
10

Signalling and metabolic
networks

10.1 Signalling across networks

10.1.1 Calculate (plot as two-dimensional surfaces) promoter activities for
AND, OR, NAND and XOR logic as functions of A and B concentrations
between 0.001 and 100. Set all binding constants equal to 1, A and B binding
with co-operativity equal to 0.01 when they bind to neighboring operators.
Disregard any leaking, and assume perfect recruitment of A or B or AB,
when needed.

Answer The equations in the four cases read:

Activity =
(A ·B/0.01)

1 + A+B + (A ·B/0.01)
AND Gate

Activity =
A

1 + A
+

B

1 +B
OR Gate

Activity =
1

1 + A+B + AB/0.01
NAND Gate

Activity =

(
A

1 + A
+

B

1 +B

)
· 1

1 + A+B + (A ·B/0.01)
XOR Gate

where the geometry is two operators, where the AB complex is only used in
the NAND gate and where it could also have been the result of binding that
involved strong co-operativity between neighboring sites. The results shown
in the left-hand panel of Fig. 10.1.
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Figure 10.1 Logic gates for genetic circuits. In the right-hand column we use
a complex AB in solution that both regulates and sequesters A and B from
the solution.

10.1.2 Repeat the AND, NAND and XOR gates above, using an AB complex
in solution, with binding constant 0.01.

Answer Using the AB complex more extensively, one may make AND,
NAND and XOR gates using:

Activity =
AB

AB + (A− AB) + (B − AB) + 1
AND Gate

Activity =
1

1 + AB
NAND Gate

Activity =

(
A− AB

(1 + A− AB)

B − AB

(1 +B − AB)

)
· 1

1 + AB
XOR Gate
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of which, in particular, the NAND gate appears to be better than the one
that does not use complex formation. Results shown in the right-hand panel
of Fig. 10.1.

10.1.3 Consider the network of three proteins on a line 0−1−2, with total
initial concentrations C0 = C1 = C2 = 1. Calculate the free concentration
of all proteins for K = 1. Investigate the steady-state change ΔF/F for
all proteins, as the total concentration of the first protein is increased to 10
(F denotes free protein concentration).

Answers The iterative equations are:

F1 =
C1

1 + F2

F2 =
C2

1 + F1 + F3

F3 =
C3

1 + F2

with results for C1 = C2 = C3 = 1, and C1 = 10, C2 = C3 = 1 shown in
Fig. 10.2.

10.1.4 Repeat the above question with the stronger binding K = 0.1.

Answers The iterative equations are:

F1 =
C1

1 + F2/0.1

F2 =
C2

1 + F1/0.1 + F3/0.1

F3 =
C3

1 + F2/0.1

with results for C1 = C2 = C3 = 1, and C1 = 10, C2 = C3 = 1 shown in the
lower panels of Fig. 10.2.

10.1.5 Repeat Question 10.1.4, but assume that total concentrations are
C0 = 10, C1 = 3 and C2 = 1, changing to C0 = 100, C1 = 3 and C2 = 1.
Finally, repeat 10.1.3, but with C0 = 1, C1 = 2 and C2 = 10 changing to
C0 = 10, C1 = 3 and C2 = 10.
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Question 10.1.3:

Convergence

Question 10.1.4:

Stringer binding Stronger binding

C(1) = 10

versus

C(1) = 1
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Figure 10.2 Three proteins 1,2 and 3 bind sequentially. In the left-hand panels
we investigate convergence of our method for the case of equal total concen-
trations, in the right-hand and panels we investigate the difference in free
concentrations when all proteins have equal concentrations versus the case
where the first protein has 10 times the total concentration.

Answer The iterative equations are:

F1 =
C1

1 + F2/0.1

F2 =
C2

1 + F1/0.1 + F3/0.1

F3 =
C3

1 + F2/0.1

with Ci given in the question formulation. Results are shown in Fig. 10.3.
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Figure 10.3 Three proteins 1,2 and 3 bind sequentially. In the left-hand panel
we shown what happens when C1 = 10 and C1 = 100, whereas the right-hand
panels investigates what happens for C1 = 1 and C1 = 10. In all cases C2 = 3
and C3 = 10.
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Figure 10.4 Comparison of correct expression with two approximations, of
which Michaelis–Menten is the worst.

