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1 | Real Numbers and Functions

1.1 Field and Order Properties

Task 1.1.5. To verify that a given number y is the additive inverse of another
number x, we have to check whether x + y equals zero. In our case, we have
y = (−a) + (−b) and x = a+ b. Therefore, we compute as follows:

(a+ b) + ((−a) + (−b)) = (b+ a) + ((−a) + (−b)) = ((b+ a) + (−a)) + (−b)
= (b+ (a+ (−a))) + (−b) = (b+ 0) + (−b) = b+ (−b)
= 0.

Similarly, to verify that one number is the multiplicative inverse of another, we
need to check whether their product is one.

(ab)(a−1b−1) = (ba)(a−1b−1) = ((ba)a−1)b−1

= (b(a · a−1))b−1 = (b · 1)b−1 = b · b−1 = 1.

Task 1.1.6. This is a special case of (−a)(−b) = ab, which has already been
established:

(−x)2 = (−x)(−x) = x · x = x2.

Task 1.1.7.

(a) Apply the same principles as in Task 1.1.5:

a

b
+
−a
b

= ab−1+(−a)b−1 = (a+(−a))b−1 = 0 ·b−1 = 0 =⇒ −a
b
=

−a
b
.

Next, note that (−b)−1 = ((−1)b)−1 = (−1)−1b−1 = (−1)b−1 = −(b−1).
Hence,

a

b
+

a

−b
= ab−1+a(−b)−1 = a(b−1+(−b)−1) = a ·0 = 0 =⇒ −a

b
=

a

−b
.

Alternately, make repeated use of −x = (−1)x. For example,

−a
b
= −(ab−1) = (−1)(ab−1) = ((−1)a)b−1 = (−a)b−1 =

−a
b
.

(b) We present a terse solution below, in which the use of the commutative

1



2 CHAPTER 1. REAL NUMBERS AND FUNCTIONS

and associative properties is hidden.

a

b
+
c

d
= ab−1 + cd−1 = add−1b−1 + cbb−1d−1

= (ad)(bd)−1 + (cb)(bd)−1 = (ad+ bc)(bd)−1

=
ad+ bc

bd
.

Task 1.1.11. We shall prove that for every element x ∈ A, we can �nd a
y ∈ A with y > x. Hence A has no greatest element.

Let us consider any x ∈ A. Then we have x < 1. Hence y =
x+ 1

2
satis�es

x < y < 1. Therefore, y ∈ A but y > x.

Task 1.1.13. We note that x equals either |x| or −|x|. Now |x| ≤ a gives
−|x| ≥ −a. Therefore,

|x| ≤ a =⇒ −a ≤ −|x| ≤ |x| ≤ a =⇒ −a ≤ x ≤ a.

For the converse, we similarly use the fact that |x| equals either x or −x. Then
−a ≤ x ≤ a gives a ≥ −x ≥ −a. Therefore,

−a ≤ x ≤ a =⇒ −a ≤ ±x ≤ a =⇒ |x| ≤ a.

Alternately, we could carry out a case-by-case proof based on the sign of x.

Task 1.1.15.
a

b
=
c

d
⇐⇒ ab−1 = cd−1 ⇐⇒ ab−1bd = cd−1bd ⇐⇒ ad =

bc.

Task 1.1.17. We have already proved that (x−1)n = (xn)−1 for every n ∈ N.
It is also true when n = 0, since both sides become 1. Now consider a negative
integer n. Then n = −m, with m ∈ N, and

(x−1)n = (x−1)−m = ((x−1)m)−1 (by de�nition of a−m)

= ((xm)−1)−1 = (x−m)−1 = (xn)−1.

Task 1.1.18. Let P (n) be the statement that
∣∣∣ n∑
i=1

xi

∣∣∣ ≤ n∑
i=1

|xi|.

Then P (1) is the statement |x1| ≤ |x1|, which is certainly true. Further,
P (2) is true, as it is the triangle inequality.

Now assume that P (n) is true. We use this assumption to establish P (n+1)
as follows: ∣∣∣ n+1∑

i=1

xi

∣∣∣ = ∣∣∣ n∑
i=1

xi + xn+1

∣∣∣
≤

∣∣∣ n∑
i=1

xi

∣∣∣+ |xn+1| (by P (2))

≤
n∑

i=1

|xi|+ |xn+1| (by P (n))
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=

n+1∑
i=1

|xi|.

Exercises for �1.1

2. We just subtract numbers and see if the result is positive or negative. Let's

�rst compare the positive numbers with each other: 3,
14

10
,
17

12
, 2.

3− 2 = 1 > 0 =⇒ 3 > 2

2− 17

12
=

24− 17

12
=

7

12
> 0 =⇒ 2 >

17

12
17

12
− 14

10
=

85− 84

60
=

1

60
> 0 =⇒ 17

12
>

14

10

Therefore,
14

10
<

17

12
< 2 < 3.

We can similarly compare the two negative numbers. The �nal arrangement is:

−2 < −3

2
<

14

10
<

17

12
< 2 < 3.

4. The conditions of Exercise 3 yield the following sets:

(a) A = {x ∈ R | x > 1 or x < 0 }
(b) B = {x ∈ R | x ≥ 1/3 or x ≤ −1 }
(c) C = {x ∈ R | 2 < x < 3 }

We need to �nd A ∩B ∩ C. Since C has the simplest structure, we investigate
its intersections with the other sets. We observe that every element of C meets
the requirements for being in A as well as B. Therefore,

A ∩B ∩ C = C = {x ∈ R | 2 < x < 3 }.

6.

(a) Consider n = 1. The only possibility for k ∈ N with k ≤ 1 is k = 1. And
we are given that 1 ∈ A. Therefore 1 ∈ S.

Next let n ∈ S. Consider any k ∈ N with k ≤ n + 1. If k ≤ n then
n ∈ S =⇒ k ∈ A. Therefore, 1, . . . , n ∈ A and so n+ 1 ∈ A. This gives
n+ 1 ∈ S.

(b) By the Principle of Mathematical Induction, we obtain S = N. By
considering k = n in the de�nition of S, we see that S ⊆ A. Therefore
A = N.

8. Let S ⊆ N such that 1 ∈ S and n ∈ S =⇒ n+ 1 ∈ S.

Suppose that S ̸= N. Then A, de�ned to be the complement of S in N, is
non-empty. By the Well Ordering Principle, A has a least element N . Now,
1 ∈ S =⇒ 1 /∈ A =⇒ N ̸= 1 =⇒ N − 1 ∈ N. Further, N − 1 /∈ A, since N is
the laest element of A. But then N − 1 ∈ S and N /∈ S, a contradiction.

10. We shall apply mathematical induction.
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(a) Let A = {n ∈ N | 1n = n }. Then 11 = 1 · 10 = 1 · 1 = 1 =⇒ 1 ∈ A.
Now assume n ∈ A. Then

1n+1 = 1 · 1n = 1 · 1 = 1 =⇒ n+ 1 ∈ A.

By mathematical induction, A = N.
(b) Let A = {n ∈ N | an < bn }. Then a1 = a < b = b1 =⇒ 1 ∈ A. Now

assume n ∈ A. Then

an+1 = a · an < b · an < b · bn = bn+1 =⇒ n+ 1 ∈ A.

By mathematical induction, A = N.

12.

(a) (This part needs k < n) We have a direct calculation:(
n

k

)
+

(
n

k + 1

)
=

n!

k!(n− k)!
+

n!

(k + 1)!(n− k − 1)!

=
k + 1

n+ 1

(
n+ 1

k + 1

)
+
n− k

n+ 1

(
n+ 1

k + 1

)
=

(
n+ 1

k + 1

)
(b) Apply mathematical induction. Let

A =
{
n ∈ N |

(
n

k

)
∈ N for every k = 0, . . . , n

}
.

Now, (
1

0

)
=

(
1

1

)
= 1 ∈ N =⇒ 1 ∈ A.

Suppose n ∈ N. Then for k = 1, . . . , n we have(
n+ 1

k

)
=

(
n

k − 1

)
+

(
n

k

)
∈ N.

Further, (
n+ 1

0

)
=

(
n+ 1

n+ 1

)
= 1 ∈ N.

Therefore, n+ 1 ∈ A.

14. We will mimic the proof that there is no rational number whose square is
2. For that, we will need to establish that if 3 divides the square of a natural
number m, then it divides m as well. An equivalent statement is that if 3 does
not divide m then it does not divide m2. Now, if 3 does not divide m, then m
has one of the forms 3k + 1 or 3k + 2, for a whole number k.

m = 3k + 1 =⇒ m2 = 9k2 + 6k + 1 = 3(3k2 + 2k) + 1 = 3n+ 1

m = 3k + 2 =⇒ m2 = 9k2 + 12k + 4 = 3(3k2 + 4k + 1) + 1 = 3n+ 1

In either case, 3 does not divide m2.



1.2. COMPLETENESS AXIOM AND ARCHIMEDEAN PROPERTY 5

Now we can begin our proof. Suppose (p/q)2 = 3 where p, q ∈ Z. We may
assume that p, q ∈ N and they have no common factor except 1. Then,

p2 = 3q2 =⇒ 3 divides p2 =⇒ 3 divides p.

Hence p = 3k for some k ∈ N. Now,

(3k)2 = 3q2 =⇒ 3k2 = q2 divides q2 =⇒ 3 divides q.

So 3 is a factor of both p and q, contradicting our assumption that their only
common factor was 1.

1.2 Completeness Axiom and Archimedean

Property

Task 1.2.2. Take any real number x and ask whether it can serve as an upper
bound for the empty set ∅. The only way x could fail to be an upper bound is
if there is y ∈ ∅ such that y > x. Clearly, ∅ has no such y, so we must accept
x as an upper bound. Thus, every real number is an upper bound of ∅.

Similarly, every real number is a lower bound of ∅.

7

Students often object, stating that x can't be an upper bound since ∅ has

no smaller element. One can ask them whether they accept ∅ as a subset of

every set � which they generally �nd less counterintuitive � and to compare

the reasoning in both situations.

Task 1.2.4. An upper bound of Z would also be an upper bound of N. Hence,
by the Archimedean property, Z has no upper bound.

Now, suppose x ∈ R is a lower bound of Z. Then x ≤ −m for every m ∈ N,
hence −x ≥ m for every m ∈ N. That is, −x is an upper bound of N. Since this
is impossible, Z has no lower bound.

