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1 | Real Numbers and Functions

1.1 Field and Order Properties

Task 1.1.5. To verify that a given number y is the additive inverse of another
number z, we have to check whether x + y equals zero. In our case, we have
y = (—a)+ (—b) and x = a + b. Therefore, we compute as follows:

(@+b)+((=a) + (=) = (b +a) + ((—a) + (=0)) = ((b + a) + (—a)) + (=)
(b

_|_
+ (a+ (—a))) + (=b) = (b+0) + (=b) = b+ (—b)

Similarly, to verify that one number is the multiplicative inverse of another, we
need to check whether their product is one.

(ab)(a™*b™Y) = (ba)(a™*b™Y) = ((ba)a™t)b~*
=Wa-aHbt=0- )b =b-b" =1

Task 1.1.6. This is a special case of (—a)(—b) = ab, which has already been
established:

(—2)* = (—x)(—2) =2z -z = 2°

Task 1.1.7.

(a) Apply the same principles as in Task 1.1.5:

9 ;a = -1 — -1 = — -1 == (). -1 — _g — ;al
5T ab™" +(—a)b (a+(—a))b 0-b 0 = D=
Next, note that (—=b)~! = ((—=1)b)" ! = (-1)"o~ ! = (-1)p=! = —(b71).
Hence,

g i = -1 — -1 = -1 — -1 — . — _g . i
- ab™" +a(-b) ab™ +(-b)")=a-0=0 = D= Th

Alternately, make repeated use of —z = (—1)x. For example,

5= (@) = (~D(@ ) = (FDa ! = (ap = 5

(b) We present a terse solution below, in which the use of the commutative

1



2 CHAPTER 1. REAL NUMBERS AND FUNCTIONS

and associative properties is hidden.

% + (i; —ab '+ ed ' = add b + cbb—1d !
= (ad)(bd)~" + (cb)(bd) ™" = (ad + be)(bd) ™"
_ ad + be
T bd

Task 1.1.11. We shall prove that for every element x € A, we can find a
y € A with y > 2. Hence A has no greatest element.

z+1
Let us consider any = € A. Then we have x < 1. Hence y = * satisfies

x < y < 1. Therefore, y € A but y > x.

Task 1.1.13. We note that = equals either |z| or —|z|. Now |z| < a gives
—|z| > —a. Therefore,

7| <a = —a<—|z|<|z|<a = —a<z<a.

For the converse, we similarly use the fact that |z| equals either  or —z. Then
—a < x < a gives a > —x > —a. Therefore,

—a<zr<a = —a<ztr<a = |z|<a.

Alternately, we could carry out a case-by-case proof based on the sign of x.

Task 1.1.15. % — 2 — ab ' =cd' = ab'bd = cd 'bd — ad =

be.
Task 1.1.17. We have already proved that (z~!)" = (")~ for every n € N.

It is also true when n = 0, since both sides become 1. Now consider a negative
integer n. Then n = —m, with m € N, and

(z™Hr = (z™H™™ = ((z=H™)~!  (by definition of a=™)

n
<D |l

n
Task 1.1.18. Let P(n) be the statement that ’ le
i=1 i=1

Then P(1) is the statement |z1| < |z1|, which is certainly true. Further,
P(2) is true, as it is the triangle inequality.

Now assume that P(n) is true. We use this assumption to establish P(n+1)
as follows:

n+1

>
i=1

n

= ‘ Z.’El + $n+1’
i=1
n

< ‘ sz
=1

< il + lznga|  (by P(n))
i=1

+ [znia|  (by P(2))




1.1. FIELD AND ORDER PROPERTIES 3
n+1

=2 lail
i=1

Exercises for §1.1

2. We just subtract numbers and see if the result is positive or negative. Let’s
14 17

first compare the positive numbers with each other: 3, 0’ 1o’ 2.
3—2=1>0 = 3>2
L TES O .
12 12 12 12
1M s5-s4 1 17T U
12 10 60 60 12 7 10
Therefore,
14 17
— < =<2 .
10<12< <3

We can similarly compare the two negative numbers. The final arrangement is:

2< 3<14<17<2<3
2 10 12 '

4. The conditions of Exercise 3 yield the following sets:

(a) A={zeR|z>1lorz<0}
(by B={zeR|z>1/30oraz< -1}
(c) C={zeR|2<z<3}
We need to find AN BNC. Since C has the simplest structure, we investigate

its intersections with the other sets. We observe that every element of C meets
the requirements for being in A as well as B. Therefore,

ANBNC=C={zecR|2<z<3}.

(a) Consider n = 1. The only possibility for k € N with k¥ < 1is k =1. And
we are given that 1 € A. Therefore 1 € S.
Next let n € S. Consider any k € N with £k < n+ 1. If £ < n then
n€S = k€ A. Therefore, 1,...,n € A and son+ 1 € A. This gives
n+1eS.

(b) By the Principle of Mathematical Induction, we obtain S = N. By

considering k = n in the definition of S, we see that S C A. Therefore
A=N.

8 Let SCNsuchthatle SandneS — n+1¢€S.

Suppose that S # N. Then A, defined to be the complement of S in N, is
non-empty. By the Well Ordering Principle, A has a least element N. Now,
1eS = 1¢A = N#1 = N-—1€N. Further, N—1¢ A, since N is
the laest element of A. But then N —1 € S and N ¢ S, a contradiction.

10. We shall apply mathematical induction.



4 CHAPTER 1. REAL NUMBERS AND FUNCTIONS
(a) Let A={neN|1"=n}. Then 1! =1-1°=1-1=1 = 1€ A
Now assume n € A. Then
"l=1.1"=1.1=1 = n+1€cA.

By mathematical induction, A = N.

(b) Let A={neN|a"<b}. Thena' =a<b=0>b = 1€ A. Now
assume n € A. Then

A =a-ad"<b-a"<b- " =b"T" = n+1eA.

By mathematical induction, A = N.
12.

(a) (This part needs k < n) We have a direct calculation:

n n B n! n!
(k)+<k+1>_k!(n—k)!+(k+1)!(n—k—1)!
_k+1(n+1 n—k(n+1
n+1<kz+1>+n+1<k+1>
_(n+1
_(k+1>

(b) Apply mathematical induction. Let

k

() rex e

Suppose n € N. Then for £k = 1,...,n we have
n+1 n n
()= () () e
n+1 n+1
= =1€eN.
("})= (1) =1

Therefore, n + 1 € A.

A:{n€N| (n) eNforeveryk:O,...,n}.

Further,

14. We will mimic the proof that there is no rational number whose square is
2. For that, we will need to establish that if 3 divides the square of a natural
number m, then it divides m as well. An equivalent statement is that if 3 does
not divide m then it does not divide m?. Now, if 3 does not divide m, then m
has one of the forms 3k + 1 or 3k + 2, for a whole number k.

m=3k+1 = m> =9k +6k+1=33k*+2k)+1=3n+1
m=3k+2 = m?>=9k>+ 12k +4=33k*+4k+1)+1=3n+1

In either case, 3 does not divide m?2.



1.2. COMPLETENESS AXIOM AND ARCHIMEDEAN PROPERTY 5

Now we can begin our proof. Suppose (p/q)? = 3 where p,q € Z. We may
assume that p,q € N and they have no common factor except 1. Then,

p? =3¢> = 3 divides p? = 3 divides p.
Hence p = 3k for some k € N. Now,
(3k)? = 3¢> = 3k? = ¢* divides ¢° = 3 divides q.

So 3 is a factor of both p and ¢, contradicting our assumption that their only
common factor was 1.

1.2 Completeness Axiom and Archimedean
Property

Task 1.2.2. Take any real number z and ask whether it can serve as an upper
bound for the empty set @. The only way x could fail to be an upper bound is
if there is y € @ such that y > z. Clearly, @ has no such y, so we must accept
z as an upper bound. Thus, every real number is an upper bound of @.

Similarly, every real number is a lower bound of &.

Students often object, stating that = can’t be an upper bound since & has

® no smaller element. One can ask them whether they accept @ as a subset of
every set — which they generally find less counterintuitive — and to compare
the reasoning in both situations.

Task 1.2.4. An upper bound of Z would also be an upper bound of N. Hence,
by the Archimedean property, Z has no upper bound.

Now, suppose = € R is a lower bound of Z. Then = < —m for every m € N,
hence —x > m for every m € N. That is, —x is an upper bound of N. Since this
is impossible, Z has no lower bound.

Task 1.2.10. Consider distinct real numbers x,y with x < y. Suppose that
(z,y) N Q is finite. Then there is n € N such that (z,y) N Q = {q1,-..,¢n}
with z < ¢1 < -+ < ¢, < y. By denseness, there is a rational g,+1 € (¢n,¥), a
contradiction to our description of (z,y) N Q.

Task 1.2.11. We use proof by contradiction and the field properties of Q.
(a) If —t € Q then t = —(—t) € Q. Similarly, if 1/t € Q then t = 1/(1/t) €
Q.
(b) Ifr+t € Qthent=(r+t)—rec Q. Ifr—t € Qthent=r—(r—t) € Q.
(c) frt e Qthent = (rt)/re Q. If r/t € Q then t =1/(r/t) € Q.
Task 1.2.15. We have [a,b] = {z € R | a <z <b}. If € [a,b] then z < b.

Therefore b is an upper bound of [a,b]. Let u be any upper bound of [a,b]. Then
b € [a,b] givees b < u. Therefore b is the least among all the upper bounds.

Task 1.2.16. We have (a,b) ={z eR |a<z<b}. If z € (a,b) then x <.
Therefore b is an upper bound of (a, ). Let u be any upper bound of [a,b]. Then
a < (a+0b)/2 < bimplies (a +b)/2 € (a,b), hence u > (a +b)/2 > a. Suppose
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u <b. Then a < u < (u+0b)/2 < b gives (u+b)/2 € (a,b) yet (u+b)/2 > u,
contradicting the choice of u as an upper bound of (a,b). Therefore v > b, and
so b is the least among the upper bounds of (a,b).

Task 1.2.17. This has to be checked for each type of interval. We illustrate
the solutions for two types:

Suppose I = [o,8]. Then a < a <z < b < 8 gives a < z < f3, hence
z € [a, f].

Suppose I = [, 00). Then o < a < z gives a < z, hence x € [a, ).

Exercises for §1.2

2. The rational numbers can be arranged using the field and order axioms, as
we did in Exercise 2 of §1.1. This gives

3 14
—2<-S< =<3
T

To compare the roots, we use the squares. For example,

14\2 196 14
) = c2<5<3 = = 2 5 < 3.
(10) 100 S°<°< o < V2<VBE<

Similarly,

3\2 9 3 3
(5) _Z>2:>§>ﬁ:>f§<fﬂ-

So the final rankings are:

3 14
—2<—§<—\/5<E<\/§<\/5<3.

4. Let A be a non-empty subset of R and let £ be a lower bound of A. Define
B ={—-xz]|x€A}. Then —/( is an upper bound of B: y € B — —y €
A= (< -y = —L>y.

By the LUB property, B has a least upper bound 3. We shall show that
a = —f is the greatest lower bound of A.

If £ € Athen —x € B, hence 8 > —x and a < x. Thus, a is a lower bound
of A.

Now let m be any lower bound of A. As we saw above, —m is an upper
bound of B. Therefore, f < —m and a > m. Thus « is the greatest among the
lower bounds of A.

1

6. The general element of this set is a(n) =1+ +---+ —. Now,

Sl
B

()1+1+ T . URENG

V2 vn T nooVn NG n

Let z be any real number. By the Archimedean property there is n € N with
n > x. Then a(n?) > n > x, hence x is not an upper bound of this set.
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8. Observe that ﬁ = % — %4-1 Therefore,
- 1 "1 1 1 11 1 1
Y2 =) G ()
1
_1—n—+1<1

So 1 is an upper bound for this set.

10. Note that the ¢ = 0 cases are trivial, as then cA = {0}.

(a)

Suppose ¢ > 0 and A is bounded above. By LUB property, A has a
supremum «. We need to show that ca is the supremum of cA.

y € cA = y = cx for some z € A.

Then z < @ = y = cx < ca, hence ca is an upper bound of cA.

Now let u be any upper bound of cA. For any =z € A we have u > cz,
hence u/c > x. Thus u/c is an upper bound of A. Therefore oo < u/c
and ca < u. So ca is the least of the upper bounds of cA.

Next, suppose ¢ < 0 and A is bounded below. By Exercise 4, A has
an infimum «. In fact, the solution of Exercise 4 shows that o =
—sup((—=1)A). Hence ca = (—c)sup((-1)A) = sup((—c)(—1)A) =
sup(cA), using —c¢ > 0 and applying the previous case.

12. We have non-empty sets A, B that are bounded below. We have defined
A+ B and AB.

(a)

1.3

We have to prove that inf(A+ B) = inf(A) +inf(B). First, for any a € A
and b € B we have

a > inf(A),b > inf(B) = a+ b > inf(A) + inf(B).

Therefore inf(A) + inf(B) is a lower bound of A+ B. To prove that it is
the greatest lower bound, we shall show that for every € > 0, inf(A) +
inf(B) + ¢ is not a lower bound of A + B. We note that we have a € A
and b € B such that a < inf(A) +¢/2 and b < inf(B) + ¢/2. Then
a+be A+ B and a+b <inf(A) +inf(B) +e.

Assuming that all the members of A, B are non-negative, we have to
show that inf(AB) = inf(A)inf(B). First, we note that 0 is a lower
bound for both A and B, hence inf(A),inf(B) > 0. Now, for any a € A
and b € B we have

a > inf(A),b > inf(B) = ab > inf(A4) inf(B).

Therefore inf(A)inf(B) is a lower bound of AB. Further, for any ¢ >
0 we have ¢ € A and b € B such that a < inf(A)v/1+¢e and b <
inf(B)v/1+ ¢e. Then ab € A and ab < inf(A) inf(B)(1 + ¢).

Functions

Task 1.3.3. The domain is X x X and the codomain is X.
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Task 1.3.4. Suppose f is one-one and f(a) = f(b). If a # b then f(a) # f(b)
gives a contradiction. Hence f() = f(b).

Now suppose that f has the property that f(a) = f(b) implies a = b. Let
z,y € X with £ y. If f(z) = f(y) then x = y, a contradiction. Therefore

f(x) # fy).
Task 1.3.7.
(a) For z < 0 we have f(z) = 3(z + (—z)) = 0. Hence f(—1) = f(—
and f is not one-one. Further, for x > 0, we have f(z) = % +
Hence f is not onto, and its image is [0, 00).

2)0
) =

(b) We have g(—1) = g(1) = 1, so g is not one-one. We know every z2 > 0,
so the image of ¢ is a subset of [0,00). On the other hand, we know
every non-negative real number has a square root, so the image of g is
all of [0, 00).

(¢) For z > 0 we have h(z) > 1 and for z < 0 we have h(z) < 1. So
h(a) = h(b) is only possible if a,b have the same sign.

Suppose a,b > 0 and h(a) = h(b). Then,
a>+a+1=0+b+1 = (&> =) +(a—b)=0
= (a—b)(a+b+1)=0
— a—b=0 — a=0.
Next, suppose a,b < 0 and h(a) = h(b). Thena+1=0+1 = a=0.
So h is one-one.

Every y > 1 has pre-image %(71 ++/1+4(y—1)) > 0. Every y < 1 has
pre-image y — 1. So h is onto.

Task 1.3.9. Let y,9 € Y and f~1(y)
x

f(x) =y while 2’ = f~1(y') satisfies f(
f(z') =1v'. So f~!is one-one.

Let v € X. Define y = f(z). Then f~!(y) = 2. So f~! is onto.

= f("'y'). Now, x = f~!(y) satisfies
N=y. Thenx_a: gives y = f(x) =

Finally, since f reverses f~1, we have f = (f~1)~L.
Task 1.3.10.
(ho(go £))(x) = h((go £)(@)) = h(g(f())) = (hog)(F(2)) = ((hog)o f)(x).
Task 1.3.11.
First, suppose g is the inverse function of f. Then g(y) =2 <= f(x) =y.
Consider any € X and y € Y, with y = f(x). Then:
(g0 f)(x) =g(f(2)) = g(y) =z = 1x(x),
(Fog)ly) = flg(y) = f(z) =y =1v(y).
Now suppose go f =1x and fog = 1y. Then:
y=[f(x) = 9(y) =9(f(x)) = 9(y) = 1x(2x) ==,
v=9(y) = f@)=flg(y) = flz)=1v(y)

Y.
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Exercises for §1.3

2.

(a) f(x)=fly) = 1/z=1/y = x =y, so f is one-one. And if y # 0,
then its preimage is 1/y. So f is onto. From 1/(1/x) = z we deduce
that f~1 = f.

Y

@)M@:g@)=$1_x=1j3==>ﬂ1—w=yﬂ—x)=$w:%
so g is one-one. We can find the preimage of y # —1 by solving g(z) = y:

T oy == l1-2) = (l+yr=y = P

1-z 7 —Y we=y 14y
This also shows that ¢=(y) = —2—.
W 9 () Ty

(c) First we check that h is one-one. For this, observe that  +y > 1 with
equality only if x =y = 1/2. So,

h(z) = h(y) = ! L o 2 2
x) = h(y = r—at=y—y
z(l—z) y(l-y)
= (z—y)(l—z—y) = xz=y.
For the onto property, we find the pre-image in [1/2,1) of any y > 4:
h(z) = @;— — zy(l—-z)=1
)=y x(lfx)_y xy x) =
—4
= gt —yr+1=0 = nyJr;J—(y)
Y
—4
Therefore h=1(y) = y+y—(y)
2y
4.

(a) Suppose (go f)(z) = (g0 f)(y). Then g(f(z)) = g(f(y)). Since g is
one-one, we get f(x) = f(y). Since f is one-one, we get © = y.

(b) Let z € Z. Since g is onto, there is y € Y with ¢g(y) = z. Since f is onto,
there is € X with f(z) = y. Then (go f)(z) = =.

(c) Apply (a) and (b).

6.
(a) f(z) ==, f(z) = |z|, f(z) = [2].
(b) f(z) = —=
0 ifz=0o0r1,
(¢) f(z) = { 1 else.

8. We will build a bijection f: N x N — N based on this diagram. The first
observation is
nn+1)

Fn) =142+ tn=——
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In general,
(k+1-1)(k+1)
2

Observe that f(1,k+1—2) < f(k,1) < f(1,k+1—1). Therefore f(k,1) =
fE) = k+l=K+4+1I = k=K = 1=1". So f is one-one.

f,))=f(LE+1-1)—k+1= —-k+1

-1 1
Now let m € N. We have n € N such that (n=bn m < nint+1) ) Let
1
k:%—m—i—landl:n—k—&—l. Then

f D)= f(Lk+1-1)—k+1=f(1,n)—k+1=m.