10.2 Goldbeter-Koshland...

10.2.1 Compare the exact expression for [EZ] with [EZ] = [E], with [EZ]

= [K][Z]
K+[z]

and with [EZ] = [E][Z]
K+[E]+[Z]

by plotting the expressions as a function of

[E] ∈ [0 : 10] for fixed [Z] = 1. Use K = 1. See what happens when K = 10
and K = 0.1.

Answer Set Z = 1 and plot the corresponding curves as in Fig. 10.4.
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Figure 10.5 Push–pull reactions in steady state, as function of pull, for
K = 0.1, K = 1 and K = 10 (same K in both directions).

10.2.2 Solve the Goldbeter–Koshland system from lower panel of Fig. 10.7
using [Z] + [Zp] = 100, and plotting [Z] as function of E between 0.5 and 1.5

when F = 1 is fixed Hint: simulate
dzP
dt

unit steady state for each [E] value.
First consider the case of strong binding KE = KF = 0.1. Subsequentles
consider KE = KF = 10.

Answer For each value of E = 0.5, 0.6, ...1.5, iterate the equations:

Z(t+ dt)− Z(t)

dt
= −Z + E +K

2
+

√
(Z + E +K)2

4
− Z · E

+
(100− Z) + F +K

2

−
√

((100− Z) + F +K)2

4
− (100− Z) · F

with dt = 0.05 for t = 1000 time units (convergence is slow). Results are
shown in Fig. 10.5.

10.2.3 Consider again the Gold beter–Koshland system for Fig. 10.27 but
now for E = 1 and E = 0.9 and KE = KF = 0.1 and simulate dynamics using
the Gillespie algorithm (that is, one has to simulate, say, at least 1000 events,
each being one of the two competing reactions Zp → Zp + 1 and Z → Z + 1.
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Figure 10.6 Trajectory for the E = 1 and the E = 0.9 cases using a Gillespie
simulation of a push–pull reaction.

Each event is selected according to rates = kp · [ZE], respectively = k · [ZpF]
where concentrations of complexes can be expressed from the equations in Fig.
10.7. Set kp = k = 1 s−1.

Answer There are two processes with rates given by:

r(Z → Z − 1) =
Z + E +K

2
−
√

(Z + E +K)2

4
− Z · E

r(Z → Z + 1) =
100− Z + F +K

2

−
√

((100− Z) + F +K)2

4
− (100− Z) · F

At each step select the next event as the first of the two times:

t(Z → Z − 1) = − ln(random)/r(Z → Z − 1))

t(Z → Z + 1) = − ln(random)/r(Z → Z + 1))

and update time t accordingly. Results are shown in Fig. 10.6.

10.2.4 Construct logical gates based on phosphorylation processes, with the
output being counted in terms of the phosphorylation status of one protein.
Hint: allow for complexes of enzymes, with the possibility that these complexes
may be active, or passive, respectively.

Answer This in principle opens up many answers. Most simply, consider an
AND gate between two enzymes E and G, which is only active as a complex
EG. In a push-pull reaction, where this complex attempts a conversion of
Z → Zp that is opposed by a pull from an enzyme F with strength F = 1,
the concentration of [EF] > F (if all rates are assumed equal and binding

c© K. Sneppen



115

strong (K ∼ 1). Therefore one will have a sharp AND gate that will only
respond if both E and G are above 1. At the same time Z is a NAND gate.

And OR gate would NOT be obtained if the two enzymes both cat-
alyze the reaction independently, because half of each in total would do the
job. However an OR gate could be obtained if they both pass through a
push–pull reaction that secures that they are both either on or off, and then
subsequently have both outputs as inputs in catalyzing a third push–pull
reaction.