Task 1.2.10. Consider distinct real numbers x, y with x < y. Suppose that
(x, y) ∩ Q is �nite. Then there is n ∈ N such that (x, y) ∩ Q = {q1, . . . , qn}
with x < q1 < · · · < qn < y. By denseness, there is a rational qn+1 ∈ (qn, y), a
contradiction to our description of (x, y) ∩Q.

Task 1.2.11. We use proof by contradiction and the �eld properties of Q.

(a) If −t ∈ Q then t = −(−t) ∈ Q. Similarly, if 1/t ∈ Q then t = 1/(1/t) ∈
Q.

(b) If r+ t ∈ Q then t = (r+ t)−r ∈ Q. If r− t ∈ Q then t = r− (r− t) ∈ Q.
(c) If rt ∈ Q then t = (rt)/r ∈ Q. If r/t ∈ Q then t = r/(r/t) ∈ Q.

Task 1.2.15. We have [a, b] = {x ∈ R | a ≤ x ≤ b }. If x ∈ [a, b] then x ≤ b.
Therefore b is an upper bound of [a, b]. Let u be any upper bound of [a, b]. Then
b ∈ [a, b] givees b ≤ u. Therefore b is the least among all the upper bounds.

Task 1.2.16. We have (a, b) = {x ∈ R | a < x < b }. If x ∈ (a, b) then x < b.
Therefore b is an upper bound of (a, b). Let u be any upper bound of [a, b]. Then
a < (a+ b)/2 < b implies (a+ b)/2 ∈ (a, b), hence u ≥ (a+ b)/2 > a. Suppose
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u < b. Then a < u < (u + b)/2 < b gives (u + b)/2 ∈ (a, b) yet (u + b)/2 > u,
contradicting the choice of u as an upper bound of (a, b). Therefore u ≥ b, and
so b is the least among the upper bounds of (a, b).

Task 1.2.17. This has to be checked for each type of interval. We illustrate
the solutions for two types:

Suppose I = [α, β]. Then α ≤ a < x < b ≤ β gives α < x < β, hence
x ∈ [α, β].

Suppose I = [α,∞). Then α ≤ a < x gives α < x, hence x ∈ [α,∞).

Exercises for �1.2

2. The rational numbers can be arranged using the �eld and order axioms, as
we did in Exercise 2 of �1.1. This gives

−2 < −3

2
<

14

10
< 3.

To compare the roots, we use the squares. For example,(14
10

)2

=
196

100
< 2 < 5 < 32 =⇒ 14

10
<

√
2 <

√
5 < 3.

Similarly, (3
2

)2

=
9

4
> 2 =⇒ 3

2
>

√
2 =⇒ −3

2
< −

√
2.

So the �nal rankings are:

−2 < −3

2
< −

√
2 <

14

10
<

√
2 <

√
5 < 3.

4. Let A be a non-empty subset of R and let ℓ be a lower bound of A. De�ne
B = {−x | x ∈ A }. Then −ℓ is an upper bound of B: y ∈ B =⇒ −y ∈
A =⇒ ℓ ≤ −y =⇒ −ℓ ≥ y.

By the LUB property, B has a least upper bound β. We shall show that
α = −β is the greatest lower bound of A.

If x ∈ A then −x ∈ B, hence β ≥ −x and α ≤ x. Thus, α is a lower bound
of A.

Now let m be any lower bound of A. As we saw above, −m is an upper
bound of B. Therefore, β ≤ −m and α ≥ m. Thus α is the greatest among the
lower bounds of A.

6. The general element of this set is a(n) = 1 +
1√
2
+ · · ·+ 1√

n
. Now,

a(n) = 1 +
1√
2
+ · · ·+ 1√

n
≥ 1√

n
+

1√
n
+ · · ·+ 1√

n
=

n√
n
=

√
n.

Let x be any real number. By the Archimedean property there is n ∈ N with
n > x. Then a(n2) ≥ n > x, hence x is not an upper bound of this set.
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8. Observe that
1

n(n+ 1)
=

1

n
− 1

n+ 1
. Therefore,

n∑
k=1

1

k(k + 1)
=

n∑
k=1

(1
k
− 1

k + 1

)
=

(
1− 1

2

)
+

(1
2
− 1

3

)
+ · · ·+

( 1

n
− 1

n+ 1

)
= 1− 1

n+ 1
< 1.

So 1 is an upper bound for this set.

10. Note that the c = 0 cases are trivial, as then cA = {0}.

(a) Suppose c > 0 and A is bounded above. By LUB property, A has a
supremum α. We need to show that cα is the supremum of cA.

y ∈ cA =⇒ y = cx for some x ∈ A.

Then x ≤ α =⇒ y = cx ≤ cα, hence cα is an upper bound of cA.

Now let u be any upper bound of cA. For any x ∈ A we have u ≥ cx,
hence u/c ≥ x. Thus u/c is an upper bound of A. Therefore α ≤ u/c
and cα ≤ u. So cα is the least of the upper bounds of cA.

Next, suppose c < 0 and A is bounded below. By Exercise 4, A has
an in�mum α. In fact, the solution of Exercise 4 shows that α =
− sup((−1)A). Hence cα = (−c) sup((−1)A) = sup((−c)(−1)A) =
sup(cA), using −c > 0 and applying the previous case.

12. We have non-empty sets A,B that are bounded below. We have de�ned
A+B and AB.

(a) We have to prove that inf(A+B) = inf(A)+inf(B). First, for any a ∈ A
and b ∈ B we have

a ≥ inf(A), b ≥ inf(B) =⇒ a+ b ≥ inf(A) + inf(B).

Therefore inf(A) + inf(B) is a lower bound of A+B. To prove that it is
the greatest lower bound, we shall show that for every ε > 0, inf(A) +
inf(B) + ε is not a lower bound of A+ B. We note that we have a ∈ A
and b ∈ B such that a < inf(A) + ε/2 and b < inf(B) + ε/2. Then
a+ b ∈ A+B and a+ b < inf(A) + inf(B) + ε.

(b) Assuming that all the members of A,B are non-negative, we have to
show that inf(AB) = inf(A) inf(B). First, we note that 0 is a lower
bound for both A and B, hence inf(A), inf(B) ≥ 0. Now, for any a ∈ A
and b ∈ B we have

a ≥ inf(A), b ≥ inf(B) =⇒ ab ≥ inf(A) inf(B).

Therefore inf(A) inf(B) is a lower bound of AB. Further, for any ε >
0 we have a ∈ A and b ∈ B such that a < inf(A)

√
1 + ε and b <

inf(B)
√
1 + ε. Then ab ∈ A and ab < inf(A) inf(B)(1 + ε).

1.3 Functions

Task 1.3.3. The domain is X ×X and the codomain is X.
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Task 1.3.4. Suppose f is one-one and f(a) = f(b). If a ̸= b then f(a) ̸= f(b)
gives a contradiction. Hence f() = f(b).

Now suppose that f has the property that f(a) = f(b) implies a = b. Let
x, y ∈ X with x ̸= y. If f(x) = f(y) then x = y, a contradiction. Therefore
f(x) ̸= f(y).

Task 1.3.7.

(a) For x ≤ 0 we have f(x) = 1
2 (x + (−x)) = 0. Hence f(−1) = f(−2) = 0

and f is not one-one. Further, for x ≥ 0, we have f(x) = 1
2 (x+ x) = x.

Hence f is not onto, and its image is [0,∞).

(b) We have g(−1) = g(1) = 1, so g is not one-one. We know every x2 ≥ 0,
so the image of g is a subset of [0,∞). On the other hand, we know
every non-negative real number has a square root, so the image of g is
all of [0,∞).

(c) For x ≥ 0 we have h(x) ≥ 1 and for x < 0 we have h(x) < 1. So
h(a) = h(b) is only possible if a, b have the same sign.

Suppose a, b ≥ 0 and h(a) = h(b). Then,

a2 + a+ 1 = b2 + b+ 1 =⇒ (a2 − b2) + (a− b) = 0

=⇒ (a− b)(a+ b+ 1) = 0

=⇒ a− b = 0 =⇒ a = b.

Next, suppose a, b < 0 and h(a) = h(b). Then a+ 1 = b+ 1 =⇒ a = b.

So h is one-one.

Every y ≥ 1 has pre-image 1
2 (−1+

√
1 + 4(y − 1)) ≥ 0. Every y < 1 has

pre-image y − 1. So h is onto.

Task 1.3.9. Let y, y′ ∈ Y and f−1(y) = f(−1y′). Now, x = f−1(y) satis�es
f(x) = y while x′ = f−1(y′) satis�es f(x′) = y′. Then x = x′ gives y = f(x) =
f(x′) = y′. So f−1 is one-one.

Let x ∈ X. De�ne y = f(x). Then f−1(y) = x. So f−1 is onto.

Finally, since f reverses f−1, we have f = (f−1)−1.

Task 1.3.10.

(h◦ (g ◦f))(x) = h((g ◦f)(x)) = h(g(f(x))) = (h◦g)(f(x)) = ((h◦g)◦f)(x).

Task 1.3.11.

First, suppose g is the inverse function of f . Then g(y) = x ⇐⇒ f(x) = y.

Consider any x ∈ X and y ∈ Y , with y = f(x). Then:

(g ◦ f)(x) = g(f(x)) = g(y) = x = 1X(x),

(f ◦ g)(y) = f(g(y)) = f(x) = y = 1Y (y).

Now suppose g ◦ f = 1X and f ◦ g = 1Y . Then:

y = f(x) =⇒ g(y) = g(f(x)) =⇒ g(y) = 1X(x) = x,

x = g(y) =⇒ f(x) = f(g(y)) =⇒ f(x) = 1Y (y) = y.
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Exercises for �1.3

2.

(a) f(x) = f(y) =⇒ 1/x = 1/y =⇒ x = y, so f is one-one. And if y ̸= 0,
then its preimage is 1/y. So f is onto. From 1/(1/x) = x we deduce
that f−1 = f .

(b) g(x) = g(y) =⇒ x

1− x
=

y

1− y
=⇒ x(1− y) = y(1− x) =⇒ x = y,

so g is one-one. We can �nd the preimage of y ̸= −1 by solving g(x) = y:

x

1− x
= y ⇐⇒ x = y(1− x) ⇐⇒ (1 + y)x = y ⇐⇒ x =

y

1 + y
.