1.4 Real Functions and Graphs

Task 1.4.1. In each case, let D be the domain of the function.
(a) €D &= 1-22>0 < 22<1 < —-1<2<1. SoD=[-1,1].
(b) z€D <= z#0. So D =R*.
(c)ze€D <= (x—1)(x—2)>0. So D = (—00,1] U [2,00).
(d)ze€D <= 1-22>0 & 2°<1 < —-1<z<1l. SoD=(-1,1).
Task 1.4.2.

2 o—o
lo——0o
-2 -1 1 2
o—o —1
. -2
Task 1.4.3.
-2 -1 | 1 2

Task 1.4.4. The domain of f(x +c¢)is{x—c |z € A}.

The domain of f(cx)is {x/c |z € A} if ¢ # 0. If ¢ =0, the domain is R if
0 € A and @ otherwise.

Task 1.4.5. Shift the graph of f to the right by |c| units.

Task 1.4.6. Scale the graph of f horizontally by a factor of 1/|c| and then
reflect in the y-axis.
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Task 1.4.7.
(a) Shift the y = 2% graph to the right by 2 units and then up by 1 unit.

| N NS

s 2,2

(b) h(z) = 42% + 122 + 5 = 4(x + 3/2)? — 4. So shift the graph of y = 2
to the left by 3/2 units, scale it vertically by 4, and then lower it by 4

units.
N ]
o v U
— —

Task 1.4.8. |z|is even and sgn(zx) is odd.

[x] is neither, since [-1/2] = —1 does not equal either +[1/2] = 0.

Task 1.4.9. If f is both, then for any point a in its domain we have f(—a) =
fla) =—f(a) = 2f(a) =0 = f(a) = 0. So the only such function is the
zero function.

Task 1.4.10.
(a) Increasing (c) Not monotonic
(b) Increasing (d) Strictly decreasing

Task 1.4.11. Proof by induction. For n = 1, the truth is given. Assume true
for some n and consider n + 1:

fe+n+1)T)=f(z+T)+nT)=f(z+T) = f().

Task 1.4.13. The domain of f + g, f — g and fgis AN B. The domain of
flgis{z € ANB | g(z) #0}.

Task 1.4.14.

(a) All the combinations are even. For example,
(f +9)(=2) = f(=2) + g(~2) = f(2) + g(z) = (f + g)(2).
(b) f+gand f — g are odd. For example,
(f +9)(—2) = f(-2) + g(—2) = —f(2) — g(x) = —(f + g)(2).
fg and f/g are even. For example,

(fo)(—x) = f(=2)9(—z) = (= f(2))(=g(x)) = f(z)9(z) = (f9)(x).
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(¢) f+gand f— g need not be either even or odd. For example, 1 is even, x
is odd and 1+ x is neither. However, fg and f/g are odd. For example,

(f9)(=z) = f(—z)9(—2) = — f(x)g(z) = =(f9)(@).
(d) Asin (c).
Task 1.4.15.

(a) To obtain f~! we solve y = 2z+1 for x in terms of y. We get x = 3 (y—1).
Switching = and y gives the inverse function to be f~!(z) = 1 (z — 1).

(b) The inverse function f~!: —[0,00) is f71(x) = V/x.
(c) The inverse function f~!: —[0,1] is f~(z) = V1 — 22 = f(x).
™ if n is even,

Task 1.4.16. (—z)" = (—-1)"z" = o ifnis odd.

Therefore, monomials of even degree are even functions and monomials of
odd degree are odd functions.

Task 1.4.17. Let degp = m and degq = n. Then
() = amx™ + @ 12™ 4 dag,  q(x) = bpa™ + by 2" 4 by
with a,, and b,, non-zero. Therefore,
p(2)q(x) = ambpx™ ™™ + (ambp_1 + am_lbn)x”””*l + -+ apbo.

Since amby, # 0, we get deg(pg) = m +n = (degp) + (degq).
Next, let m = maxz{degp, deg q}. Then,

p(z) = apa™ + afmflmm_1 + - tag
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q(x) = bpa™ + b1 z™ L4+ by
with at least one of a,, and b,, being non-zero. Now,
p(x) + q(x) = (am + bm)2™ + (@m_1 + bp_1)x™ + -+~ 4 ag + bo,

and so deg(p + ¢) < m = max{degp, degq}.

Exercises for §1.4

y=a?
—

(b) 2?2 —dz+3=(z—2)? — 1.

y =a?
%
\VHQ

2.
(a)

()
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(b) The domain of g is [0, 1].
R
(¢) The domain of h is [2,4].
| 2 3 4

(d) The domain of k is empty, so there is no graph to draw!

6. The extended graphs are given below:

8.
(a) Even: (fog)(—z) = f(g(—=)) = f(9(x)) = (f o g)(x)
(b) Odd: (feg)(—=x) = flg(—=)) = f(—g(x)) = = f(9(x)) = =(f o g)(x)
(c) Even: (fog)(—z) = f(9(—=)) = f(—g(x)) = f(g(x)) = (f o 9)(x)
(d) Even: (fog)(—z) = f(g9(==)) = f(9(x)) = (f ° 9) ().
10.
(a) We wish to write f = fT — f~ where f* are non-negative. If f itself
is non-negative, we can take f* = f and f~ = 0. If f is non-positive,
we can take ft = 0 and f~ = —f. These observations motivate the

following definitions:

_J flx) if f(z) =0 o 0 if f(z)>0
f+(x){ 0 else f (x){ _f(z) else .

It is easy to check that f* are non-negative and f = f+ — f.
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(b) Define g(z) = 3(f(z) + f(—2)) and h(z) = 3(f(z) — f(—2)). Then it is
easily seen that g is even, h is odd, and f = g + h.

12. In Exercise 11, we defined 27 = max{0,z}. This function changes its
behaviour at zero. Consequently, f,, will change its behaviour at n, n+1/2 and
n + 1. We have the following:

0 ifz<n
Fulz) = r—n ifn<z<n+1/2
)Y n—ax+1 ifn+1/2<z<n+1
0 ifn+l<z
(a)
1 /ﬁ
n n+ % n+1
(b)
1 /ﬁ
14.
(a) Odd, not monotonic,not periodic.
(b) Even, increasing, not periodic.
(c) Not odd or even, not monotonic, period of 1.

Thematic Exercises

Curve Fitting: Interpolation and Least Squares

Al.
(a) The condition w;(x;) = 0 makes z — x; a factor of w;(x) for each j # i.
Hence we have
wi() =0 I[ (e — )
JiiF
for some C' € R. The condition w;(z;) = 1 further gives 1 = C'[[; ;,;(2i—
x;). Hence,
Hj:j;éi(x — ;)

wil@) = Hj:j;éi(xi - ;)
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(b) It is easy to see that the given p works. Since each w; has degree n, we
have degp < n. Further,

plar) = Zyz‘wi(l‘k) = Ykwi(Tr) = Yr-
=0

If ¢(z) also satisfies the given properties, then deg(p — q) < n and (p —
q)(xz;) = 0 for each i = 0,...,n. This gives p — ¢ = 0, hence p = q.

Remark: This p(x) is called the Lagrange interpolating polynomial for the
data (zo,y0)s - - (Tn, Yn)-

A2.
wo(x) = (z—-0)(z—h) _ a(@—h)
’ Ch—0)(—h—h) _ 2rz
wi(z) = (x—(=h)(@x—h)  (z+h)(z—h)
' (0— (=)0~ h) 2
waa) = T M@ =0) _ alw+h)
’ (h—(—h)(h—0) 22

The interpolating polynomial for the given data is:

_ xz(x—h) (x+h)(x—h) x(x + h)
p(x) =a T b W2 te—0s

_(a—2b+¢)2®  (c—a)x

= 97,2 et b.

An alternate approach, for those who know how to solve systems of linear equa-
tions, is to assume p(x) = ax? + Bx +v and use the data to set up the following
three linear equations in the three variables «, 3, ~:

h*a—hB+vy=a
y=b
Ra+hB+y=c

A3. Wehave ||747]? = (Z479)+(T+7) = T-TZ+27-G+7-7 = ||Z]|*+27-5+]|7]|?.
Therefore, |7+ 7| = ||Z||> + ||7]]*> <= Z-§=0 < L.
A4. First, we note that IT will be a plane if @ and ¥ are not collinear with 0. If

they are collinear, IT will be a line. Therefore, we assume this non-collinearity
in our analysis below.

Next, we identify a plausible choice of Z. Geometry suggests that & should be
the perpendicular projection of 4 on II. That is, ¥ — & should be perpendicular
to all members of TI. Let us confirm that such an # would minimize the distance.
If Z’ is any other member of II, we have

g —2'|]> =|(g - 2) + (¥ - 2")||?
=||7—Z||* + |7 — Z'||*> (by Pythagoras’ theorem, since ¥ — Z' € II)
> |7 - .
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Moreover, equality can only happen if £ = Z’. This also establishes the unique-
ness of Z.

Now, let us show the existence of & by finding a formula for it. The perpen-
dicularity condition gives (§ — &)« td = (§ — Z) + ¥ = 0. If we set & = at + b¥,
these equations become

[@||%a + (@ T)b = ij~ i
b

(i@« ¥)a + ||

I
<y
S

On solving these equations for ¢ and b we obtain:

_ P -a) — (- 5)(F-

@l |* ||9]]* = (@ - 9)*

il [* (¢ - 9) — (- ) (5 - @)
Nl |? [[21]* — (@ 0)?

v)

b=

<y

-

The remaining issue is whether ||i||? ||7]|? — (@ ©)? # 0. For this, we invoke the

Cauchy-Schwarz inequality, which states that for numbers uq,...,u, and
v1,- .., U, we always have
n 9 n n
S wwl* < (Su) (3002),
i=1 i=1 i=1

with equality if and only if one of (ug,...,u,) and (v1,...,v,) is a constant
times the other. The non-collinearity assumption rules out this possibility and
gives the existence of .

(If @ and ¢ are collinear with 0, we drop @ from our calculations, and we find
L yeu 7)

= "—=—=1.

|[][?

A5. The total squared error can be expressed as

n

E(a,b) =) (v — az; —b)* = [|§ — (a + b0)|*,

i=1

which is the square of the distance of ¢/ from the member axX+bv of II. Therefore,
minimizing the total squared error is equivalent to finding the member of II
which is closest to .

A6. Use A5 to view this as a problem of finding the closest vector from a
plane, and then apply the formulas for a, b obtained in the solution of A4.

Cardinality

B1. By repeatedly dividing by 2, we can express any natural number as a
power of 2 times an odd number. This shows f is a surjection.

Now suppose f(m,n) = f(m/,n") with m > m’. Then,

2"l —1) =27 12 —1) = 2" (2n—1)=2n'—1 = m=m’
= 2n—1=2n"-1 = n=n'
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So f is also an injection.

B2. Any positive rational can be expressed as m/n with m,n € N and having
no common factors except 1. We apply the fundamental theorem of arithmetic
to write m = py* - ~pf’“ and n = pifll . ~pf‘, where the p; are distinct primes
and $; € N. (If either m or n is 1, we express it as 2°.) Let f(a;) = j3; for

i=1,...,kand f(a;) =—F; fori=k+1,...,¢. Then we have
B1 Bk

pl ...pk m
oo pp) = DB T
pkiilpgf n

So ¢ is surjective.

Next, suppose @(p(* - pi*) = @(qi" ---q;"), where the p; are one set of

distinct primes, the ¢; are another set of distinct primes, and a;, 3; € N. We

get

p{(al)-- f (o) :q{(ﬁl)._.

We can assume that there are &’ and ¢ such that

f(a1)7 .. .,f(Oék/) > 0, f(ak/+1), .. .,f(Oék) < O7
f(ﬁl)a--.af(ﬂi’)>07 f(ﬂf’+1)v"'7f(ﬂ€)<0'

qg(ﬁe).

Then,

) —F(By - —flay - ,
ple) Ll Ow) T Bersa) =B _ e flewa) S B f(Be) ¢ |y

)

with all exponents being positive. By the uniqueness of the prime factorisation,
we get:
{p1.-ooe} ={ar, . ar} and Apwia, ook} ={aess - ad

In particular, & = ¢ and k¥ = ¢'. Further, matching exponents gives f(«;) =
f(B;) for every i, and so «; = 3; for every i.

B3. Consider the map ¢ defined in B2. Use it to define ¢: N — Q:

0 ifn=1,
P(n) = w(n/2) if n is even,
—p((n—1)/2) else.

B4. Let A = {ay,as,...} and B = {by,bs,...}. A and B are clearly non-
empty. The nesting of the intervals gives the following arrangement:

a; <az <az3 < - <by3 < by <.
Thus, a; < b; for every 7, j. The completeness axiom now gives a real number ¢
such that a; < ¢ < b; for every . Therefore, c € Ori [@n, bp]-
B5. Set J; = [f(1) +1, f(1) +2]. Then f(1) & J;.

Cut J; into three equal subintervals: [f(1)+1, f(1)+4/3], [f(1)+4/3, f(1)+
5/3], [f(1)+5/3, f(1)+2]. The pieces [f(1)+1, f(1)+4/3] and [f(1)+5/3, f(1)+
2] are disjoint, so at least one of them does not contain f(2). Call that one J5.
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Repeat the process with Js to get Js3 with f(3) ¢ Js. Continue in this way
to get a decreasing sequence of intervals J,, = [an, by] such that f(n) & J,.

By B4, Ori Jpn, has a member c. Now, ¢ # f(n) for every n, which contradicts
the surjectivity of f.
B6. We mimic the solution of B3. We already know there is a bijection
v: N—= Q.

Suppose Q¢ is countable, so that there is a bijection ¥°: N — Q¢. Now
define f: N — R by

Y(n/2) if n is even,
fin) = { Ve((n+1)/2) else.

We leave it to you to show that f is a bijection. This contradicts B5. Hence Q¢
is uncountable.
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2 | Integration

2.1 Integration of Step and Bounded Functions

Task 2.1.3.

(a) P:{—].,O,].} (b) P:{0717273}

Task 2.1.5. /3 s(x)dz=2-(1.5—0)+ (=1)- (25— 1.5) + 3+ (3 — 2.5) = 3.5.
0

Task 2.1.6. Let @ be a refinement of P. It is enough to do the case when
@ has one more point than P. If P = {zg,...,2,} then such a @ has the
form {xg,...,2k—1,t, T, ..., Tn}, With 241 < t < xp. Since s is constant on
(g—1,2k), it is constant on (xj_1,t) and (t,zx). It is also constant on each
(xi-1, ;) for i # k. Therefore @ is adapted to s.

Task 2.1.8. Let P be a partition that is adapted to s, and @ a partition that
is adapted to t. Then P U (@ is a refinement of both P and Q). By Task 2.1.6,
it is adapted to both s and ¢.

Task 2.1.13. The issue here is that the definition of integrability requires us
to consider all lower and upper sums. However, if we find a subset L of £; and
a subset U of Uy such that there is a unique number between L and U, then
the same is true of £ and Ujy.

Task 2.1.15. Suppose s: [a,b] — R is a step function. Then I = fab s is both
a lower and an upper sum for s. Therefore, it is the unique number between L
and U, hence is also the integral of s when we view s as a bounded function
whose integral is to be obtained via lower and upper sums.

Exercises for §2.1

2.
(a)

2z —1] =

WK O
-
s
8
m
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2
/ 22 —1]dz=—1-054+0-054+1-05+2-0.5= 1.
0

(b)
O lfo[Oal)
)1 ifzell,4)
[Va] = 2 ifzxel4,9)
3 ifz=9 |
9
0
4.
F(J?)—{ 1+2(zx—1) ifxell,?2 l 3
! 1 2

6. In this diagram, the shaded part represents a lower sum for fob Vadr. Tts

complement in the enclosing rectangle is an upper sum for fo\/g 22 dz. The area
of the enclosing rectangle is bv/b = b%/2. Therefore,

Lmp={b"—u|uecly:}.

Similarly,
— U~={b?—t]leL
vz =1 | L€ Ly}

Now let I separate £  and U . Then,

t<Iforeveryle€L 5 = b2 —u < I for every u € Uy»

= B2 < u for every u € Uy=.

We can similarly prove that /2 — I > ¢ for every ¢ € U,>. Hence,

N
b3/2 —1:/ 22 dx.
0

Therefore, I is unique, and

b Vb b3/2 2
/ ﬁdz:1=b3/2—/ 22 dy = b3/% — — = Zp3/2,
0 0 3 3

8. Let € > 0. Since f is integrable on [a, b], we have step functions s, t: [a, b] —
R such that s < f <t and fft—f: s < e. Then fcd s is a lower sum for f on [c, d],
while fcd t is an upper sum for f on [c,d]. Further, fj t— fcd s < f; t— fab 5 <e.
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10. First, suppose the given conditions hold. Let € > 0. From (a) and (b) we
deduce that I +¢/2 is an upper sum and I —¢e/2 is a lower sum. Then Theorem

2.1.17 gives [ = fab f(z)dx.

Next, suppose that I = f; f(x)dz. Consider any u > I. By Theorem 2.1.17
we have a step function ¢ such that f <tand I <u' = f; t < u. Now consider
the step function t' = t+(u—u')/(b—a). Then f < ¢ and fab t' = v+ (u—u') = u.
We have proved (a). There is a similar proof of (b).

12. Let |f(x)| < M for every z € [a, b], and consider any € > 0.

For every n € N with 1/n < b— a, f is integrable on [a + 1/n,b]. So there
are step functions s’,t': [a 4+ 1/n,b] — R such that f:—i—l/n t— f(:_l/n s <e/2.
Define step functions s,t: [a,b] — R by

_f —M ifzx€la,a+1/n) _ M ifzxe€la,a+1/n)
5(z) {s’(x) ifzxela+1/n,b] Hz) {t’(w) ifzx€la+1/n,b

Then we have s < f <t on [a,b], and

/b b e 2M
t— s< -+ —.
o 2

a

If we use n such that 1/n < min{b — a,e/4M} then we get fabt — fabs <e.

2.2 Properties of Integration

Task 2.2.3.

(a) The partition P = {0, 1, 1.5, 2.5, 3} is adapted to both s and ¢, hence
to s +t. We have

fo<z<1

ifl1<x<15
if1b<2x <25
if25 <2 <3

s(z) +t(x) =

I

3
(b) /s:—l-l+1~2:1
0
3
/t:0-1.5+2.1+3x0.5:3.5
0
3
/(s+t):—1-1+1~0.5+3-1+4-0.5=4.5
0

Task 2.2.7. We have fil [t dt = ffl(ft) dt + fol tdt. We have already found
foltdt = 1/2. Using the partitions P = {-1,—-1+ 1/n,—1 4 2/n,...,0} we
similarly find ffl tdt = —1/2. Therefore,

1 0 1
/ |t|dt:—/ tdt+/tdt:1.
—1 —1 0
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Task 2.2.10. The domain of f(z/k) will be [kb, ka], and the integrals will be

related by
ka

b
Fla/k) de = —k:/ (@) da.

kb

Task 2.2.12. In the proof of Theorem 2.2.11, we have seen that the leftmost
term is a lower sum, while the rightmost term is an upper sum, for f on [a,b].

