
Appendix A: Linear System Theory

A.1 Introduction
This appendix summarizes a number of fundamen-
tal definitions from linear system and Fourier theory.
Only what is relevant for this book is discussed. More
information can be found in the specific textbooks on
this topic.50

A.2 Signals

A.2.1 Definitions and Examples
A signal represents the measurable change of some
quantity with respect to one or more independent
variables such as time or spatial position. Mathemat-
ically, a signal can be represented as a function. In
medical imaging, the signals are multidimensional.
Modern acquisition systems acquire three- (3D) and
even four-dimensional (4D) data. The signal can then
be written as

s = f (�r, t) = f (x, y, z, t)
∀ x, y, z, t ∈ R and s ∈ C. (A.1)

The value of the function is usually real, but it can be
complex.

Signals have some particular properties. The most
important for this book are defined as follows.

A signal is even if

s(−x) = s(x) ∀ x ∈ R. (A.2)

A signal is odd if

s(−x) = −s(x) ∀ x ∈ R. (A.3)

50 R. N. Bracewell. The Fourier Transform and Its Appli-
cations. McGraw-Hill, New York, second edition, 1986.
E. Oran Brigham. The Fast Fourier Transform and
Its Applications. Prentice-Hall International, Englewood
Cliffs, New Jersey, first edition, 1988.
A. Oppenheim, A. Willsky, and H. Nawab. Signals
and Systems. Prentice-Hall International, Upper Saddle
River, New Jersey, second edition, 1997.

We denote even and odd signals by se(x) and so(x),
respectively. Obviously, the product of two even sig-
nals is even, the product of two odd signals is even,
and the product of an even and an odd signal is odd.
From the definition it is also clear that∫ +∞

−∞
se(x) dx = 2

∫ +∞

0
se(x) dx (A.4)

and ∫ +∞

−∞
so(x) dx = 0. (A.5)

Any signal can be written as the sum of an even and
an odd part:

s(x) =
[
s(x)
2
+ s(−x)

2

]
+
[
s(x)
2
− s(−x)

2

]

= se(x)+ so(x). (A.6)

A signal is periodic if

s(x+ X ) = s(x) ∀ x ∈ R. (A.7)

The smallest finite X that satisfies this equation is
called the period. If no such X exists, the function is
aperiodic.

A complex function can be written in Cartesian
representation. For 2D signals, we have

s(x, y) = u(x, y)+ iv(x, y), (A.8)

where u(x, y) and v(x, y) are the real part and imagi-
nary part, respectively. A complex function can also
be written in polar representation as

s(x, y) = |s(x, y)| eiφ(x,y), (A.9)

where

|s(x, y)| =
√

u2(x, y)+ v2(x, y) (A.10)

is the modulus or the amplitude and
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Figure A.1 Some of the most

important signals in linear system

theory. (a) The exponentials ex (solid)

and e−x (dashed). (b) sin(x) (dashed)
and cos(x) (solid). (c) Rectangular
pulse. (d) Triangular pulse. (e)
Normalized Gaussian with μ = 0. (f)
sinc(x).

φ(x, y) = arctan
(

v(x, y)
u(x, y)

)
(A.11)

is the argument or the phase of s.
A number of signals are used extensively in system

theory and are important enough to have a unique
name. Here are some of them (see also Figure A.1).

– Exponential (Figure A.1(a))

exp(ax) = eax. (A.12)

When the constant a > 0, the exponential function
increases continuously with increasing x (solid

line); when a < 0, it decreases toward zero with
increasing x (dashed line).

– Complex exponential or sinusoid (Figure A.1(b)):

A ei(2πkx+φ) = A (cos(2πkx+φ)+i sin(2πkx+φ)).
(A.13)

A sinusoid is characterized by three parameters: its
modulus or amplitude A, spatial frequency k, and
phase φ. The term i is the imaginary unit; that is
i2 = −1. The real and imaginary parts of a sinu-
soid are, respectively, a cosine (solid line) and sine
function (dashed line).250
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– Unit step function (also called Heaviside’s func-
tion)

u(x− x0) = 0 for x < x0

= 1
2

for x = x0 (A.14)

= 1 for x > x0.