This also shows that g−1(y) =
y

1 + y
.

(c) First we check that h is one-one. For this, observe that x + y ≥ 1 with
equality only if x = y = 1/2. So,

h(x) = h(y) =⇒ 1

x(1− x)
=

1

y(1− y)
=⇒ x− x2 = y − y2

=⇒ (x− y)(1− x− y) =⇒ x = y.

For the onto property, we �nd the pre-image in [1/2, 1) of any y ≥ 4:

h(x) = y ⇐⇒ 1

x(1− x)
= y ⇐⇒ xy(1− x) = 1

⇐⇒ yx2 − yx+ 1 = 0 ⇐⇒ x =
y +

√
y(y − 4)

2y

Therefore h−1(y) =
y +

√
y(y − 4)

2y
.

4.

(a) Suppose (g ◦ f)(x) = (g ◦ f)(y). Then g(f(x)) = g(f(y)). Since g is
one-one, we get f(x) = f(y). Since f is one-one, we get x = y.

(b) Let z ∈ Z. Since g is onto, there is y ∈ Y with g(y) = z. Since f is onto,
there is x ∈ X with f(x) = y. Then (g ◦ f)(x) = z.

(c) Apply (a) and (b).

6.

(a) f(x) = x, f(x) = |x|, f(x) = [x].

(b) f(x) = −x.

(c) f(x) =

{
0 if x = 0 or 1,
1 else.

8. We will build a bijection f : N × N → N based on this diagram. The �rst
observation is

f(1, n) = 1 + 2 + · · ·+ n =
n(n+ 1)

2
.
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In general,

f(k, l) = f(1, k + l − 1)− k + 1 =
(k + l − 1)(k + l)

2
− k + 1

Observe that f(1, k + l − 2) < f(k, l) ≤ f(1, k + l − 1). Therefore f(k, l) =
f(k′, l′) =⇒ k + l = k′ + l′ =⇒ k = k′ =⇒ l = l′. So f is one-one.

Now let m ∈ N. We have n ∈ N such that
(n− 1)n

2
< m ≤ n(n+ 1)

2
. Let

k =
n(n+ 1)

2
−m+ 1 and l = n− k + 1. Then

f(k, l) = f(1, k + l − 1)− k + 1 = f(1, n)− k + 1 = m.

1.4 Real Functions and Graphs

Task 1.4.1. In each case, let D be the domain of the function.

(a) x ∈ D ⇐⇒ 1− x2 ≥ 0 ⇐⇒ x2 ≤ 1 ⇐⇒ −1 ≤ x ≤ 1. So D = [−1, 1].

(b) x ∈ D ⇐⇒ x ̸= 0. So D = R∗.

(c) x ∈ D ⇐⇒ (x− 1)(x− 2) ≥ 0. So D = (−∞, 1] ∪ [2,∞).

(d) x ∈ D ⇐⇒ 1− x2 > 0 ⇐⇒ x2 < 1 ⇐⇒ −1 < x < 1. So D = (−1, 1).

Task 1.4.2.

−2 −1 1 2

−2

−1

1

2

Task 1.4.3.

−2 −1 1 2

1

Task 1.4.4. The domain of f(x+ c) is {x− c | x ∈ A }.

The domain of f(cx) is {x/c | x ∈ A } if c ̸= 0. If c = 0, the domain is R if
0 ∈ A and ∅ otherwise.

Task 1.4.5. Shift the graph of f to the right by |c| units.

Task 1.4.6. Scale the graph of f horizontally by a factor of 1/|c| and then
re�ect in the y-axis.
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Task 1.4.7.

(a) Shift the y = x2 graph to the right by 2 units and then up by 1 unit.

→ 2 →

1

2

(b) h(x) = 4x2 + 12x + 5 = 4(x + 3/2)2 − 4. So shift the graph of y = x2

to the left by 3/2 units, scale it vertically by 4, and then lower it by 4
units.

−3/2

→

−3/2

→

−3/2

Task 1.4.8. |x| is even and sgn(x) is odd.

[x] is neither, since [−1/2] = −1 does not equal either ±[1/2] = 0.

Task 1.4.9. If f is both, then for any point a in its domain we have f(−a) =
f(a) = −f(a) =⇒ 2f(a) = 0 =⇒ f(a) = 0. So the only such function is the
zero function.

Task 1.4.10.

(a) Increasing

(b) Increasing

(c) Not monotonic

(d) Strictly decreasing

Task 1.4.11. Proof by induction. For n = 1, the truth is given. Assume true
for some n and consider n+ 1:

f(x+ (n+ 1)T ) = f((x+ T ) + nT ) = f(x+ T ) = f(x).

Task 1.4.13. The domain of f + g, f − g and fg is A ∩ B. The domain of
f/g is {x ∈ A ∩B | g(x) ̸= 0 }.

Task 1.4.14.

(a) All the combinations are even. For example,

(f + g)(−x) = f(−x) + g(−x) = f(x) + g(x) = (f + g)(x).

(b) f + g and f − g are odd. For example,

(f + g)(−x) = f(−x) + g(−x) = −f(x)− g(x) = −(f + g)(x).

fg and f/g are even. For example,

(fg)(−x) = f(−x)g(−x) = (−f(x))(−g(x)) = f(x)g(x) = (fg)(x).
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(c) f +g and f −g need not be either even or odd. For example, 1 is even, x
is odd and 1+ x is neither. However, fg and f/g are odd. For example,

(fg)(−x) = f(−x)g(−x) = −f(x)g(x) = −(fg)(x).

(d) As in (c).

Task 1.4.15.

(a) To obtain f−1 we solve y = 2x+1 for x in terms of y. We get x = 1
2 (y−1).

Switching x and y gives the inverse function to be f−1(x) = 1
2 (x− 1).

y = f(x)

y = f−1(x)

(b) The inverse function f−1 : [0,∞) → [0,∞) is f−1(x) =
√
x.

y = f(x)

y = f−1(x)

(c) The inverse function f−1 : [0, 1] → [0, 1] is f−1(x) =
√
1− x2 = f(x).

y = f(x) = f−1(x)

Task 1.4.16. (−x)n = (−1)nxn =

{
xn if n is even,
−xn if n is odd.

Therefore, monomials of even degree are even functions and monomials of
odd degree are odd functions.

Task 1.4.17. Let deg p = m and deg q = n. Then

p(x) = amx
m + am−1x

m−1 + · · ·+ a0, q(x) = bnx
n + bn−1x

n−1 + · · ·+ b0

with am and bn non-zero. Therefore,

p(x)q(x) = ambnx
m+n + (ambn−1 + am−1bn)x

m+n−1 + · · ·+ a0b0.

Since ambn ̸= 0, we get deg(pq) = m+ n = (deg p) + (deg q).

Next, let m = max{deg p,deg q}. Then,

p(x) = amx
m + am−1x

m−1 + · · ·+ a0
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q(x) = bmx
m + bm−1x

m−1 + · · ·+ b0

with at least one of am and bm being non-zero. Now,

p(x) + q(x) = (am + bm)xm + (am−1 + bm−1)x
m−1 + · · ·+ a0 + b0,

and so deg(p+ q) ≤ m = max{deg p,deg q}.

Exercises for �1.4

2.

(a)

y = x2

→

y = −x2

→

y = 1− x2

(b) x2 − 4x+ 3 = (x− 2)2 − 1.

y = x2

→

y = (x− 2)2

→

y = (x− 2)2 − 1

(c)

y = x2

→
y =

√
x

→
y =

√
x− 1

(d)
x

x− 4
= 1 +

4

x− 4
.

y = 1
x

→

y = 1
x−4

→

y = 4
x−4

→

y = 1 + 4
x−4
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4.

(a)

1 2

(b) The domain of g is [0, 1].

11/2

(c) The domain of h is [2, 4].

2 3 4

(d) The domain of k is empty, so there is no graph to draw!

6. The extended graphs are given below:

(a) (b)

8.

(a) Even: (f ◦ g)(−x) = f(g(−x)) = f(g(x)) = (f ◦ g)(x).
(b) Odd: (f ◦ g)(−x) = f(g(−x)) = f(−g(x)) = −f(g(x)) = −(f ◦ g)(x).
(c) Even: (f ◦ g)(−x) = f(g(−x)) = f(−g(x)) = f(g(x)) = (f ◦ g)(x).
(d) Even: (f ◦ g)(−x) = f(g(−x)) = f(g(x)) = (f ◦ g)(x).

10.

(a) We wish to write f = f+ − f− where f± are non-negative. If f itself
is non-negative, we can take f+ = f and f− = 0. If f is non-positive,
we can take f+ = 0 and f− = −f . These observations motivate the
following de�nitions:

f+(x) =

{
f(x) if f(x) ≥ 0
0 else

, f−(x) =

{
0 if f(x) ≥ 0

−f(x) else
.

It is easy to check that f± are non-negative and f = f+ − f−.
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(b) De�ne g(x) = 1
2 (f(x) + f(−x)) and h(x) = 1

2 (f(x)− f(−x)). Then it is
easily seen that g is even, h is odd, and f = g + h.

12. In Exercise 11, we de�ned x+ = max{0, x}. This function changes its
behaviour at zero. Consequently, fn will change its behaviour at n, n+1/2 and
n+ 1. We have the following:

fn(x) =


0 if x ≤ n

x− n if n < x ≤ n+ 1/2
n− x+ 1 if n+ 1/2 < x ≤ n+ 1

0 if n+ 1 < x

(a)

1/2

n n+ 1
2
n+ 1

(b)

1/2

14.

(a) Odd, not monotonic,not periodic.

(b) Even, increasing, not periodic.

(c) Not odd or even, not monotonic, period of 1.

(d) Not odd or even, not monotonic, period of 1.

16. The function and its inverse are shown below:

(a) (b)

Thematic Exercises

Curve Fitting: Interpolation and Least Squares

A1.

(a) The condition wi(xj) = 0 makes x− xj a factor of wi(x) for each j ̸= i.
Hence we have

wi(x) = C
∏
j:j ̸=i

(x− xj)

for some C ∈ R. The condition wi(xi) = 1 further gives 1 = C
∏

j:j ̸=i(xi−
xj). Hence,

wi(x) =

∏
j:j ̸=i(x− xj)∏
j:j ̸=i(xi − xj)

.
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(b) It is easy to see that the given p works. Since each wi has degree n, we
have deg p ≤ n. Further,

p(xk) =

n∑
i=0

yiwi(xk) = ykwk(xk) = yk.