Exercises for §2.2

2. We have used the shift properties of integration to simplify the calculations.
In (b), we have also used Task 2.2.10 with k¥ = —1.

(a) /12(x—1)(x—2)dx=/le(x—l)dx:/oledx—/olxdx:é—;:
1

5
(b) /12(9”— 1)(z —2)(z — 3)dz :/

0
(x 4+ Da(z—1)dx :/ (2% — z) da

-1

0

-1

- /01((_95)3 — (—x))dr = —/Ol(x?’ —)dr

4. The conditions P(0) = P(1) = 0 give P(z) = cxz(z — 1) for some ¢ € R.

Now,
1 1 1
/ cx(x—l)dxzc(/ xde—/ xdw):—f = c¢=—6.
0 0 0 6

Therefore, P(z) = —6z(z — 1).
6.

a

0 a
@ [ s@de= [ f@ydes [ f@d

h :/Oa f(—x)dx—&—/oa f(z)dz (Task 2.2.10)
/Oaf(x)der/Oaf(:c)dx (f is even)
_2/0af(z)dx

(b) _C;f(x)dac: /Oaf(—x)dm+/()af(m)d:r
:_/Oaf(x)dx+/0af(x)da: (f is odd)
=0

8. We shall use the results of the preceding exercise to give two proofs of the
integrability of fV g. The integrability of f A g can be established along the

same lines.



2.2. PROPERTIES OF INTEGRATION 25

First solution:

(fvg)(z) = max{f(z),g(x)} = f(z)+max{0, g(2)—f ()} = f(2)+(g(z)—f(x))"

The integrability of f and g gives the integrability of g— f and hence of (g— f)*.
Therefore, fVg= f+ (g — f)T is integrable.

Second solution:
(£ v 9)(x) = max{ (@), g(x)} = 5(7(x) + 9(x) + glale) — F(2)].

Again, g &+ f are integrable, hence |g — f| is integrable. Therefore, f V g =
l(f +g) + 1|g — f| is integrable.

@ [ [2e feranzan o o)

) Let e >0. If 0 < f < M, there are step functions s,¢ such that 0 < s <

f<t< M and fa t— fa s < g/(2M). Then, s2 t* are step functions
such that s < f2 < ¢? and

b b b b
/tQ—/SQSQM(/t—/S):a

Therefore f? is integrable. For a general integrable f with |f| < M,
we have f + M > 0, hence (f + M)? is integrable. It follows that
f2=(f+M)?—-2Mf — M? is integrable.

(c) We have fg = $((f + g)> — f? — ¢°) and every term on the right hand
side is integrable.

@ Flea)= [ fya=- / f(—t)di = - / f(t)dt = —F(x).
) Pl=o) = [ swat== [ nie= [ od=Fo).

14. Recall that Theorem 2.2.14 was proved for the case when f is decreasing
and positive.

(a) Suppose [ is an increasing and positive function. Then g(z) = f(—z) is
decreasing and positive. Therefore G(x) = [* g(t)dt has the interme-
diate value property. We have

0= [swa= [ sena-- [ g0a- -

—a
Now it is easily seen that F' has the intermediate value property.

(b) The hint in the text is not helpful. Instead, proceed as follows. At
this stage, we have established Theorem 2.2.14 when f is monotone and
positive. We easily get the result for a monotone and negative f by
considering — f. Observe that our proof also covers the cases when f is
zero only at an endpoint of the interval.
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Now, suppose f is a general increasing function on an interval I. Then
we have o, 8 € I such that « < 3, f <0 for z < a and f > 0 for x > .
Then F has the intermediate value property on the intervals TN (—oo, ],
[, B], and T N [B,00). Hence it has the intermediate value property on
1.

We get the result for a decreasing f by considering —f.
16. Mimic the solution of Exercise 6 of §2.1.

2.3 Logarithm and Exponential Functions

Task 2.3.5. We already know this is true for positive reals, and of course for
zero. If a is negative, we take b = —(—a)l/” to prove existence. For uniqueness,
we first note that b = ¢" = a implies b, ¢ have the same sign. We then apply
b —ct=(b—-a) "+ ).

Task 2.3.6. ((a")'/")" = (a")9 =a™, ((a?)/9)" = (aP)" = aP™ = a"™.
Task 2.3.7. ((a'/™)™)* = (a¥/™)™" = a™.
Task 2.3.10.

1
(a) log(y +1) —log(y — 1) =2logz = log (&1) = log 22
Y

1 241

:>&2122y(x2—1):x2+1:>y:x+ )

y—1 2 -1
w2 vy z+1

(b) =

= 4 (rz-1)=1+2 = 4Y=

2 —2-y 4y —1 r—1
= y=1log,(x+1)—log,(x —1).

Task 2.3.13. bega )08y ) — glos.® — 3 — log, x = (log, )(log; a).

Task 2.3.14.
1 1
(a) cosh(—z) = 5(6_“J +e (7)) = 5(6”” + e %) = cosh(x),
1 . 1, . .
sinh(—z) = 5(6‘”c —e (7)) = —5(61 — e~ %) = —sinh(z).

(b) We have y = 1(e” + %) <= (e”)> —2ye” + 1 = 0. This quadratic in
e® has a solution if and only if 4y?> —4 > 0, i.e., |y| > 1. The solutions
are ¢ = y 4+ y/y? — 1. The requirement e* > 0 rules out y < —1. This
shows that the image of cosh is exactly [1, 00).

The corresponding calculations for sinh lead to the equation e* = y £+

vy%2+ 1. The requirement e* > 0 gives = log(y + \/y? + 1) as the
unique pre-image for every y.

(c) Use (a+b)? — (a — b)? = 4ab.

Task 2.3.15. Apply the discussion for the graph of cosh. In this case, sinh is
odd, passes through the origin, approaches e*/2 as x increases in magnitude on
the positive side, and approaches —e~*/2 as x increases in magnitude on the
negative side.
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Exercises for §2.3

2.
a) log80 = log(2*-5) = 4log2 + log5 = 4.37.
b) log 120 = log(2® - 3-5) = 3log2 + log 3 + log 5 = 4.78.
(c) log2.1 =log21 —log 10 = log3 + log 7 — log2 — log 5 = 0.75.
(d) log(3/35) =log3 —logh —log 7 = —2.46.
4. 2%/2=2y2<3 = log,3>3/2, 3%2=33>5 = logy5 < 3/2.

(
(

6. For xz =1, all expressions are zero.

1 1 r -1
Forx>1,/fdt§/ fdtS/ ldt:>z7§10g:r§x71.
1z 1t 1 x

1 1
For z < 1, we have 1/z > 1, hence 1 — — <log(1l/z) < — — 1.

1/x x

exp(1l + )

h 4@96 \

10. a® = exp(zloga) is a composition of the strictly increasing exp function
with zloga. And zloga is strictly increasing if a > 1, strictly decreasing if
O0<a<l1.

12.

(a)

(b) 2-3(e"+e7) - 3(e® —e ") =
1
4

exp |z|

(e +e7%)2 + %(ef’: —e %) = %( 2 + e72%) = cosh 2z.
1(e* — e72%) = sinh 2.

(€) (e + ™) (e + )+ 4(eF — (e — )

= i((ez"'y +e"TY 4+ eV 4 e_(zﬂ’)) 4 (Y — etV ¥ e_(“'y)))

— i(QeHy + 2¢~ @)Y = cosh(z + y).

(d) Similar to (c).

2.4 Integration and Area

Exercises for §2.4

2. Yes. Cut the polygon into triangles that only meet at their vertices. The
contributions from a side that is shared by two triangles cancel, and only the
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contributions from the outer edges remain. If the vertices of the polygon are
(1,11),- -, (Tn,Yn), in counterclockwise order, then the area is

A= ((xly? - $2y1) +o A+ (xn—lyn - xnyn—l) + (xnyl - xlyn)) .

N | =

(a) Find the meeting point of y = log(3 — ) and y = log(1 + x):
log3—z)=log(l4+z) = 3—z=142 = z=1.
Find the z-intercepts of y = 2 — 2z:
P —2r=0 = 2(r—-2)=0 = 2=0,2.

Observe that y = log(3 — =) and y = log(1 4 x) intercept the z-axis at 2
and 0 respectively: log(3 —2) =1logl =0, log(1+0) =1logl =0.

Let f(z) equal log(1 + «) on [0,1] and log(3 — x) on [1,2]. Then the
required area is given by

/:(f(x)—(xz—%c))dm = /01 log(1+z) d:c+/12 log(3—x) dx—/:(x?—zx) dz.

(b) The arc and the slanted line segment meet at x = —1/2. The corre-
sponding y-coordinate is /1 — (—1/2)2 = 1/3/2. The equation of the

slanted line segment is y = —/3z. Therefore the area is given by

1 0
/ V1—2a2dx + V3z dz.
~1/2

—1/2

6. Apply Theorem 2.2.9:

a 1
2/ b\/l—x2/a2dx:2ab/ V1—22dx = mwab.
—1

—a

Thematic Exercises

Darboux Integral

A1l. Suppose m < f(x) < M for every x € [a,b]. We have m < m; < M; <M
for every i. Hence,

L(f, P) = th(a:z - a:i_l) S ZM(Z‘I — xi_1) = MZ(.I‘L — xi—l) = M(b - a)

i=1 i=1 i=1
U(f7 P) = ZMZ(J% — xi,1> Z Zm(xz — (L‘Z’fl) = mZ(mZ — .’1%;1) = m(b — a)
i=1 i=1 i=1

A2. Take any partition P = {xq,...,x,} of [0,1]. By the density of rationals
and irrationals, each m; = 0 and M; = 1. Therefore L(f,P) =0 and U(f, P) =
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1 for every P. Hence the lower Darboux integral is 0 and the upper Darboux
integral is 1.

A3. We first show that if P is a partition of [a, ] and P’ is a refinement of P
then

L(f,P) < L(f,P") <U(f,P) <U(f, P).

It is enough to prove this when P’ has one more point than P. Let P =

{zo,...,zp} and P’ = P U {t} with 251 < t < z}. As usual, let m; =

inf{f(z) : © € [x;-1,2;]}. Further, let m’ = inf{f(z) : = € [rr_1,¢]} and
" =inf{f(z): x € [t,xx]}. Then my < m’,m”. Now,

k—1 n
L(f,P) = Zmi(wi —zi—1) + myg(k — Te—1) + Z mi(T; — 1)
i=1 i=k+1
k—1 n
< zjvm(ac2 —xiq)+m(t—xp_1)+m"(zp —t) + Z mi(x; — 1)
i=1 i=k+1
= L(fv P/)

We can similarly prove that U(f, P’) < U(f, P).

Now, if P, @ are any two partitions of [a, b], then P UQ is a common refine-
ment, and we get:

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).

Define A ={L(f,P) | P is a partition of [a,d] }
B={U(f,P) | Pis a partition of [a,b] }
We have just shown that every member of B is an upper bound of A. There-
fore sup(A) is a lower bound of B. Therefore sup(A) < inf(B), as desired.
A4. Let A={L(f,P) | P is a partition of [a,b] }
B={U(f,P) | P is a partition of [a,b] }
Note that A C Ly and B C Uy.

Now suppose that f is Darboux integrable. Let I separate £; and U/¢. Then
I is an upper bound of A and a lower bound of B. Hence,

/f )de = sup(A) < T < in /f

The equality of the upper and lower Darboux integrals shows that I equals
them, hence [ is unique and f is integrable.

For the converse, let I = f: f. By definition, I is an upper bound of A and
a lower bound of B. We claim that I = sup(A) = inf(B). Consider I — ¢ with
€ > 0. By the Riemann condition, there is a step function s such that s < f and
fabs > I —e. Let P be a partition adapted to s. Then L(f,P) > f:s > T —¢,
so I — ¢ is not an upper bound of A. This shows that I = sup(A). We can
similarly show that I = inf(B).
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3 | Limits and Continuity

3.1 Limits

Task 3.1.4. Given an € > 0 take any positive §. For example, take § = 1.
Then for any z, and in particular for those satisfying 0 < |z — p| < 4, we have
|f(z)—c|=|c—c/=0<e.

Task 3.1.7. We have lim f(az +b) = L <= lim f(ap+b+ah) =L and
T—p h—0

y_l}l;;l_‘_bf(y) =L < Ill_%f(@p-l- b+k)=L.

The definitions of the two equivalent limits are:
’lliir%)f(ap—l—b—i—ah) = L: For each ¢ > 0 there is a > 0 such that 0 < |h| < 0
implies |f(ap+ b+ ah) — L| < e.
llii%f(aer b+ k) = L: For each ¢ > 0 there is a ¢’ > 0 such that 0 < |k| < ¢’
implies |f(ap+b+ k) — L| <e.

Observe that § works in the first definition if and only if 6’ = |a|é works in
the second one.

Task 3.1.19. Apply the algebra of limits.

1 1
a) limz=2 = lim2?2=22=4 — lim — = -.
4

z—2 z—2 z—2 12
22 —62+9 (x —3)2 x—3
b = = f 3. H
b)) —=7 =9 0+ 3)(e—3) ags ore7 s Hence,
. 22 —6x49 o x—3 0
lim = lim =—-=0.
r—3 :)3‘2—9 z—=3 1+ 3 6
||

(c) Observe that for = # 0, = sgn(z). Apply Example 3.1.10.

x
Task 3.1.20. We have to rule out ilir}l f(z) < m as well as whg}l fz) > M.
Let us do the first. Suppose :11_121 f@) =L <m. Set e = m — L. There is a
d > 0 such that 0 < |z —a| < § implies |f(z) — L| < m — L. Let p=a + §/2.
Then |f(p) — L| < m — L implies f(p) < L+ (m — L) = m, a contradiction.
Task 3.1.24.

(a) lim C = C: For any € > 0, take ¢ = 1.

z—p+

31
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(b) Asin (a).

(¢) lim [z] = 1: For any € > 0, take 6 = 1.
r—1+4

(d) lim [z] = 0: For any € > 0, take 6§ = 1.

r—1—

(e) lim J=l = 1: For any € > 0, take 6 = 1.
rz—0+ X

(f) lim +/x = 0: For any ¢ > 0, take § = £2.
r—0+4

Task 3.1.27. The only change in the statements is the replacement of the
limits by one-sided limits. The proofs also undergo only cosmetic changes. For
example, the statement of the sandwich theorem for right-hand limits is:

Suppose that f(x) = g(x) = h(z) in an interval (p,p + 0'), with 6’ > 0. If
mlir}rgl+ fz) = zlirg+ g(x) = L, then mli)l}lgl+ g(x) = L.
To prove this, consider any £ > 0.
There exists 05 > 0 such that 0 < z —p <y implies L — e < f(z) < L +e.
There exists 65, > 0 such that 0 < z —p < J;, implies L —e < h(z) < L +¢.
Let 0 = min{dy,d5,0'}. Now, if 0 < z —p < §, then
e <0y = L—e< f(z)<L+e,
e <, = L—e<h(x)<L+e,
* §<0 = f(z) < g(x) < h(x).

Combining these gives L — e < f(z) < g(z) < h(z) < L+¢. Hence L — ¢ <
g(x) < L+ e. Therefore lim g(z) = L.
z—p+
Exercises for §3.1
2. The values of ¢ are:
(a) 1, (¢) 1.1Y3 —1~0.03,
(b) 0.1/ ~ 0.46, (d) 8.1'/% — 2~ 0.008.

4. These are applications of the algebra of limits. The results are:

(a) 1/4, (c) 2t, (e) 2, (8) 1,
(b) 4, (d) 3/5, () 3, (h) 6.
. o fl@) =5 B e B
6. alpl_)rn2(f(x) —5) = 31:1_>r112 T(x —2) =3-0=0 implies ;1_>r112f($) = 5.
8.
(a) |z'/" —al/"| = "*1|Zk_/naa|17k/n < | al_/na|. Apply the Sandwich theo-

k=0
rem.

(b) Given € >0, let § = ¢&™.
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10. Apply lim f(z) = lim f(-1).

3.2 Continuity

Task 3.2.11. z" = exp(rlogx) is a composition of continuous functions.

Task 3.2.13. F(z) = [ f(t)dt = [7 f(t)dt + [T f(t)dt = [ f(¢£)dt + G(x).
Exercises for §3.2

2.
(a) The function v/logx is continuous. Hence, lirﬂ_ Viegx = +/log1 = 0.
z—

(b) The function log v/x2 + 1 is continuous. So, lin%) log Va2 +1=1log /02 + 1 =
z—
0.

log(1+h
(c) We have lim log ((1+h)"") = lim log(1+h) _ 1, by Exercise 9 of §3.1.
h—0 h—0 h

Now we invoke the continuity of the exponential function:

log(1+ h)

. 1/h _ 1 (
im (14 h) }llli%exp A

}ll_m ) =exp(l) =e.

. 2 o . 2 o .
(d) We have xlg(r)l_s_ log (:r ) = xl_l}r&_x logz = 0, by Exercise 7 of §3.1.

Therefore,

. 2 9. 2 _ _
mlg(r)ler = Ilir(r)lJr exp(z©logz) = exp(0) = 1.

4. Suppose f is an increasing function. Let p € (a,b). We claim that
Jim f(@) = sup{ f(z) | @ € (a,p) )

Let L = sup{ f(z) | € (a,p) } and consider any £ > 0. There is g € (a, p)
such that f(q) > L —e. Let 6 = p —q. Then,

O<p—z<d = q<z<p = L-—e<f(q)<flx) <L = |f(zx)-L|<e.
We can similarly prove that l_i>m+f(x) =inf{ f(z) | = € (p,b) }.
z—p

If f is a decreasing function, apply the above work to — f.

6. Suppose f is an increasing function. We already know f is continuous on
points of f~!(a,b). So consider xq such that f(z¢) = b. Also consider ¢ > 0
such that b — e € I. Then there is 6 > 0 such that o —§ = b —¢/2.

8. Let us write F(x) = / () dt.
0

(a) F(z) = |«]
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(b) F(z) = 5lalle — 1] + [2](z — [2])

0 ifx <0
(c) F(’”):{ 22/2 if x>0

(d) F(x)=2%/3

3.3 Intermediate Value Theorem

Exercises for §3.3

2. This is equivalent to asking whether z = 2% + 1 has a solution. Consider
f(xz) = 23 —x+ 1. Observe that f is continuous, f(0) = 1 and f(—2) = —5. By
the intermediate value theorem, there is a ¢ € (—2,0) such that f(c) = 0. This
c satisfies ¢ = ¢ + 1.

4.

(a) A is non-empty, since a € A. And A is bounded above by b. Therefore
sup(A) exists, by the least upper bound property.

(b) Suppose f(c) < 0. By continuity, there is an interval I = (¢ — §,¢ + 9)
such that f(z) < 0 for every € I. Then f(c+ 0/2) < 0, contradicting
¢ being an upper bound of A.

Suppose f(c) > 0. By continuity, there is an interval I = (¢ — §,¢ + 9)
such that f(x) > 0 for every « € I. Then f(c — §/2) is an upper bound
of A, contradicting ¢ being the least upper bound of A.

