
Problems for Dynamics of Galaxies,
Second Edition

The set of problems provided in this book is meant primarily to offer the opportunity for addi-
tional discussion of a few selected points that are judged to be interesting. In many cases the
resolution is very simple, and the problem is an excuse to attract the attention to the scales
associated with some important quantities. In other cases the resolution may require a non-
trivial analytical discussion or a simple numerical investigation. Sometimes the problem is a
way to focus on some derivation aspects that are thought to be instructive. In only very few
cases are the problems plain exercises, that is, a routine application of formulas provided in the
text.

Chapter 1

1. What is the ratio of the gravitational to the electrostatic force between two electrons?
2. What is the typical angular size of a galaxy at a distance of 100 Mpc?
3. What is the minimum angular resolution required to detect directly the rotation of M31 by

comparing images taken one year apart? (From Fig. 20.1, refer to conditions applicable at a
distance from the center of ≈10 kpc, where the rotation speed is ≈250 km s−1.)

4. As will be shown in Part II (see Section 6.3 and Chapter 12), a natural dynamical frequency
is set by the quantity (Gρ)1/2, where ρ is the mass density and G is the gravitational constant.
What is the related natural dynamical time scale thus associated with the solar neighborhood
in our Galaxy? What is the corresponding scale associated with the cosmological density
10−29 g cm−3? Similarly, what is the scale appropriate for dynamical processes inside the
Sun? And for a neutron star?

5. What are the relevant time scales for stellar evolution? Check the value of the Kelvin-
Helmholtz time scale for the Sun (based on an estimate of the available gravitational energy
and the solar luminosity; the virial theorem states the way energy is divided into thermal and
gravitational forms). Check the value of the nuclear burning time (based on the available
energy 0.1M�c2 (where c is the speed of light) and the efficiency 0.7 percent (appropriate
for the fusion of four protons into an α-particle).

6. In Chapter 13 we will show that particles in a disk have a typical epicyclic excursion of
c/κ ≈ c/

√
2�, where c is the velocity dispersion of the particles and � is the mean angular

velocity around the galaxy. In the solar neighborhood, consider a system of clouds of atomic
hydrogen, characterized by c = 5 km s−1, and a population of disk stars, characterized by
c = 30 km s−1. Estimate the size of the epicyclic excursion in the two cases.

7. What is the scale of the acceleration experienced by the Sun in its orbit around the center
of the Milky Way Galaxy? What is the corresponding scale for a star in a globular cluster?
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(Refer to 5 km s−1 as a typical velocity and 10 pc as a typical radial distance from the center
of the cluster.) And for a galaxy inside a cluster of galaxies? (For the corresponding velocity
and radius, refer to 1,000 km s−1 and 500 kpc.)

8. Compare the value of the gravitational binding energy for a short-period binary star with that
of a globular cluster.

9. One supernova explosion may release 1051 erg of energy. How much mass (in solar units,
M�) would a clump of atomic hydrogen moving at a speed of 100 km s−1 have to possess
in order to carry a similar amount of kinetic energy?

10. Suppose that a quasar shines with an intrinsic power of 1047 erg s−1. If the power derives
from accretion onto a massive black hole, what is the scale for the accretion rate involved in
the process (in units of M� yr−1)?

Chapter 2

1. Consider a 1-W lamp shining at the distance of the Moon (≈400,000 km). What would be
its apparent magnitude?

2. From the well-known expression of the energy levels of the hydrogen atom En =
−(13.6 eV)/n2, check that the transitions to the third level (Paschen lines) and to the fourth
level (Brackett lines) fall in the infrared (IR) region. Here the positive integer n = 1,2,3, . . .
labels the sequence of energy levels.

3. Suppose that hot ionized hydrogen is confined in quasi-hydrostatic equilibrium by the grav-
itational field of a spherical galaxy. Suppose that the star velocity dispersion in such galaxy
is ≈300 km s−1. What is the natural temperature of the hot gas, and which observational
window is expected to show evidence of it?

4. A massive elliptical galaxy (such as NGC 4472) may have an absolute optical luminosity
(in the B band) of 2 × 1011 L� and an x-ray power of 1042 erg s−1 (in a soft x-ray band).
Consider such a galaxy as being located at the distance of the Virgo cluster, and ignore losses
along the path from the source to the Earth. What is an order of magnitude for the number
of optical photons collected from such a source on a large telescope (8-m in diameter) in an
exposure of 1 min? What is the corresponding number for the soft x-ray photons on a large
x-ray telescope (effective collecting area of ≈1,000 cm2)? (For simplicity, refer to x-ray
photons of 1 keV.)

5. How does the resolution set by the diffraction limit for very long-baseline interferometry
(based on antennas placed in different continents) in the radio compare with that for the
Hubble Space Telescope in the visible?

6. What is the resolution that is required to resolve the Schwarzschild radius of the massive
black hole at the center of the Milky Way Galaxy?

7. ALMA is planned to work in the wavelength range 0.3 to 9.6 mm, with baselines for the
≈70 antennas of the final configuration on scales from 15 m to 18 km. What is the expected
best resolution that will be available?

8. Many space telescopes (among which Herschel and Planck) operate or are planned to operate
at a location very close to the Lagrangian point L2, at ≈1.5 million km from the Earth, in the
direction Sun–Earth, opposite to the Sun. How much of the light from the Sun is expected
there to be intercepted by the Earth?
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9. If the velocity distribution of a stellar system is isotropic, show how a combined mea-
surement of velocities along the line of sight (based on the Doppler effect) and tangential
velocities (based on a study of proper motions, i.e., detection of position changes with time
by accurate astrometry) for a set of stars can lead to a determination of the distance to the
stellar system.

10. In March 2008 the gamma-ray burst GRB 080319B became briefly visible with the naked
eye (it reached an apparent magnitude of between 5 and 6). Its measured redshift (z = 0.94)
corresponds to a distance of ≈7.5 billion light-years. By ignoring cosmological correction
factors in the conversion of apparent into absolute luminosity, what would be the associated
power in the visible region if the light emission were isotropic?

Chapter 3

1. An ellipse can be seen as an m = 2 deformation of a circle. What are the Fourier
characterizations of a “boxy” and a “disky” departure from a pure ellipse?

2. Imagine that we represent, at a given instant, a two-dimensional density distribu-
tion by Fourier analysis, for example, as σ (r,φ) = σ0(r) + σ1(r)cos[−φ+ψ1(r)] +
σ2(r)cos[−2φ+ψ2(r)]+·· · . What are the simplest conditions on the functions σn(r) and
ψn(r) for the “perturbation” (i.e., the nonaxisymmetric part) to be representative of an m-
armed spiral pattern, leading or trailing, open or tightly wound, of small or large amplitude,
with amplitude modulation along the arms, grand design or flocculent, symmetric or lop-
sided, that is, representative of all the attributes commonly used to describe the morphology
of spiral structure? What is the main characteristic of a bar? What is the main characteristic
of a “linear” perturbation in contrast with a “nonlinear” one? (Many of these words, which
are broadly used qualitatively, will find their proper quantitative definition later in the book,
especially in Part III.)

3. In view of the representation introduced in the preceding problem, what is the main property
of a logarithmic spiral, that is, a spiral associated with radial phase ψ(r) ∝ lnr?