And Exclusive OR gate is in fact also relatively simple to obtain, assum-
ing that each enzyme E and G catalyze the Z → Zp reaction, whereas the
complex EG then should catalyze the pull reaction Z → Zp. A small F also
independently catalyzes the pull reaction, but with a lower value F ∼ 0.5.

10.3 Adaptation

10.3.1 A pedagogical example of adaptation could be our intestines, occupied
in part by bacteria B, which consumes the available food F . Argue for and
identify variables in the following model:

dB

dt
= F · B −B

dF

dt
= E − F ·B − C · F (10.1)

Assume that host consumption C = 0.5 and simulate the system for a switch
from steady state at E = 1 to a steady state where the host eats twice as
much, i.e. E = 2. What could make this adaptation less perfect?

Answer B is bacterial density, F is food density and E the supply of food
per time unit. C is the consumption of the intestines, which will grow with
the surface area of the intestine.

The equations are simulated in discrete time steps, with dt = 0.01, with
results shown in Fig. 10.7.

The equations are idealized in the sense that B in practice would be
limited by the size of intestine:

dB

dt
= F · B ·

(
1− B

Bmax

)
−B

dF

dt
= E − F ·B − C · F (10.2)
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Figure 10.7 Simulation of Question 10.3.1 with C = 0.5. The simulation is
started with B = 1 and F = 0, whereas E changes between 1 and 2 every
10th time unit.

an equation which makes adaptation less perfect, in the sense that a small
Bmax will make it impossible to obtain enough bacteria to maintain a steady-
state food level.

10.3.2 Consider the simulation in the right-panel of Fig. 10.1, but replacing
the assumed total concentration of BT = 1 with a BT = 10. Examine the
equations as BT → ∞ (i.e. that the buffer is in huge excess). Demonstrate
that the output C obtains perfect adaptation (ΔC ∼ 0). Hint: set L = 0.02
and solve the equations by simulating a trajectory with small time increments
(dt = 0.01) until steady, then change L abruptly to L = 0.2 and plot the
response of output C.

Answer Shown in Fig. 10.8. Notice that, a larger Btot gives a better adap-
tation. The equations are:

dB

dt
=

C · (BT − B)

(BT − B) + C + 0.001
− 0.25 · B

B + 0.001
(10.3)

dC

dt
=

L · (1− C)

(1− C) + L+ 0.1
− B · C

B + C + 0.1
(10.4)

with Btot = 1 respectively Btot = 2. Also notice that we explore a two-step
increase in input L, and that the second step challenges the capacity of the
buffer more.

10.3.3 Investigate Barkai–Leibler chemotaxis adaptation in Fig. 10.11
numerically, in particular with respect to increasing the rates between Z and
Zp by a factor of 10. Normally these reactions are assumed to be fast, whereas
methylation reactions are assumed to be slower for this system.
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Figure 10.8 Response for different values of buffer, as input is increased from
0.02, to 0.2, to 0.4.
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Figure 10.9 The downstream signaling in chemotaxis of E. coli. Z in our
notation is the molecule CheY, whereas unfortunately the CheZ in our
notation is taken by the enzyme F .

Answer The appropriate equations with the factor f = 10 are:

dZp

dt
= f · L · Z

Z + 1
− f · Zp

Zp + 1
− Zp

Zp + 1
(10.5)

dZ

dt
= −f · L · Z

Z + 1
+ f · Zp

Zp + 1
+

0.2 · (1− Z − Zp)

(1− Z − Zp) + 0.001
(10.6)

which is simulated to steady state starting with Z = Zp = 0.1 at time
t = −40 and using L = 1. At time t > 0 L = 10. See Fig. 10.10, left-hand
panel with f = 1, right-hand with f = 10.
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Figure 10.10 Response for variations of the Barkai–Leibler system.

10.3.4 Vary the saturation condition for methylation by CheR for the model
in Fig. 10.11 (change the constant 0.001 to 1). Investigate what happens if
one changes the CheB rate limits (Zp/(Zp + 1) → Zp/(Zp + 0.1) in one of
the terms for dZ/dt).

