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Exercises on Ch. 4 Practical handling of multicomponent 
systems 

4.1 Partial quantities. Exercises 1 and 2 

4.3 Alternative variables for composition. Exercises 1 and 2 

4.6 Different sets of components. Exercise 1 

4.7 Constitution and constituents. Exercise 1 

4.8 Chemical potentials in a phase with sublattices. Exercises 1 and 2 

 

4.1 Partial quantities 

Exercise 4.1.1 

Rearrange the derivatives in the Eq. 4.6 in such a way that it only contains terms of 
physical significance. 

Hint 

First multiply the first derivative by Σxi which is equal to 1. 

Solution 

Aj = Am + Σxi[∂Am/∂xj – ∂Am/∂xi] 

Exercise 4.1.2 

Suppose one has the following expression for a ternary solution phase: Gm = Σxi(°Gi + 
RTlnxi) + xAxBxCLABC, where L is a ternary interaction parameter. 

(a) Evaluate GA directly from Eq. 4.5. 

(b) Evaluate GA after first eliminating xA using xA = 1 – xB – xC. 

Solution 
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(a) GA = °GA(xA + 1 – xA) + °GB(xB – xB) + °GC(xC – xC) + RT{xAlnxA + lnxA +(xA/xA) – 
xA[lnxA + (xA/xA)] + xBlnxB – xB[lnxB + (xB/xB)] + xClnxC – xC[lnxC + (xC/xC)]} + LABC(xAxBxC + 
xBxC – xAxBxC – xBxAxC – xCxAxB) = °GA + RTlnxA + xBxC(1 – 2xA)LxABC; 
(b) Gm = (1 – xB – xC)°GA + xB°GB + xC°GC + RT[(1 – xB – xC)ln(1 – xB – xC) + xBlnxB + 
xClnxC] + (1 – xB – xC)xBxC·LABC 
Now we get GA = °GA(1 – xB – xC + xB + xC) + °GB(xB – xB) + °GC(xC – xC) + RT{1 – xB – 
xC)ln(1 – xB – xC) – xB[ – ln(1 – xB – xC) – (1 – xB – xC)/(1 – xB – xC)] – xC[ – ln(1 – xB – xC) – 
(1 – xB – xC)/(1 – xB – xC)] + xBlnxB – xB[lnxB + (xB/xB)] + xClnxC – xC[lnxC + xC/xC)]} + 
LABC{(1 – xB – xC)xBxC – xB[ – xBxC + (1 – xB – xC)xC] – xC[ – xBxC + (1 – xB – xC)xB]} = °GA + 
RTln(1 – xB – xC) +LABC[xB

2xC + xBxC
2 – xBxC(1 – xB – xC)] = °GA + RTln(1 – xB – xC) + 

xBxC(2xB + 2xC – 1)LABC = °GA + RTlnxA + xBxC(1 – 2xA)L . ABC

4.3 Alternative variables for composition 

Exercise 4.3.1 

Show the details of the derivation of the expression for μ2 from Gm as a function of the u 
variables in a ternary system where component 3 has a special character. 

Hint 

Since components 1 and 2 have similar character, it may be convenient to define ui = 
Ni/(N1 + N2). Derive the partial derivatives of uj with respect to N2. Derive μ2 from 
(∂G/∂N2)N1,N3, where G is given by G (N1 + N2)Gm12. 

Solution 

uj = Nj/(N1 + N2); ∂u1/∂N2 = – N1/(N1 + N2)2 = – u1/(N1 + N2); ∂u2/∂N2 = (N1 + N2 – N2)/(N1 + 
N2)2 = (1 – u2)/(N1 + N2); ∂u3/∂N2 = – N3/(N1 + N2)2 = – u3/(N1 + N2). Now we can calculate 
the potentials from G = (N1 + N2)Gm12(u1,u2,u3): μ2 = G2 = (∂G/∂N2)N1,N3 = 1·Gm12 + (N1 + 
N2)[∂Gm12/∂u1)( – u1)/(N1 + N2) + (∂Gm12/∂u2)(1 – u2)/(N1 + N2) + (∂Gm12/∂u3)( – u3)/(N1 + N2)] 
= Gm12 + ∂Gm12/∂u2 – Σui∂Gm12/∂ui. 

Exercise 4.3.2 

One can easily derive (∂GC/∂zB)zC = (∂GB/∂zC)zB from ∂GC/∂NB = ∂2G/∂NB∂NC = ∂GB/∂NC. 
Derive the same relation by using the Gibbs–Duhem relation. 

Hint 

Formulate the Gibbs–Duhem relation using the z variables by dividing with NA. First 
consider a variation dzB, then take the derivative with respect to zC. Next, do it the other 
way around and compare the two results. 