4. If an axisymmetric thin mass density distribution is represented by ρ(r,z) = σ (r)δ(z), where
δ is the Dirac delta function, what would be the simplest representation of a warped disk
(as suggested by Fig. 3.4)? The large-scale warp of our Galaxy is asymmetric (i.e., it is
stronger on one side with respect to the opposite side of the Galaxy). What would be a
simple way to characterize this feature in a Fourier representation of the warp? The gas
disk of our Galaxy appears to be affected by corrugations, much like those of a ballerina
skirt. What would be a way to characterize such a feature in a Fourier representation of the
warp?

5. Consider an axisymmetric ellipsoid (spheroid) characterized by ellipticity ε= 1−b/a, with
a and b the length of the long and short axes, respectively. The spheroid can be either oblate
(if the short axis is the symmetry axis) or prolate (if the long axis is the symmetry axis). If
the symmetry axis of a spheroidal galaxy is inclined at an angle i with respect to the direction
of observation, what is the observed ellipticity corresponding to a given intrinsic ellipticity?

6. Suppose that elliptical galaxies are spheroidal systems with ellipticity distribution peaked
around the most probable value ε̄. What would be the distribution of observed ellipticities
if the inclination angle of the symmetry axis with respect to the direction of observation
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is randomly distributed? Under the hypothesis of random inclinations, can the intrinsic
ellipticity distribution be derived from the observed ellipticity distribution?

7. Suppose that elliptical galaxies are spheroidal systems. Identify one physical factor that may
favor the idea that they should be oblate and a different physical factor that might favor the
possibility that they are prolate. (Many of these concepts will be addressed later in the book,
especially in Chapters 10 and 22.)

8. For the two cases considered in the preceding problem, discuss whether the assumption of
arbitrary inclination of the intrinsic symmetry axis with respect to the line of sight may be
plausible or not.

9. If elliptical galaxies are rotating spheroids, what is a natural expectation for the velocity
along the line of sight measured at different positions along the minor axis? Qualitatively,
what would we expect instead, by making a similar measurement along the major axis?

10. Given that spiral galaxies can be modeled, in a first approximation, as zero-thickness disks in
differential rotation [V = r�(r)eθ ; here V represents the velocity field, r and θ are standard
polar coordinates, and eθ is the unit vector in the tangential direction], what would be the
structure of the contours of equal velocity along the line of sight for a disk at an inclination
i with respect to the observer?

Chapter 4

1. With the help of a simple numerical integration, check that half the total luminosity asso-
ciated with the R1/4 profile defined by Eq. (4.3) comes from the region inside the circle of
radius Re. Check the relation between the half-light radius Re and the exponential scale h
applicable to the exponential luminosity profile (see Subsection 4.1.1). For the two prototyp-
ical luminosity profiles, what is the value of R(9/10)/Re, where R(9/10) is the radius associated
with 90 percent of the total luminosity?

2. Consider a galaxy with an exponential luminosity profile, with scale length h and a rotation
curve that remains flat beyond a given radius Rmax ≈ 2.5h. Suppose that inside such a radius
the rotation curve can be well fitted by a maximum-disk prescription, based on a constant
mass-to-light conversion of the disk luminosity profile into a disk density profile. As an order
of magnitude, what is the increase in the local value of the mass-to-light ratio for the disk
that is required for justifying a flat rotation curve out to 10h without invoking the presence
of a spheroidal dark halo? (It may be useful to refer to properties of the singular self-similar
model with disk density distribution ∝ 1/r that will be described in Subsection 14.3.1 and
to the properties of the exponential disk described in the same subsection.)

3. For a given spiral galaxy, the value of the flat part of the rotation curve is overestimated by
20 km s−1 (with respect to a true value of 250 km s−1). What is the implied error in distance
determination if one uses the luminosity-velocity relation (4.11)?

4. Consider a dynamical determination of the mass M of a galaxy. If the distance to the galaxy
is set by application of the Hubble expansion law, with constant H0 = 100h km s−1 Mpc−1,
how does the resulting estimate of the mass-to-light ratio M/L scale with h?

5. Consider a system of stars with a spherical density distribution of the form ρ/ρ0 = [(r/b)(1+
r/b)]−2, where ρ0 and b are scale parameters. Suppose that on the (x,y) plane all stars move
on perfectly circular orbits around the center, all in the same direction about the z axis, with
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angular velocity �/�0 = (b/r)(1 + r/b)−1/2. Suppose that we observe this system from
the x direction by using a slit along the y axis. What is the line-of-sight velocity profile
at distance R from the center for this perfectly cold system? (The mass model used here
is briefly described in Subsection 22.4.4.) Compare these results, to be obtained with the
help of simple numerical integrations, with those obtained for a disk observed edge-on,
with density falling off exponentially [∝ exp(−r/h)] and with angular velocity �/�0 =
(1+ r2/b2)−1/2.

6. By extrapolating relation (4.17) from the case of M87 (M• ≈ 3×109M�, σ0 ≈ 300 km s−1)
down to the case of small stellar systems, what would be the expected mass range of a central
black hole in globular clusters?

7. If elliptical galaxies were a class of structurally homologous stellar systems with no signif-
icant variations of the relevant mass-to-light ratio from galaxy to galaxy, what would be the
exponents predicted in the fundamental plane relation by the virial theorem?

8. Consider elliptical galaxies as a class of structurally homologous stellar systems, and use
the virial theorem condition to eliminate the velocity dispersion from the fundamental plane
relation (4.15). By referring to the variables effective radius Re and total luminosity L
(instead of Re and SBe), show that given the values for α and β reported in the text, the
Re dependence basically cancels out and the fundamental plane relation is equivalent to a
mass-luminosity relation (e.g., see the article by Bertin, Ciotti, and Del Principe 2002).

9. Consider an exponential disk with density σ =σ0 exp(−r/h); let M be its integrated mass out
to r = 3h. Then consider a Maclaurin spheroid with ellipticity 1−a3/a1 = 0.7 and equatorial
radius a1 = 3h and a sphere of radius R = 3h, all with the same given mass M. In view of
Eq. (4.7), compare the equatorial gravitational accelerations at a point at distance 3h from
the center obtained for the three different cases (with the help of the formulas provided in
Chapter 10 and Subsection 14.3.1).

10. By borrowing some formulas recorded in Chapter 10, estimate the value of the parameter λ
defined in Eq. (4.9) for a Maclaurin spheroid with ellipticity 1−a3/a1 = 0.7.

Chapter 6

1. Compare the acceleration experienced by the Sun in its orbit around the Galactic Center with
the acceleration induced by the closest star.

2. Compare the acceleration experienced by the Sun in its orbit around the Galactic Center with
the vertical acceleration experienced by a star in the solar neighborhood just off the plane of
the disk of the Galaxy.

Chapter 7

1. In a simple model in which molecules collide as hard spheres of radius R, with total (geo-
metric) cross section σtot =4πR2, estimate the typical relaxation rate ν=nvthσtot in air under
standard conditions (here vth represents the relevant thermal speed).

2. Based on approximation (7.4), estimate a typical stellar dynamical relaxation time and a
typical star mean free path for various conditions applicable to stellar systems. In particular,
refer to globular clusters (core or half-light radius conditions), to elliptical galaxies (core or
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half-light radius conditions), to the solar neighborhood in the disk of our Galaxy, and to the
case in which the scattered pointmasses are the galaxies inside a cluster of galaxies.

3. Based on Eq. (7.16), estimate the mean free path for electron-electron encounters inside a
plasma under thermonuclear conditions (e.g., n ≈ 1015 cm−3, T ≈ 10 keV), and compare
with the size of a few meters, applicable to the current toroidal experiments.