If q(x) also satis�es the given properties, then deg(p − q) ≤ n and (p −
q)(xi) = 0 for each i = 0, . . . , n. This gives p− q = 0, hence p = q.

Remark: This p(x) is called the Lagrange interpolating polynomial for the
data (x0, y0), . . . , (xn, yn).

A2.

w0(x) =
(x− 0)(x− h)

(−h− 0)(−h− h)
=
x(x− h)

2h2
,

w1(x) =
(x− (−h))(x− h)

(0− (−h))(0− h)
= − (x+ h)(x− h)

h2
,

w2(x) =
(x− (−h))(x− 0)

(h− (−h))(h− 0)
=
x(x+ h)

2h2
.

The interpolating polynomial for the given data is:

p(x) = a
x(x− h)

2h2
− b

(x+ h)(x− h)

h2
+ c

x(x+ h)

2h2

=
(a− 2b+ c)x2

2h2
+

(c− a)x

2h
+ b.

An alternate approach, for those who know how to solve systems of linear equa-
tions, is to assume p(x) = αx2+βx+γ and use the data to set up the following
three linear equations in the three variables α, β, γ:

h2α− hβ + γ = a

γ = b

h2α+ hβ + γ = c

A3. We have ||x⃗+y⃗||2 = (x⃗+y⃗)•(x⃗+y⃗) = x⃗•x⃗+2x⃗•y⃗+y⃗ •y⃗ = ||x⃗||2+2x⃗•y⃗+||y⃗||2.

Therefore, ||x⃗+ y⃗||2 = ||x⃗||2 + ||y⃗||2 ⇐⇒ x⃗ • y⃗ = 0 ⇐⇒ x⃗ ⊥ y⃗.

A4. First, we note that Π will be a plane if u⃗ and v⃗ are not collinear with 0⃗. If
they are collinear, Π will be a line. Therefore, we assume this non-collinearity
in our analysis below.

Next, we identify a plausible choice of x⃗. Geometry suggests that x⃗ should be
the perpendicular projection of y⃗ on Π. That is, y⃗ − x⃗ should be perpendicular
to all members of Π. Let us con�rm that such an x⃗ would minimize the distance.
If x⃗ ′ is any other member of Π, we have

||y⃗ − x⃗ ′||2 = ||(y⃗ − x⃗) + (x⃗− x⃗ ′)||2

= ||y⃗ − x⃗||2 + ||x⃗− x⃗ ′||2 (by Pythagoras' theorem, since x⃗− x⃗ ′ ∈ Π)

≥ ||y⃗ − x⃗||2.
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Moreover, equality can only happen if x⃗ = x⃗ ′. This also establishes the unique-
ness of x⃗.

Now, let us show the existence of x⃗ by �nding a formula for it. The perpen-
dicularity condition gives (y⃗ − x⃗) • u⃗ = (y⃗ − x⃗) • v⃗ = 0. If we set x⃗ = au⃗ + bv⃗,
these equations become

||u⃗||2a+ (u⃗ • v⃗)b = y⃗ • u⃗

(u⃗ • v⃗)a+ ||v⃗||2b = y⃗ • v⃗

On solving these equations for a and b we obtain:

a =
||v⃗||2(y⃗ • u⃗)− (u⃗ • v⃗)(y⃗ • v⃗)

||u⃗||2 ||v⃗||2 − (u⃗ • v⃗)2

b =
||u⃗||2(y⃗ • v⃗)− (u⃗ • v⃗)(y⃗ • u⃗)

||u⃗||2 ||v⃗||2 − (u⃗ • v⃗)2

The remaining issue is whether ||u⃗||2 ||v⃗||2− (u⃗ • v⃗)2 ̸= 0. For this, we invoke the
Cauchy-Schwarz inequality, which states that for numbers u1, . . . , un and
v1, . . . , vn we always have∣∣∣ n∑

i=1

uivi
∣∣2 ≤

( n∑
i=1

u2i

)( n∑
i=1

v2i

)
,

with equality if and only if one of (u1, . . . , un) and (v1, . . . , vn) is a constant
times the other. The non-collinearity assumption rules out this possibility and
gives the existence of x⃗.

(If u⃗ and v⃗ are collinear with 0⃗, we drop v⃗ from our calculations, and we �nd

x⃗ =
y⃗ • u⃗

||u⃗||2
u⃗.)

A5. The total squared error can be expressed as

E(a, b) =

n∑
i=1

(yi − axi − b)2 = ||y⃗ − (ax⃗+ bv⃗)||2,

which is the square of the distance of y⃗ from the member ax⃗+bv⃗ of Π. Therefore,
minimizing the total squared error is equivalent to �nding the member of Π
which is closest to y⃗.

A6. Use A5 to view this as a problem of �nding the closest vector from a
plane, and then apply the formulas for a, b obtained in the solution of A4.

Cardinality

B1. By repeatedly dividing by 2, we can express any natural number as a
power of 2 times an odd number. This shows f is a surjection.

Now suppose f(m,n) = f(m′, n′) with m ≥ m′. Then,

2m−1(2n− 1) = 2m
′−1(2n′ − 1) =⇒ 2m−m′

(2n− 1) = 2n′ − 1 =⇒ m = m′

=⇒ 2n− 1 = 2n′ − 1 =⇒ n = n′.
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So f is also an injection.

B2. Any positive rational can be expressed as m/n with m,n ∈ N and having
no common factors except 1. We apply the fundamental theorem of arithmetic

to write m = pβ1

1 · · · pβk

k and n = p
βk+1

k+1 · · · pβℓ

ℓ , where the pi are distinct primes
and βi ∈ N. (If either m or n is 1, we express it as 20.) Let f(αi) = βi for
i = 1, . . . , k and f(αi) = −βi for i = k + 1, . . . , ℓ. Then we have

φ(pα1
1 · · · pαℓ

ℓ ) =
pβ1

1 · · · pβk

k

p
βk+1

k+1 · · · pβℓ

ℓ

=
m

n
.

So φ is surjective.

Next, suppose φ(pα1
1 · · · pαk

k ) = φ(qβ1

1 · · · qβℓ

ℓ ), where the pi are one set of
distinct primes, the qj are another set of distinct primes, and αi, βj ∈ N. We
get

p
f(α1)
1 · · · pf(αk)

k = q
f(β1)
1 · · · qf(βℓ)

ℓ .

We can assume that there are k′ and ℓ′ such that

f(α1), . . . , f(αk′) > 0, f(αk′+1), . . . , f(αk) < 0,

f(β1), . . . , f(βℓ′) > 0, f(βℓ′+1), . . . , f(βℓ) < 0.

Then,

p
f(α1)
1 · · · pf(αk′ )

k′ q
−f(βℓ′+1)

ℓ′+1 · · · q−f(βℓ)
ℓ = p

−f(αk′+1)

k′+1 · · · p−f(αk)
k q

f(β1)
1 · · · qf(βℓ′ )

ℓ′ ∈ N,

with all exponents being positive. By the uniqueness of the prime factorisation,
we get:

{p1, . . . , pk′} = {q1, . . . , qℓ′} and {pk′+1, . . . , pk} = {qℓ′+1, . . . , qℓ}.

In particular, k = ℓ and k′ = ℓ′. Further, matching exponents gives f(αi) =
f(βi) for every i, and so αi = βi for every i.

B3. Consider the map φ de�ned in B2. Use it to de�ne ψ : N → Q:

ψ(n) =

 0 if n = 1,
φ(n/2) if n is even,

−φ((n− 1)/2) else.

B4. Let A = {a1, a2, . . . } and B = {b1, b2, . . . }. A and B are clearly non-
empty. The nesting of the intervals gives the following arrangement:

a1 ≤ a2 ≤ a3 ≤ · · · ≤ b3 ≤ b2 ≤ b1.

Thus, ai ≤ bj for every i, j. The completeness axiom now gives a real number c

such that ai ≤ c ≤ bi for every i. Therefore, c ∈
∞
∩

n=1
[an, bn].

B5. Set J1 = [f(1) + 1, f(1) + 2]. Then f(1) /∈ J1.

Cut J1 into three equal subintervals: [f(1)+1, f(1)+4/3], [f(1)+4/3, f(1)+
5/3], [f(1)+5/3, f(1)+2]. The pieces [f(1)+1, f(1)+4/3] and [f(1)+5/3, f(1)+
2] are disjoint, so at least one of them does not contain f(2). Call that one J2.
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Repeat the process with J2 to get J3 with f(3) /∈ J3. Continue in this way
to get a decreasing sequence of intervals Jn = [an, bn] such that f(n) /∈ Jn.

By B4,
∞
∩

n=1
Jn has a member c. Now, c ̸= f(n) for every n, which contradicts

the surjectivity of f .

B6. We mimic the solution of B3. We already know there is a bijection
ψ : N → Q.

Suppose Qc is countable, so that there is a bijection ψc : N → Qc. Now
de�ne f : N → R by

f(n) =

{
ψ(n/2) if n is even,

ψc((n+ 1)/2) else.

We leave it to you to show that f is a bijection. This contradicts B5. Hence Qc

is uncountable.
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2 | Integration

2.1 Integration of Step and Bounded Functions

Task 2.1.3.

(a) P = {−1, 0, 1} (b) P = {0, 1, 2, 3}

Task 2.1.5.

∫ 3

0

s(x) dx = 2 · (1.5− 0) + (−1) · (2.5− 1.5) + 3 · (3− 2.5) = 3.5.

Task 2.1.6. Let Q be a re�nement of P . It is enough to do the case when
Q has one more point than P . If P = {x0, . . . , xn} then such a Q has the
form {x0, . . . , xk−1, t, xk, . . . , xn}, with xk−1 < t < xk. Since s is constant on
(xk−1, xk), it is constant on (xk−1, t) and (t, xk). It is also constant on each
(xi−1, xi) for i ̸= k. Therefore Q is adapted to s.

Task 2.1.8. Let P be a partition that is adapted to s, and Q a partition that
is adapted to t. Then P ∪ Q is a re�nement of both P and Q. By Task 2.1.6,
it is adapted to both s and t.