Answer For variations in CheR, the equations are:

dZp

dt
=

L · Z
Z + 1

− Zp

Zp + 1
− Zp

Zp + 1
(10.7)

dZ

dt
= − L · Z

Z + 1
+

Zp

Zp + 1
+

0.2 · (1− Z − Zp)

(1− Z − Zp) + 1
(10.8)

which is simulated to steady state starting with Z = Zp = 0.1 at time
t = −40 and using L = 1. At time t > 0 L = 10. See Fig. 10.11, left-hand
panel.

For variations in CheB the equations read:

dZp

dt
=

L · Z
Z + 1

− Zp

Zp + 1
− Zp

Zp + 0.1
(10.9)

dZ

dt
= − L · Z

Z + 1
+

Zp

Zp + 1
+

0.2 · (1− Z − Zp)

(1− Z − Zp) + 0.001
(10.10)

which is simulated to steady state starting with Z = Zp = 0.1 at time
t = −40 and using L = 1. At time t > 0 L = 10. See Fig. 10.11, right-hand
panel.
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Figure 10.11 Response for variations of the Barkai–Leibler system.

10.4 Metabolic Fluxes

10.4.1 Examine possible solutions for the glucolysis network in Fig. 10.14,
assuming that all v are in the interval [0,1]. Which solutions maximize pro-
duction of Fluc1-6P2. What are values of all fluxes in that state? Explain
the solution in words?. Hint: sample solutions by selecting v2, v3 and v7 ran-
domly in the chosen interval and obtain other vs from the equation for the
null space. Investigate the subset of solutions that fulfill all constraints.

Answer Let v2, v3 and v7 take random values between 0 and 1. For each
such selection set:

v1 = v2 + v3 (10.11)

v4 = v3 (10.12)

v5 = v3 (10.13)

v6 = v7 + 2v2 + 2v3 (10.14)

v8 = 0 (10.15)

and accept a solution if all vi ∈ [0, 1]. For each accepted selection calculate
production of Fruc1-6P2, given by V = v5. Select the solution with the
maximum value of V . For a sample of 1000 attempted solutions we obtain
V = 0.48, as seen from the figure in main text. At this point the fluxes in
the system are: v = (0.49, 0.01, 0.48, 0.48, 0.48, 0.99, 0.01, 0.00).

10.4.2 Repeat question 10.4.1, allowing v6 and v7 to take any value, i.e.
allowing transitions between ATP and ADP to be very fast.
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Figure 10.12 Sampling of solutions where all v are between 0 and 1. The blue
and green colors are projections of the solution space in various planes.

Answer Let v2, v3 take random values between 0 and 1, whereas v7 can
take values between 0 and 1000. Repeat procedure from last questions and
again obtain V = 0.99 and v = (1.00, 0.01, 0.99, 0.99, 0.99, 603, 600.00, 0.00).

10.4.3 Repeat the random sampling in Fig. 10.15, showing instead the allowed
values of v1, v3 and v6.

Answer See Fig. 10.12.

10.4.4 Examine the metabolic model network in Fig. 10.15, and the sample
solution space, where we assume that all v ∈ [0; 2]. Find solutions where
v3 + v6 is maximal.

Answer Let v2, v3 and v4 takes random values between 0 and 2. For each
such selection set:

v1 = v2 + 2v4 (10.16)

v5 = v3 − v2 (10.17)

v6 = v4 − v5 (10.18)

and accept a solution if all vi ∈ [0, 2]. For each accepted selection calculate
V = v3 + v6 and select the solution with the maximum value of V . For a
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Figure 10.13 Sampling of solutions where all v are between 0 and 2. The blue
and green colors are projections of the solution space in various planes.

sample of 1000 attempted solutions we obtain V = 1.9. At this point the
fluxes in the system are: v = (1.97, 1.90, 1.91, 0.03, 0.01, 0.02). The solution
space is visualized in Fig. 10.13.
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