4. Estimate the mean free path for conditions applicable to the solar-wind plasma (e.g., n ≈ 5
to 10 cm−3, T ≈ 3 to 10 eV), and compare with the value of 1 AU ≈ 1.5×1013 cm.

5. Prove that Eq. (7.13) holds for a central force independent of the law of interaction.
6. Consider a satellite spiraling in, on quasi-circular orbits, being captured at the outskirts

of a spherical primary galaxy (considered to be immobile), with star density ρ ∼ r−4 (see
Chapter 22 for a discussion of this choice). If we take, for simplicity, F(v) ln�≈ constant
in the dynamical friction equation, what is the anticipated behavior of the capture process
in terms of the function r = r(t)? What happens, within the simple model of Eq. (7.19),
when the satellite reaches the inner regions where ρ ∼ r−2? What happens if we now take
F(v) ln�∝ r?

7. For two globular clusters, NGC 5139 and NGC 6341, the estimated mass and radius of the
sphere that contains half the mass of the system (M, rM) are, respectively, 3×106 M� and 8
pc and 3×105 M� and 2 pc. Which cluster is expected to evaporate faster?

8. For a massive cluster of galaxies (M ≈ 1015 M�; characteristic radius R ≈ 0.5 Mpc), most
of the mass (≈85 percent) is in the form of dark matter. What is the expected range for the
dynamical friction (in terms of the time scale Tfr) suffered by a galaxy of mass Mg =1011 M�
belonging to the cluster?

9. A particle moves along the z axis in the potential�(z)=αz4, with α a given positive constant.
What is the dependence of the period as a function of energy τ =τ (E)? Is there any difference
to be noted with respect to the simple example illustrated in Fig. 7.3? Compare with the
motion of an exact pendulum, for which the specific potential is �(θ ) = −ω2

p cosθ , where
ωp is the frequency of small oscillations.

10. A nonrotating homogeneous sphere of radius R and initial virial ratio 2K/|W|= ε�1 under-
goes violent relaxation, reaching a spherical quasi-equilibrium state characterized by density
profile ρ/ρ0 = [(r/b)(1+r/b)]−2, where ρ0 and b are scale parameters. Suppose that during
the process the total mass and total energy Etot = K +W (the sum of total kinetic energy K
and gravitational energy W) are conserved. What is the value of the final half-mass radius b
in units of R?

Chapter 8

1. Transform the equations of a zero-thickness barotropic fluid disk, recorded in Subsection
8.3.2, by moving to a rotating frame of reference, defined by coordinates (R,φ) = (r,θ −
�pt) and velocities (U,V) = (u,v−�pr). Identify the terms associated with the Coriolis and
centrifugal forces.

2. For a Maxwell-Boltzmann distribution function f = Aexp[−mv2/(2kT)], where A is a nor-
malization constant, m is the mass of the gas particles, k is the Boltzmann constant, and T
the gas temperature, prove that pressure is indeed a scalar (i.e., that pij = pδij) and that the
equation of state is that of a perfect gas (i.e., p = nkT, where n is the number density of gas
particles).
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3. For a stellar system described by an assigned distribution function f , show that the total
kinetic energy Ktot can be divided in two contributions, one associated with the fluid motions
u and the other (the internal energy) associated with the random motions related to the
pressure tensor pij. For a stellar system characterized by scalar pressure p = p(x), what is
the expression of the internal energy in terms of p?

4. Prove that for any system characterized by distribution function of the form f = f (E,J2)
(where E is the specific energy and J is the specific angular momentum), the system does
not possess fluid motions (i.e., u = 0), and the pressure tensor in spherical coordinates is
diagonal, with pθθ = pφφ .

5. Prove that for any axisymmetric system characterized by distribution function of the form
f = f (E,Jz) (where E is the specific energy and Jz is the specific angular momentum com-
ponent along the symmetry axis), the pressure tensor in cylindrical coordinates (R,z,φ) is
diagonal, with pRR = pzz.

6. Extend the discussion provided in Subsection 8.3.1 to a 3D axisymmetric stellar system, and
prove that for a system characterized by distribution function f = f (E,Jz) (where E is the spe-
cific energy and Jz is the specific angular momentum component along the symmetry axis),
the following hydrostatic equilibrium conditions hold (often called the Jeans equations):

1

ρ

∂

∂z
(ρ〈v2

R〉)+ ∂�

∂z
= 0,

1

ρ

∂

∂R
(ρ〈v2

R〉)+ 〈v2
R〉−〈v2

φ〉
R

+ ∂�

∂R
= 0.

Here (R,z,φ) are standard cylindrical coordinates, and 〈〉 represents average in velocity
space.

7. Write the general form of the collisionless Boltzmann equation in spherical coordinates
(r,θ ,φ,vr,vθ ,vφ) by applying the procedure described in Subsection 8.3.1, that is, by start-
ing from the equation in the associated canonical coordinates (r,θ ,φ,pr,pθ ,pφ). (This step
is required to set up the stability analysis of spherical stellar systems, as will be presented in
Section 23.1.)

8. From the collisionless Boltzmann equation and the Poisson equation, as given in Section 8.2,
derive the expression of the scalar virial theorem, and state the conditions under which it can
be written in the standard form W +2Ktot = 0.

9. For a spherical self-gravitating system, show that radial oscillations around virial equilib-
rium are bound to occur at a frequency comparable with (4πGρ)1/2, where ρ is the average
density. Provide conditions for this statement to be correct.

10. Set up an asymptotic analysis for the boundary-layer problem described in Subsection 8.5.1,
and compare the results obtained with the exact analytical calculation that is available in this
simple case.

Chapter 9

1. Complete the derivation of the eigenvalues that demonstrate the secular instability of the
θ = 0 equilibrium point for the fast-rotating bowl described in Subsection 9.2.1. {Hint:
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Expand Eq. (9.13) around the solution ω0 of the problem without friction [D0(ω0) = 0]
that becomes neutral (ω0 = 0) at the bifurcation point (ξ = 1).}

2. Consider a slab model of a collisionless stellar system, that is, a model in which the mean
potential � depends on only the vertical coordinate z. Construct two different equilibrium
distribution functions with assigned velocity dispersions cx,cy,cz and with assigned stream-
ing velocity uy in the y direction. [For the purpose of this problem, it is not necessary to
determine�(z) from the self-consistency requirement.]

3. For a collisionless spherical galaxy model described by the distribution function f =
Aexp(−aE −cJ2), where E = v2/2 +�(r) is the specific energy, J is the magnitude of the
specific angular momentum, and A, a, and c are positive constants, what is the behavior of
the pressure anisotropy with radius?

4. Consider a spherical system characterized by distribution function f = A(−E)s, for E < 0
(and f = 0 otherwise), where E = v2/2 +�(r) is the specific energy and s is a positive
constant; the condition�= 0 defines the outer surface of the system. Show that the resulting
density distribution is of the form ρ(r) = B[−�(r)]s+3/2 and that the equation of state is that
of a polytrope, p = Kρ(n+1)/n, where n = s+3/2.

5. Suppose that a stellar system of very small total mass is characterized by a Maxwell-
Boltzmann distribution function f = Aexp(−aE), where a and A are positive constants and E
is the single-star specific energy, and is embedded in the approximately homogeneous core
of a dominant, spherical dark halo. What is the resulting stellar density distribution?

6. Consider a stellar system characterized by an isotropic distribution function f = f (E) that
would be spherical if isolated. Place such a system on a circular orbit at angular velocity �
around the center of a spherical hosting galaxy so that the star energy is no longer an integral
of the motion, and argue, by virtue of the Jeans theorem, that the system is described by the
function f = f (H), where H = E −pφ� is the relevant Jacobi integral. Prove that in general
the stellar system is characterized by a triaxial density distribution and isotropic pressure
tensor. (This is the starting point for the construction of some interesting models that will be
presented in Chapter 22.)