Task 2.1.13. The issue here is that the de�nition of integrability requires us
to consider all lower and upper sums. However, if we �nd a subset L of Lf and
a subset U of Uf such that there is a unique number between L and U , then
the same is true of Lf and Uf .

Task 2.1.15. Suppose s : [a, b] → R is a step function. Then I =
∫ b

a
s is both

a lower and an upper sum for s. Therefore, it is the unique number between Ls

and Us, hence is also the integral of s when we view s as a bounded function
whose integral is to be obtained via lower and upper sums.

Exercises for �2.1

2.

(a)

[2x− 1] =


−1 if x ∈ [0, 1/2)
0 if x ∈ [1/2, 1)
1 if x ∈ [1, 3/2)
2 if x ∈ [3/2, 2)
3 if x = 2

21
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∫ 2

0

[2x− 1] dx = −1 · 0.5 + 0 · 0.5 + 1 · 0.5 + 2 · 0.5 = 1.

(b)

[
√
x] =


0 if x ∈ [0, 1)
1 if x ∈ [1, 4)
2 if x ∈ [4, 9)
3 if x = 9∫ 9

0

[
√
x] dx = 0 · 1 + 1 · 3 + 2 · 5 = 13.

4.

F (x) =

{
x if x ∈ [0, 1]

1 + 2(x− 1) if x ∈ [1, 2]

1 2

6. In this diagram, the shaded part represents a lower sum for
∫ b

0

√
x dx. Its

complement in the enclosing rectangle is an upper sum for
∫√

b

0
x2 dx. The area

of the enclosing rectangle is b
√
b = b3/2. Therefore,

L√
x = { b3/2 − u | u ∈ Ux2 }.

Similarly,
U√

x = { b3/2 − ℓ | ℓ ∈ Lx2 }.

Now let I separate L√
x and U√

x. Then,

ℓ ≤ I for every ℓ ∈ L√
x =⇒ b3/2 − u ≤ I for every u ∈ Ux2

=⇒ b3/2 − I ≤ u for every u ∈ Ux2 .

We can similarly prove that b3/2 − I ≥ ℓ for every ℓ ∈ Ux2 . Hence,

b3/2 − I =

∫ √
b

0

x2 dx.

Therefore, I is unique, and∫ b

0

√
x dx = I = b3/2 −

∫ √
b

0

x2 dx = b3/2 − b3/2

3
=

2

3
b3/2.

8. Let ε > 0. Since f is integrable on [a, b], we have step functions s, t : [a, b] →
R such that s ≤ f ≤ t and

∫ b

a
t−

∫ b

a
s < ε. Then

∫ d

c
s is a lower sum for f on [c, d],

while
∫ d

c
t is an upper sum for f on [c, d]. Further,

∫ d

c
t−

∫ d

c
s ≤

∫ b

a
t−

∫ b

a
s < ε.
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10. First, suppose the given conditions hold. Let ε > 0. From (a) and (b) we
deduce that I+ ε/2 is an upper sum and I− ε/2 is a lower sum. Then Theorem

2.1.17 gives I =
∫ b

a
f(x) dx.

Next, suppose that I =
∫ b

a
f(x) dx. Consider any u > I. By Theorem 2.1.17

we have a step function t such that f ≤ t and I ≤ u′ =
∫ b

a
t < u. Now consider

the step function t′ = t+(u−u′)/(b−a). Then f ≤ t′ and
∫ b

a
t′ = u′+(u−u′) = u.

We have proved (a). There is a similar proof of (b).

12. Let |f(x)| ≤M for every x ∈ [a, b], and consider any ε > 0.

For every n ∈ N with 1/n < b − a, f is integrable on [a + 1/n, b]. So there

are step functions s′, t′ : [a + 1/n, b] → R such that
∫ b

a+1/n
t′ −

∫ b

a+1/n
s′ < ε/2.

De�ne step functions s, t : [a, b] → R by

s(x) =

{
−M if x ∈ [a, a+ 1/n)
s′(x) if x ∈ [a+ 1/n, b]

, t(x) =

{
M if x ∈ [a, a+ 1/n)
t′(x) if x ∈ [a+ 1/n, b]

.

Then we have s ≤ f ≤ t on [a, b], and∫ b

a

t−
∫ b

a

s <
ε

2
+

2M

n
.

If we use n such that 1/n < min{b− a, ε/4M} then we get
∫ b

a
t−

∫ b

a
s < ε.

2.2 Properties of Integration

Task 2.2.3.

(a) The partition P = {0, 1, 1.5, 2.5, 3} is adapted to both s and t, hence
to s+ t. We have

s(x) + t(x) =


−1 if 0 ≤ x < 1
1 if 1 ≤ x ≤ 1.5
3 if 1.5 < x ≤ 2.5
4 if 2.5 < x ≤ 3

(b)

∫ 3

0

s = −1 · 1 + 1 · 2 = 1∫ 3

0

t = 0 · 1.5 + 2 · 1 + 3× 0.5 = 3.5∫ 3

0

(s+ t) = −1 · 1 + 1 · 0.5 + 3 · 1 + 4 · 0.5 = 4.5

Task 2.2.7. We have
∫ 1

−1
|t| dt =

∫ 0

−1
(−t) dt+

∫ 1

0
t dt. We have already found∫ 1

0
t dt = 1/2. Using the partitions P = {−1,−1 + 1/n,−1 + 2/n, . . . , 0} we

similarly �nd
∫ 0

−1
t dt = −1/2. Therefore,∫ 1

−1

|t| dt = −
∫ 0

−1

t dt+

∫ 1

0

t dt = 1.
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Task 2.2.10. The domain of f(x/k) will be [kb, ka], and the integrals will be
related by ∫ ka

kb

f(x/k) dx = −k
∫ b

a

f(x) dx.

Task 2.2.12. In the proof of Theorem 2.2.11, we have seen that the leftmost
term is a lower sum, while the rightmost term is an upper sum, for f on [a, b].

Exercises for �2.2

2. We have used the shift properties of integration to simplify the calculations.
In (b), we have also used Task 2.2.10 with k = −1.

(a)

∫ 2

1

(x− 1)(x− 2) dx =

∫ 1

0

x(x− 1) dx =

∫ 1

0

x2 dx−
∫ 1

0

x dx =
1

3
− 1

2
=

−1

6
.

(b)

∫ 2

1

(x− 1)(x− 2)(x− 3) dx =

∫ 0

−1

(x+ 1)x(x− 1) dx =

∫ 0

−1

(x3 − x) dx

=

∫ 1

0

((−x)3 − (−x)) dx = −
∫ 1

0

(x3 − x) dx

= −1

4
+

1

2
=

1

4
.

4. The conditions P (0) = P (1) = 0 give P (x) = cx(x − 1) for some c ∈ R.
Now, ∫ 1

0

cx(x− 1) dx = c
(∫ 1

0

x2 dx−
∫ 1

0

x dx
)
= − c

6
=⇒ c = −6.

Therefore, P (x) = −6x(x− 1).

6.

(a)

∫ a

−a

f(x) dx =

∫ 0

−a

f(x) dx+

∫ a

0

f(x) dx

=

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx (Task 2.2.10)

=

∫ a

0

f(x) dx+

∫ a

0

f(x) dx (f is even)

= 2

∫ a

0

f(x) dx

(b)

∫ a

−a

f(x) dx =

∫ a

0

f(−x) dx+

∫ a

0

f(x) dx

= −
∫ a

0

f(x) dx+

∫ a

0

f(x) dx (f is odd)

= 0

8. We shall use the results of the preceding exercise to give two proofs of the
integrability of f ∨ g. The integrability of f ∧ g can be established along the
same lines.
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First solution:

(f∨g)(x) = max{f(x), g(x)} = f(x)+max{0, g(x)−f(x)} = f(x)+(g(x)−f(x))+

The integrability of f and g gives the integrability of g−f and hence of (g−f)+.
Therefore, f ∨ g = f + (g − f)+ is integrable.

Second solution:

(f ∨ g)(x) = max{f(x), g(x)} =
1

2
(f(x) + g(x)) +

1

2
|g(x)− f(x)|.

Again, g ± f are integrable, hence |g − f | is integrable. Therefore, f ∨ g =
1
2 (f + g) + 1

2 |g − f | is integrable.

10.

(a)

∫ b

a

t2 −
∫ b

a

s2 =

∫ b

a

(t+ s)(t− s) ≤ 2M

∫ b

a

(t− s) = 2M
(∫ b

a

t−
∫ b

a

s
)
.

(b) Let ε > 0. If 0 ≤ f ≤M , there are step functions s, t such that 0 ≤ s ≤
f ≤ t ≤ M and

∫ b

a
t −

∫ b

a
s < ε/(2M). Then, s2, t2 are step functions

such that s2 ≤ f2 ≤ t2 and∫ b

a

t2 −
∫ b

a

s2 ≤ 2M
(∫ b

a

t−
∫ b

a

s
)
= ε.

Therefore f2 is integrable. For a general integrable f with |f | ≤ M ,
we have f + M ≥ 0, hence (f + M)2 is integrable. It follows that
f2 = (f +M)2 − 2Mf −M2 is integrable.

(c) We have fg = 1
2 ((f + g)2 − f2 − g2) and every term on the right hand

side is integrable.

12.

(a) F (−x) =
∫ −x

0

f(t) dt = −
∫ x

0

f(−t) dt = −
∫ x

0

f(t) dt = −F (x).

(b) F (−x) =
∫ −x

0

f(t) dt = −
∫ x

0

f(−t) dt =
∫ x

0

f(t) dt = F (x).

14. Recall that Theorem 2.2.14 was proved for the case when f is decreasing
and positive.

(a) Suppose f is an increasing and positive function. Then g(x) = f(−x) is
decreasing and positive. Therefore G(x) =

∫ x

−a
g(t) dt has the interme-

diate value property. We have

F (x) =

∫ x

a

f(t) dt =

∫ −a

−x

f(−t) dt = −
∫ −x

−a

g(t) dt = −G(−x).

Now it is easily seen that F has the intermediate value property.