The constant x0 denotes the location of the step.
The function is discontinuous at x0.

– Rectangular function (Figure A.1(c))

�

(
x
2L

)
= 1 for |x| < L

= 1
2

for |x| = L (A.15)

= 0 for |x| > L.

The constant 2L is the width of the rectangle.
Because the nonzero extent of the function is finite,
the function is also called a rectangular pulse.

– Triangular function (Figure A.1(d))

�

(
x
2L

)
= 1− |x|

L
for |x| < L

= 0 for |x| ≥ L.
(A.16)

Note that the base of the triangular pulse is equal
to 2L.

– Normalized Gaussian (Figure A.1(e))

Gn(x;μ, σ ) = 1√
2πσ

exp(− (x− μ)2

2σ 2 ). (A.17)

The Gaussian is normalized (i.e., its integral for
all x is 1). The constants μ, σ , and σ 2 are the
mean, the standard deviation, and the variance,
respectively.

– Sinc function (Figure A.1(f))

sinc(x) = sin(x)
x

. (A.18)

According to L’Hôpital’s rule, sinc(0) = 1.

Note that the rectangular, the triangular, the normal-
ized Gaussian, and the sinc function are all even and
aperiodic. The step function is neither even nor odd
nor periodic. To be compatible with the theory of
single-valued functions, it is common to use the mean
of the value immediately left and right of the discon-
tinuity. For example, the values at the discontinuities
of the rectangular pulse equal 1/2.

A.2.2 The Dirac Impulse
The Dirac impulse, also called impulse function or
δ-function, is a very important function in linear
system theory. It is defined as

δ(x− x0) = 0 for x �= x0,∫ +∞

−∞
δ(x− x0) dx = 1,

(A.19)

with x0 a constant. The value of a Dirac impulse is
zero for all x except in x = x0, where it is undefined.
However, the area under the impulse is finite and is by
definition equal to 1. A Dirac impulse can be consid-
ered as the limit of a rectangular pulse of magnitude
1
ε
and spatial extent ε > 0 such that the area of the

pulse is 1:

δ(x) = lim
ε→0

1
ε
�

(
x
ε

)
. (A.20)

When ε becomes smaller, the spatial extent decreases,
the amplitude increases, but the area remains the
same. Clearly, the Dirac impulse is not a function
in the strict mathematical sense. Its rigorous defini-
tion is given by the theory of generalized functions or
distributions, which is beyond the scope of this text.51

Using Eq. A.20, it is clear that∫ +∞

−∞
δ(x)s(x) dx = lim

ε→0

∫ +∞

−∞
1
ε
�

(
x
ε

)
s(x) dx,

(A.21)

and consequently the following properties hold:

– sifting let s(x) be continuous at x = x0, then∫ +∞

−∞
s(x) δ(x− x0) dx = s(x0); (A.22)

– scaling: ∫ +∞

−∞
A δ(x) dx = A, (A.23)

this is a special case of sifting.

The definition of the impulse function can be
extended to more dimensions by replacing x by �r.

51 R. N. Bracewell. The Fourier Transform and Its Appli-
cations. McGraw-Hill, New York, second edition, 1986.
E. Oran Brigham. The Fast Fourier Transform and
Its Applications. Prentice-Hall International, Englewood
Cliffs, New Jersey, first edition, 1988.
R. F. Hoskins.Generalised Functions. McGraw-Hill Book
Company, New York, 1979.
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The properties are analogous; for example, the sifting
property in 2D becomes

+∞∫ ∫
−∞

s(�r) δ(�r − �r0) d�r = s(�r0). (A.24)

The impulse function is crucial for a thorough under-
standing of sampling, as discussed in Section A.5.

A.3 Systems

A.3.1 Definitions and Examples
A system transforms an input signal (also called exci-
tation) into an output signal (also called response).
Mathematically this can be written as

so = L{si}, (A.25)

where si and so are the input and output signals,
respectively.∗ The term L is an operator and denotes
the action of the system. A system can be complex and
it can consist of many diverse parts. In system theory,
however, it is often considered as a black box, and the
detailed behavior of the different components is irrel-
evant. As a simple example, consider an amplifier. It
consists of many electrical and electronic parts, but
its essential action is to amplify any input signal by
a certain amount, say A. Hence,

so(t) = L{si(t)} = A si(t). (A.26)

The process of finding a mathematical relation-
ship between the input and the output signal is called
modeling. The simplest is an algebraic relationship, as
in the example of the amplifier. More difficult are con-
tinuous dynamic relationships that involve (sets of)
differential or integral equations, or both, and discrete
dynamic relationships that involve (sets of) difference
equations.