6. No. Suppose f: R — Q was continuous and had two distinct values a, b
with a < b. By the intermediate value theorem, its range would contain [a, ]
and hence would contain some irrational numbers.

8. Convert the problem to one about zeroes of a continuous function. Define
g:10,1] = R by G(z) = f(x) —z. Then g is continuous, g(0) = f(0) > 0 and
g(1) = f(1) = 1 < 0. By the intermediate value theorem, there is a ¢ € [0, 1]
such that g(c) = 0. Therefore, f(c) = c.

10. Define g: [0,1] = Rby g(x) = f(x)—f(z+1). Then g is continuous, g(0) =

7(0) = £(1), 9(1) = F(1) — £(2) = F(1) = £(0) = —g(0). By the intermediate
value theorem, there is a ¢ € [0, 1] such that g(c¢) = 0. Therefore, f(c) = f(c+1).

12. Suppose that f: (0,1) — [0,1] is a continuous bijection. There are points
a,b € (0,1), a < b, such that f maps one of them to 0 and the other to 1. By the
intermediate value theorem, f([a,b]) = [0,1]. But then f cannot be injective on
(0,1).

14. Follow the solution of Exercise 13. First, we may assume that the poly-
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nomial has the form p(x) = ag + a1x + - - + ap_12" ' + 2", with n odd. Then
we show that for x > 1,

_aol +Jar]+ -+ |an—1|>

p(x) > x”(l .

Hence, z1 = 2 Z:.ZOI |a;| satisfies p(z1) > 0. By considering —p(—2x) we similarly
find 22 with p(x2) < 0. Now apply the intermediate value theorem.

16. We note that the only zeroes of f are at x = +1. Let a,b € (—1,1)
with f(a) = v1—a? >0 and f(b) = —v1—b? < 0. By the intermediate value
theorem, there is a ¢ € (—1,1) with f(¢) = 0, which is impossible.

3.4 Trigonometric Functions

Task 3.4.1. Let 6 € [7,2n]. There is an angle whose radian measure is 6 — 7.
Increase this angle by two right angles, to get an angle whose radian measure is

6.

Task 3.4.2. By definition, the point (cost,sint) is on the unit circle, and this
gives sin?t + cos?t = 1.

Task 3.4.3. Draw a figure for the angle of ¢ radians and reflect the parts in
the y = z line to get the figure for 7/2 — t radians.

Task 3.4.4. From the previous Task, we have sin(r/4) = sin(r/2 — 7/4) =
cos(m/4). Hence, sin?(w/4) 4+ cos?®(w/4) = 1 gives sin?(7/4) = 1/2. Now
sin(m/4) > 0 gives sin(m/4) = 1/1/2.

Task 3.4.5. We have sin(r/6) = sin(n/2 — 7/3) = cos(w/3).

Task 3.4.6.
cos 2x = cos(x + x) = (cos x)(cos x) — (sinz)(sinz) = cos® z — sin’ z,
sin 2x = sin(x + x) = (sinz)(cosx) + (cosz)(sinx) = 2sinz cos x.

Task 3.4.7. We already know that sin7/2 = 1 and sin7/4 = cos7/4 = 1/+/2.
1-— 4 2-1
Therefore, sinm/8 = 4/ cgs uli = \g 75 This gives the following table

of numerical values:

. sinx
T sinx
T
/2 1 0.64

w/4 0.7071 0.9003
w/8 0.3827 0.9745

29 1 —
Task 3.4.10. First compute lim x27z+ = lim & = 0. Since sine is
r—1 4 —1 z—=1x+1
) ) =2 +1 . o2 =2z +1 .
continuous, we get i;ml sin (ﬁ) = sin (ignl ﬁ) = sin(0) =
0.
MY it e #0

Task 3.4.11. Cousider the continuous function f(x) =
1 ifx=0
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sin(z? — 1)

We have, lim
r—1 €Xr — ]_

2. f(0) = 2.

= lim(z + 1) f(2* — 1) = lim (z + 1) f(lim 2* — 1) =
r—1 r—1 z—1

Exercises for §3.4

2.
SVAVAY, “ \///\\
(b) (d) .

4.
o) i T = P = T =

1 — cos(1 — cos 1
(b) We know iiﬂ%(l —cosz) = 0. Use (a) to get ilgb (;OE(COS xc)o; 7) =5

- lim = lim
750 4 =0 (1 —cosx)?

1 —cos(1 — cosx) y 1 —cos(1 —cosx) (1—cosx>2 1
2

1
(¢c) Apply the sandwich theorem. 0 < ’zsin;‘ < |z| for © # 0 gives
1
lim zsin — = 0.
x—0 x

2

(d) We have lim ’

x—1 1 —
is positive and its square root is defined. Use the continuity of sin v/t
when t > 0 to conclude

[22 —1 21
lim sin x =sin4/ lim x = sin \/5
r—1 €Xr — 1 z—1 1 — 1

6. The function f(z) = 2® — cosx is continuous. We have f(0) = —1 and
f(2) =8 —cos2 > 7. By the intermediate value theorem, f has a zero in the
interval (0, 2).

= liml(x + 1) = 2. Note that for  close to 1, x + 1
z—

8. Use sinm = 0 and cosm = —1:

(sinzx)(cos7) + (sin)(cosx)

tan(z + ) = = tanzx.

(cosz)(cosm) — (sinz)(sin )
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10. If A%2 + B? = 1 then (A, B) is a point on the unit circle and there is an
angle ¢ such that A = cos¢ and B = sin ¢. Then,

Asinz + Bcosx = cos¢sinz + sin ¢ cosx = sin(z + ¢).
In general, let A% + B2 = R%. The R = 0 case is trivial. For R # 0:
Asinz + Beosz = R((A/R)sinz + (B/R) cosz) = Rsin(z + ¢).

12.
1 —sin(m/3) _2-V3

(a) sin®(7/12) =

2 4
9 _ 1/2
— sin(r/12) = % — 0.2588,
sin?(57/12) = 1 — sin®(7/12) = 2 +4\/§
92 1/2
— sin(57/12) = % = 0.9659.

Now we know all the sine values in steps of 7/12.

1 —sin(b7/12)

(b) sin?(r/24) = = sin(7/24) = 0.1305

2
1 — sin(r/4
sin2(37/24) = % — sin(37/24) = 0.3827
1 —sin(7/12)

sin?(57/24) — sin(57/24) = 0.6088

( 2

(7r/24) = 1 —sin®(5m/24) = sin(77/24) = 0.7934
sin?(97/24) = 1 — sin®(37/24) = sin(97/24) = 0.9239
sin?(117/24) = 1 — sin®(7/24) = sin(117/24) = 0.9914

(The even multiples of 7/24 were covered by the 7/12 calculations.)

sin?

3.5 Continuity and Variation

Task 3.5.3. On [0, 1], sgn(x) takes the values 0 and 1. So its spanis [1-0| = 1.
On [0, 1], the range of sin(x) is [0, 1]. So its span is |1 — 0] = 1.
Task 3.5.4. The extreme value theorem gives the existence of

M =max{ f(z) | z € [a,b] } and m = min{ f(x) | = € [a, ] }.



38 CHAPTER 3. LIMITS AND CONTINUITY

For any z,y € [a,b], we have

= m—M< f(z) - fly) <M —-m

= [f(@) = f(y)| <M —m.

Therefore M — m is at least equal to the span of f. On the other hand, from
m,M € { f(z) | « € [a,b] } we obtain that M — m does not exceed the span.

Exercises for §3.5

2.

(a) f:(0,1) = R, f(z) =1/x.
(b) g:(0,00) = R, g(z)=1—e"".

(a) Let M’ be an upper bound for f on A and M" be an upper bound for f
on B. Then M = max{M’, M"} is an upper bound for f on AU B.

(b) A is non-empty because @ € A. And A is bounded above by b. Apply
the least upper bound property.

(¢) By continuity at a, o > a. If @ < b then there is ¢’ > 0 such that
I'=(a—-¢,a+0d) Cla,bland x € I = |f(z) — f(a)] < 1. Let
a — 0" < a < «asuch that |f] is bounded on [a,a’] by M. Then |f]| is
bounded on [a, a+¢'/2] by M + 2. Hence, a+§'/2 € A, a contradiction.

(d) There is 6 > 0 such that x € (b — 0,0 = |f(x) — f(b)] < 1. Let
b— 06 < a’ < bsuch that |f| is bounded on [a,a’] by M. Then |f] is
bounded on [a,b] by M + 2.

(a) Apply the boundedness theorem.

(b) If f(z) never equals M then g is continuous on [a,b]. Apply the bound-
edness theorem to g.

1
¢) —
© i@

<R = M-f(z)>~ = f(z) <M-—1/R.

=] =

3.6 Continuity, Integration and Means

b
Task 3.6.3. m< f< M = m(bfa)g/ng(bfa) = m <

1 b
bfa/ f= M

Task 3.6.4. fi,q = C_1a</abf+/bc f) S ((b—a)f[a,b] +(c—b)f[b,c]).

c—a

a

Task 3.6.5. Let a <z < y. Apply Task 3.6.3 to obtain fi, , < f(2) < fla.a)-
Now apply Task 3.6.4:
Tr—a - x Y

- Y—T - —a - —x - -
Jlay) = Hf[a,x] + Hf[a;,y] < Hf[a,x] + Hf[a,x] = fla,a]-
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Exercises for §3.6

2. By the mean value theorem for integration, there is a ¢ € (0,1) such that
1

fle) = 1%01‘0 flx)dr = 1.

4. By continuity, it is enough to show that f(c) = 0 for every ¢ € (a,b).

We shall show that f(c) > 0 gives a contradiction. Let ¢ = f(c)/2. There is
ad > 0 such that [c—4, c+6] C [a,b] and x € [c—4, c+6] implies | f(z)— f(c)] < e.
In particular, « € [¢ — 6, ¢+ d] implies f(x) > f(c) —e = f(c)/2. Therefore,

b c+d c+6
[ twdez [ s@dez [ (e2ds 2 1) >0

c—46

Similarly, f(c) < 0 also gives a contradiction.

6. Apply the mean value theorem for integration.

3.7 Limits Involving Infinity

Task 3.7.2. Take M = —loge and M = loge respectively.

Task 3.7.10. As we have x — 0o, we can assume z > 1. Then we have the
inequalities 0 < logz < = — 1. Replace = by z/?" to get

1 1
0< -BL o g1/m _ 1, hence 0 < 8L on(z~ V2 — g lm),
2n xl/n
Now apply the sandwich theorem.
1 logt
Task 3.7.12. lim zlogz = lim —log(1/t) = — lim L 0,
2—0+ t—o0 t t—oo ¢
lim z% = lim e* logz _ elimzHOJr zlogx _ 60 -1
z—0+ z—0+ ’

Task 3.7.19. Since f(z) — oo, there is a real number M such that > M im-
plies f(z) > 1. Working over the interval (M, c0), we get |g(x)| < |g(z)f(x)] —
0.

Exercises for §3.7

2.

(a) As x — 7/2—, cosx — 0 from the positive side. So 1iII/12 secx = 00.
xr—rT —

Formally, for any M > 0, there is a 6 > 0 such that 7/2 — 6 < z < 7/2
implies cosx < 1/M and hence secx > M.

(b) Does not exist.

2 2
- - 1
(c) Forz > 1, z— x:;+\/9;2m2xx:x2 .So,xli_{go(:c—\/gf):oo.
z+1 1+1/x 1

d) lim —/—— = lim —— = —.
( ) z—00 \/4x2 4+ 1 T—00 ,/4+1/x2 2

(e) lim e~ =0: Given 0 < £ < 1 consider M = /= loge.

r—0o0
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(f) lim e V% = lim e V%" = lim e =0.
x—0 z—0+ t—o0
1 t
(g) lim z sin— = lim sint =1.
T—00 x t—0+ ¢
2 .
(h) Tim SEMT gy O ST )
emoo 7241 amoo 22+ 1
1
i) lim (V2?2 +2z—2) = lim =,
@) lim (v )= Jim =
2
() lim (\/er\[, :cf\/i)fhm VT =1.
T—00 T—00 \/x+\f+\/m_

4. Let p(x) =ap+ -+ anz™ and g(z) = by + - -+ + bpa™, with a,,, b, # 0.
Then:

e If m = n, the limit is a;, /by,.
e If m < n, the limit is 0.
e If m > n, the limit is +oo, depending on the sign of a,, /by,

6. There is M > a such that © > M implies |f(z)| < |L| + 1. Further, by
the boundedness theorem, there is L’ such that = € [a, M| implies |f(x)| < L'.
Therefore, for every = € [a,0), |f(z)| < max{|L| +1,L'}.

8. This is obvious if & < 0. For o > 0, use 0 < e %2 < e~ *glalt+1,

Thematic Exercises

Continuity and Intervals
Al. The given hint was: “Consider cases of whether A is bounded above or
below, and whether its supremum and infimum belong to it.”

For example, suppose A is bounded above, but not below, and contains its
supremum. Let its supremum be b. Consider any x < b. Since A is not bounded
below, there is a € A such that a < x < b. So z € A. Hence A = (—o0,b].

The other cases can be covered similarly.
A2.

(a) Let ¢,d € f(I) and ¢ < y < d. We have a,b € I such that f(a) = ¢,
f(b) = d. By the intermediate value theorem there is « between a and b
such that f(z) =y. Hence y € f(I).

(b) We have I = [a,b]. By the extreme value theorem, f(I) C [m, M] with
m, M € f(I). Then the intermediate value theorem gives f(I) = [m, M].

(c) Explore!
A3.

(a) We have shown that f([a,b]) = [m,M]. If m < f(a) < M there is a
¢ € (a,b] such that f(a) = f(c), a contradiction. So f(a) € {m, M}. Sim-

)
ilarly, £(b) € {m, M}. Hence, f maps [a,b] to [f(a). f(b)] or [f(b), f(a)].
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If f is not monotonic, there will be points z1,...,z4 (not necessarily
distinct) such that ©1 < @g, x3 < x4, f(x1) < f(z2), and f(z3) > f(z4).
Let a = min{xy,...,24} and b = max{xy,...,24}.

Now, suppose that f([a,b]) = [f(a), f(b)]. Then a < x4 < b gives f(a) <
f(z4), hence f([a,z4]) = [f(a), f(z4)]. But then, a < z3 < x4 gives
f(z3) < f(z4), a contradiction.

The f([a,b]) = [f(b), f(a)] case similarly leads to a contradiction as well.

(b) Since f: I — f(I) is a bijection, f~! exists. As f is monotonic, so is
f~L. Since f is continuous, f(I) is an interval. Apply Theorem 3.2.9.

(c) We know that f(I) is an interval. We have to show that f(I) does not
have a maximum or a minimum element.

Suppose f is strictly increasing and y € f(I). Let f(x) = y. Since [ is
open, there are a,b € I such that a < z < b. Then f(a) <y < f(b).

(d) Since fo f is a bijection, so is f. Then the continuity of f implies that it
is strictly increasing or strictly decreasing. In either case, fo f is strictly
increasing.

A4,

(a) Let e =1 and consider any 6 > 0. Then

fx+6/2) = f(z) =6*/4+dx > v =1, ifz=1/0

(b) Let e = 1 and consider any § > 0. Then g(x/2) — g(x) = 1/x. Let
x = min{1,0}.
A5, Given € > 0 there is a partition P = {zg,...,x,} of [a,b] such that
|f(z) — f(y)| < /2 whenever z,y belong to the same [z;_1, ;] subinterval. Let
d=min{z; —2z;—1 | i=1,...,n}.
A6. Suppose f extends to a continuous function f: [0,1] — R. Then fis
uniformly continuous. Hence f is uniformly continuous.

Now, suppose f is uniformly continuous. For each n € N there is §,, > 0
such that |x — y| < ¢, implies |f(z) — f(y)| < 1/n. The n = 1 case shows f is
bounded and so each f(0,d,) is a bounded interval. Let a, = inf f(0,d,) and
by, = sup f(0,0,). Then the nested interval property applied to the intervals
[an, bn] gives Ny lan, by] # 2.

Note that b, — a, < 1/1 50 Nplan, by] = {yo}. Extend f to f: [0,1] — R by
defining f(O) = yo. The proof of continuity of f at 2 = 0 is left to the reader.

AT. Let lim f(z) = L. Given € > 0, there is M such that & > M implies
T—r0o0

|f(z) — L| < ¢/4. Now f is uniformly continuous on [a, M] so there isa § > 0
such that z,y € [a, M| and |x — y| < § implies |f(z) — f(y)| < €/2. This is the
required 9.
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4 | Differentiation

4.1 Derivative of a Function
Task 4.1.1.  Given any € > 0, choose § = 1. Then |z — a| < § implies
|f(z) = fla) —m(z —a)| =0 < ez — al.

Task 4.1.5.  The function f(x) = |z| is continuous at every point but is
not differentiable at 0. We apply the characterisation of Theorem 4.1.2. If
1(0) = L, we have a function ¢ that is continuous at 0, satisfies ¢(0) = 0, and

|z| — |0] = L(z — 0) = (z — 0)p(x) for every x. Hence, for = # 0, p(x) = =l L.
x
But then lin%]go(x) does not exist.
>

Task 4.1.7. Let f(z) = c. Then lim o) = fla) = lim 0 = 0.

Tr—a T —a r—a

Task 4.1.10. Apply Theorem 3.1.25.
Task 4.1.12. No. Consider f(z) = z3.

Exercises for §4.1

2.
(a) It is not even continuous at 0.
-0 1
(b) lim Vir[ =0 = lim —= does not exist.
r—0+ x€r — 0 x—0+ x
4.
(a) For continuity, apply the sandwich theorem. The lack of differentiability
follows from the calculation below:
sin (1 -0
lim asin(1/z) =0 = lim sin(1/z), which does not exist.
x—0 €r — 0 x—0
. x?sin(l/z) -0 . ,
(b) ili% ——0 - ilg%)a:sm(l/x) = 0.
6.
ey e Sinz—0 . osinz
(a) 51n(0)—ilgb po —l}g%) . =1
iy e cosx—1 . coszx—1
(b) COS(O)_EL% po, —ill}% . =0
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8.
— f(— —t) — f(— t) —
@ Fa) = i LD I FEO = @) 6~ fla)
T——a €Tr — (—a) t—a —t+a t—a t—a
—f'(a).
(b) Similar to (a).
10. f’is odd, so f'(0) = f'(—-0) = —f'(0).
12. (a) with (ii), (b) with (iii), (¢) with (i).
4.2 Algebra of Derivatives
Task 4.2.2.
-1
(a) The quotient rule gives the derivative to be @G- for x # 1.
Tz —
(b) The derivative exists at every x ¢ Z, and is zero there.
(c) The derivative exists for z # 0, and is —n/x"1.
1y ! i 1 i
Task 4.2.4. sec’'z = ( ) - 8T MY ST _ secxtana.
CoS & cos2x  cos?r  cosxcosw

The other calculations are similar.
log

Task 4.2.7. Uselog,x = .
loga

Exercises for §4.2

2.
(a) Differentiate both sides of the given formula and then multiply by «:

nz" " —

1 202 + - - "= - .
T+ 22" + + nx p— @17

(b) Differentiate both sides of the formula obtained in (a) and then multiply
by x:

n?x™  (2n+ 12"t -z 2nantt

12 222 2,.n _ _ .
rhEET x—1 (x—1)2 +(95—1)3

4. Each differentiation lowers the degree by 1. So p{™ is constant and p("+1)
is zero.

6.
(a) Theruleis ¢’ = fifo-- - fo+ fifa- - fot+ -+ fifa - fh
(b) Apply (a).