(b) The hint in the text is not helpful. Instead, proceed as follows. At
this stage, we have established Theorem 2.2.14 when f is monotone and
positive. We easily get the result for a monotone and negative f by
considering −f . Observe that our proof also covers the cases when f is
zero only at an endpoint of the interval.
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Now, suppose f is a general increasing function on an interval I. Then
we have α, β ∈ I such that α ≤ β, f < 0 for x < α and f > 0 for x > β.
Then F has the intermediate value property on the intervals I∩(−∞, α],
[α, β], and I ∩ [β,∞). Hence it has the intermediate value property on
I.

We get the result for a decreasing f by considering −f .

16. Mimic the solution of Exercise 6 of �2.1.

2.3 Logarithm and Exponential Functions

Task 2.3.5. We already know this is true for positive reals, and of course for
zero. If a is negative, we take b = −(−a)1/n to prove existence. For uniqueness,
we �rst note that bn = cn = a implies b, c have the same sign. We then apply
bn − cn = (b− a)(bn−1 + · · ·+ cn−1).

Task 2.3.6. ((am)1/n)nq = (am)q = amq, ((ap)1/q)nq = (ap)n = apn = amq.

Task 2.3.7. ((a1/n)m)n = (a1/n)mn = am.

Task 2.3.10.

(a) log(y + 1)− log(y − 1) = 2 log x =⇒ log
(y + 1

y − 1

)
= log x2

=⇒ y + 1

y − 1
= x2 =⇒ y(x2 − 1) = x2 + 1 =⇒ y =

x2 + 1

x2 − 1
.

(b) x =
2y + 2−y

2y − 2−y
=

4y + 1

4y − 1
=⇒ 4y(x− 1) = 1 + x =⇒ 4y =

x+ 1

x− 1

=⇒ y = log4(x+ 1)− log4(x− 1).

Task 2.3.13. b(loga x)(logb a) = aloga x = x =⇒ logb x = (loga x)(logb a).

Task 2.3.14.

(a) cosh(−x) = 1

2
(e−x + e−(−x)) =

1

2
(ex + e−x) = cosh(x),

sinh(−x) = 1

2
(e−x − e−(−x)) = −1

2
(ex − e−x) = − sinh(x).

(b) We have y = 1
2 (e

x + e−x) ⇐⇒ (ex)2 − 2yex + 1 = 0. This quadratic in
ex has a solution if and only if 4y2 − 4 ≥ 0, i.e., |y| ≥ 1. The solutions

are ex = y ±
√
y2 − 1. The requirement ex > 0 rules out y < −1. This

shows that the image of cosh is exactly [1,∞).

The corresponding calculations for sinh lead to the equation ex = y ±√
y2 + 1. The requirement ex > 0 gives x = log(y +

√
y2 + 1) as the

unique pre-image for every y.

(c) Use (a+ b)2 − (a− b)2 = 4ab.

Task 2.3.15. Apply the discussion for the graph of cosh. In this case, sinh is
odd, passes through the origin, approaches ex/2 as x increases in magnitude on
the positive side, and approaches −e−x/2 as x increases in magnitude on the
negative side.
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Exercises for �2.3

2.

(a) log 80 = log(24 · 5) = 4 log 2 + log 5 = 4.37.

(b) log 120 = log(23 · 3 · 5) = 3 log 2 + log 3 + log 5 = 4.78.

(c) log 2.1 = log 21− log 10 = log 3 + log 7− log 2− log 5 = 0.75.

(d) log(3/35) = log 3− log 5− log 7 = −2.46.

4. 23/2 = 2
√
2 < 3 =⇒ log2 3 > 3/2, 33/2 = 3

√
3 > 5 =⇒ log3 5 < 3/2.

6. For x = 1, all expressions are zero.

For x > 1,

∫ x

1

1

x
dt ≤

∫ x

1

1

t
dt ≤

∫ x

1

1 dt =⇒ x− 1

x
≤ log x ≤ x− 1.

For x < 1, we have 1/x > 1, hence 1− 1

1/x
≤ log(1/x) ≤ 1

x
− 1.

8.

expx
exp(1 + x)

exp(−x) exp |x|

10. ax = exp(x log a) is a composition of the strictly increasing exp function
with x log a. And x log a is strictly increasing if a > 1, strictly decreasing if
0 < a < 1.

12.

(a) 1
4 (e

x + e−x)2 + 1
4 (e

x − e−x)2 = 1
2 (e

2x + e−2x) = cosh 2x.

(b) 2 · 1
2 (e

x + e−x) · 1
2 (e

x − e−x) = 1
2 (e

2x − e−2x) = sinh 2x.

(c)
1

4
(ex + e−x)(ey + e−y) +

1

4
(ex − e−x)(ey − e−y)

=
1

4

(
(ex+y + ex−y + ey−x + e−(x+y)) + (ex+y − ex−y − ey−x + e−(x+y))

)
=

1

4
(2ex+y + 2e−(x+y)) = cosh(x+ y).

(d) Similar to (c).

2.4 Integration and Area

Exercises for �2.4

2. Yes. Cut the polygon into triangles that only meet at their vertices. The
contributions from a side that is shared by two triangles cancel, and only the



28 CHAPTER 2. INTEGRATION

contributions from the outer edges remain. If the vertices of the polygon are
(x1, y1), . . . , (xn, yn), in counterclockwise order, then the area is

A =
1

2

(
(x1y2 − x2y1) + · · ·+ (xn−1yn − xnyn−1) + (xny1 − x1yn)

)
.

4.

(a) Find the meeting point of y = log(3− x) and y = log(1 + x):

log(3− x) = log(1 + x) =⇒ 3− x = 1 + x =⇒ x = 1.

Find the x-intercepts of y = x2 − 2x:

x2 − 2x = 0 =⇒ x(x− 2) = 0 =⇒ x = 0, 2.

Observe that y = log(3− x) and y = log(1 + x) intercept the x-axis at 2
and 0 respectively: log(3− 2) = log 1 = 0, log(1 + 0) = log 1 = 0.

Let f(x) equal log(1 + x) on [0, 1] and log(3 − x) on [1, 2]. Then the
required area is given by∫ 2

0

(f(x)−(x2−2x)) dx =

∫ 1

0

log(1+x) dx+

∫ 2

1

log(3−x) dx−
∫ 2

0

(x2−2x) dx.

(b) The arc and the slanted line segment meet at x = −1/2. The corre-
sponding y-coordinate is

√
1− (−1/2)2 =

√
3/2. The equation of the

slanted line segment is y = −
√
3x. Therefore the area is given by∫ 1

−1/2

√
1− x2 dx+

∫ 0

−1/2

√
3x dx.

6. Apply Theorem 2.2.9:

2

∫ a

−a

b
√
1− x2/a2 dx = 2ab

∫ 1

−1

√
1− x2 dx = πab.

Thematic Exercises

Darboux Integral

A1. Suppose m ≤ f(x) ≤M for every x ∈ [a, b]. We have m ≤ mi ≤Mi ≤M
for every i. Hence,

L(f, P ) =

n∑
i=1

mi(xi − xi−1) ≤
n∑

i=1

M(xi − xi−1) =M

n∑
i=1

(xi − xi−1) =M(b− a)

U(f, P ) =

n∑
i=1

Mi(xi − xi−1) ≥
n∑

i=1

m(xi − xi−1) = m

n∑
i=1

(xi − xi−1) = m(b− a)

A2. Take any partition P = {x0, . . . , xn} of [0, 1]. By the density of rationals
and irrationals, each mi = 0 and Mi = 1. Therefore L(f, P ) = 0 and U(f, P ) =
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1 for every P . Hence the lower Darboux integral is 0 and the upper Darboux
integral is 1.

A3. We �rst show that if P is a partition of [a, b] and P ′ is a re�nement of P
then

L(f, P ) ≤ L(f, P ′) ≤ U(f, P ′) ≤ U(f, P ).

It is enough to prove this when P ′ has one more point than P . Let P =
{x0, . . . , xn} and P ′ = P ∪ {t} with xk−1 < t < xk. As usual, let mi =
inf{f(x) : x ∈ [xi−1, xi]}. Further, let m′ = inf{f(x) : x ∈ [xk−1, t]} and
m′′ = inf{f(x) : x ∈ [t, xk]}. Then mk ≤ m′,m′′. Now,

L(f, P ) =

k−1∑
i=1

mi(xi − xi−1) +mk(xk − xk−1) +

n∑
i=k+1

mi(xi − xi−1)

≤
k−1∑
i=1

mi(xi − xi−1) +m′(t− xk−1) +m′′(xk − t) +

n∑
i=k+1

mi(xi − xi−1)

= L(f, P ′)

We can similarly prove that U(f, P ′) ≤ U(f, P ).

Now, if P,Q are any two partitions of [a, b], then P ∪Q is a common re�ne-
ment, and we get:

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

De�ne A = {L(f, P ) | P is a partition of [a, b] }
B = {U(f, P ) | P is a partition of [a, b] }

We have just shown that every member of B is an upper bound of A. There-
fore sup(A) is a lower bound of B. Therefore sup(A) ≤ inf(B), as desired.

A4. Let A = {L(f, P ) | P is a partition of [a, b] }
B = {U(f, P ) | P is a partition of [a, b] }

Note that A ⊂ Lf and B ⊂ Uf .

Now suppose that f is Darboux integrable. Let I separate Lf and Uf . Then
I is an upper bound of A and a lower bound of B. Hence,∫ b

a

f(x) dx = sup(A) ≤ I ≤ inf(B) =

∫ b

a

f(x) dx.

The equality of the upper and lower Darboux integrals shows that I equals
them, hence I is unique and f is integrable.

For the converse, let I =
∫ b

a
f . By de�nition, I is an upper bound of A and

a lower bound of B. We claim that I = sup(A) = inf(B). Consider I − ε with
ε > 0. By the Riemann condition, there is a step function s such that s ≤ f and∫ b

a
s > I − ε. Let P be a partition adapted to s. Then L(f, P ) ≥

∫ b

a
s > I − ε,

so I − ε is not an upper bound of A. This shows that I = sup(A). We can
similarly show that I = inf(B).
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3 | Limits and Continuity

3.1 Limits

Task 3.1.4. Given an ε > 0 take any positive δ. For example, take δ = 1.
Then for any x, and in particular for those satisfying 0 < |x − p| < δ, we have
|f(x)− c| = |c− c| = 0 < ε.