With respect to their model, systems can be lin-
ear or nonlinear. A system is linear if the superposition
principle holds, that is,

L{c1s1 + c2s2} = c1L{s1} + c2L{s2}
∀ c1, c2 ∈ R, (A.27)

with s1 and s2 as arbitrary signals. For example, the
amplifier introduced above is linear because

∗ We also use so to represent an odd signal. However, this
should cause no confusion because the exact interpretation
is clear from the context.

L{c1s1 + c2s2} = A(c1s1 + c2s2)
= c1A s1 + c2A s2 (A.28)
= c1L{s1} + c2L{s2}.

A system is nonlinear if the superposition principle
does not hold. For example, a system whose output is
the square of the input is nonlinear because

L{c1s1 + c2s2} = (c1s1 + c2s2)2

�= (c1s1)2 + (c2s2)2.
(A.29)

In this text, only linear systems are dealt with.
A system is time invariant if its properties do not

change with time. Hence, if so(t) is the response to
the excitation si(t), so(t − T) will be the response
to si(t − T). Analogously, a system is shift invariant
if its properties do not change with spatial posi-
tion: if so(x) is the response to the excitation si(x),
so(x − X) will be the response to si(x − X). We
will denote linear time-invariant systems as LTI sys-
tems and linear shift-invariant systems as LSI sys-
tems.

The response to a Dirac impulse is called the
impulse response. From Eq. A.22 it follows that

si(x) =
∫ +∞
−∞

si(ξ ) δ(x− ξ ) dξ . (A.30)

Let h(x) be the impulse response of a LSI system.
Based on the superposition principle (A.27), so(x) can
then be written as

so(x) = L{si} =
∫ +∞
−∞

si(ξ )L{δ(x− ξ )} dξ

=
∫ +∞
−∞

si(ξ ) h(x− ξ ) dξ . (A.31)

A similar equation holds for a LTI system:

so(t) =
∫ +∞
−∞

si(τ ) h(t − τ ) dτ . (A.32)

The integral in Eqs. (A.31) and (A.32) is a so-called
convolution and is often represented by an asterisk:

so = si ∗ h. (A.33)

The function h is also known as the point spread
function or PSF (see Figure 1.4). Because of its impor-
tance in this book, convolution will first be discussed
in some more detail.252
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Figure A.2 Graphical interpretation

of the convolution of a rectangular

pulse s1(x) with a triangle s2(x).
Changing the independent variable

to ξ does not change the functions

(a). After s2(ξ ) is mirrored (b), it is
translated over a distance x, both
functions are multiplied, and the

result is integrated (c). The area of

the overlapping part is the result for

the chosen x. The convolution

s1(x) ∗ s2(x) is shown in (d).

A.3.2 Convolution
Given two signals s1(x) and s2(x), their convolution is
defined as follows:

s1(x) ∗ s2(x) =
∫ +∞
−∞

s1(x− ξ ) s2(ξ ) dξ , (A.34)

or equivalently

s2(x) ∗ s1(x) =
∫ +∞

−∞
s1(ξ ) s2(x− ξ ) dξ . (A.35)

The result of both expressions is identical, as is clear
when substituting ξ by x− ξ .

A graphical interpretation of convolution is given
in Figure A.2. The following steps can be discerned:

– mirroring, changing ξ to−ξ ,
– translation over a distance equal to x,
– multiplication, the product of the mirrored and
shifted function s1(x − ξ ) with s2(ξ ) is the colored
part in Figure A.2(c),

– integration, the area of the colored part is the
convolution value in point x.

The convolution function is found by repeating the
previous steps for each value of x.

