting k to be positive. Aside from
these two cases, none of the ek’s can be expressed as a linear combination of the others. The index
k is therefore unrestricted with all positive integer values allowed. This suggests that we write the
expansion (3.5) more explicitly as follows:

u(x, t) =
∞
∑

k=1

Uk(t)ek(x) . (3.12)
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a  b

1 1

2 2

3 3

N N

N N+1210

Figure 4: Graphical representation of the summation (3.13)

Since we have an infinite sum, at some point we shall have to worry about issues of convergence.
This aspect is treated chapters 8 and 9 of the book.

We have thus reached a point corresponding to Eq. (2.39). The next steps would be to impose
some normalization condition, to derive the equation for the Uk’s, and to impose the initial condi-
tions. All these steps require that we introduce a concept akin to that of scalar product on which
we have relied to execute these steps in the discrete case. How shall we do this? Again, let us be
guided by analogy with the discrete case. Since we recover the continuous case as the number of
masses of the oscillator chain becomes large, we should look into what happens to the previous idea
of scalar product in this limit.

3.1 Scalar product

Given two real N -dimensional vectors a, b, their scalar product is defined by

(a,b) =

N
∑

k=1

akbk . (3.13)

With reference to figure 4, where each rectangle has height akbk and width (k+1)−k = 1, this equals
the area under the curve. Suppose now that ak, bk, are quantities referring to the k-th oscillator of
the chain and we want to draw this figure in such a way that the rectangle corresponding to this
term is on top of the k-th oscillator. In this way we will be able to fit the graph onto the segment 0
to L rather than 0 to N (figure 5). (The motivation for this step is that we eventually want to take
the limit N → ∞.) If we want to preserve the value of the scalar product and its interpretation as
an area, we need to make the rectangles taller by 1/∆x, because now their width has become ∆x.
Hence we write

(a,b) =

N
∑

k=1

ak√
∆x

bk√
∆x

∆x . (3.14)

Suppose now that, as N → ∞,

ak√
∆x

→ a(x) ,
bk√
∆x

→ b(x) , (3.15)
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x∆L= (N+1)0 ∆ ∆x 2 x

a  b
1 1

∆x

Figure 5: Graphical representation of the summation (3.14)

with a(x), b(x) defined for 0 ≤ x ≤ L. As a (partial) justification note that, as N → ∞, the points
x` where the discrete quantities ak(x`), bk(x`) are defined get closer and closer. Then it follows
from the definition of the Riemann integral8 that, in this limit,

N
∑

k=1

ak√
∆x

bk√
∆x

∆x →
∫ L

0
a(x) b(x) dx . (3.16)

This argument suggests that we define the scalar product between two (real) functions by

(a, b) =

∫ L

0
a(x) b(x) dx . (3.17)

We can be led to the same result by another argument. When there are very many oscillators,
each spring is short and, therefore, the values of akbk corresponding to neighboring oscillators are
not very different from each other otherwise the springs would be enormously extended with respect
to their equilibrium length. In other words, there is some sort of “continuity”, albeit in a “discrete”
sense. Then, if N is large, instead of doing a sum of N terms, we can proceed approximately and
divide the terms in groups each consisting of all the oscillators positioned in a certain interval of
the x-axis of width ∆p. The number of terms in group p is clearly ∆p/∆x and we can therefore
write, approximately,

N
∑

k=1

akbk '
∑

all p

∆p

∆x
(ab)p , (3.18)

8See section A.4.1 p. 679 for a definition of the Riemann integral.
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where (ab)p is a representative value for the p-th group. Clearly the error in this approximation
decreases as the ∆p’s are taken smaller (but, of course, still large enough that each ∆p contains a
significant number of oscillators). With the same assumption (3.15) as before, this is essentially
the argument that leads to the definition of the Riemann integral and therefore, again, we are led
to (3.17).