7. Consider a dark halo characterized by an isotropic distribution function f = f (E) that would
be spherical if isolated. Embed in it an axisymmetric disk with a given mass distribu-
tion, for simplicity an infinitesimally thin exponential disk characterized by surface density
σ = σ0 exp(−r/h). What can we say about the expected density distribution of the dark
halo? (This is the starting point for the construction of some interesting models that will be
presented in Chapter 14.)

8. Discuss the possibility of an equilibrium configuration based on the Jeans theorem gener-
alizing the solution given in Subsection 9.1.1 to the case in which ions and electrons have
different temperatures.

Chapter 10

1. From the expression of the potential inside a homogeneous ellipsoid (10.2), prove that
identity (10.5) holds.

2. Provide approximate expressions for the quantities Ai for quasi-spherical oblate and prolate
spheroids. Provide approximate expressions for the same quantities in the disk and needle
limit, that is, e → 1.
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3. Expand the dimensionless energy g(e,η) [see Eq. (10.17)] for small values of e, up to O(e4)
included, for oblate and prolate spheroids. Is one of the two types of deviations from spheri-
cal symmetry favored from the gravitational energy point of view at fixed values of mass M
and volume V?

4. Expand the expression that relates dimensionless angular velocity and eccentricity for a
quasi-spherical Maclaurin spheroid. By modeling the Earth in such a way (mean density
≈ 5.5 g cm−3), what would be its expected flattening? What about the flattening of the Sun
and Jupiter?

5. If we model a millisecond pulsar as a classical ellipsoid, what is the minimum value of the
average mass density implied, and how does this value compare with that of the density of
nuclear matter?

6. Consider a particle moving inside a Maclaurin spheroid without direct interaction with the
matter of the spheroid except for the action of its mean gravitational field. What is the con-
dition on the eccentricity e in order for all orbits to be closed (see Chapter 21 for a detailed
discussion of related issues)? What is the ratio of horizontal to vertical frequency at the
Jacobi bifurcation point?

7. Show that indeed the Maclaurin and Jacobi sequences can be recovered by extremizing Emec,
as described in Subsection 10.2.3.

8. For a homogeneous ellipsoid with principal axes coinciding with the Cartesian axes, from
definition (10.35) and expression (10.2), prove that in the notation of the second-order virial
theorem Wij = −2πGρAiIij.

9. For a Maclaurin spheroid rotating around the third axis, from the second-order virial theorem
calculate the ratio (K11 +�)/�, and provide an approximate expression for small values of
the polar eccentricity.

10. Consider the case of Achernar, for which the apparent axial ratio is ≈ 1.56 and the apparent
equatorial velocity is V sin i ≈ 220 km s−1. Discuss whether and under which conditions
these values could be reconciled with the properties of a simple homogeneous Maclaurin
spheroid viewed at a suitable inclination angle i.

11. Calculate and plot the rotation parameter t = t(e,η(e)) as a function of the polar eccentricity
for the triaxial Jacobi sequence.

Chapter 11

1. The dispersion relation for some electromagnetic waves, with a wave number parallel to a
given homogeneous magnetic field, can be written as c2k2 =ω2 −ω2

pe/(1±ωce/ω). Here c is
the speed of light in vacuum, ωpe is the plasma frequency, and ωce is the electron cyclotron
frequency; the ± sign corresponds to the two circular polarizations available. Discuss the
dispersion and propagation properties of these waves in the plane (ω,cph), where cph is the
relevant phase velocity. Can propagation occur for ω > ωce? (Waves belonging to the low-
frequency propagating branch, at ω < ωce/2, are called whistlers, from the characteristic
descending tone recognized in some ionospheric emissions.)

2. Discuss the properties of the circular water-wave signals produced by a point source of neg-
ligible duration. What is a simple explanation for the formation of expanding rings from a
dropped stone, and what is the expected velocity of such water rings in a pond?
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Chapter 12

1. Derive the Jeans instability condition for a homogeneous nonrotating system made of two
fluids, one characterized by density ρ0 and effective thermal speed cs and the other by density
αρ0 and effective thermal speed β1/2cs, where α and β are given constants. Assume that the
two coexisting fluids interact with each other only by means of gravitational forces. (The
notation follows that of a similar problem studied in Chapter 16, in which the two fluids
represent stars and gas in the context of density waves on a disk.)

2. From the equations of the fluid model given in Chapter 8, prove that the frequency of waves
in a differentially rotating axisymmetric disk should enter the dispersion relation in terms of
the so-called Doppler-shifted value ω−m�, where m is the integer number of the azimuthal
Fourier analysis and � is the unperturbed angular velocity of the disk.

3. Derive the asymptotic behavior of the plasma dispersion function Z(ζ ) for small and large
arguments. Note that for large arguments the asymptotic expansion is subtle and has to be
qualified in relation to the region of the complex plane considered; the expression given in
the text (in Subsection 12.2.1) describes the regular limit, which is the one to be used in the
derivation of the fluid limit of approximation (12.39).

4. In a uniform cold plasma in which the ions are at rest and two electron beams of equal density
are streaming through each other with relative velocity 2u, in the absence of magnetic fields,
we consider electrostatic waves with wave number k parallel to u. The resulting dispersion
relation is 1 = (ω2

pe/2)[1/(ω−ku)2+1/(ω+ku)2], where ωpe is the plasma frequency. Prove
that some perturbations subject to this dispersion relation may be unstable. This is the two-
stream instability; it corresponds to the Kelvin-Helmholtz instability in fluid dynamics. A
gravitational analogue of this plasma instability will be addressed in Chapter 19.

5. Two homogeneous fluids of different densities, initially at rest, are separated by a horizontal
boundary in the presence of the gravitational acceleration g. The lower fluid is characterized
by density ρdown and the fluid above the horizontal boundary by density ρup. In the inviscid
case, the dispersion relation for waves characterized by wave number k and frequency ω is
ω2 = gk[(ρdown−ρup)/(ρdown+ρup)+(k2T/g)/(ρdown+ρup)], where T represents the surface
tension as in Section 11.3. Prove that the waves are stable if the denser fluid is below, that is,
for ρup < ρdown, whereas instability can occur for ρup > ρdown. This is called the Rayleigh-
Taylor instability.

6. In the standard cosmological model, elementary linear density perturbations with wave num-
ber k are governed by a simple differential equation (see the monograph by Peebles 1993):
ρ̈1 +2Hρ̇1 = (4πGρ− k2c2

s/a
2)ρ1. Here H = ȧ/a is the Hubble expansion rate, and a is the

cosmological expansion parameter. The standard Jeans dispersion relation is recovered by set-
ting H = 0 and a = 1. Consider the cold Einstein–de Sitter limit (cs → 0; �R = 0, ��= 0, so
that H2 = 8πGρ/3 and a ∝ t2/3; see also Section 4.4). Find the two power-law solutions that
describe linear perturbations in this case. (The solution growing in time describes the mode
of Jeans gravitational collapse.) Why is the standard exp(−iωt) Fourier analysis not useful in
this context?

Chapter 13

1. For a disk with a perfectly flat rotation curve V = constant, let corotation be at r = rco.
Recall that the inner Lindblad resonance and outer Lindblad resonance locations are defined
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by the conditions m[�(rco) −�]/κ = −1 and +1. Where are the inner and outer Lindblad
resonances located for m = 2? What happens for m = 1 and for m = 3? Compare with the
case of a Keplerian rotation curve.