8. First, suppose r > 0. Then r = m/n with m,n € Z. Now:

m/n _ ,.m/n 1/n\ym _ (,.1/n\ym
(mm/")/ —lim "% _ lim ") (@)
y—x y—x y—z (yl/n)n _ (xl/n)n
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y(m_l)/n _|_ y(m_Q)/nxl/n _|_ ‘e _|_ x(m_l)/n

:Z}l_)Hi y(n—l)/n+y(n—2)/nm1/n++x(n—1)/n
m—1)/n
_ mx( )/ _ Ex(m/n)fl — T‘ﬂ}r71
nrn—1)/n n

For r < 0, apply the reciprocal rule.

10. logz<z—1 = log(l+2)<z = 1+z<e".

4.3 Chain Rule and Applications

Task 4.3.2.
(a) f'(x) = 20x(2? +1)°, for every real .
(b) ¢'(z) = —sgn(cos z) sin(z), when z is not an odd multiple of 7/2.

(c) W(x) = —sinz, for every real x.

sin 2z sin 2% — 22 sin® z cos x2
(d) ¥(z) = — , when 22 is not an integer multiple
sin® x
of 7.
Task 4.3.6.

(a) g(z) is the inverse function of f(z) = x? for x > 0. Therefore,

1
= = , for x > 0.

YO T " e - avE
(b) Apply (a) and the chain rule:
1

2z ++/x

Task 4.3.9. (a®) = (e*1°89) = e*l8%(z]oga)’ = a” loga.

B (z) =

d Va2 t 1
Task 4.3.12. — exp(va? + arctanz) = exp(via? + arctan z) (Qx + 2).
dx 2Vz? 4 arctanx 142

Task 4.3.14. f(z) = (sinz)°** = g(x) = log f(x) = (cos x) log(sin x)
2

= ¢'(z) = —(sinz)log(sinz) + CSC;; 5
= [(x) = f(2)g'(2)
= (sinz)' % (cot? x — log(sin x)).

Task 4.3.16. cosh’z = ( 5 = 5 = sinh zx,

T =T/ x —x
sinh/x:(e 26 ):e J;e = cosh zx.

Task 4.3.17. It is strictly increasing because sinh’ 2 = coshz > 0. To show it
is a surjection we find its pre-images:

e +e*$>' e —e "

= 2 e —1=0 < 2 =log(y+ 12+ 1).
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Task 4.3.18. It is strictly increasing on (0, 00) because x > 0 gives cosh’x =
r _ ,—x 1

c 26 >O.Further,y>1:>y2—2y+1:(y_1)2>0:>y+,>2_
()

. . T 4e™®
Hence x > 0 implies coshx = % > 1 = cosh0.

To establish surjectivity, we observe that given z > 0 and y > 1 we have:
eZE + e—w

2 <:>e2w—2ye$+1=0<:>x=10g(y+\/927_1)'

y:

1 1 1

Task 4.3.19. (sinh™'z) = = = .
cosh(sinh ™! ) \/1 + sinh2(sinh ! z) VaZ+1

Exercises for §4.3

2z 2
2. Differentiate with respect to z at xg to get —20 — %y’(xo) = 0. Hence,
a
b2 x b2 x
Y (xo) = — =% and the tangent line has equation y — yo = ——O(x — xp). This
a? Yo a? Yo
2 2
— TTH) — X TT
can be rearranged to yy0b2 % _ Oa2 Y or G—QO - % =1.
4.

6. First, tan®z = sec?z — 1 = tan?(arcsecx) = 2> — 1 = tan(arcsecz) €
{£vz?2 —1}. Now, 2 > 1 = arcsecz € (0,7/2) = tan(arcsecz) > 0.
And, r < -1 = arcsecx € (n/2,m) = tan(arcsecz) < 0. Hence,
tan(arcsec x) = (sgnx)v/a? — 1. Therefore,

1 1 1
sec(arcsec z) tan(arcsec ) x (sgnz)vVa? — 1 |z|vVaZ — 1

8. Let f(x) =2 and g(z) = log f(2) = 2% log . Example 4.3.13 gives

arcsec’ r =

g (x) = (%) logz + 2" = 2"(1 + log x) logx 4+ 2.
Therefore, f'(x) = f(z)g'(x) = 2* =11 + z(1 + log z) log z).
10. See the solutions of Tasks 4.3.17 and 4.3.18.

4.4 The First Fundamental Theorem

Exercises for §4.4

2. (a) F'(x) =322(1+ 2573, (b) F/(z) =201+ 2%)73 — (1 +22)73.

4. ¢(x)= \/1+x3\/1+(/0$ V1+t3dt)3.
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4.5 Extreme Values and Monotonicity

Task 4.5.9. The condition f' = f gives f(x) = Ae®. Then 1 = f(0) = Ae® =
A gives f(x) = €*.

Task 4.5.10. Let g = f2+ ()% Then ¢’ = 2ff' +2f'f" =2ff - 2f'f=0
gives g = C, a constant. And g(0) = £(0)% + 2f/(0)? = 0 gives C = 0.

Task 4.5.11. Apply the previous Task to f(z) —acosx — bsinz.

Exercises for §4.5

2.

(a) We have f'(z) = —(2/3)x~'/3 for x # 0, while f’(0) is not defined. So
the only critical point is x = 0.

(b) The candidates for absolute extremes are x = 0,+1. We have f(0) = 1,
f(£1) = 0. So the absolute maximum value is 1 (at 0) and the absolute
minimum value is 0 (at £1).

4. We have f(0) = —2 < 0 and f(n/2) = 73/24 + 7 > 0. By the intermediate
value theorem, there is at least one zero.

Further, f/'(z) = 22 + 2 + 2sinz > 22 > 0 for x # 0, while f/(0) =2 > 0.
Therefore f is strictly increasing and has at most one zero.

6. Proceed by induction. We already know that f’ = 0 means f = constant.
Now suppose f(™*1) = 0 with n > 0. Then (f')(™ = 0 and by the induction
bp—
hypothesis, f' = bo+biz+- - +bp_12" L. Let g = f—boa:fglﬁf« s nmlagn,
n
We find that ¢’ = 0, hence g = constant and f is a polynomial of degree n or
less.

8. Wehave ¢'(z) = —f'(z) = —kg(z), s0 g(x) = Ae " and f(x) = M —Ae %=,
10. The given condition gives the equation f'(z) = f(x)/x. Hence we have
/ / —

(L)Y el @) Sla) g S0
x x x
and (0,00). By the differentiability at = 0 the two constants must be the

same.

= constant on each interval (—oo,0)

12. By Darboux’s theorem f’ is either positive everywhere or negative every-
where.

4.6 Derivative Tests and Curve Sketching
Task 4.6.4. If its graph is a line.

Exercises for §4.6

2.

a) The critical points are x = 0,%w/2. The function is increasing on
)
[-m, —7/2] and [0,7/2], it is decreasing on [—7/2,0] and [7/2, 7).
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(b) The only critical point is = 0. It is increasing on [—3, 0] and decreasing
on [0, 3].

(¢) The critical points are x = +1. It is increasing on [—1, 1], decreasing on
[-3,—1] and [1, 3].
(d) The critical points are z = 1/2,1. It is increasing on [—1,1/2] and [1, 2],
decreasing on [1/2,1].
4. In Example 4.6.9 we saw that the function has derivative 1/(1+ 2?2). Hence

its difference with arctan x has zero derivative and is constant on each of these
intervals.

6.

(a) If u is positive at a critical point, then u” is positive at that point and
the point must be a local minimum and not a local maximum. Similarly,
if u is negative at a critical point, that point cannot be a local minimum.

(b) If w is not always zero, it either has a positive local maximum or a
negative local minimum!

8. We already know that e* —1 — 2 > 0 for z > 0. Hence (¢ — 1 — 2 —
22/2) = e®* —1—2 > 0 and f(z) = e — 1 — x — 2%/2 is strictly increasing
for x > 0. Similarly, it is increasing for « > 0. Therefore, £ > 0 implies

f@) > f(z/2) 2 f(0) =0
Thematic Exercises

Convex Functions and Inequalities

Al. Apply the inequality (4.1).

A2, Apply Al to a < b < dto get I ):i(a) < f(dc)l:z:(a)
We can similarly obtain ) — f(a) < f(d) — f(c)
— 4 I—

A3.

(a) Let a € I. For x # a define g(z) = M. Then ¢ is an increasing

function. Hence, f! (a) = hm g( )=inf{g(z) | x >a}

fi(a) = lim g(x) =sup{g(v) | = <a}

By A2, we have that m € {g(z) | z<a} and n € {g(x) | z > a} im-
plies m < n. This gives the existence of the limits as well as the desired
inequality.

(b) Apply A2.
(¢) The existence of the one-sided derivatives gives continuity from each side.

A4.  Consider f: [0,1] = R, f(0) =1 and f(z) =0 for > 0.
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A5,

(a) Consider a line through (a, f(a)), with slope m. It will be a support line
if and only if f! (a) > m > f’ (a).

(b) The support line will be unique if and only if f/ (a) = f’ (a).

Ae6. The function (1 + z)" is convex and differentiable, while y = 1 + rz is
its tangent line through (0, 1).

AT, Apply A3(b).

AS. We have seen that f’ will be an increasing function. Since it also has
the intermediate value property, it will be continuous.
A9.

(a) (1 —1¢t)f(x)+tf(y) is the point on the secant line joining (z, f(z)) and
(y, f(y)), corresponding to the input (1 — t)x + ty.

(b) Suppose the tangent line meets the graph at a point (b, f(b)), with b # a.
Then f((a+0)/2) < (f(a) + f(b))/2, violating the tangent line being a
support line.

A10.
(a) If f has a local minimum at a then f’ (a) < 0 < f’ (a), hence the line
y = f(a) is a support line and there is a global minimum at a.

Suppose f has local minimums at a,b, and we have a < x < b. Since
a local minimum is also a global minimum, we have f(a) = f(b) = L.
Convexity gives f(z) < L, hence f(z) = L.

(b) Apply (a). (This claim requires I to have the form [a, b].)
(c) If f'(a) = 0 then the line y = f(a) is a support line.
A11.

(a) For n = 2 this is the characterising property of an interval. For n > 2,
we proceed by induction based on the following:

n n—1
sz% =(1—wy) Z T iuzunxl + wp Ty,
i=1 i=1
(b) Proceed by induction, using the approach in (a).
W
Apply (b) to 37 ez with oy = =
(c) Apply (b) to 3 i, aiz; with o ST
(d) —f is convex.
- T\ 2 L
A12. The convexity of f(x) = 22, with w; = 1/n gives ( —) < Z =,
i1 " i1 "
that is, RMS > AM.
g = log(x;
The convexity of f(z) = —log z, with w; = 1/n gives log(z x—) > 0g(:)
n n
i=1 i=1

log(H ;)™ hence AM > GM.

i=1
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Apply AM > GM to xz7, ..., x;" to get GM > HM.

A13.
P pa log aP
(a) The convex function f(z) = —logz gives — log (a + 7) < — o84’ _
p q p
log b4
Yy
(b) For the special case, apply Young’s inequality:
- “Nal by 11
ZaibiSZ(&ﬂ‘i) =-—+-=1
i=1 - P4 P g
Reduce to the special case by considering a} = a;/(} i, af)l/l’ and
b = bi/ (35 b))
(c) First,
S Jaitbil? <3 (ail +bi])lai+bi [Pt Z\ai||ai+b7;\”’1+z|bi||ai+bi|p’1.
i=1 i=1 i=1 i=1

Apply Holder’s inequality to each term on the right:
St nlr = () " () ") (Sl )
i= i=1 i=1
= ()" () ) ()
i=1 =1

1/q

A14.

(a) Let g have minimum value m and maximum value M. Then m, M € I
and m < zg < M.

(b) Let y = F(xzo) + m(z — o) be a support line through (z¢, F(x¢)).
(c) Integrate both sides of the inequality in (b).
A15. Apply Jensen’s inequality with F(z) = —logx.

Ale6. Define ¢ = f g(z)p(z) dx. Now apply the mean value theorem for
weighted integration to get xo 6 I

Let y = F(xo) + m(x — xo) be a support line for F' through (zq, F(z0))-
Then we have, for every x € [a, ],

F(xo) + m(g(x) — x0) < F(g(x)).
Multiply both sides by p(z) and integrate to get the desired inequality.
A17. Apply A16 with F(x) = 22
A18.  Apply Al16 with I = (0,00) and F(x) =1/z.

A19. Denote ||f]|, = (f; f(x)pdx)l/p and ||g||, = (f;g(x)q dw)l/q. Now
follow the approach for A13(b). In the special case when ||f|[, = ||gl|lq = 1,
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apply Young’s inequality:
/ f(x)g(x)dzg/ (M+M)dx:7+—:1_
a a p q p q

Reduce the general case to this special case by considering f/||f||, and g/||g]l4-
A20.  Follow the approach of A13(c).



52

CHAPTER 4. DIFFERENTIATION



5 | Techniques of Integration

5.1 The Second Fundamental Theorem

Task 5.1.5. No, we do not know which constant will be in effect for x < 0.

Task 5.1.8. We have (z arctanz) = 5 +arctanz, hence

14z

/arctanxdx = xarctanx — / %dw =gxarctanx —logV/1+ 22+ C.
x

Exercises for §5.1

2.
2 1
(a) 5355/2 + §0x3/2 — 2212 4 C.

(b) %sinZtJrC.

3 1
(c) §log|x—1|—§log|w+1|+0.

_ logz+1 ifz>0
4 f(”“")_{ log(—a)+2 ife<0 "

6.
1, 14++/3/2
(b) 1_2.
12
(c) log2’

a+2m
8. The given hint is not needed: / cosfdf = sin(2r + a) —sina = 0.
10.

(a) The quadratic () has factors x — a and z — 3. Matching the 22

efficient gives ¢(x) = (¢ — a)(xz — ). Further, multiplying through by
(x —a)(x—B) gives A+ B=C(x — 8)+ D(x — «), hence A=C+ D
and B = —Cf — Da. Therefore, C = (Aa + B)/(a — ) and D =

(A8 + B)/(B - a).

93
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(b) Apply (a).
12.

(a) In this case, let ¢(z) have minimum value m at # = a. Then m = b* > 0
and ¢(z) — b* = (z — a)*.

p(x)  Alr—a) Aa+ B

(@) " G-+ B @B

(b) Apply (a) to get

5.2 Integration by Substitution

Task 5.2.8. No. 1/z is unbounded on this domain, so this integral is not
defined.

Exercises for §5.2

2.

1 x 21/' T
(a) Write/l—’_zxdx:/(lJrl_eex)d:c::c+2/1iexdx,andsub-

stitute y = 1 — e”.
(b) Substitute v = sin6.
(c) Substitute u = cos6.
)

(d) Substitute u = tan6.

4. /sinmxcos%_lxdx = /sinm z(1 — sin® 2)* 1 cos x dz

= [u"(1—u?)*1du (u =sinx)

/ k-1
/

(Z(—ly(k B 1>um+2i) du

=0

2 i Jmr2itl
kol (k= 1\ (sinz)m+2itd
:,:o(_l) ( i ) m+ 2+ 1
6.
(a) 1/12. (b) 37/8. (c) 16/15. (d) 7/32.

5.3 Integration by Parts
Task 5.3.5.
(a) /3:265” dr = z2e” — Z/xew dr = z?e” — 2ze” + 2/6”” dx

= (2% — 2z +2)e” + C.
(b) 2zsinx + (2 — 2?) cosz + C.
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Exercises for §5.3

2.
(a) 1.
(b) (e +1)/4.
() —log(vZ+1)+ %w.
() g 1.
4.

(a) /cos"xdx = /cos"_lxcosxda:
=sinzcos" 'z 4 (n—1) /cos"_2 rsin® z dx
=sinzcos" 'x+ (n—1) /cos”*2 xdr—(n—1) /cos” xdz

sinzcos®z 3sinzcosz 3z

(b) 1 + 3 + 5 +C.
(2n —1)!
(©) 22np(n — 1)12 -
22nn!2
(d) (2n+1)1
6.

dx T z? dz
(a) /($2+a2)n71 @+l +2(n—1)/m

z dx a®dx
~wra 20 e [ rey)
(b) Similar to (a).

(c) /sec" xdr = /sec”*2 x sec? x dx
=sec" 2z tanz — (n — 2) /sec"*2 x tan? x dx

=sec" 2z tanz — (n — 2) /sec" xdr —(n—2) / sec" % xdx
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5.4 Partial Fractions
Exercises for §5.4

2. We have p(z) = ZZ;S Ap(r—a)f = Ao+ Ay(x—a)+-- -+ A,_(x—a)" L.

,, , 1) (n—1)!

Therefore, p(z) = ild; + "I A @ —ay 4y OT Dy
| eria ?re, pW(z) = ilA; + 1 ti(z —a) + -+ (n—1—1i) 1@
a)r—1-%

4.

13 2
(a) = log(z +2) —2logz + E log(z — 3)

ilo (a:+2) 1 xr+ 12
125 &

z—3) 25(z+2)(x—3)
1 1
¢) arctanz + — log(x? + 2) — — arctan(z/v/2
(© 3 lo8(a? +2) — o arctan(x/v2)
log(z —1) log(z®>+4) 2z+1 7
d — - = — arct 2
() =55 50 5a7 4 o etan(@/2)
(© log(x —1) log(z+1) arctanz
4 4 2
1 22+ V2 +1 1
(f) W log (m) —+ W arctan(ﬁx—l— 1) —+ 23/2 arctan(\/icc — 1)

6. There is an error in the given substitution: it should be ¢ = tan(xz/2). This
gives x = 2arctant, from which we get:

de _ 2
dt 1+
i in(2arctan t) — 2 sin(arctan £) cos(arctan t) — 2——- ! 2t
sinz = sin(2 arctant) = 2sin(arctan ¢) cos(arctant) = = ,
I+2V1+e2 1+
t2 11—t
cosz = cos(2arctant) = 1 — 2sin?(arctant) =1 — —— = —.
1+¢2 1+t

z s
__1, (tan(x/Q) —V2- 1)
tan(z/2) +v2 -1/

7 o
(b) = — % arctan(v/2 tan z).
5.5 Improper Integrals

Task 5.5.7. The condition a < 0 gives lir&_ x® = oo. Hence, for a # —1,
xr—

1 1 )
x%dr = lim 2%dz = lim 1_7aa+1: 1/14+a) if —1<a<0
0 a=0+ Jq a=0+ a+1 00 ifa<-—1

1
The v =1 case gives / x%dr = — lim loga = oc.
0

a—0+
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Task 5.5.10. I'(1/2) = [ e 't~'/2dt. Substitute t = 2? with = € [0,00) to
get

T(1/2) =2 /OOO e da.