Convolution can also be defined for multidimen-
sional signals. For 2D (two-dimensional) signals, we
have

s1(x, y) ∗ s2(x, y) (A.36)

=
+∞∫ ∫
−∞

s1(x− ξ , y− ζ ) s2(ξ , ζ ) dξ dζ ,

or equivalently

s2(x, y) ∗ s1(x, y)

=
+∞∫ ∫
−∞

s2(x− ξ , y− ζ ) s1(ξ , ζ ) dξ dζ .
(A.37)

The graphical analysis shown above can be extended
to 2D. The convolution values are then represented by
volumes rather than by areas.

The convolution integrals (A.34)–(A.37) have
many properties. The most important in the context
of this book include the following.

– Commutativity

s1 ∗ s2 = s2 ∗ s1. (A.38)

– Associativity

(s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3) = s1 ∗ s2 ∗ s3. (A.39)

– Distributivity

s1 ∗ (s2 + s3) = s1 ∗ s2 + s1 ∗ s3. (A.40)

A.3.3 Response of a LSI System
Let us first consider the response of a LSI system to a
sinusoid. Using Eq. A.31 with si(x) = A e2π ikx yields

so(x) =
∫ +∞

−∞
A e2π ik(x−ξ ) h(ξ ) dξ

= A e2π ikx
∫ +∞

−∞
e−2π ikξ h(ξ ) dξ (A.41)

= A e2π ikx H(k), 253



Appendix A: Linear System Theory

with H(k) the so-called Fourier transform of the PSF
h(x):

H(k) =
∫ +∞

−∞
e−2π ikξ h(ξ ) dξ . (A.42)

The function H(k) is also called the transfer function.
It can be shown that any input signal si(x) can

be written as an integral of weighted sinusoids with
different spatial frequencies:

si(x) =
∫ +∞

−∞
Si(k) e2π ikx dk, (A.43)

where Si(k) is the Fourier transform of si(x). The
signal si(x) is the so-called inverse Fourier transform
(because of the + sign in the exponent instead of the
− sign in Eq. A.42) of Si(k).

Using Eq. A.41 and the superposition principle,
the output signal so is then

so(x) =
∫ +∞

−∞
Si(k) H(k) e2π ikx dk. (A.44)

Summarizing, the output function so of a LSI sys-
tem can be calculated in two ways: either by con-
volving the input function si with the PSF, that is,
so = si ∗ h (Eq. A.33), or in the k-space or fre-
quency domain by multiplying the Fourier trans-
form of si by the transfer function, that is, So(k) =
Si(k)H(k), and calculating the inverse Fourier trans-
form of So(k).

In linear system theory, the transfer functionH(k)
is often used instead of the PSF h(x) because of
its nice mathematical and interesting physical prop-
erties. The relationship between the PSF h(x) and
the transfer function H(k) is given by the Fourier
transform (A.42). Because of its importance in med-
ical imaging, the Fourier transform is discussed in
more detail in the next section. Note, however,
that the Fourier transform is not the only possible
transform. There are many others (Hilbert, Laplace,
etc.), although the Fourier transform is by far the
most important in the theory of medical imag-
ing.

A.4 The Fourier Transform

A.4.1 Definitions
Let k and r be the conjugate variables in the Fourier
domain and the original domain, respectively. The
forward Fourier transform (FT) of a signal s(r) is

defined as

S(k) = F{s(r)} =
∫ +∞

−∞
s(r) e−2π irk dr. (A.45)

The operator symbol F (calligraphic F) is used as the
notation for the transform. Uppercase letters are used
for the result of the forward transform. Analogously,
the inverse Fourier transform (IFT) is defined as

s(r) = F−1{S(k)} =
∫ +∞

−∞
S(k) e+2π irk dk. (A.46)

It can be shown that for continuous functions s,

s(r) = F−1{F{s(r)}}. (A.47)

From the definitions A.45 and A.46, it follows that for
an even function se(r),

F{se(r)} = F−1{se(r)}. (A.48)

If r is time with dimension seconds, k is the temporal
frequency with dimension hertz. Related to the tem-
poral frequency is the angular frequency ω = 2πk
with dimension radians per second. In this case, the
base function of the forward FT describes a rotation
in the clockwise direction with angular velocity ω. If
r is spatial position with dimension mm, k is spatial
frequency with dimension mm−1.