2. Following the epicyclic expansion procedure outlined in Section 13.2, prove that indeed the
quantity A2 has the expression recorded in Eq. (13.28).

3. Define the orbit [r�(τ ), θ�(τ )] along the characteristics (see Chapter 11) in an axisymmetric
potential, with the conditions r�(±τe) = r, θ�(±τe) = ±θe. Here the quantities 2τe = τr and
2θe are functions of E and J and denote the radial period of oscillation of the stars in the
equilibrium potential and the azimuthal angle traversed in such a period. Prove that to two
orders in the epicyclic expansion for the radial coordinate and to one order for the azimuthal
coordinate we can write

r� = r(1−R1 −R2), θ� = �(r0)

κ(r0)

[
s−2

(
ξ+ ∂R1

∂s

)]
,

with s = κ(r0)τ , θe =π�(r0)/κ(r0), τe =π/κ(r0), and

R1 = η(1+coss)+ξ sins, R2 = [1−A2(r)]R2
1 − [3−2A2(r)]ηR1.

Here ξ = asins0 and η = acoss0 are dimensionless radial and azimuthal epicyclic veloc-
ities associated with the orbit at τ = τe [see Eqs. (13.20) and (13.22)]. From the identity
r2

0�(r0) = r2
� θ̇� at τ = τe, check also that to first order r0 = r(1 − η). [Hint: Replace the r

and θ variables in Eqs. (13.22) through (13.25) by r�(τ ) and θ�(τ ), integrate the equations,
and then impose the desired boundary conditions. This is one key step toward the integra-
tion along the unperturbed characteristics of the stellar dynamical equations leading to the
dispersion relation for tightly wound density waves; see Chapter 15 and the article by Shu
1970, cited there.]

4. Consider the problem of the stability of geostationary satellites on the equatorial plane in
view of the presence of a small departure from axisymmetry of the Earth’s mass distribution,
and compare this problem with that of the trapping of star orbits at corotation in the presence
of a rigidly rotating two-armed spiral field.

5. For the classical restricted three-body problem, with ε = m/M � 1, find the approximate
location of the two Lagrangian points close to m [note the singular character of the pertur-
bation analysis involved in identification of the distance from the smaller mass, O(ε1/3)rco;
see Section 8.5 for comments on singular perturbations].

6. For a system of two stars of equal mass orbiting around each other at a fixed distance, find
the location of the associated five Lagrangian points and discuss the linear stability of orbits
in their vicinity (within the framework of the restricted three-body problem).

7. Using expression (10.21), discuss the dependence on the eccentricity e of the epicyclic
frequency κ for equatorial orbits just outside a Maclaurin spheroid.

8. In a pseudo-Newtonian description, the potential in the vicinity of a nonrotating black hole
outside the Schwarzschild radius rS = 2GM•/c2 is often approximated by the expression
�=−GM•/(r−rS) (Paczyńsky, B., Wiita, P. J. 1980. Astron. Astrophys., 88, 23; see also the
commentary by Abramowicz, M. A. 2009. Astron. Astrophys., 500, 213). In the Newtonian
context, discuss the energy and stability of circular orbits as a function of r.

9. Calculate and plot angular rotation �(r), epicyclic frequency κ(r), and rotation curve
V(r) = r�(r) for the potential�NFW generated by the spherical density distribution ρNFW =
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a/[r(rs+r)2], where a and rs are given dimensional constants, which is believed to represent
well the inner structure of dark halos found in cosmological simulations of structure forma-
tion in the universe (Navarro, J. F., Frenk, C. S., White, S. D. M. 1996. Astrophys. J., 462,
563).

10. Calculate and plot angular rotation�(r), epicyclic frequency κ(r), and rotation curve V(r) =
r�(r) for the potential �J generated by the spherical density distribution ρJ = b/[r2(rM +
r)2], where b and rM are given dimensional constants, which is believed to represent well
the structure of the stellar distribution of bright elliptical galaxies (see Subsection 22.4.4).

Chapter 14

1. Derive Eq. (14.11), following the procedure outlined in Subsection 14.1.1 for the one-
component isothermal self-gravitating slab.

2. Consider a one-dimensional motion described by the energy E = ẋ2 + U(x), with U(x) =
U(−x). Assume that orbits are bound, with period τ = τ (E), which we take to be known.
Using the Abel transform technique, infer the form of the force F(x) = −dU/dx. Give the
explicit result for the case τ (E) ∝ Eα (which also can be checked by dimensional analysis).

3. (a) Consider the quasi-Maxwellian distribution function f = f (E,J) introduced in Section
14.2 [see Eq. (14.18)]. Prove that [with error O(ε2)]

−
(
ω
∂ f

∂E
+m

∂ f

∂J

)
= ν(r0)

κ(r0)

c2(r0)
f ,

where ν(r0) = [ω−m�(r0)]/κ(r0) [here, as usual, the guiding-center radius r0 is related to
the angular momentum by the identity r2

0�(r0) = J].
(b) From the epicyclic expansion of Chapter 13, show that the volume element needed to
integrate a given cool distribution in velocity space is [again with error O(ε2)]

dprdJ

r
= r4

0κ
3(r0)

2r2�(r0)
dξdη,

where ξ and η are epicyclic velocities defined by ξ2+η2 =a2, r0κ(r0)ξ=pr. [Hint: Write out
the proper Jacobian, and recall the epicyclic relation r0 = r(1−η). As for the third problem
for Chapter 13, this is a key step toward deriving the dispersion relation for tightly wound
density waves in stellar dynamics; see Chapter 15 and the article by Shu 1970, cited there.]

4. Discuss the properties of the kernel K0(r,r′) used in Section 14.3 in the integral relation
connecting density and potential for a zero-thickness axisymmetric disk. In particular, show
that it exhibits a logarithmic singularity at r = r′. Note that for the potential just above the
plane, at z = δ, the integral relation used is still applicable, provided that we take ζ → ζδ =
4rr′/[(r+r′)2+δ2]; for many purposes, it may be useful to start from the case δ �= 0 and then
to refer to the limit δ→ 0. Show that the force field of a sharply truncated disk (i.e., a disk
with discontinuous density distribution at the truncation radius) is singular at the truncation
radius.

5. Consider a disk of finite but small thickness of density ρ embedded in an external density
distribution ρext representative of a centrally compact object and/or a diffuse spheroidal halo.
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Prove that close to the equatorial plane of the disk, the relevant Poisson equation can be
written as

∂2�

∂z2 = 4πGρ+A,

where A = 4πGρext +2�2 −κ2 is approximately constant in z (here � and κ are defined as
in Chapter 13).

6. Following the framework of the preceding problem, introduce a surface density variable
σz ≡ 2

∫ z
0 ρ(z′) dz′, and prove that if the disk is vertically isothermal, the equation of vertical

hydrostatic equilibrium and the Poisson equation can be combined into a single equation
for σz:

∂2σz

∂z2 ∼ − 1

c2

∂σz

∂z
(2πGσz +Az) .

From this equation, recover the limit of the isothermal slab discussed in Subsection 14.1.1
and the limit of a non-self-gravitating (Keplerian) disk around a central point mass. (This
problem is discussed and solved in appendix A of the article by Bertin, G., Lodato, G. 1999.
Astron. Astrophys., 350, 694.)