Exercises for §5.5

2.
(a) /2.

(b) 0. (Note: It is not enough to invoke the integrand being odd, convergence
has to be established.)

(c) 1.

/2
(a) / secxdr = lim log(secx + tanz) = oo.

0 I*}T{'/Q*

>~ 1
(b) /2 xlogx dv = ,}H{}O log(log z) — log(log 2) = cc.

2
1
c) /1 TTogs dz = log(log2) — wlin& log(log x) = co.
e 1
d ——dz = lim sinh™*(2/3) = .
@ [ St = fim s /9
6. There is M such that z > M implies f(x)/g(z) < L+ 1, hence 0 < f(z) <

(L 4+ 1)g(z). By the comparison theorem, convergence of [y g(z)dx implies
convergence of [, f(z)dz.

For the converse, use the existence of IV such that > N implies f(x)/g(x) >
L/2.
8. Statement: Let f, g be continuous on (a,b] and have vertical asymptotes at

a, with 0 < f(z) < g(z) for every z € (a,b]. Let

o fle)
zlirngmeeR, L#0.

Then f; f(x) dx converges if and only if f; g(z) dx converges.
Proof: Similar to Exercise 6.
10.

(a) No. Suppose L > 0. Then there is M such that « > M implies f(x) >
L/2 > 0. By the comparison theorem, f;lo f(z) dx diverges.

(b) No. Here are two examples with a = 0:

1 1
[ 1 ifzeN _) 1l ifren—5-,n+-]withneN
ra={ o He et - TR

0 else
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5.6 Ordinary Differential Equations

dy 1
Task 5.6.3. — = 1 ——log(M — =
ask 5.6.3 /M—ky /dt = kog( ky) =t+C =
M — ky = Ae k.

d d
Task 5.6.6. /gy = /% = logly| = log|z| + C = y = Az, with
A=y(1).
Task 5.6.8.

/(5y4+1)d‘y:/(3x2+1)d$ = P y=a"+2+C.

6230

Task 5.6.15. In Example 5.6.13, we found the general solution: y = Ae—+—.
x oz

Now y(1) = 0 gives 0 = Ae + €2, or A = —e.

Task 5.6.19. Statement: Consider an initial value problem 3’ = f(y), y(0) =

Yo, where f : (a,b) — R is negative and continuous, and yy € (a,b). This

initial value problem has a unique solution y: («, 8) — (a,b) which is a strictly
decreasing bijection.

Task 5.6.20. If f(yo) = 0 then y = yo is a solution. If f(yp) # 0 then f will
not change sign in some open interval around yo and then Theorem 5.6.18 (and
Task 5.6.19) give a solution.

Example 5.6.7 shows that a solution may not be unique.

Exercises for §5.6

2. The substitution u = y/x gives 2vuu’ = —u? — 1. Separation of variables
gives u? + 1 = C/x, hence y? = Cz — 22
4.

(8) y = (a+C)er.

x? C
C —cosx
©y=—3z—

d) y= e—sinz</ezz+sinzdx+o>_

(a) The equilibrium solutions are y = nw with n € Z.
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Y
’///

\

The equilibrium solutions are stable when n is odd and unstable when
n is even.

21

(b) The equilibrium solutions are y = nm with n € Z.

21

i

All the equilibrium solutions are semistable.

(c) The equilibrium solutions are y = 0 and y = 1.

—

The equilibrium solution y = 0 is unstable, while y = 1 is stable.

(d) No equilibrium solutions.
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Y

x

(a) Let (z0,y0) be a point on a curve belonging to the orthogonal family.
The parabola passing through it is y = cz? with ¢ = yo/23. The tangent
to that parabola at (zg,yo) has slope m = 2cxg = 2yo/xo. Hence, the
slope of the tangent of the curve from the orthogonal family is —1/m =
—20/(2yo). So the orthogonal curve satisfies y' = —x/(2y).

(b) 2yy' = —z = [2ydy=— [xdz = 2y* +2? = C. Clearly, C >0
and we can write C = k2.

(a) From Theorem 5.6.18 we know that y(z) is strictly increasing. If y(x) is
bounded above, then the monotone convergence theorem gives lim y(x) =
T—r00

M for some M > a. It follows that lim y'(z) =0 and so 0 = f(M).
T—r00
(b) Similar to (a).

Thematic Exercises

Second Order Linear ODE
Al. We have (f + f') = f+ f and (f — f') = —(f — f’). Hence, f(z)+
f'(x) = Ce® and f(z) — f'(x) = De~*. Therefore, f(z) = (C/2)e” 4+ (D/2)e ™.

A2, Apply Al to get f(x) = Ae® + Be~®. Note that A+ B = f(0) and
A— B=f'(0).

A3.  The initial conditions should have been f(0) = B and f'(0) = A.
() k=0 = f'=0 = fl(2)=A = f(x)=Az+ B.

(b) Let g(x) = f(x/w). Then g"(z) = f"(v/w)/w?® = —g(x), hence g(z)
asinz+fcosz, and f(x) = g(wz) = asinwz+ fcoswz. Now f(0) =
and f'(0) = A give 8 = B and o = A.

(c¢) Similar to (b).
AA4.
(a) Suppose v(x) = e®/2f(x). Then

V(@) = e (f (2) + (a/2) f(2))

B
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V' (2) = 2 (f"(2) + af' (2) + (a*/4) f(2)) = (/4 — b)u(x)

The converse has a similar justification.

(b) If d = 0 then v(z) = e®*/2f(x) is a solution of v = 0 and A\ = —a/2.
Hence e=** f(z) = A + Ba.

(c) We have Ay = (—a + Vd)/2, \y = (—a — V/d)/2 and v" = (d/4)v.
Therefore, by (c) of A3,

ea”/zf(x) — AV | Be_(‘/a/z)’”, so f(x) = AeM® 4+ BeM?®,
(d) We have r = —a/2 and w = v/—d/2. By (b) of A3, we have
e®/2 f(z) = Asin (@)x + Bcos (@)x,

so f(z) = €™ (Asinwz + Bcoswz).

A5. Consider the cases when the roots are real and distinct, real and equal,
complex.

A6. Let f be any solution of f” + af’ +bf = g. Verify that f — f, is a
solution of f” +af’ +bf = 0.

AT.

a) Substitution o ) 1n the given equation leads to:
Substitution of f,(z) in the gi ion lead
(—a—38+2a)cosz+ (—8+3a+28)sinz = cosx

This gives « — 35 =1 and 5+ 3a = 0.

(b) Consider f”(xz) — 3f'(z) + 2f(x) = 0. The characteristic equation is
A2 — 3X\ + 2 = 0, which has roots A = 1,2. Hence its general solution is
fr(z) = Ae® + Be?®.
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6 | Mean Value Theorems
and Applications

6.1 Mean Value Theorems

Task 6.1.5. Apply Rolle’s theorem to f on [a,b] and [b, ] to get a’ € (a,b)
and b € (b,c) such that f'(a’) = f(b') = 0. Now apply Rolle’s theorem to f’
on [a’,b'].

Exercises for §6.1

2. Let f(t) =logy(t). Then f'(t) < K, hence f(t) < f(0) + Kt for t > 0.
4. Just compute f’(c) for the given f and c.

6. Apply Rolle’s theorem to f(x) — g(x).
8

. We need to find a ¢ such that f'(¢) = f(c)/c. Apply Rolle’s theorem to
g(x) = f(z)/x.

10. We know that f is continuous on [0,00) and differentiable on (0, cc).
(t1) =

Apply the mean value theorem to f on [0, ¢] to get ¢; € (0,c¢) such that f’
w = sin(1/¢). Now pick ¢; € (0,t1) such that sin(1/¢;) = sin(1/c).
Apply the mean value theorem to f on [0,c¢1] to get ta € (0,¢1) such that

fl(t) = w =sin(1/c;) = sin(1/c). Repeat.
12.
(a) The required M exists and is unique because = # 1, Ta.

(b) L(x1) =y1 = f(x1) implies G(z1) = 0, while L(x2) = y2 = f(x2) implies
G(z2) = 0. The choice of M gives G(x) = 0. Apply Rolle’s theorem to
G to get ¢1 € (x1,2) and c2 € (x,x2) such that G'(¢1) = G'(¢c2) = 0.
Then apply Rolle’s theorem to G’ to get & € (c1,¢2) C (21, x2) such that
G"(§) = 0.

(c) We have G”'(t) = f"(t) — 2M. Hence, 0 = G"(§) = f"(€) — 2M, and
M = f"(£)/2.
6.2 L’Hopital’s Rule

Task 6.2.7. lim SRE=2 2’/ cose—1+a%/2 . sinw-z
z=0 b z—0 Sat 250 5473

63
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1
5l

Exercises for §6.2

2. A mechanical application of L’Hoépital’s rule fails to simplify these expres-

. L . Z Cos T . z
sions. For example, the expression in (a) leads to lim L = lim f .
z=0+ /sinx z—=0+ 4/sinx

Instead, (a) can be resolved by applying the sandwich theorem, while (b) is re-
¢

e
solved by substituting ¢ = 1/x. This converts the problem to tlim —.
bde el

4.
(a) Apply L’Hopital’s rule:
— — f! _ ! / "
@) @) - fa)e—a) @) - ) )
z—a (x —a)? z—a  2(x —a) 2
(b) Apply L’Hopital’s rule n times.
6.
1— xn-{—l
(a) We begin with 1 +z+ 224+ --- + 2" = - Differentiating both

sides gives the required identity.

(b) Computing the limit gives:

1—(n+ 12" +nz"tt  n(n+1) (a1t —z™)

1+2+--+n=lim (1-x) =T Mo,
_ n(n+1) %1_>ml o n(n;— 1).
8. Compute the following limits.
. x . z
(a) zh_)r{)lo Tog( £ )" (d) wl_l)I(r)lJr(cosx)l/ .
(b) Igrilooxem. (e) xgrg+(log(1/x))I.
(c) tlirgl+ sintlogt. () mlir(r)gr gt/ g
(a) 1 (b) 0 (c) 0 (d) 1 (e) 1 (f) e

6.3 Taylor Polynomials
Task 6.3.1. If T, is the n'® Taylor polynomial of f centered at a, show that

TH¥ (a) = fM(a) for k=0,1,...,n.

Consider each term of 7,,. On differentiating & times, each term whose
degree is less than k£ will become zero. Each term with degree more than & will
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have a surviving z — a factor, hence will become zero for x = a. So the only
contribution will be from the f*)(a)(z —a)*/k! term, and this will give f*)(a).

Task 6.3.6. Check that the Taylor polynomials of log(1 + x) centred at a = 0

2 LUB

T z"
are v — — + — -+ (=1)"H1—,
2+3 +(=1 n

Let f(z) = log(1 + z). Then f®)(z) = M for k > 1. Hence,

(1+x)k
(k) 0 —1)k-1
the k-th degree term of the Taylor polynomial is / k:'( )x’“ = %xk if

k>1and 0if £k = 0.
Exercises for §6.3

2. There is an error in the problem statement. The equality to be proved is
Tffn f Tfn— 1(t) dt.

/Tfn 1(t)dt = Zf(k) )/ (t—a)kdtzn_ f(k)(a)!(a:—a)k+1

= (k+1)
E:ﬂk” @ =3 0y
k=1
4.
(@ 2+ DL

(b) e+elr—1)+ —(z—1)>+- ..+n3(x_1)n.

2! !

6. From f" = f, we get f*)(0) = f*+2)(0) for k > 0. Hence f*)(0) = 0
when k i is even, and f*)(0 (0) = 1 when k is odd. So the Maclaurin polynomials

2n+1
arel’-‘—g—'——'—m
8. Suppose f'(a) > 2. Then f(a + 2) — f(a) = f( )+ 2f"(c) for some
¢ € (a,a +2). Hence, f(a+2)— f(a) >2-2—2-1=2. On the other hand,
()] < 1 impies | f(a+2) — f(a)] < 2.

Similarly, f'(a) < —2 also leads to a contradiction.

10. We have (p — q)(™(a) = 0 for every n > 0. If p — ¢ is not zero, it has a
degree n, and then (p — )™ (a) # 0.

12.

(a) R can be defined in this manner because z # a.

(b) No justification needed.

(c) The definition of R gives g(z) = 0. The other terms are zero because
f®)(a) = T,gk)(a) for k=0,...,n

(d) Assume x > a. Apply Rolle’s theorem to g on [a,z] to get ¢; € (a,x)
such that ¢’(¢1) = 0. Then apply Rolle’s theorem to ¢’ on [a, ¢1] to get
2 € (a,c1) such that g”(ce) = 0. Continue in this fashion.
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(e) We have g"+t1(¢) = f*+D () — R(n+1)!. Hence 0 = f(*V(¢) — R(n+
.

14. We get the estimate as follows:

x3 + xb sinx 1 x? + xt
smr~z——+— — ~1l—— 4+ —
3! 5! T 3! 5!
1 .
sinx 1 1 1703
= dr~1— —+4+ —=——=0.94611...
, oz 18 T 600 ~ 1800
3 5 :
The remainder theorem gives sinz = z — % + z' - wgﬁ. Hence, ST _
x? :v4 cosc(x) g ' . '
1- 37 —|— T Therefore,
‘/1 sing - 1703) _ 1 /1 6 L .000028
r— —— — z°dr = =—— = 0. .
0o 18001 — 7! J, T

6.4 Riemann Sums and Mensuration

Exercises for §6.4

2. Let f:[0,1] — R be the Dirichlet function. For each partition of [0, 1]
choose a tag whose members are rational. Then I = 1 satisfies the hypotheses
of Theorem 6.4.2, but the conclusion is false.

4.
/4

w/4
a) / V1+tan? xde = / secz dr = log(v/2 4 1).
0 0

(b) The function should have been y = (x — 1)3/2. Then:

13/2_
/ / m—l 3 8

(c) The arc length is / V' 1+ 924 dz. This integral cannot be evaluated by
0

elementary means.

6.  The problem statement should have S(f, P,) instead of L(f,P,). The
inequalities also need slight corrections, as shown below.

We begin by observing that

n

S(f,P) = Z ((xz — i)+ (yi — yi71)2)1/2 > Z yi — yi-1l-
i=1

i=1

(a) We have f(5;) = (_2}3]9 and f(5z) = 0. Hence,

2n—1

S Pa) > Y lyi = vio1| = lyol + 2lya| + - - + 2[y2n—2]
=1
SN I
2 23 n

—_
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1 1 1 nt+l g
(b) S(f,Pn)>7+7+...+7>/ leog(n—l—l)—logl
2

2 3 n
8. Let R > r. Consider the region bounded by the graphs of y, = /72 — (z — R)?
and y— = —/r? — (z — R)2, with |x — R| < r. A torus is obtained by rotating

this around the y-axis. The shell method gives the volume as follows:

R+r r
/ 2W1‘~2\/T2—($—R)2dl‘=4ﬂ'/ (R+t)Vr2 —t2dt
R—r —r

= 47rR/ V12 —t2dt = 272 Rr2.

R
4 f
10. Apply the shell method: / 21z - 2/ R2 — 22 dx = §7r(R2 —r2)3/2,

T

12.
(a) Surface area from curved portions (Note that ¢’ = —f’ and f + g = 2/):
b b b
271'(/ fl@)/14 f(x)? der/ g(2)V1+ ¢'(x)? d:L') = 47r€/ V14 fl(x)?dx.

Surface area from flat caps:

7(£(@)® = g(a)? + ) = g0)?) = 2mL((f(a) — g(a) + (S ) — g(D))).

Total surface area:
b
zwe(z/ VIT @2 de + (f(a) ~ g(@) + (f(b) ~ 4(b))) = 2nCP.

(b) Apply the discs method:

b

b
7r/ (f(z)? = g(z)?) dz = 27r€/ (f(z) — g(x)) de = 27l A.

6.5 Numerical Integration

Task 6.5.5. (The last two requirements need to be corrected to ¢'(a) = y,
and ¢'(b) = y}-)

By shifting the domain we can assume b > a = 0. Let q(z) = az® + f2? +
~vx + 0. Then the supplied values of ¢(0) and ¢'(0) give us § = yp and v = y,.
The values of ¢(b) and ¢’(b) now give the following pair of linear equations for
«a and B:

ba+ b8 =y, — byy — o
3b%a + 2083 = yp, — yo

The coefficient matrix has determinant —b* # 0, so there is a unique solution.
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Exercises for §6.5

2. In this example, Simpson’s rule fails to outperform the Midpoint rule. The
reason is that, near 1, the fourth derivative takes much larger values than the
second derivative.

4. Let zp < z1 < 23 < -+ < xa, be a partition of [a, b] into equal subintervals.
We compute the midpoint and trapeziodal rules using the partition zy < x2 <
x4 < -+ < Tap. Let Az = (b—a)/2n. Then,

2 b 1 b _2 " 1 Yo n_l Yo
g a(f)+3Ta(f)_312_;3/21—12A$+3(2+§y21+2>2AJZ

n—1 n
= (yo +22y2i +4Zy2i71 ‘Hﬂn)% = 50(f).

=1 i=1

6. We follow the pattern for the n = 2 case. Let 1 = —h4/3/5, zo = 0,

x3 = hy/3/5. Then, let g(z) be a polynomial of degree at most 5 such that
q(z;) = f(z;) and ¢'(z;) = f'(x;) for i = 1,2, 3. Fix a value of z. Define

g(t) = f(t) — q(t) = M(t — 21)*(t — 22)*(t — w3)?,

where M is chosen so that g(x) = 0. Then g(z;) = ¢'(x;) = 0 for i = 1,2, 3.
The four zeroes of g give three zeroes of ¢’, and these are distinct from the x;.

So we get 6 zeroes of g’. Repeated application of Rolle’s theorem gives a zero
¢, of g(®. This leads to M = f©)(¢,)/6!. Hence,

F9&)
6!

f(z) —q(x) = (22 — 3h%/5)%a2.

This leads to:
h h h
[ (@) de = Ga) = / (o) o~ Gala) = / (/@) = g(w) do
O s s e
=4 /_h(x —3h*/5)%x” dx

(6) 1
_ f 6'(5) h7 /_1(l‘2 _ 3/5)21,2 dr = %f(ﬁ)(f)h7.

Thematic Exercises

Curve Fitting: Error Analysis

Al. Mimic the proof of the remainder theorem. Fix x # a and define R
by f(x) - p(x) = R( — 1)+ ( — ). Then define g(t) = £(t) — p(t) — R(t —
1) (t— ).