To see if all this makes sense, we need to check the assumption (3.15). Since any vector in the
N -dimensional space can be written as a superposition of the eigenvectors (2.56), it is sufficient to
check it for these vectors. For this purpose, note that

e
(k)
` =

√

2

N + 1
sin

(

k
π`

N + 1

)

=

√

2∆x

(N + 1)∆x
sin

[

k
π(`∆x)

(N + 1)∆x

]

. (3.19)

But (N + 1)∆x is precisely equal to L,9 and `∆x is the position x` of the `-th oscillator, so that
we can write

e
(k)
` =

√

2∆x

L
sin

kπx`

L
, (3.20)

from which we see that (3.15) is satisfied with

e(k)

√
∆x

→
√

2

L
sin

kπx

L
, (3.21)

which suggests that a good choice for the residual integration constant Ak in (3.11) should be
Ak =

√

2/L. We will be further reassured of the reasonableness of our procedure if, with this
choice of Ak, the eigenvectors (functions) ek(x) have “length” 1 according to the scalar product
(3.17). Let’s check:

(

e(k), e(k)
)

=

∫ L

0

[

√

2

L
sin

kπx

L

]2

dx =
2

L

L

2
= 1 . (3.22)

It is also readily checked that two different e’s are orthogonal (in the sense of the integral) so that
we can write the orthonormality relation (2.59) also for these generalized eigenvectors.

3.2 Equation for the “expansion coefficients”

Now that we have found a set of orthogonal eigenvectors (eigenfunctions) and the corresponding
eigenvalues we can find the equation governing the “expansion coefficients” Uk(t) in (3.12). We
substitute the right-hand side of (3.12) into the wave equation (3.1) and differentiate term by term
again assuming, without proof for now, the legitimacy of this step. The result, upon using the
eigenfunction relation (3.6), is

∞
∑

k=1

(

Ük + c2λkUk

)

ek(x) = 0 . (3.23)

9Note for example that, for N = 1, there are two springs, and therefore L = 2∆x
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which is the perfect analog of (2.16) of the discrete case. As in that case, we now take scalar
products by e`(x) with ` = 1, 2, . . . assuming that integration and summation can be interchanged
to find

Ü` + c2λ`U` = 0 , ` = 1, 2, . . . , (3.24)

which, of course, has a solution analogous to (2.20):

U`(t) = C` cos c
√

λ` t + D` sin c
√

λ` t

= C` cos
`πct

L
+ D` sin

`πct

L
. (3.25)

Again, the integration constants C` and D` will be found by imposing the initial conditions.

3.3 Initial conditions

The initial conditions are given by formulae similar to (2.61), e.g.

C` =
(

e
(`),u0

)

=

∫ L

0

√

2

L
sin

(

`πx

L

)

u0(x) dx , (3.26)

and similarly for D`. In the language of the elementary “separation of variables” procedure we
would say that we first expand u0(x) in a Fourier series of sines

u0(x) =
∞
∑

k=1

u0
k sin

kπx

L
, (3.27)

where

u0
k =

2

L

∫ L

0
sin

`πx

L
u0(x) dx , (3.28)

and then equate corresponding terms.

3.4 Correspondence with the discrete case

In conclusion, let us see to what extent the oscillator chain results can be considered an approx-
imation to the continuous case of a taut string. We have already checked the eigenvectors. Let
us consider the eigenfrequencies. For the discrete oscillator chain these can be read off e.g. from
(2.19) and are

ω2
` = ω2λ` = 4

K

m
sin2 `π

2(N + 1)
; (3.29)

they are plotted in figure 6. For the continuous case we have instead, from (3.24) or (3.25),

ω2
` = c2λ` =

T

µ

`2π2

L2
. (3.30)

It is obvious that the discrete results can only be a good approximation to the lower modes.10 For
these, `/N is small and we can approximate the sine in (3.29) by its argument:

ω2
` ' 4

K

m

`2π2

4(N + 1)2
=

(K∆x)

(m/∆x)

`2π2

(N + 1)2∆x2
. (3.31)

10From the point of view of the numerical solution of the differential equation (1.1), this is equivalent to stating
that the discretized approximation can only faithfully reproduce features of the exact solution having a characteristic
length much longer than ∆x.

17



Figure 6: Eigenfrequencies of the oscillator chain according to (3.29)

As already remarked at the beginning in connection with (1.8), k∆x and m/∆x are the exact
analogs of T and µ and, furthermore, (N + 1)∆x = L. We thus conclude that (3.31) is in exact
correspondence with (3.30) as expected.
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