In this definition, the original signal and the result
of the transform are one dimensional. In medical
imaging, however, the signals are often multidimen-
sional and vectors must be used in the definitions.

Forward: S(�k) = F{s(�r)} =
∫ +∞

−∞
s(�r) e−2π i�k·�r d�r.

Inverse: s(�r) = F−1{S(�k)} =
∫ +∞

−∞
S(�k) e+2π i�k·�r d�k.

(A.49)

�r and �k are the conjugate variables, �r being spatial
position and �k spatial frequency. Although only one
integral sign is shown, it is understood that there are
as many as there are independent variables. The orig-
inal signal and its transform are known as a Fourier
transform pair denoted as

s(r)←→ S(k). (A.50)

In general, the result of the forward FT of a signal
is a complex function. The amplitude spectrum is the
modulus of its FT, while the phase spectrum is the
phase of its FT. Both spectra show how amplitude
and phase vary with spatial or temporal frequencies.254
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Often, the phase spectrum is considered irrelevant,
and only the amplitude spectrum is considered. Note,
however, that a signal is completely characterized if
and only if both the amplitude and phase spectrum
are specified.

A.4.2 Examples
A.4.2.1 Example 1

The FT of a rectangular pulse (Eq. A.15), scaled with
amplitude A is

F
{
A�

(
x
2L

)}
=

∫ +∞

−∞
A�

(
x
2L

)
e−2π ikx dx

=
∫ +L

−L
A e−2π ikx dx (A.51)

= − A
2π ik

(e−2π ikL − e+2π ikL).

Using Eqs. A.13 and A.18, we finally obtain

A�

(
x
2L

)
←→ 2AL sinc(2πkL). (A.52)

The forward FT of a rectangular pulse is a sinc func-
tion whose maximum amplitude is equal to the area
of the pulse. The first zero-crossing occurs at

k = 1
2L

. (A.53)

Thus, the broader the width of the rectangular pulse
in the original domain, the closer the first zero-
crossing lies near the origin of the Fourier domain
or the more “peaked” the sinc function is (see Fig-
ure A.1(c) and(f)).

A.4.2.2 Example 2

The forward FT of the product of a step function
(Eq. A.14) and an exponential (Eq. A.12) (we assume
a > 0) is

F{u(x) e−ax} =
∫ +∞

−∞
u(x) e−ax e−2π ikx dx

=
∫ +∞

0
e−(a+2π ik)x dx

(A.54)
= 1

a+ 2π ik

= a
a2 + 4π2k2

− i
2πk

a2 + 4π2k2
.

The result is complex; according to Eqs. A.8 and A.9,
we have the following

real part:
a

a2 + 4π2k2
,

imaginary part: − 2πk
a2 + 4π2k2

. (A.55)

modulus:
1√

a2 + 4π2k2
.

phase: −arctan
(
2πk
a

)
.

This transform pair is a mathematical model of the
filter shown in Figure 4.23.

A.4.2.3 Example 3

The forward FT of the Dirac impulse. Direct applica-
tion of the sifting property (A.22) gives

F{δ(x− x0)} =
∫ +∞

−∞
δ(x− x0) e−2π ikx dx

= e−2π ikx0 . (A.56)

The FT of a Dirac impulse at x0 is complex: in
the amplitude spectrum, all spatial frequencies are
present with amplitude 1. The phase varies linearly
with k with slope−2πx0.

A difficulty arises when calculating the IFT:

s(x) =
∫ +∞

−∞
e−2π ikx0 e+2π ikx dk

(A.57)
=

∫ +∞

−∞
cos(2πk(x− x0)) dk

+ i
∫ +∞

−∞
sin(2πk(x− x0)) dk.