7. From expression (14.32), estimate to two significant orders the asymptotic behavior of the
function VD(R) for R � 1, and thus check its Keplerian behavior at large radii. For R � 1,
is the asymptotic behavior of the function VD(R) linear with R? (The relevant asymptotic
formulas for the modified Bessel functions can be found, for example, in the book by
Abramowitz and Stegun listed in the Bibliography.)

8. What is the value of the self-gravity parameter ε0 = πGσ/(rκ2) for a self-similar disk [see
Eq. (14.35)]?

9. What would be the profile of the self-gravity parameter ε0(R) for a pure self-gravitating
exponential disk [in the absence of other contributions; note that such contributions play an
important role in the basic state defined by Eqs. (14.45) and (14.46)]?

10. Estimate the value of the parameter β=8πGσ0h�/V2∞ for the maximum-disk decomposition
of the rotation curve in the case of a pure disk galaxy characterized by an exponential disk.

Chapter 15

1. Consider the two-armed spiral pattern of a galaxy such as M81, with inclination of
≈12 to 15o. What would be the approximate value of the associated WKB parameter kr if
we attempted a single-wave description for it? Check the numbers for the (inner) one-armed
structure of NGC 4622 with a pitch angle of ≈4o.

2. For an elementary m-armed tightly wound density wave with radial wave number k and
frequency ω, what is the expected (linearized) relation between density and velocity pertur-
bations demanded by the continuity equation? Use the Euler equations (see Subsection 8.3.2
in Part II for the relevant set of equations) to complete the description, in the fluid model,
of the relative behavior of density and kinematic perturbations; the amplitude and the phase
relations turn out to be pressure-independent. Note that before the self-consistency condition
is imposed, these relations describe the response to a driving potential with the preceding
characteristics; thus these relations also can be considered, in the linear approximation, to
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describe the linear response of a gaseous disk to an imposed wave. (This problem is also of
interest for a recent application described in Chapter 18.)

3. Formulate the equations needed to provide answers to the questions of the preceding problem
in the context of stellar dynamics. (Note that the relations that are the subject of the last two
problems have been the focus of considerable interest in the initial developments of the
density-wave theory because of their direct connection with simple observational tests.)

4. Prove Eq. (15.7) by imposing the periodicity of the radial motion in the unperturbed orbits on
the relevant response function f1. [Hint: Equation (15.5) can be written as Df1/Dt ={�1, f0},
where D/Dt is the time derivative along the unperturbed orbits; see Section 12.3. By suitable
manipulations, applicable to the natural variables for the axisymmetric disk, derive a relation
similar to Eq. (12.44), with the orbit integral extending from t0 to t. Impose on this relation
the desired periodicity condition.]

5. In the notation of Section 15.1, let a radial wave number be defined by �̃(r) =
α exp(i

∫ r k(r′)dr′), where α is a constant [see Eq. (15.3)]. Apply the ordering of Eq. (15.8)
to expand the expression �̃(r�(τ )) in the integral of Eq. (15.7) along the unperturbed orbits.
What is the accuracy needed on the unperturbed epicyclic orbits for obtaining the response
accurate to O(ε)?

6. Use the epicyclic expansion discussed in the third problem for Chapter 13 and the approxi-
mate expression for a quasi-Maxwellian distribution function given in Section 14.2 (with the
relations obtained in the third problem for that chapter), and thus derive the dispersion rela-
tion for tightly wound density waves in stellar dynamics given in Eq. (15.9). {Hint: Equate
the density response σ1 =−|k|�1/2πG [see Eq. (12.21)] obtained from the Poisson equation
to that obtained by integrating, over the velocity space (dξdη), the approximate expression
for f1. Keep the integration over the τ variable last, and replace it with an integration over the
phase variable s = κ(r0)τ .} To obtain the dispersion relation recorded in the text, the term
associated with R2 in the epicyclic expansion of the third problem for Chapter 13 can be
omitted. What physical information would be obtained if the WKB investigation is pushed
to the next order?

7. Based on the simple quadratic dispersion relation of the fluid model [Eq. (15.11)], give the
explicit expression k̂ = k̂(ν;Q) for the four wave branches generally available (short trailing,
long trailing, short leading, and long leading), check the group propagation and wave action
properties given in Section 15.3.1, and describe the (formal) behavior of the group velocity
in the vicinity of resonances and turning points applicable to different conditions on the
parameter Q (with respect to the reference case of marginal stability in which Q = 1).

8. Based on the simple quadratic dispersion relation of the fluid model [Eq. (15.11)], give
the explicit expression k̂ = k̂(ν;Q) for the short-wave branch beyond the outer Lindblad
resonance (i.e., for ν > 1). Is propagation allowed for Q > 1? (This problem is also of
interest for a recent application described in Chapter 18.)

9. Calculate the function Q = Qmax(ẑ0) for the case in which the dilution of the gravity field
(associated with the finite thickness of the disk) in the quadratic dispersion relation is
described by an exponential factor (dashed declining curve in Fig. 15.4) and the function
Q=Q(ẑ0) defined by the vertical hydrostatic equilibrium condition for a non-self-gravitating
thin fluid disk (lower rising curve in Fig. 15.4). The second calculation is also of interest for
the study of Keplerian accretion disks (see Chapter 27).
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10. Consider a wave packet characterized by group velocity cg in an inhomogeneous disk. What
is the general expression of the propagation time relative to a trip from r1 to r2? Discuss a
procedure to estimate a typical value of such group propagation time for density waves on a
given galaxy model based on the quadratic fluid dispersion relation.

Chapter 16

1. Consider a galaxy characterized by a rotation curve of the form V = V∞[1 − exp(−r/h)],
where h is the exponential scale of the disk, and suppose that the disk is dominated by a
density-wave pattern with corotation at r = 3 h, in the vicinity of which the cold-gas velocity
dispersion is cg. Estimate the width of the annulus around the corotation circle inside which
the relative motion between the wave and the gas is subsonic (with respect to cg). Based on
the phenomenological introduction given in Part I, insert realistic values for V∞, h, and cg,
and check the numbers for realistic cases.

2. If a 21-cm line-emission measurement determines a certain value for the gas disk density σHI

in the form of atomic hydrogen, what is the factor f that should be used to convert σHI into a
more realistic estimate of the gas density σg = fσHI so as to take into account the presence of
a normal amount of (cosmological) helium?

3. From the two-fluid dispersion relation, prove that for small values of α, if the gas component
is not too cold, the peak of the marginal stability curve is reached at λ̂max = 1/2+O(α2), with
Q2

max ≈ 1+4α.
4. For the two-fluid dispersion relation, show that in the two-phase region, under the ordering
β = O(α2) � 1, the gaseous peak occurs at λ̂max ∼ α/2, with Q2

max ∼ (α2/β)+4α.
5. By considering the description provided earlier in the book (in particular, see Chapter 14 for

the Oort mass discrepancy) and other data available from the literature, discuss what would
be appropriate numbers for the gas-to-star density and temperature ratios α and β to be used
in a two-component description of the solar neighborhood in the disk of our Galaxy.

6. What is the value of the gradient of the vorticity distribution κ2/σ� governing the effects of
the corotation resonance for the self-similar model described in Subsection 14.3.1?

7. To illustrate the destabilizing role of a small amount of cold gas, it is often reported (e.g.,
see subsection 7.1.2 in the monograph by Bertin and Lin 1996) that the effective stability
parameter Qeff of a system made of stars and gas (in a zero-thickness model) follows the
simple approximate relation

1

Qeff
≈ 1

Qg
+ 1

Q�
.