Observe that g(x) = g(x1) = -+ = g(x,) = 0. By repeated application of
Rolle’s theorem, obtain & € I such that ¢(™ (¢) = 0.
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A2, (L3)(wp) = 2L;j(wp) L (wp) = 0= L3(ax) if j # &
(L3) (x5) = 2L;j(x;) Ly (x5) = 2L} (x;)
A3. Let Hj(z) = (a + bx)L:(xz). Then Hj(xy) = 0if &k # j. And
Hj(z) = bL3(x) + 2(a + bx) L;(z) L;(x) gives Hj(zy) = 0 for k # j. Now,
Hj(l’j) =1 — a+bxj =1
Hi(z;) =0 = b+2L(z;) =0
Next, let Kj(x) = (a+bx)L3(x). Again, we have Kj(xy) = Kj(zx) = 0if k # j.
Kj(xj) =0 = a—i—bxj =0
Ki(z;)=1 = b=1
A4. It is easy to see that H(x) has the required properties. If H; and Ho
both satisfy them, then (Hy — Hz)(z;) = (H1 — H2)'(z;) = 0 for every j. Thus

H; — H» has a root of multiplicity 2 at each x;, hence must have degree at least
2n if it is non-zero.

A5, Mimic the solution to Al. Fix x € [a,b] with & # x¢,...,2,. Define R
by f(z) — H(x) = R(z — 20)?- -+ (x — 2,)?. Define

g(t) = f(t) = H(t) = R(t — z0)* -+ (t — wn)*.

Observe that g(x) = g(xg) = -+ = g(z,,) = 0 and ¢'(x) = -+ = ¢'(z,) = 0.
Rolle’s theorem gives n + 1 new zeroes of ¢’, for a total of 2n + 2. Then it gives
2n + 1 zeroes of ¢” and so on, until we find a zero &, of ¢(*"*+2). Then:

0=g®(g,) = fO (&) — (2n +2)!R.

Riemann Integral

B1.

(a) The definition of Riemann integral gives § > 0 such that Ap < ¢ implies
|RS f(x) dz — R(f, P*)| < €/2. Now choose n such =2 < 4.

(b) Let P be the partition g < -+ < x, and m; = inf{ f(x) | = € [x;—1, ;] }.

Choose z} € [z;_1, ;] such that f(z}) —m; < 3(h—ay- Lhen,

R, P=LU P) = 3o =mi) wi—i1) < 55—
i=1 =

=1
(¢) By combining (a) and (b), we obtain an n such that

(xi_l'ifl) =

3

2
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B3.

(a) There are partitions @1, Q2 such that U(f, Q1) f f(z)dx < /2 and
faf x)dx — L(f,Q2) < £/2. Now choose Q = Q1 U Q5.

(b) We shall prove that U(f, P) < U(f,Q) + 5. Let P = {xp,...,2,},

M; = sup{ f(z) | = € [z;_, 2] } and M; = sup{ f(z) | = € [wi—1,2:] }.
We have:

M < M; if [x_, @] C [x;_1,2;] for some j
= M else

There are at most m cases of the second type. Hence,

We can similarly prove that L(f,Q) — 5 < L(f, P).
(c) On combining B2 with B3(a) and (b), we see that Ap < ¢ gives

Mﬁ@—*< R(f,P7) <U(},Q) +

Hence |R(f, P¥) f f(z)dz| <e. So fj f(x) dx fulfills the requirements
to be the Riemann integral.
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7.1 Limit of a Sequence

Task 7.1.4. Suppose both L and L’ satisfy the requirements for lim a,,.
Suppose ¢ = |L — L’| # 0. Then there is N € N such that n > N implies
|an, — L|, |a, — L'| < /2. Hence, n > N implies |[L — L'| < ¢, a contradiction.

Task 7.1.5. Given any ¢ > 0, Let N = 1. Then n > N gives |a, — ¢| =
lc—¢c=0<e.

Task 7.1.7. Suppose a,, — L. Consider ¢ = 1. Given any N € N, let
n = max{N,[L] +2}. Then n > N, but |a, —L| >1=¢.

Task 7.1.8. If N works for a,, and ¢, it also works for b,, and &.
If N works for b, and ¢, then N + k works for a,, and ¢.

Task 7.1.9. Suppose lima, =L > M. Let e = L — M. There is N € N such
that n > N implies |a, — L| < e. Then a,, > L —e = M, a contradiction.

Task 7.1.12. Note that ||a,| — 0| = |a, — 0|. Hence, if N works for |a,| and
€, it also works for a,, and e.

Task 7.1.14.
5n? — 1 5—1/n2 5-0
1. — = = 1 = = 5
(a) nl—>néo n2 + 3n — 1000 7L1—>H;01+3/n71000/ﬂ2 1+0-0
1 i 1 i
(b) Apply the sandwich theorem: —— < smn < — gives lim SRy,
n n n n—oo N
Task 7.1.16.
(a) Use N = M.

(b) If N works for b,, and M, it also works for a,, and M.
(c) N works for a,, and € = 1/M if and only if it works for |1/a,| and M.

71
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Task 7.1.17.
an Bounded Above Bounded Below Bounded Unbounded
n X v X v
-n v x x v
(1) v v v x
(-1)"n x x x v
1/n v v v x
Task 7.1.19.
an Increasing Decreasing Monotone
n v X v
-n X v v
(=1)" x x x
1 v v v
1/n x v v

Task 7.1.27. Suppose lima,, = L. Let ¢ > 0. There is V € N such that
n > N implies |a, — L] < e. Now,n > N = 2n,2n+1 > N —
|aon, — L|, |a2n+1 — L| < €. Hence lim ag,41 = limag, = L.

Next, suppose lim ag,+1 = limag,, = L. Let ¢ > 0. There are N,, N, € N
such that:

n>N, = |agnt1 — Ll <e
n>N, = |ag, — L| <e¢

Let N = max{2N, + 1,2N,}.

2
Task 7.1.28. Apply the previous Task: limag, = lim 5 Z 1= 1
n
lima ——lim2n+1——
2l m+2
Hence, lim (=D)"n does not exist.
n-+
Exercises for §7.1
2.
(a) 0 (b) o0 (c) O (d) oo

4. Choose N such that n > N = |a,| < &2
6. Let a,/b, — L. Then a,, = (ay/by)b, — L-0=0.

8. Fix an R such that L < R < 1. There exists N such that n > N —
lan|'/™ < R = |a,| < R™. By the sandwich theorem, |a,,| — 0.
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10. Apply the root test to a’. Alternately, we have |a,| < 1 for large n, hence
lan|™ < |ay| for large n. Now apply the sandwich theorem.

7.2 Sequences and Functions

Task 7.2.3. Follows from the continuity of the exponential function.

Task 7.2.6. limlog(l+ 2)"” = limn(log(3 + 1) —log(3)) =log(3) = 2.

1
n

limlog(1—2)" = limn(log(—(—1+1))—log(—(-1))) = j—x . log(—x) =
1, -
Task 7.2.7. False. Let f(0) =1 and f(x) =0 for 2 # 0. Let a,, = 0 for every
n.
Task 7.2.8. Consider a,, = rle Then a, — 0, but
cos(1/ay) + sin(1/ay) = cos(nm) + sin(nw) = (—=1)"
does not converge.
Task 7.2.13.
(a) oo (b) O
Exercises for §7.2
2. Let f(z) = (14 r/z)*. Then log f(z) = zlog(l + r/z), and
lim log f(z) = lim log(1 +rt) = lim =r.
T—00 t—0+ t t—0+ 1+ 7rt
4.
(a) —1/v/2 (b) 1/2 (c) loga (d) rat
6.
(a) 1/e (b) 4

8. Let f(z) = cosz —x. We have f(0) = 1 and f(w/2) = —n/2. Hence,
the intermediate value theorem gives the existence of ¢ € (0,7/2) such that

f(e)=o.

. . COST, — & N
The Newton-Raphson iteration is z,4+1 =z, + e " This gives:

sinx, +1

x1 =m/4=0.7854, 2 =0.7395, x3=0.7391, x4 =0.7391.
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10.

(a) We are looking for a solution of —c = ¢—(1+c?) arctanc. Let f(z) = 22—
(14+z?)arctanx. Then f(1) =2—7/2 > 0and f(2) = 4—5arctan2 < 0.

(b) The Newton-Raphson iteration for seeking c is

22, — (22 + 1) arctan z,,
1— 2z, arctanz,

Tny1 =T —

This gives z1 = 1.5, zo = 1.400, x3 = 1.392 and x4, = 1.392.
7.3 Sum of a Series

Task 7.3.5. >}, 1/k is an upper sum for flnH dx/x.
Task 7.3.7.

(a) Converges (b) Converges (c¢) Diverges

Task 7.3.8. Let T,, be the mth partial sum of Zf;k an. That is, T, =

k4+m—1
Zn:,? Gn. Then, T,, = Siy+k—1 — Sk—1. Hence T,,, converges <= S,+r—1

converges <= S, converges. Further,

o0 (o)
Z an =lim S, = lim Sy, 441 = Sp_1 + Iim T}, = Sj_1 + Z n.
n=1 n=~k

Task 7.3.10.

(a) Let a,, =sin(nn/2). Then a4p+1 =1 = a, 4 0.
(b) Let a, = (—1)"2L. Then as, =+ 1 = a, 4 0.

Exercises for §7.3

1 A B 1 1
= 1=A(n+2)+ Bn = A:i7 B=—-.

nin+2) n + n+ 2
Therefore,

S a((-9) G Gg)e

n=1

Convergent: (d), (f), (g), (h), (j).
Divergent: (a), (b), (c), (e), (i).

o0
6. Z a, converges — a, — 0 —= ai < a,, for large n.

n=1
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(a) True. Y a, converges = > ap4+1 converges = » (ap + Gp41)
converges.

(b) False. Consider > (—1)™.

10. The condition a, /b, — 0 gives a,, < b,, for large n. Apply the comparison
test.

12. Let Sy = 22:1 a, and T}, = Zi:l 2"agn. These are increasing sequences,

hence they are convergent if and only if they are bounded. Now,

Sor_1=a1+ (aa+as)+(ag+---+ar)+ -+ (age-1 + -+ age_q)

> as + 2a4 + 4ag +~--+2k_1a2k = %Tk

This shows that if Y a,, converges then > 2"asn converges. For the converse,
we note that

SQk_l S ay + 20,2 + 40,4 + -+ 2k71a2k—1 = kal'

N
1
14. We have seen that log(N +1) < E — <log(N)+1. Now log(z+1) = 100
n
n=1

gives z = €00 —1 = 2.7x 10*3, while log(x) +1 = 100 gives z = €% = 9.9 x 10*2.
So the number of terms to cross 100 is between 9.9 x 10*2 and 2.7 x 10%3.

7.4 Absolute and Conditional Convergence

Task 7.4.6. We have |a,| = a} + a,,. Therefore, the convergence of > a;
and Y a,, implies the convergence of > |ay|.

The converse follows from the inequalities |a,| > @} and |a,| > a,,.
Task 7.4.7. We are given that > (a;” —a, ) converges. If either > a; or > a,,
converges, then so does Y. |a,| = > (a} +a,,).

Exercises for §7.4

2. The required accuracy will be obtained after k terms, provided

0.5k+1
———— < 0.005.
(2k + 3)!
o0
) (=0.5)" 0.5
This happens at k = 1. Hence ’nz:;) m ~1-— ? =0.917.
4.
(a) Diverges. (c) Converges conditionally.
(b) Converges absolutely. (d) Converges absolutely.

6. Let Sy = Zszl an and T = Zszl |an|. The triangle inequality gives

|Sk| < Tk <" |an|. Hence, =" |a,| < Sk <) |an|. Now let k — oo.
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k k k
8 Let Sp=>, jan, Or=>, a1, B, =), _, az,. Then,

Sor, = O + Ej,
Sok+1 = Op41 + B

These identities show:
e lim Sy exists if and only if both lim Oy and lim Fj, exist.
e If these limits exist, then lim S = lim Oy + lim E}.

10.

(a) Proof by induction on m. For m = 1 the equality holds because S; = a;.
Assume the equality folds for m. Then,

[

m+1

E anby,
n=1

3

(bn - bn+1)Sn + b S + am+1b77L+1

3
Il
s

(b - bn+1)Sn + bm+1Sm + am+1bm+1

I
Ms

3
Il
_

Ms

(b —bn+1)S +bm+15m+1

3
Il
—

(b) Apply the sandwich theorem, using the boundedness of S,,,.
(c¢) Since b, is a decreasing sequence,

1

3

n

‘(bn - bn-‘rl Z - n+1 (bl - bm) S Mbl

I
=

n

Now, (c) shows that 377" (b, — bu11)S, is convergent. We also know
that b,,S,, converges. Hence, (a) shows that > a,b, converges.

12.
(a) 0< ) (zp—y)’ = 1—2%:% = Zxkyk<1
k=1
0< ) (wx+uy)’ = 1+Z$kyk == Zﬂfkyk
k=1
(b) We have HiH = HLH = 1. Therefore, Z Lk ﬂ’ <1
|| [yl = ]l lyll
Thematic Exercises
Stirling’s Formula
Al. Since 1/x is a convex function, the tangent hne to its graph at
(1+ 5, 2n+1) lies below the graph. This gives log(1+ 1) > 1. 2211 = 2n+1
Hence,

1+%>eﬁ or (L4 2)yn¥/2 5 ¢
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PO e N Ve N (V0 N

- <1
an (n+1)/e)"ty/n+1 n! (1+ 2yn+ir2
A3.
—
| | | |
I I I I
/1 2 3 n—1 n

Since log x is a concave function, the tangent lines to its graph lie above the
graph. Combined with the observation log 1.5 < 1, this gives 1+ log2 + log 3 +
-+~ +log(n — 1) + 3 logn > [["log z du.

A4.
n n—1
log a,, = Zlogk— (n+4)logn+n= Zlogk— (n—1)logn+n
k=2 k=2

> / logzdr + (n—1) — (n— 3)logn = 1 logn > 0.
1
AS5. For the second equality, apply the integral calculations from Example
5.3.11.
A6.  The inequalities follow from 0 < sinz < 1 for z € [0, 7/2]. They lead to
foﬂ/Q sin®"t2 ¢ dx 077/2 sin?" ! ¢ dx

/2 . 2n - /2 . 2n
Jo T sin®" x dx Jo T sin®" x dx

Example 5.3.11 gives

ST sin® 2 pde 4t n+ 1)1 (20)) 44 1)2 o
fOﬂ'/Q sin2” z dr o (277, + 2)' 4qrpl2 (2n + 2)(2n + 1) '
|
A7. We know that a,, = (n/enw converges to some L > 0. Therefore
a? L? a?
— — — = L. But A5 and A6 show that — — /2.
A2n L Qa2n

Gamma and Beta Functions

B1. Let a < x < b be points in the domain of f and g. Then,
FO 10, ) 1 g0y 20 =500)

b—a

f(@) +g(x) < fla) + (x —a)

(z —a)
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B2. Write the convexity inequality for f,,(z) and let n — oo on both sides.

B3. Let a < < b be points in the domain of f. By repeated bisection, we

can find a sequence ¢, — x such that ¢; = a, co = b, and ¢,4+1 = C"Jr% or
Cn + Cn—2
—

We can prove by strong induction that f(c,) < f(a) + M(% —a)

—a

for n > 3.

For n = 3:

b) — f(a
Flea) = F(22) < 3(7(a) + £8) = (@) + LO=TW g,

Assuming the inequality holds up to n, we consider the two possibilities for the
n + 1 case:

Flensn) = 5(252) < 20 (en) + Flen )
< fla)+ 5 PO T e oy ey a)
= )+ 1O ),

Flensn) = (2522 < 2(f(en) + Flen2))
< s+ 570D ) 4 (ens )
S (R e LCP

Now that the inequality is extablished, we prove our result by letting n — oc.

B4.  We have (logof,)(z) — (logof)(z) for every x. Apply B2.

B5. The problem statement should have also included the condition a > 0.
For = 0, we have Q(0,%) = az? > 0.

For z # 0, Q(x,y) = 2%(a + 2¢(y/z) + b(y/z)?. The sign of Q depends on
the sign of a + 2¢(y/z) + b(y/x)?, which is a quadratic in y/z. Tts discriminant
is —4(ab — ¢?). Hence ab — ¢* > 0 if and only if the quadratic does not change
sign. And a > 0 ensures the sign is positive.

B6. First, log f and logg are convex, hence continuous. So f,g are
continuous. Therefore log(f + ¢) is continuous. Hence, it is enough to show
that log(f + g) is weakly convex.

We note that

-+

X

1)) < log(f(x)) +log(f(y))
- 2

= log(f(*5%)?) < log(f(2)f(y)) for every z,y

log f is weakly convex <= log(f( for every x,y

T
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— f(”%‘y)2 < f(x)f(y) for every z,y.
B5 gives the following:

f@)fy) — F(352)?
g9(x)g(y) — g(*4)*

Hence,

(/) + g@)a+2(F(Z2) + 9(=5) )aB + (f(y) + 9(y))8 = 0 for all a, 5

0 = fl@)a+2f(5)af+ f(y)B > 0 for all a, f,
= g

>
> (z)o +29(ZE)aB + g(y)B > 0 for all o, 3.

Again apply B5 to get:
(F) + 9N () + o)) — (£ +9(242)) " 0.

B7.

(a) Every function ca”® is log convex. Hence g, (z) is log convex, as a sum of
log convex functions.

(b) Each g,(x) is a Riemann sum for the integral f(z), with mesh b/n.
Therefore g,(z) — f(x) for every x.

(c) /C><> d(t) "t dt = lim ' p(t) "1 dt.
0
BS.

n—oo 0

(a) Apply induction to prove that f =T on every (0,n]. Then = 1 case holds
by hypothesis. Assume the statement is true for n. Now let « € (n, n+1].
Then z — 1 € (0,n], hence f(x — 1) =T'(x — 1). Therefore,

f@)=(z-1Df(z -1) = (z - D)I'(z - 1) = T'(x).

(b) Apply Exercises A1 and A2 of Chapter 4.
(c) We prove the first inequality:

log(f(n)) — log(f(n — 1)) < log(f(n + z)) — log(f(n))
= xlog(f{ygf_l)l)) Slog(%)
(x+n—1)(z+n—2)--2f(z)

(n—1)!

= (n-1)"<

(d) Trivial.
(e) Sandwich theorem.
B9.

(a) We have B(xz,y) = [,/2#==2(1 — t)v='dt + S M1 — )7~ dt. The
first integral is improper (at 0) when 0 < x < 1, while the second one
is improper (at 1) when 0 < y < 1. The convergence of the first inte-

gral is established by comparision with fol/ 2 gp—1 dt, of the second by

comparison with f11/2 2(1 —t)v—1dt.



80 CHAPTER 7. SEQUENCES AND SERIES

(b) Substitute s =1 —t.
(c) Substitute ¢ = sin? 6.
(d) Let 0 <a <b< 1. Then,

b by
x _ \y—1 — _ p\zty—1
/at (1— ) dt / (+5) a oo ar

(1 —t)v b b
- ) i /(1—t)y*1tl’*1dt
z+y la x+vy/J,
(1 —a)¥ —b*(1 — b)Y b
:a( a) ( ) + z /(1*t)y71tw71dt
T +y T+Y Ja
— B(xz,y) asa— 0,b — 1.
Tr+y

(Note: The more obvious integration by parts, based on the original
factoring, gives only B(x + 1,y) = %B(m,y +1))

B1o0.