Because its integrand is odd, the second integral is
zero. The first integral has no meaning, unless it is
interpreted according to the distribution theory. In
this case, it can be shown that∫ +∞

−∞
cos(2πk(x− x0)) dk =

∫ +∞

−∞
e+2π ik(x−x0) dk

= δ(x− x0). (A.58)

Hence,
δ(x− x0)←→ e−2π ikx0 . (A.59)
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Table A.1 Important Fourier transform pairs in linear system

theory

Image space Fourier space

1 δ(k)

δ(x) 1

cos(2πk0x)
1
2
(δ(k+ k0)+ δ(k− k0))

sin(2πk0x)
i
2
(δ(k+ k0)− δ(k− k0))

�(
x
2L

) 2L sinc(2πLk)

�(
x
2L

) L sinc2(πLk)

Gn(x;μ, σ ) exp(−i2πkμ) exp(−2π2k2σ 2)

A.4.2.4 Example 4

The forward FT of a cosine function is

F{ cos(2πk0x)}
=

∫ +∞

−∞
cos(2πk0x) e−2π ikx dx

=
∫ +∞

−∞

(
e+2π ik0x + e−2π ik0x

2

)
e−2π ikx dx

= 1
2

∫ +∞

−∞
e−2π i(k−k0)x dx (A.60)

+ 1
2

∫ +∞

−∞
e−2π i(k+k0)x dx

= 1
2
δ(k− k0)+ 1

2
δ(k+ k0).

The spectrum of a cosine function consists of two
impulses at spatial frequencies k0 and−k0. In general
it can be shown that a periodic function has a discrete
spectrum (i.e., not all spatial frequencies are present),
whereas an aperiodic function has a continuous spec-
trum. Table A.1 shows a list of FT pairs used in this
book.

A.4.3 Properties
– Linearity If s1 ←→ S1 and s2 ←→ S2, then

c1s1 + c2s2 ←→ c1S1 + c2S2 ∀c1, c2 ∈ C.
(A.61)

This can easily be extended to more than two
signals.

– Scaling If s(x)←→ S(k), then

s(ax)←→ 1
|a|S

(
k
a

)
a ∈ R0. (A.62)

– Translation If s(x)←→ S(k), then

s(x− x0)←→ e−2π ix0k S(k) x0 ∈ R. (A.63)

Thus, translating a signal over a distance x0 only
modifies its phase spectrum.

– Transfer function and impulse response (or PSF)
are a FT pair. Indeed, Eq. A.42 shows that

h(x)←→ H(k). (A.64)

In imaging, the FT of the PSF is known as the opti-
cal transfer function (OTF). The modulus of the
OTF is the modulation transfer function (MTF). As
mentioned in Chapter 1, the PSF and OTF char-
acterize the resolution of the system. If the PSF is
expressed in mm, the OTF is expressed in mm−1.
Often, line pairs per millimeter (lp/mm) is used
instead of mm−1. The origin of this unit can easily
be understood if an image with sinusoidal inten-
sity lines at a frequency of 1 period per millimeter
or 1 lp/mm, that is, one dark and one bright line
per millimeter, is observed (Figure A.3). This line
pattern can be written as sin(2πx), x expressed in
mm. The Fourier transform of this function con-
sists of two impulses at spatial frequency 1 mm−1

Figure A.3 Image with sinusoidal intensity lines at a frequency of

1 lp/mm.
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and −1 mm−1. This then explains why the fre-
quency units mm−1 and lp/mm can be used as
synonyms.

The resolution of an imaging system is some-
times characterized by the distinguishable number
of line pairs per millimeter. It is clear now that
this is a limited and subjective measure, and that
it is preferable to show the complete OTF curve
when talking about the resolution. Nevertheless,
it is common practice in the technical documents
of medical imaging equipment and in the medical
literature simply to list an indication of the resolu-
tion in lp/mm at a specified small amplitude (in %)
of the OTF.

– Convolution In Section A.3.3 it was concluded that
an output function so of a LSI system can be cal-
culated in two ways: (1) so = si ∗ h in the image
domain or (2) F−1{So(k) = Si(k)H(k)} in the
Fourier domain. In general, if s1 ←→ S1 and
s2 ←→ S2, then

s1 ∗ s2 ←→ S1 · S2
s1 · s2 ←→ S1 ∗ S2.

(A.65)

This is a very important property. The convolu-
tion of two signals can be calculated via the Fourier
transform by calculating the forward–inverse FT
of both signals, multiplying the FT results, and
calculating the inverse–forward FT of the product.