With the help of the analysis given in Subsection 16.1.2, discuss the limitations of this
approximation (see Romeo, A. B., Wiegert, J. 2011. Mon. Not. Roy. Astron. Soc., 416, 1191).

Chapter 17

1. (See also the first problem for Chapter 13.) Consider a galaxy characterized by a rotation
curve of the form V = V∞[1− exp(−r/h)], where h is the exponential scale of the disk, and
draw the functions�, �−κ/m, �+κ/m, for various values of m. The diagram is often used
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to discuss the location of the various resonances for assigned values of the pattern frequency
�p. What is a necessary condition for the occurrence of the inner Lindblad resonance for a
one-armed pattern?

2. From the WKBJ expansion applied to the outgoing short-trailing wave beyond OLR (i.e., for
ν > 1), prove that the conservation of wave action in a one-component, zero-thickness fluid
model requires that the perturbed density-amplitude profile follows the relation

∣∣∣∣σ1

σ0

∣∣∣∣
2

∝ G(ν,Q)r−1κ4σ−4
0 ,

where σ0 is the unperturbed density of the disk. Find the appropriate function G(ν,Q).
(The proportionality factor is independent of r; this problem is also of interest for a recent
application described in Chapter 18.)

3. From the cubic dispersion relation, derive the second-order ordinary differential equation for
the open-wave regime in the fluid model. {Hint: The second-order ODE used for the descrip-
tion of tightly wound (normal) spiral modes is the differential counterpart to the quadratic
dispersion relation of Subsection 15.1.2; in the regime in which this latter relation is appli-
cable, we have seen that the relevant wave cycle involves short and long trailing waves. In
Chapter 15 we anticipated that the cubic dispersion relation shows the possibility for wave
cycles based on leading and trailing (open) waves. Expand the cubic dispersion relation of
Subsection 15.1.3 in the vicinity of k = 0, up to and including the term O(k2). We obtain the
ODE relevant for the open-wave regime by transforming this new quadratic algebraic relation
back into a differential equation by using the prescription k → −i∂/∂r [see Chapter 11 and
Eq. (15.3)]. The criterion for marginal stability with respect to leading-trailing wave inter-
action, corresponding to Eq. (15.33) and now replacing the Q = 1 condition, is obtained by
studying the equation in the vicinity of corotation, that is, for ν2 � 1. This ODE, by anal-
ogy with Eqs. (17.28) and (17.29), can be shown to lead to open modes, which are at the
basis of barred spiral structure. Note that deriving such ODE directly from the integrodiffer-
ential problem is feasible but rather tedious. See the second paper by Bertin, Lin, Lowe, and
Thurstans 1989.}

Chapter 18

1. From a detailed discussion of the identification of the density of wave action in stellar
dynamics (see the papers by Shu 1970; Lynden-Bell and Kalnajs 1972; Mark 1974, 1976; and
Bertin 1980, cited in Chapter 15), if we refer to D = −k0/|k|+Fν(x)/(1−ν2), Eq. (15.38) is
to be applied with the following definition of the wave amplitude (squared): a2 =πGσ 2

1 /2k0;
here σ1 represents the density perturbation, and the rest of the notation follows that given in
Subsection 15.1.1. Estimate the angular-momentum transport associated with a global mode
of small amplitude (the amplitude level is constrained by the observations) by applying the
linear theory of Subsection 15.3.1 to the outgoing wave outside the corotation circle. By com-
paring the value of this flux with the angular momentum stored in the basic state inside the
corotation circle, it has been possible to estimate a time scale for the nonlinear evolution
induced by the presence of large-scale spiral structure (Bertin 1983).
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Chapter 19

1. Compare the different predictions on the amplitude behavior of a warp based on the conserva-
tion of wave action for the two cases, the first of exponential decay of the disk density and the
second of 1/r decay, which would be implied if we take a flat rotation curve fully supported
by the disk.

2. Insert appropriate numbers in the relevant expression [approximation (19.7)] to estimate
typical values for the growth (damping) rate associated with disk-halo interaction applica-
ble to astrophysically interesting conditions. Provide similar estimates for the convective
amplification (damping) rate described by Eq. (19.10).

Chapter 20

1. Imagine a galaxy disk with exponential luminosity profile (with exponential scale length h)
to be characterized by an observed rotation curve well fitted by Eq. (14.45). With the help
of the exact relations for the rotation curve associated with an exponential disk density dis-
tribution provided in Chapter 14, discuss the possibility of a maximum-disk solution (i.e., a
solution with maximum and constant mass-to-light ratio for the disk able to fit the inner part
of the rotation curve); assume that the influence of bulge and gas is negligible. Formulate the
equation that leads to the recovery of a spherical halo density distribution required for justify-
ing, together with such maximum disk, the entire rotation curve. Is such a density distribution
ρh guaranteed to be monotonically decreasing with radius? What happens if the disk mass-to-
light ratio of such a maximum-disk solution is halved, with the idea that a substantial part of
the support to the inner rotation curve comes from the spherical halo?

2. Suppose that our Galaxy is indeed embedded in a massive spherical dark halo that supports
half the rotation curve at the location of the Sun and is able to provide a flat rotation curve
considerably farther outside. If we imagine the Large Magellanic Cloud to be orbiting inside
such a dark halo, what would be the approximate value of the projected halo density for the
dark matter between us and a star in the Large Magellanic Cloud?

Chapter 21

1. A harmonic oscillator with frequency ω and initial energy (at t → −∞) Ei is driven by a
time-dependent force of the form F(t) = f exp(t/τ ), for t< 0, and F(t) = −f exp(−t/τ ), for
t> 0, where f and τ are positive constants. Calculate the energy absorbed by the oscillator in
such a process. Solve the problem in the limit of small perturbations f → 0, and in the general
case. Is it always true that the final energy (at t →+∞) of the oscillator Ef exceeds the initial
energy? [Note: With a more realistic choice of F(t), this may be a first crude zero-dimensional
description of the way the motion of a star inside a stellar system is modified by an external
tidal interaction.]

2. Prove that the Lenz vector L = v×J+�(r)x is indeed an integral of the motion if �(r) is the
Keplerian potential.

3. Consider the 2D isotropic harmonic oscillator. Show that the three integrals J1 = (ẋ2 − ẏ2)+
ω2(x2 − y2), J2 = xẏ − yẋ, and J3 = ω2xy + ẋẏ can be normalized so as to satisfy the SU(2)
algebra {Ji,Jj} = εijkJk in terms of the commutation rules defined by the standard Poisson
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brackets. Show also that the Casimir integral C =J 2
1 +J 2

2 +J 2
3 is proportional to the square

of the Hamiltonian.
4. By referring to the J = 0 radial orbits from the condition on the period τr ∝ (−E)−3/2 [see

Eq. (21.15)], by means of the Abel inversion technique, show that the associated regular
potential is indeed the isochrone potential given in Eq. (21.12). [Hint: It may be convenient
to set to −1/2 the value of the minimum of the potential that we look for so as to match from
the beginning the conditions applicable to the dimensionless form of Eq. (21.12). Note the
(little) subtlety involved in comparing the J → 0 limit of orbits in a spherical potential with
a one-dimensional orbit, such as the one considered, for example, in the second problem for
Chapter 14.]

5. What is the most general form at large radii of an axisymmetric density distribution compat-
ible with a Stäckel potential of the form �(r,θ ) ∼ −GM/r + η(θ )/r2? At large radii, write
an equation for η(θ ) for a perfect axisymmetric ellipsoid of eccentricity e, and provide its
approximate solution for the quasi-spherical case. Compare isodensity with equipotential
surfaces.