Task 3.1.7. We have lim
x→p

f(ax + b) = L ⇐⇒ lim
h→0

f(ap + b + ah) = L and

lim
y→ap+b

f(y) = L ⇐⇒ lim
k→0

f(ap+ b+ k) = L.

The de�nitions of the two equivalent limits are:

lim
h→0

f(ap + b + ah) = L: For each ε > 0 there is a δ > 0 such that 0 < |h| < δ

implies |f(ap+ b+ ah)− L| < ε.

lim
k→0

f(ap + b + k) = L: For each ε > 0 there is a δ′ > 0 such that 0 < |k| < δ′

implies |f(ap+ b+ k)− L| < ε.

Observe that δ works in the �rst de�nition if and only if δ′ = |a|δ works in
the second one.

Task 3.1.19. Apply the algebra of limits.

(a) lim
x→2

x = 2 =⇒ lim
x→2

x2 = 22 = 4 =⇒ lim
x→2

1

x2
=

1

4
.

(b)
x2 − 6x+ 9

x2 − 9
=

(x− 3)2

(x+ 3)(x− 3)
=
x− 3

x+ 3
for x ̸= 3. Hence,

lim
x→3

x2 − 6x+ 9

x2 − 9
= lim

x→3

x− 3

x+ 3
=

0

6
= 0.

(c) Observe that for x ̸= 0,
|x|
x

= sgn(x). Apply Example 3.1.10.

Task 3.1.20. We have to rule out lim
x→a

f(x) < m as well as lim
x→a

f(x) > M .

Let us do the �rst. Suppose lim
x→a

f(x) = L < m. Set ε = m − L. There is a

δ > 0 such that 0 < |x − a| < δ implies |f(x) − L| < m − L. Let p = a + δ/2.
Then |f(p)− L| < m− L implies f(p) < L+ (m− L) = m, a contradiction.

Task 3.1.24.

(a) lim
x→p+

C = C: For any ε > 0, take δ = 1.

31
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(b) As in (a).

(c) lim
x→1+

[x] = 1: For any ε > 0, take δ = 1.

(d) lim
x→1−

[x] = 0: For any ε > 0, take δ = 1.

(e) lim
x→0+

|x|
x

= 1: For any ε > 0, take δ = 1.

(f) lim
x→0+

√
x = 0: For any ε > 0, take δ = ε2.

Task 3.1.27. The only change in the statements is the replacement of the
limits by one-sided limits. The proofs also undergo only cosmetic changes. For
example, the statement of the sandwich theorem for right-hand limits is:

Suppose that f(x) = g(x) = h(x) in an interval (p, p + δ′), with δ′ > 0. If

lim
x→p+

f(x) = lim
x→p+

g(x) = L, then lim
x→p+

g(x) = L.

To prove this, consider any ε > 0.

There exists δf > 0 such that 0 < x− p < δf implies L− ε < f(x) < L+ ε.

There exists δh > 0 such that 0 < x− p < δh implies L− ε < h(x) < L+ ε.

Let δ = min{δf , δh, δ′}. Now, if 0 < x− p < δ, then

� δ ≤ δf =⇒ L− ε < f(x) < L+ ε,

� δ ≤ δh =⇒ L− ε < h(x) < L+ ε,

� δ ≤ δ′ =⇒ f(x) ≤ g(x) ≤ h(x).

Combining these gives L − ε < f(x) ≤ g(x) ≤ h(x) < L + ε. Hence L − ε <
g(x) < L+ ε. Therefore lim

x→p+
g(x) = L.

Exercises for �3.1

2. The values of δ are:

(a) 1,

(b) 0.11/3 ≈ 0.46,

(c) 1.11/3 − 1 ≈ 0.03,

(d) 8.11/3 − 2 ≈ 0.008.

4. These are applications of the algebra of limits. The results are:

(a) 1/4,

(b) 4,

(c) 2t,

(d) 3/5,

(e) 2,

(f) 3,

(g) 1,

(h) 6.

6. lim
x→2

(f(x)− 5) = lim
x→2

f(x)− 5

x− 2
(x− 2) = 3 · 0 = 0 implies lim

x→2
f(x) = 5.

8.

(a) |x1/n − a1/n| = |x− a|∑n−1
k=0 x

k/na1−k/n
≤ |x− a|

a1/n
. Apply the Sandwich theo-

rem.

(b) Given ε > 0, let δ = εn.
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10. Apply lim
x→0−

f(x) = lim
t→0+

f(−t).

3.2 Continuity

Task 3.2.11. xr = exp(r log x) is a composition of continuous functions.

Task 3.2.13. F (x) =
∫ x

a
f(t) dt =

∫ b

a
f(t) dt+

∫ x

b
f(t) dt =

∫ b

a
f(t) dt+G(x).

Exercises for �3.2

2.

(a) The function
√
log x is continuous. Hence, lim

x→1+

√
log x =

√
log 1 = 0.

(b) The function log
√
x2 + 1 is continuous. So, lim

x→0
log

√
x2 + 1 = log

√
02 + 1 =

0.

(c) We have lim
h→0

log
(
(1+h)1/h

)
= lim

h→0

log(1 + h)

h
= 1, by Exercise 9 of �3.1.

Now we invoke the continuity of the exponential function:

lim
h→0

(1 + h)1/h = lim
h→0

exp
( log(1 + h)

h

)
= exp(1) = e.

(d) We have lim
x→0+

log
(
xx

2)
= lim

x→0+
x2 log x = 0, by Exercise 7 of �3.1.

Therefore,

lim
x→0+

xx
2

= lim
x→0+

exp(x2 log x) = exp(0) = 1.

4. Suppose f is an increasing function. Let p ∈ (a, b). We claim that
lim

x→p−
f(x) = sup{ f(x) | x ∈ (a, p) }.

Let L = sup{ f(x) | x ∈ (a, p) } and consider any ε > 0. There is q ∈ (a, p)
such that f(q) > L− ε. Let δ = p− q. Then,

0 < p−x < δ =⇒ q < x < p =⇒ L−ε < f(q) ≤ f(x) ≤ L =⇒ |f(x)−L| < ε.

We can similarly prove that lim
x→p+

f(x) = inf{ f(x) | x ∈ (p, b) }.

If f is a decreasing function, apply the above work to −f .

6. Suppose f is an increasing function. We already know f is continuous on
points of f−1(a, b). So consider x0 such that f(x0) = b. Also consider ε > 0
such that b− ε ∈ I. Then there is δ > 0 such that x0 − δ = b− ε/2.

8. Let us write F (x) =

∫ x

0

f(t) dt.

(a) F (x) = |x|
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(b) F (x) = 1
2 [x][x− 1] + [x](x− [x])

(c) F (x) =

{
0 if x ≤ 0

x2/2 if x ≥ 0

(d) F (x) = x3/3

3.3 Intermediate Value Theorem

Exercises for �3.3

2. This is equivalent to asking whether x = x3 + 1 has a solution. Consider
f(x) = x3−x+1. Observe that f is continuous, f(0) = 1 and f(−2) = −5. By
the intermediate value theorem, there is a c ∈ (−2, 0) such that f(c) = 0. This
c satis�es c = c3 + 1.

4.

(a) A is non-empty, since a ∈ A. And A is bounded above by b. Therefore
sup(A) exists, by the least upper bound property.

(b) Suppose f(c) < 0. By continuity, there is an interval I = (c − δ, c + δ)
such that f(x) < 0 for every x ∈ I. Then f(c+ δ/2) < 0, contradicting
c being an upper bound of A.

Suppose f(c) > 0. By continuity, there is an interval I = (c − δ, c + δ)
such that f(x) > 0 for every x ∈ I. Then f(c− δ/2) is an upper bound
of A, contradicting c being the least upper bound of A.

6. No. Suppose f : R → Q was continuous and had two distinct values a, b
with a < b. By the intermediate value theorem, its range would contain [a, b]
and hence would contain some irrational numbers.

8. Convert the problem to one about zeroes of a continuous function. De�ne
g : [0, 1] → R by G(x) = f(x) − x. Then g is continuous, g(0) = f(0) ≥ 0 and
g(1) = f(1) − 1 ≤ 0. By the intermediate value theorem, there is a c ∈ [0, 1]
such that g(c) = 0. Therefore, f(c) = c.

10. De�ne g : [0, 1] → R by g(x) = f(x)−f(x+1). Then g is continuous, g(0) =
f(0) − f(1), g(1) = f(1) − f(2) = f(1) − f(0) = −g(0). By the intermediate
value theorem, there is a c ∈ [0, 1] such that g(c) = 0. Therefore, f(c) = f(c+1).

12. Suppose that f : (0, 1) → [0, 1] is a continuous bijection. There are points
a, b ∈ (0, 1), a < b, such that f maps one of them to 0 and the other to 1. By the
intermediate value theorem, f([a, b]) = [0, 1]. But then f cannot be injective on
(0, 1).

14. Follow the solution of Exercise 13. First, we may assume that the poly-
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nomial has the form p(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn, with n odd. Then

we show that for x ≥ 1,

p(x) ≥ xn
(
1− |a0|+ |a1|+ · · ·+ |an−1|

x

)
.

Hence, x1 = 2
∑n−1

i=0 |ai| satis�es p(x1) > 0. By considering −p(−x) we similarly
�nd x2 with p(x2) < 0. Now apply the intermediate value theorem.

16. We note that the only zeroes of f are at x = ±1. Let a, b ∈ (−1, 1)
with f(a) =

√
1− a2 > 0 and f(b) = −

√
1− b2 < 0. By the intermediate value

theorem, there is a c ∈ (−1, 1) with f(c) = 0, which is impossible.

3.4 Trigonometric Functions

Task 3.4.1. Let θ ∈ [π, 2π]. There is an angle whose radian measure is θ− π.
Increase this angle by two right angles, to get an angle whose radian measure is
θ.

Task 3.4.2. By de�nition, the point (cos t, sin t) is on the unit circle, and this
gives sin2 t+ cos2 t = 1.

Task 3.4.3. Draw a �gure for the angle of t radians and re�ect the parts in
the y = x line to get the �gure for π/2− t radians.

Task 3.4.4. From the previous Task, we have sin(π/4) = sin(π/2 − π/4) =
cos(π/4). Hence, sin2(π/4) + cos2(π/4) = 1 gives sin2(π/4) = 1/2. Now
sin(π/4) ≥ 0 gives sin(π/4) = 1/

√
2.