Solution 
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For any variation, dGA + zBdGB + zCdGC = 0. 
If zB is varied: ∂GA/∂zB + zB∂GB/∂zB + zC∂GC/∂zB = 0; Take the derivative with respect to zC: 
∂2GA/∂zB∂zC + zB∂2GB/∂zB∂zC + ∂GC/∂zB + zC∂2GC/∂zB∂zC = 0 (a). If zC is varied: ∂GA/∂zC + 
zB∂GB/∂zC + zC∂GC/∂zC = 0; take the derivative with respect to zB: ∂2GA/∂zC∂zB + ∂GB/∂zC + 
zB∂2GB/∂zC∂zB + zC∂2GC/∂zC∂zB = 0 (b). Then, (a) – (b): ∂GC/∂zB – ∂GB/∂zC = 0. 

4.6 Different sets of components 

Exercise 4.6.1 

It is difficult to measure the oxygen potential when it has low values. Suppose one has 
instead measured the chemical potentials of Ce2O3 and CeO2 in a complicated 
multicomponent system. Show how one can calculate the oxygen potential. 

Solution 

2μCeO2 = 2μCe + 4μO and μCe2O3 = 2μCe + 3μO give 2μCeO2 – μCe2O3 = μO

4.7 Constitution and constituents 

Exercise 4.7.1 

For a so-called 'reciprocal' system with two elements on each sublattice, (A,B)a(C,D)c, 
one often uses a solution model yielding the expression Gm = yAyCμAaCc + yByCμBaCc + 
yAyDμAaDc + yByDμBaDc. Examine if this expression is correct. 

Hint 

Use μBaCc = aμB + cμC, etc., and xA = ayA/(a + c), etc. 

Solution 

yAyCμAaCc + yByCμBaCc + yAyDμAaDc + yByDμBaDc = aμA(yAyC + yAyD) + aμB(yByC + yByD) + cμC(yAyC 
+ yByC) + cμD(yAyD + yByD) = aμAyA + aμByB + cμCyC + cμDyD = (a + c)(xAμA + xAμB + xCμC + 
xDμD) = Gm for one formula unit. 

4.8 Chemical potentials in a phase with sublattices 

Exercise 4.8.1 

Consider a system with two sublattices and at = au = 0.5. The elements A and B can 
dissolve in both sublattices and one can thus evaluate the quantities μA0.5B0.5 and μB0.5A0.5. 
Under what conditions are they equal. 

Hint 
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under such conditions one can evaluate the chemical potential of a compound between 
one atom of each of A and B in two ways, either as 
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Exercise 4.8.2 

It is natural to start the expression for Gm of a solution phase with a term characteristic of 
a so-called 'mechanical mixture' Σxi°Gi where °Gi is the molar Gibbs energy of pure i and 
the mole fraction of i can be expressed with site fractions ∑=
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in  would look. 

=1sa

t
Aμ

Hint 

Apply  to . i
o

im GxG Σ= )]/()/[()/1( t
im

t
i

t
jm

t
m

t
j yGyyGaG ∂∂Σ−∂∂⋅+=μ

Solution 

)()/1()()( B
ott

BA
ott

AA
ott

B
ou

B
ut

B
t

A
ou

A
ut

A
tt

A GayGayGaaGyayaGyaya ⋅−⋅−⋅⋅++++=μ

B
ot

B
tu

B
u

B
o

A
ot

A
tu

A
u

A
o GyayaGGyayaG ])1([])1([ −−++−−+=  

. It may seem strange that the result is not simply °G))(( B
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which one would normally expect for the first term in an expression for μA, the molar 
Gibbs energy of pure A. However, the difference is not completely surprising because in 
a phase with a stoichiometric constraint it should not be possible to define the chemical 
potential of an element in a unique way and the formula given is just one alternative. 
However, it is necessary that such a difference has no effect in combinations satisfying 
the stoichiometric constraint, i.e. in BA μμ − . That requirement is satisfied here. 

 


	Exercises on Ch. 4 Practical handling of multicomponent systems
	4.1 Partial quantities. Exercises 1 and 2
	4.3 Alternative variables for composition. Exercises 1 and 2
	4.6 Different sets of components. Exercise 1
	4.7 Constitution and constituents. Exercise 1
	4.8 Chemical potentials in a phase with sublattices. Exercises 1 and 2
	4.1 Partial quantities
	Exercise 4.1.1
	Hint
	Solution
	Exercise 4.1.2


	(a) Evaluate GA directly from Eq. 4.5.
	(b) Evaluate GA after first eliminating xA using xA = 1 – xB – xC.
	Solution
	4.3 Alternative variables for composition
	Exercise 4.3.1
	Hint
	Solution
	Exercise 4.3.2
	Hint
	Solution

	4.6 Different sets of components
	Exercise 4.6.1
	Solution

	4.7 Constitution and constituents
	Exercise 4.7.1
	Hint
	Solution

	4.8 Chemical potentials in a phase with sublattices
	Exercise 4.8.1
	Hint
	Solution
	Exercise 4.8.2
	Hint
	Solution