– The FT of a real signal is Hermitian

S(−�k) = S̄(�k) if s(x) ∈ R, (A.66)

where S̄ denotes the complex conjugate of S (i.e.,
the real part is even and the imaginary part is odd).
From Eqs. A.6, A.13, and A.45, we obtain

S(k) =
∫ +∞

−∞
s(x) e−2π ikx dx

=
∫ +∞

−∞
[se(x)+ so(x)]

· [cos(2πkx)− i sin(2πkx)] dx

=
∫ +∞

−∞
se(x) cos(2πkx) dx (A.67)

− i
∫ +∞

−∞
so(x) sin(2πkx) dx.

The first integral is the real even part of S(k),
and the second is the imaginary odd part of S(k).

Hence, to compute the FT of a real signal, it suf-
fices to know one half-plane. The other half-plane
can then be computed using Eq. A.66.

Eq. A.67 further shows that if a function is
even (odd), its FT is even (odd). Consequently, if
a function is real and even, its FT is real and even,
whereas if a function is real and odd, its FT is
imaginary and odd.

– Parseval’s theorem∫ +∞

−∞
|s(x)|2 dx =

∫ +∞

−∞
|S(k)|2 dk. (A.68)

– Separability In many cases, a 2D FT can be calcu-
lated as two subsequent 1D FTs. The transform is
then called separable. For example,

F{ sinc(x) sinc(y)}

=
+∞∫ ∫
−∞

sin(x)
x

sin(y)
y

e−2π i(kxx+kyy) dx dy

=
∫ +∞

−∞
sin(x)

x
e−2π ikxx dx

·
∫ +∞

−∞
sin(y)

y
e−2π ikyy dy

= F{sinc(x)} F{sinc(y)}. (A.69)

– Another important property of a 2D FT is the
projection theorem or central-slice theorem. It is
discussed in Chapter 3 on X-ray computed tomog-
raphy.

A.4.4 Polar Form of the Fourier Transform
Using polar coordinates

x = r cos θ
y = r sin θ ,

(A.70)

Eq. A.49

S(kx, ky) =
+∞∫ ∫
−∞

s(x, y) e−2π i(kxx+kyy) dx dy (A.71)

can be rewritten as

S(kx, ky) (A.72)

=
∫ 2π

0

∫ +∞

0
s(r, θ) e−2π i(kxr cos θ+kyr sin θ) r dr dθ

=
∫ π

0

∫ +∞

−∞
s(r, θ) e−2π i(kxr cos θ+kyr sin θ) |r| dr dθ . 257
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The factor r in the integrand is the Jacobian of the
transformation:

J�=

∣∣∣∣∣∣∣∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

.

∣∣∣∣∣∣∣∣
=

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣

= r (cos2 θ + sin2 θ) = r. (A.73)

The polar form of the inverse FT is obtained analo-
gously. Let

kx = k cosφ
ky = k sinφ,

(A.74)

then

s(x, y) (A.75)

=
∫ π

0

∫ +∞

−∞
S(k,φ) e+2π i(xk cosφ+yk sinφ) |k| dk dφ.

A.5 Sampling
Equation (A.1) represents an analog continuous sig-
nal, which is defined for all spatial positions and can
have any (real or complex) value:

s(x) ∀ x ∈ R. (A.76)

In practice, the signal is often sampled, that is, only
discrete values at regular intervals are measured:

ss(x) = s(n�x) n ∈ Z. (A.77)

The constant �x is the sampling distance. Infor-
mation may be lost by sampling. However, under
certain conditions, a continuous signal can be com-
pletely recovered from its samples. These conditions
are specified by the sampling theorem, which is also
known as the Nyquist criterion. If the Fourier trans-
form of a given signal is band limited and if the
sampling frequency is larger than twice the maxi-
mum spatial frequency present in the signal, then the
samples uniquely define the given signal. Hence,

if

⎧⎨
⎩

S(k) = 0 ∀ |k| > kmax and
1
�x

> 2kmax (A.78)
then ss(x) = s(n�x) uniquely defines s(x).