Chapter 22

1. Without addressing the issues involved in the solution of the self-consistent problem, con-
sider simple analytical forms of distribution functions f (E,J2) able to display either a
tangentially biased or a radially biased pressure tensor (note that the same distribution func-
tion can have anisotropy of the two kinds at different radii, but such an example is less easy
to find). For cases for which the pressure anisotropy is strong (i.e., for cases for which either
in the radial or in the tangential directions the system can be considered to be cold), describe
the qualitative properties of radial and tangential cuts of the distribution function in velocity
space (obtained by taking either vθ = 0,vφ = 0, or vr = 0,vφ = 0). What is a reasonable
expectation for the associated velocity profiles projected along the line of sight in the two
cases if we use the preceding models to match the observed line profiles of a spherical stellar
system?

2. For an assigned potential �(r), write the expression of a distribution function f (E,J2) for
a system populated by only circular orbits. What is the corresponding function F(r,vr,v⊥)
referred to the standard coordinates of spherical geometry?

3. For an anisotropic spherically symmetric stellar system without internal streaming motions,
show that the hydrostatic equilibrium condition can be written as

α(r)+ r2�2

〈v2
r 〉

+ d ln (ρ〈v2
r 〉)

d lnr
= 0

with the same notation used in the text.
4. Consider a modification of a spherical distribution function f (E,J2) → [1+g(Jz)]f (E,J2) by

a term that is odd in Jz, such as g(Jz) ∝ Jz/

√
J2

0 +J2
z , where J2

0 is a constant, so that the final
function is positive definite. If the initial distribution corresponds to a fully self-consistent
model, is this true also for the new function? Because the transformation leaves the even
moments unaltered, is it true that the velocity-dispersion profiles remain unchanged?
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5. Consider the integration over velocity space of an isotropic function. How can the integral
be transformed into an integral in dE? Suppose now that the function to be integrated is
anisotropic, but within the overall spherical symmetry (so that vθ and vφ are equivalent).
How can the integral be transformed into an integral in dEdJ? What is the Jacobian of
the transformation d3vd3x into dEdJdr appropriate for the case of spherical symmetry? In
this last case, if the integrand does not depend on r explicitly, what is the result of a first
integration in the radial coordinate?

6. Show that the quantity prr(�,r) = ∫
v2

r f d3v, based on a distribution function f (E,J2) associ-
ated with a spherical potential �(r), is related to density and pressure anisotropy by simple
differentiation, that is,

ρ(�,r) = −∂prr

∂�
, α(�,r) = −∂ lnprr

∂ lnr
.

Note that in the isotropic case prr thus depends on r only implicitly through �. Note also
that the two relations lead to the correct hydrostatic equilibrium condition (see Problem 3
for this chapter).

7. For a purely isotropic distribution f = A(−E)β exp(−aE), where a and A are positive con-
stants (f = 0 for E> 0), what is the value of β that is compatible with a density distribution
declining as r−4 at large radii?

8. Consider a stellar system, such as a globular cluster, to be initially characterized by energy
E, mass M, and truncation radius rt. Suppose that, as a result of some evolutionary processes
(internal evaporation, disk-shocking, etc.), the stellar system changes energy by a small
amount �E, and its mass changes by a small amount �M while changing rt under the
usual condition that rt is determined by tidal interaction with the host galaxy (and under the
assumption that although the energy and the mass have changed, the location of the stellar
system inside the host galaxy can be considered as practically unchanged). If initial and
final states are well fitted by a King model, formulate and discuss a procedure to determine
the parameter transformation (a,A,C) → (a′,A′,C′) induced by the combined effect of �E
and �M.

9. Using the simple analytical model of Subsection 22.4.4, check that for a spherical system
conforming to the R1/4 law we expect rM ≈ 1.3Re between volume and projected half-mass
radii.

10. A one-component f∞ model with � = 12 and mass-to-light ratio M/LB = 6, fitting a galaxy
characterized by absolute blue magnitude B = −20.7, effective radius Re = 5 kpc, and
observed central velocity dispersion 250 km s−1, is taken to be strictly correct and appli-
cable all the way down to the center. What would be the expected core radius? What would
be an estimate for the central relaxation time in this system? [Hint: The solution requires
an investigation of the properties of the f∞ models for high � at r → 0, with the scales
set by the available data. One way to set the scales is to recall that Re ≈ √

a/c (to be more
precise, a numerical study gives, for high-� models,

√
a/c ≈ 0.85rM, and it is known that

for a model close to the R1/4 law, the relation rM ≈ 1.3Re holds), that the one-dimensional
velocity dispersion at the center is ≈ √

1/a, and that for high-� models γ ≈ 18. Once the
scales are set, a discussion of the density behavior in the vicinity of r = 0, as carried out in
Subsection 22.3.1 for the King models, quickly leads to the desired answers.]
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11. Consider a cool homogeneous sphere characterized by total energy Etot, mass M, and initial
virial ratio (2K/|W|)in = u � 1. As a result of collisionless collapse, suppose that a quasi-
equilibrium is reached, well represented by an f∞ model (with the same values of energy and
mass). In this final configuration, the maximum phase-space density should not exceed its
maximum initial value. Find a relation between initial virial ratio u and final value � of the
dimensionless central potential. [Hint: Make use of dimensional analysis and the fact that
the global properties of the high-� models are basically � independent; more precisely, we
may recall that a numerical study gives γ ≈ 18, q =|W|rM/GM2 ≈ 1/2, a|W|/M ≈ 3/4, and√

a/c ≈ 0.85rM. A comparison between initial and final virialized states gives the relation
rM/R ≈ 5/12 between final half-mass radius and radius R of the initial homogeneous sphere.
The constraint on maximum phase-space density gives the maximum depth of the central
potential well that can be formed by collisionless collapse as �3/2

max exp(�max) ≈ 2π[u(1 −
u/2)]−3/2. For a related discussion, see Londrillo, Messina, and Stiavelli 1991, cited in
Chapter 23.]

12. What is the relation between the central dynamical time scale [Gρ(0)]−1/2 and the global
crossing time tcr = GM5/2/|2Etot|3/2 for high-� f∞ models?

Chapter 23

1. For a spherical stellar system described by a distribution function f (E,J2), prove the identity
(see also Subsection 23.1.5)

∫
v2

r
∂ f

∂E
d3v =

∫
J2

2r2

(
∂ f

∂E
+ r2

J

∂ f

∂J

)
d3v = −ρ.

Chapter 24

1. Under spherical symmetry, consider a diffuse halo coexisting with a density distribution com-
patible with the R1/4 law, with quasi-isotropic underlying distribution functions, for a case
for which streaming motions can be ignored; for simplicity, the luminous density distribution
can be taken to be of the form (22.59). Compare the condition of hydrostatic equilibrium at
r → 0, where the halo is assumed to be dynamically unimportant and the luminous matter
may be considered to be close to an isothermal sphere, with that at r = rM , where the halo
may provide a significant contribution to the gravitational support. Derive a relation for the
(MD/ML)rM mass ratio (of the dark to luminous mass inside a sphere of radius rM) in terms
of the existing drop (between r = 0 and r = rM) in velocity dispersion for the luminous mat-
ter. Estimate the impact of a moderate amount of pressure anisotropy and a realistic gradient
in the velocity-dispersion profile present at r = rM . [Note: This analysis brings us close to
Eq. (24.1), but a justification of the latter relation would require further discussion because it
involves velocity dispersions projected along the line of sight.]
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