(a) B7 shows that B(z,y) and I'(x + y) are log convex, as functions of x.
Hence, so is their product.

(b) flz+1)=Blz+1yl'@+y+1) = 5B y)(@+y)l'(=+y) =z f(2).

(© f) = (Jy@ =2 at)D(y+1) = L0y +1) = T(y).

B1l.  From B9(c), we get B(1/2,1/2) =2 [/*1d0 = .

r(1/2)?

(1) =m, and I'(1/2) = /7.

Hence,
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8.1 Power Series

x 1 x OO
Task 8.1.11. arctanx:/o mdt:/o Z(—l)n’tQ"dt

oo
N (—1)n on+1 z? ®
_Z2n+1x srog ey T

Task 8.1.13. Apply Abel’s theorem to the Maclaurin series of arctanz. At

1"1
m—lltbecomesZQ +)1

and of arctan x at x =1 gives

x = (-1
i arctan(l) = Z 1

n=0

hence is convergent. Left continuity of the series

Exercises for §8.1

o'}
z"
20

4.
1 1 1 1
- - . N 3l <2gi
(a) —2 —2-(z-3) 2 T4 (52 ow |z — 3| gives
1 1 x—3\"
~ 3 _1”( )
11—z 2;( ) 2

(b) e* = e3e”™ —esz (z—3

6. The problem statement should have had e = ¢/p, so that 1/e = p/q. We
know that 2 < e < 3, hence ¢ > 3.

@ aC-9=at (=3 EF) = - 0p- S0 ala 1)+ (4.

n=2

81
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(b) We apply Theorem 7.4.1(b):

1 1 & (-1 q! 1
Ir|=q!|- —s| =¢!|- — < = .
g q‘e 8‘ q’e n§::2 n!l 17 (¢+1)! qg+1
Further,
1 q+2 (_ n q (_ n 1
Ir| =q!|- —s| > ¢! - e
lqtr] q’e 5|24 ; ;::2 o

The contradiction is that (a) makes ¢!|r| an integer, while (b) puts it in (0, 1).

8. The series 1 —x + 22 — a3 ---

1
|
equals T on

limit at 1is 1/2. But it diverges at 1.

(=1,1). Hence its left-hand

8.2 Taylor Series

Task 8.2.2. If r =n € W then (}) = 0 for every k > n.
Conversely, (1) = 0 implies r € {0,1,...,n — 1}.

Task 8.2.4. We can follow the steps of Example 8.2.3. Alternately, we can
combine the result of Example 8.2.3 with term-by-term differentiation.

‘fn+1) )(x_c)n+1 < ‘M(LE—C)‘"+1

Task 8.2.5. 0.
as O ST
Task 8.2.8. Let the Maclaurin series of secx be by + by + boa® + - --. Then
1 1
b():fil, blzf—alb():(),
ap an
by = — - (arby + asho) = —1-(0— = 1) = L ete
2 = CL0(111 a200) = 9 9 .
Exercises for §8.2
2.
(a) Apply the ratio test.
(b) Use term-by-term differentiation.
4.
1 > [—1/2
a) We have sinfl ! r) = —— = -1/2 _ ( ) nx2n.
@ ) = g = (=) =3
e —~1/2 2n+1
Therefore, sin™! 2 = sin™* O+/ (sin™)’( = nZ()(—l)"( n/ );n—kl

(b) We have (sinh ™)' (z) = o x2 Z

n=0

( 1/2> o
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_1/2 1.2n+1

Therefore, sinh ™" :'h—lo/ inh ™)' (t) dt =
erefore, sinh™ " & = sin + ; (sinh™")'(¢t) Z "

n=0

)

(a) The Maclaurin series of the numerator is $2° + {527 + ---. Hence,

)

(b) The Maclaurin series of the numerator and denominator give:

n+1°

3

113,
Gy

4 120

2(tanx —sinz) — x B

lim
x—0

lim
x—0 QL‘5

. sinh(z?) — 22
lim —————
=0 (sinz — x)?

= lim

= lim

2%/6 +210/120 + - - -
=0 26/36 — 28/360 + - - -
1/6 +2*/120 + - - -
20 1/36 — 2/360 +---

1.

log(1 ) + log(1 — 2 2 44/ ...
(©) lim og(1+ z 4+ x*) + log( x+x): o & +z*/2 +
z—0 z(e® —1) a—0 22 + 23 /2 4 -
1+22/2+ -
= m —7F—— =
w0 14+ x/24 -
1 — log(1
(@ lim (v—2?log (1+—)) = lim Lg“;)
T—00 X z—0 x
e
=lm(-—=-4+ ) ==
z—0 \2 3 2

8.3 Fourier Series

Task 8.3.4. Use the following:

g 1
cosmx cosnrdr = —
” 2

/71'
/

sinmx sinnx dx = —
x 2

Task 8.3.7. Put x = 7/4 in the Fourier series of the square wave function.

Task 8.3.8.

Assume 0 < a < 7. Then,

i (cos(m — n)x + cos(m + n)x) dz

—T

! (cos(m — n)x — cos(m + n)z) dz

—T

ag = 07
1 a—T 1 a ™
an:f/ cosna?dac—f/ cosmcd:c—i—/ cosnx dr
™) _x T Ja—mn a
= i(sinn(a — ) —sinna) = i((—l)" — 1) sinna
nm nm ’
1 a—T 1 a s
bn:f/ sinnmdw—f/ sinnmdw—i—/ sin nx dx
™) _x T Ja—m a

nm

—l(cos n(a —m) — cosna)
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Therefore,

0 if n is even 0 if n is even

an = 4 . y b= 4 .
——sinna if nis odd —cosna if nis odd
nm nmw

The value of the Fourier series at x = 1 is

4 1 . 1 .

*(— Z — sinna cosna + *COSHGSIHTLG) =0.
n n

n odd n odd

Task 8.3.9.

. IS : S :
2sinf/2 - (5 + Zcosnﬂ) =sinf/2 + Z2cosn981n9/2

n=1 n=1

=sinf/2 + i (sin(n + 1) — sin(n — %)9)

n=1

= sin(m + 3)0.
When 6 = 2nm, the right hand side is undefined, while the left hand side has
value m + 1/2. Since these are the only points of disagreement, it follows that

the right hand side has limit m+ 1/2 at these points. This is the sense in which
the equality extends to all points.

Task 8.3.13. Put z = 0 in the Fourier series of Example 8.3.12.

Task 8.3.14.
() (f.f)= L7, f@)Pde = L [7 0de=0.
(b) Obvious.
Apply the homogeneity property of integration.

(d) Apply the additivity property of integration.

() I1f+gl? = (f+g,f+9) = (f, [)+{f.9)+ g, /) +{g,9) = [IFI*+lg]]*.

Task 8.3.16. Bessel’s inequality shows that the series Y a2 and Y b2 con-
verge. Hence a,, b, — 0.

)
)
(c)
)
)

Exercises for §8.3

2. Recall that if g has period 27 then [7_g(z)da = [ 7°7 g(x) da for any T.
, 1 ™ 1 T™T—a 1 ™
=2 [ fe-war=2 " fwar=1[" j@)dr=a,
L ™) _n—a T J)_n
, 1 us 1 mT—a
a, = — f(zx —a)cosnrde = — f(z) cosn(z + a) dz
T™J—x T J—r—a
1 . .
=— f(x)(cosnx cos na — sinnx sinna) dx
T

= a, cosna — b, sin na.
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The 0], calculation is similar.
4. Apply Exercise 10 of §3.4.

6. Using the hint, we have
7T—4—1+i+i+ (el 1y )+(1+1+i )
90 24 3¢ - 1

1

11
:(1+3—4+5—4+--->+24-

o0 .
8. The series should have been given as Z SIBE  To establish the conver-

vn
n=1
gence, we apply Dirichlet’s test (Exercise 10 of §7.4), noting that:

e 1/4/n is a decreasing sequence with limit 0.

e The partial sums ) ;. , sinnx are bounded for fixed z, since:

Tz =2kr — Zsinnx:O
k=1
G 2— +3 1
B S TP /e Ukt L
k=1

2sinz/2 ~ |sinz/2|

However, the series cannot be the Fourier series of an integrable function as it
violates Bessel’s inequality.

sinnx

Jn

cosnx

NG

?

Remark: Can you see why Z should be replaced by Z
n=1 n=1

8.4 Complex Series

Task 8.4.1. Apply mathematical induction:
2" = 272 = | 2| (cos nf 4 i sinnb)|z|(cos 6 + i sin 6)

= |2|"**(cos(nfd + ) + isin(nf + 9))

Task 8.4.2. 1+i=2(cosT +ising) = (1+14)100 = 2°00(cos 250 +
isin 2507) = 2590,

Task 8.4.3. w"=1 = 1-w"=0 = (1-w)(l+w+w?+ - -+w" 1) =0.
Task 8.4.5.
(a) Use |z, — 0] = ||zn]| — 0].
(b) Use |zp, — L| = |(zn, — L) — 0.
(¢) Use |[zn| — |L|| < |20 — LI,
Task 8.4.9. Use z, = > ,_; 2k — Zz;ll 2
Task 8.4.10. Mimic the proof of Theorem 7.3.6.
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Task 8.4.11. Apply Theorem 8.4.6 to the partial sums of these series.

Task 8.4.13. Let 2z, = 2, + iyn. Then |z,],|yn] < |2n]. If Y 25| converges,
so do Y |x,| and ) |yn|, hence also >z, and Y y,. Now apply Task 8.4.11.

Task 8.4.14. Apply the rearrangement theorem for real series to the real and
imaginary parts.

Task 8.4.19. Same calculations as in the real case.
Task 8.4.21. Apply Theorem 8.4.20.

Task 8.4.22. ¢"e’® = (cos 0+isin 0)(cos p-+isin ¢) = cos(0+¢)+isin(0+¢) =
i(0+¢)
e :

Task 8.4.24.
(a) Theorem 8.4.23 gives e*e™* = ¢*~* = ¢ = 1. This shows (e*)™! = e~*

as well as e* # 0.

(b) Any z can be expressed as |z|e?’. Since |z| > 0, we have r € R such that
¢" = |z|. Then z = ™%,

(c) Let z = x + dy. Then e* = e®cosy + ie® siny. Therefore, e =1 <=
e*cosy=1and e*siny =0 < y € 2nZ and x = 0.

Task 8.4.26.
17+ 0l = 5 [ (@) + ) (T + 90 o
= o [ (T + 1)) + 9T + 9

= If112 + (f.9) + (F,9) + lgll> = 111 + []g].

Task 8.4.27.  Example 8.4.25 shows that (ex,e,) = 1 if & = n, and is
zero otherwise. Let fo,(z) = Y. f(n)e™™®. For —m < n < m, we have

<f - fm7en> = <fa en> - <fmaen> = f(n) - f(n) = 0. Hence, <f - fmvfm> =0.
This implies

S @ =1l < 1F = Ful >+ 1 fml > = £
Bessel’s inequality follows by letting m — oo.
Exercises for §8.4
2. The correct statement is |z + w|? + |z — w|? = 2(|z|> + |w|?). The proof is:
2w + ]2 —w|? = (z + w)(Z+ D) + (2 — w)(z - )

= |2* + 2w + wZ + |w|* + |2|? — 2W — wZ + |w|?

=2|z|* + 2jw|*.
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n _ efnz _ 1 ) eina:/2 _ efinz/Q
i _ _ i(nt+1)x/2
4. Ze -1 € eit/2 _ p—iz/2
k=1
2
= (cos(n + 1)z/2 + isin(n + 1)z/2) S;if(”x% ))

Now match the real and imaginary parts:

sin(x/2) o 2sin(z/2)

i cos(kz) = cos(n + 1)a/2sin(nxz/2)  sin(n+ 1/2)x — sin(x/2) ‘

. _sin(n + 1)z/2sin(nx/2)  cos(x/2) — cos(n 4 1/2)x
b) > _sin(ke) = sin(z/2) - 2sin(z/2)

1 1 n+1 \n
N TR el T e ey pops s 17222 A

1
The radius of convergence is R = lim 1= = V2. So the series

converges on the open disc { z | |z —i| < v/2}, and diverges when |z —i| > /2.
It diverges on the circle |z — i| = v/2, since

n+1 n—l—l

|m( \f|—|n+1|74>0

2 — 1) \—]

(a) The points e, y € Z, are densely distributed on the unit circle. Mul-
tiplying by e® gives rays from the origin through these points. The set
can’t be completely drawn but a reasonable impression can be given as
follows:

(b) The points e?¥ form the unit circle. Scaling by e*, x € Z, creates con-
centric circles:
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(c) A spiral:

(d) 5 = gew — % = e(Tr/Z) cos@ei(ﬂ-/Q) sinf The values ei(ﬂ-/Q) sin 0 twice
traverse a semicircle (shown as a dashed curve below). The scaling by
e(m/2)cost affects each location twice, once pulling it towards the origin,
and once pushing it out. This creates the following heart-shaped curve.

10. Follows directly from the definitions.

Thematic Exercises

Uniform Convergence

Al.

(a) Obvious.

(b) Obvious.

(©) llef[l = sup{|ef(2) | z € A} = sup{|c|[f(z) | z € A}

= |elsup{[f(2)[ | = € A} = |c[|[ ]

(d) For any z € A, [f(x) + g(z)| < [f(2)| + |g(x)| < [[£1] +[lgl]-
A2, Apply Al.
A3.

(a) 0 < |fu(x) = f(@)| < |Ifn = fI[ = 0.

(b) Let fu(z) = 2 on [0,1]. Then f, ™ f, where f(z) = { o dse

0 else
1
And: ||fn_f|| > |fn(1_ %) —f(l— %)I = (1— %)" — g > 0.
A4. We have N such that n > N = |[|f, — f|| < 1. Define
M = max {||fill, [Ifall,- -, [lfz—all, I1F1] + 1}
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A5,

(a) Follows from the uniform convergence of f, to f.
(b) Let n > N. We have f,,(v)— = < f(z) < fu(7)+35;. Let P be a parti-

tion with points {zg, z1, ..., zy}. Define m; = inf{bf(cufv) | © € [zim1,24] },
M; =sup{ f(z) | z € [wi—1, @] },
m; = inf{ fu(2) | @ € [vi-1, 73] },
M, =inf{ f,(z) | z € [wi—1, 2] }.

We have m; — = <m; < M; < M{+ = Let Ax; = x; —x;_1. Then

n n n n
ZméAmi —e< ZmiAxi < ZMiAgci < ZM{A@ +e.
i=1 i=1 i=1 i=1

(c) Choose N asin (a). Choose a partition P such that U(fn, P)—L(fn,P) <
€. Then (b) gives U(f, P) — L(f, P) < 3¢. Hence f is integrable. And,

‘/abfn—/abf‘S/ab|fn—f|Sllfn—fII(b—a)—>0.

A6.

(a) Follows from the uniform convergence of f, to f.

(b) Follows from the continuity of fx at x.

(©) [f(x) = fWl < [f(2) = In (@) + [fn(2) = In )l + [ y) = Fy)] <e.
AT.

(a) Apply A5 to the sequence of partial sums.
(b) Apply A6 to the sequence of partial sums.

AS.
(a) Use [fn(z)| < |[fnll < M.

(b) \f(w)—ifn(x)\z( i fn(x)‘é i [ fo ()] < i M,,. Hence,
n=1 n=m+1 n=m+1 n=m+1

Hf—an < i M, — 0 as m — oo.

n=1 n=m-+1
A9. Apply the Weierstrass M-test.
A1o.

(a) Apply A9. (The hint is not needed.)

(b) Apply A9. (This observation is interesting because, in general, the be-
haviour at the endpoints of the interval of convergence can be different.
But now we see that absolute convergence at one yields absolute conver-
gence at the other.)




90 CHAPTER 8. TAYLOR AND FOURIER SERIES

A11.

(a) Since f’ is continuous, it is integrable. By Exercise 3 of §8.3, the Fourier
coefficients of f’ are na,, and nb,. By Bessel’s inequality, Y n%a? and
>~ n?b2 converge.

(b) If |a,| > 1/n then nlay|®> > |a,|. Hence |a,| < max{-;,n%a2}. The
convergence of > 1/n? and > n2a? therefore gives the convergence of

2 lanl.

(c) Use |a, cosnz| < |ay| and |b, cosnz| < |by].
Irrationality of Some Numbers

B1. Suppose that r = p/q with p € Z and ¢ € N. Then ¢,p — p,q # 0 and
GnD — png — 0. But this is impossible, since the ¢,p — p,q are integers.

B2. Integration by parts.
B3. Proof by induction, using B2.
B4.

n _ n 2n
(a) 0<2<a = 0<a—z<a = ogwga—'.
n! n!
(b) From (a) we see that e~ f,,(z) converges uniformly to 0 on [0, a]. Apply

Exercise A5 of this chapter.

B5. We shall give the proof for x = 0. Since a € N, we have (a — z)" =
diocia! with ¢j € Z. Hence, fo(z) = Y7 327%". By considering the
Taylor coefficients of f,(z) we obtain

0 ifk<nork>2n

(k) (0) =
1) Ck—*'nk'! fn<k<2n
n!

B6. Let a € N. Then B3, B4, B5 give sequences p,,, g, of integers such that
gne~® —p, # 0 and gpe~* — p, — 0. By B1, e~ is irrational. Hence e® is also
irrational. So e® is irrational for every non-zero integer.

Let r = p/q with p,q € Z. If " is rational, so is (e")? = e, a contradiction.

B7. If log r is rational then r = el°8" is irrational.



Errata

Chapter 2

§2.2, Exercise 14(b) The hint that this case can be covered by considering
shifts, is not helpful. An alternate approach has beeen provided.

Chapter 5

§5.4, Exercise 6: The given substitution should have been ¢t = tan(z/2).
Exercise A3 The initial conditions should have been f(0) = B and f’(0) = A.

Chapter 6

§6.3, Exercise 2: There is an error in the problem statement. The equality to
be proved is T ., (x) = [ Tf.n—1(t) dt.

§6.4, Exercise 6: The problem statement should have S(f,P,) instead of
L(f,P,). The given inequalities also need slight corrections, which have been
provided in the solution.

/

§6.5, Task 6.5.5: The last two requirements need to be corrected to ¢'(a) = ¥/,
and ¢'(b) = y;,.

Chapter 7

Exercise B5 The problem statement should have the additional condition a >
0.

Chapter 8

§8.1, Exercise 6: The problem statement should have e = ¢/p (instead of
e=7p/q).

§8.3, Exercise 8: The given series should be Z (instead of Z M).
n=1 n=1

sin nx
— /n vn
§8.4, Exercise 2: The correct statement of the parallelogram identity is |z +
w? + [z — w|* = 2(]2|* + [w?).
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