To prove this theorem, sampling is defined as a multi-
plication with an impulse train (see Figure A.4):

ss(x) = s(x) ·��(x), (A.79)

(b)(a)

(d)(c)

(f)(e)

Figure A.4 A signal with an infinite spatial extent (a) and its

band-limited Fourier transform (b). The sampled signal (e) is
obtained by multiplying (a) by the impulse train (c). The spectrum

(f) of the sampled signal is found by convolving the original

spectrum (b) with the Fourier transform of the impulse train (d).
This results in a periodic repetition of the original spectrum.

where��(x) is the comb function or impulse train:

��(x) =
+∞∑

n=−∞
δ(x− n�x). (A.80)

The sampling distance�x is the distance between any
two consecutive Dirac impulses. Note that this for-
mula is a formal notation because the product is only
valid as an integrand.

Based on Eq. A.80 and using the convolution the-
orem, the Fourier transform Ss(k) can be written as258
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(b)(a)

(d)(c)

(f)(e)

Figure A.5 A signal with a finite spatial extent (a) is not band
limited (b). The sampled signal (e) is obtained by multiplying (a) by
the impulse train (c). The spectrum (f) of the sampled signal is

found by convolving the original spectrum (b) with the Fourier

transform of the impulse train (d). This results in a periodic

repetition of the original spectrum. Because of the overlap, aliasing

cannot be avoided.

follows:

Ss(k) = S(k) ∗ F{��(x)}. (A.81)

It can be shown that

F{��(x)} = K
+∞∑

l=−∞
δ(k− lK), (A.82)

which is again an impulse train with consecutive
impulses separated by the sampling frequency

K = 1
�x

. (A.83)

Hence,

Ss(k) = K(S(k)+ S(k−K)+ S(k+K)
+ S(k− 2K)+ S(k+ 2K)+ · · ·). (A.84)

Because

S(k) = 0 ∀ |k| ≥ K
2

it follows that

K S(k) = Ss(k)�
(

x
K

)
, (A.85)

and consequently s(x) can be recovered from Ss(k).
If the signal s(x) is not band limited or if it is

band limited but 1
�x ≤ 2kmax, the shifted replicas

of S(k) in Eq. A.84 will overlap (see Figure A.5). In
that case, the spectrum of s(x) cannot be recovered
by multiplication with a rectangular pulse. This phe-
nomenon is known as aliasing and is unavoidable if
the original signal s(x) is not band limited. As an
important example, note that a patient always has a
limited spatial extent, which implies that the FT of
an image of the body is never band limited and, con-
sequently, aliasing is unavoidable. Several practical
examples of aliasing are given in this textbook

Numerical methods calculate the Fourier trans-
form for a limited number of discrete points in the
frequency band (−kN ,+kN). Thismeans that not only
the signal but also its Fourier transform is sampled.
Sampling the Fourier data implies that it yields shifted
replicas in the signal s, which may overlap. To avoid
such overlap or aliasing of the signal, the sampling
distance�k must also be chosen small enough. It can
easily be shown that this condition can be satisfied
if the number of samples in the Fourier domain is
at least equal to the number of samples in the signal
domain. In practice they are chosen equal.

Based on the preceding considerations, the dis-
crete Fourier transform (DFT) for 2D signals can be
written as (more details can be found in Brigham52):

S(m�kx, n�ky) =
N−1∑
q=0

M−1∑
p=0

s(p�x, q�y) e−2π i(
mp
M + nq

N ),

(A.86)

s(p�x, q�y) =
N−1∑
n=0

M−1∑
m=0

S(m�kx, n�ky) e2π i(
mp
M + nq

N ).

52 E. Oran Brigham. The Fast Fourier Transform and
Its Applications. Prentice-Hall International, Englewood
Cliffs, New Jersey, first edition, 1988.
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In both cases, m, p = 0, 1, ...,M − 1 and n, q =
0, 1, ...,N − 1. Here, M and N need not be equal
because both directions can be sampled differently.
However, for a particular direction, the number of
samples in the spatial and the Fourier domain is the
same.

Direct computation of the DFT is a time-
consuming process. However, when the number of

samples is a power of two, a computationally very fast
algorithm can be employed: the fast Fourier transform
or FFT. The FFT algorithm has become very impor-
tant in signal and image processing, and hardware
versions are frequently used in today’s medical equip-
ment. The properties and applications of the FFT are
the subject of Brigham’s The Fast Fourier Transform
and Its Applications.52
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