Task 3.4.5. We have sin(π/6) = sin(π/2− π/3) = cos(π/3).

Task 3.4.6.

cos 2x = cos(x+ x) = (cosx)(cosx)− (sinx)(sinx) = cos2 x− sin2 x,

sin 2x = sin(x+ x) = (sinx)(cosx) + (cosx)(sinx) = 2 sinx cosx.

Task 3.4.7. We already know that sinπ/2 = 1 and sinπ/4 = cosπ/4 = 1/
√
2.

Therefore, sinπ/8 =

√
1− cosπ/4

2
=

√√
2− 1

2
√
2

. This gives the following table

of numerical values:

x sinx
sinx

x
π/2 1 0.64
π/4 0.7071 0.9003
π/8 0.3827 0.9745

Task 3.4.10. First compute lim
x→1

x2 − 2x+ 1

x2 − 1
= lim

x→1

x− 1

x+ 1
= 0. Since sine is

continuous, we get lim
x→1

sin
(x2 − 2x+ 1

x2 − 1

)
= sin

(
lim
x→1

x2 − 2x+ 1

x2 − 1

)
= sin(0) =

0.

Task 3.4.11. Consider the continuous function f(x) =


sinx

x
if x ̸= 0

1 if x = 0
.
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We have, lim
x→1

sin(x2 − 1)

x− 1
= lim

x→1
(x+ 1)f(x2 − 1) = lim

x→1
(x+ 1)f( lim

x→1
x2 − 1) =

2 · f(0) = 2.

Exercises for �3.4

2.

(a)

(b)

(c)

(d)

4.

(a) lim
x→0

1− cosx

x2
= lim

x→0

2 sin2(x/2)

x2
= lim

t→0

sin2 t

2 t2
=

1

2
.

(b) We know lim
x→0

(1− cosx) = 0. Use (a) to get lim
x→0

1− cos(1− cosx)

(1− cosx)2
=

1

2
.

∴ lim
x→0

1− cos(1− cosx)

x4
= lim

x→0

1− cos(1− cosx)

(1− cosx)2
·
(
1− cosx

x2

)2

=
1

8
.

(c) Apply the sandwich theorem. 0 ≤
∣∣∣x sin 1

x

∣∣∣ ≤ |x| for x ̸= 0 gives

lim
x→0

x sin
1

x
= 0.

(d) We have lim
x→1

x2 − 1

x− 1
= lim

x→1
(x+ 1) = 2. Note that for x close to 1, x+ 1

is positive and its square root is de�ned. Use the continuity of sin
√
t

when t > 0 to conclude

lim
x→1

sin

√
x2 − 1

x− 1
= sin

√
lim
x→1

x2 − 1

x− 1
= sin

√
2.

6. The function f(x) = x3 − cosx is continuous. We have f(0) = −1 and
f(2) = 8 − cos 2 ≥ 7. By the intermediate value theorem, f has a zero in the
interval (0, 2).

8. Use sinπ = 0 and cosπ = −1:

tan(x+ π) =
(sinx)(cosπ) + (sinπ)(cosx)

(cosx)(cosπ)− (sinx)(sinπ)
= tanx.
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π/2

10. If A2 + B2 = 1 then (A,B) is a point on the unit circle and there is an
angle ϕ such that A = cosϕ and B = sinϕ. Then,

A sinx+B cosx = cosϕ sinx+ sinϕ cosx = sin(x+ ϕ).

In general, let A2 +B2 = R2. The R = 0 case is trivial. For R ̸= 0:

A sinx+B cosx = R
(
(A/R) sinx+ (B/R) cosx

)
= R sin(x+ ϕ).

12.

(a) sin2(π/12) =
1− sin(π/3)

2
=

2−
√
3

4

=⇒ sin(π/12) =
(2−

√
3)1/2

2
= 0.2588,

sin2(5π/12) = 1− sin2(π/12) =
2 +

√
3

4

=⇒ sin(5π/12) =
(2 +

√
3)1/2

2
= 0.9659.

Now we know all the sine values in steps of π/12.

(b) sin2(π/24) =
1− sin(5π/12)

2
=⇒ sin(π/24) = 0.1305

sin2(3π/24) =
1− sin(π/4)

2
=⇒ sin(3π/24) = 0.3827

sin2(5π/24) =
1− sin(π/12)

2
=⇒ sin(5π/24) = 0.6088

sin2(7π/24) = 1− sin2(5π/24) =⇒ sin(7π/24) = 0.7934

sin2(9π/24) = 1− sin2(3π/24) =⇒ sin(9π/24) = 0.9239

sin2(11π/24) = 1− sin2(π/24) =⇒ sin(11π/24) = 0.9914

(The even multiples of π/24 were covered by the π/12 calculations.)

3.5 Continuity and Variation

Task 3.5.3. On [0, 1], sgn(x) takes the values 0 and 1. So its span is |1−0| = 1.

On [0, 1], the range of sin(x) is [0, 1]. So its span is |1− 0| = 1.

Task 3.5.4. The extreme value theorem gives the existence of

M = max{ f(x) | x ∈ [a, b] } and m = min{ f(x) | x ∈ [a, b] }.
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For any x, y ∈ [a, b], we have

m ≤ f(x), f(y) ≤M =⇒ −M ≤ −f(x),−f(y) ≤ −m
=⇒ m−M ≤ f(x)− f(y) ≤M −m

=⇒ |f(x)− f(y)| ≤M −m.

Therefore M −m is at least equal to the span of f . On the other hand, from
m,M ∈ { f(x) | x ∈ [a, b] } we obtain that M −m does not exceed the span.

Exercises for �3.5

2.

(a) f : (0, 1) → R, f(x) = 1/x.

(b) g : (0,∞) → R, g(x) = 1− e−x.

4.

(a) Let M ′ be an upper bound for f on A and M ′′ be an upper bound for f
on B. Then M = max{M ′,M ′′} is an upper bound for f on A ∪B.

(b) A is non-empty because a ∈ A. And A is bounded above by b. Apply
the least upper bound property.

(c) By continuity at a, α > a. If α < b then there is δ′ > 0 such that
I = (α − δ′, α + δ′) ⊂ [a, b] and x ∈ I =⇒ |f(x) − f(α)| < 1. Let
α − δ′ < a′ < α such that |f | is bounded on [a, a′] by M . Then |f | is
bounded on [a, α+ δ′/2] byM +2. Hence, α+ δ′/2 ∈ A, a contradiction.

(d) There is δ > 0 such that x ∈ (b − δ, b] =⇒ |f(x) − f(b)| < 1. Let
b − δ < a′ < b such that |f | is bounded on [a, a′] by M . Then |f | is
bounded on [a, b] by M + 2.

6.

(a) Apply the boundedness theorem.

(b) If f(x) never equals M then g is continuous on [a, b]. Apply the bound-
edness theorem to g.

(c)
1

M − f(x)
≤ R =⇒ M − f(x) ≥ 1

R
=⇒ f(x) ≤M − 1/R.

3.6 Continuity, Integration and Means

Task 3.6.3. m ≤ f ≤ M =⇒ m(b − a) ≤
∫ b

a

f ≤ M(b − a) =⇒ m ≤

1

b− a

∫ b

a

f ≤M .

Task 3.6.4. f̄[a,c] =
1

c− a

(∫ b

a

f +

∫ c

b

f
)
=

1

c− a

(
(b−a)f̄[a,b]+(c− b)f̄[b,c]

)
.

Task 3.6.5. Let a < x < y. Apply Task 3.6.3 to obtain f̄[x,y] ≤ f(x) ≤ f̄[a,x].
Now apply Task 3.6.4:

f̄[a,y] =
x− a

y − a
f̄[a,x] +

y − x

y − a
f̄[x,y] ≤

x− a

y − a
f̄[a,x] +

y − x

y − a
f̄[a,x] = f̄[a,x].
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Exercises for �3.6

2. By the mean value theorem for integration, there is a c ∈ (0, 1) such that

f(c) = 1
1−0

∫ 1

0
f(x) dx = 1.

4. By continuity, it is enough to show that f(c) = 0 for every c ∈ (a, b).

We shall show that f(c) > 0 gives a contradiction. Let ε = f(c)/2. There is
a δ > 0 such that [c−δ, c+δ] ⊆ [a, b] and x ∈ [c−δ, c+δ] implies |f(x)−f(c)| < ε.
In particular, x ∈ [c− δ, c+ δ] implies f(x) > f(c)− ε = f(c)/2. Therefore,∫ b

a

f(x) dx ≥
∫ c+δ

c−δ

f(x) dx ≥
∫ c+δ

c−δ

(f(c)/2) dx ≥ δf(c) > 0.

Similarly, f(c) < 0 also gives a contradiction.

6. Apply the mean value theorem for integration.

3.7 Limits Involving In�nity

Task 3.7.2. Take M = − log ε and M = log ε respectively.

Task 3.7.10. As we have x → ∞, we can assume x > 1. Then we have the
inequalities 0 < log x < x− 1. Replace x by x1/2n to get

0 <
log x

2n
< x1/2n − 1, hence 0 <

log x

x1/n
< 2n(x−1/2n − x−1/n).

Now apply the sandwich theorem.

Task 3.7.12. lim
x→0+

x log x = lim
t→∞

1

t
log(1/t) = − lim

t→∞

log t

t
= 0,

lim
x→0+

xx = lim
x→0+

ex log x = elimx→0+ x log x = e0 = 1.

Task 3.7.19. Since f(x) → ∞, there is a real numberM such that x > M im-
plies f(x) > 1. Working over the interval (M,∞), we get |g(x)| < |g(x)f(x)| →
0.

Exercises for �3.7

2.

(a) As x → π/2−, cosx → 0 from the positive side. So lim
x→π/2−

secx = ∞.

Formally, for any M > 0, there is a δ > 0 such that π/2− δ < x < π/2
implies cosx < 1/M and hence secx > M .

(b) Does not exist.

(c) For x ≥ 1, x−
√
x =

x2 − x

x+
√
x
≥ x2 − x

2x
=
x− 1

2
. So, lim

x→∞
(x−

√
x) = ∞.

(d) lim
x→∞

x+ 1√
4x2 + 1

= lim
x→∞

1 + 1/x√
4 + 1/x2

=
1

2
.

(e) lim
x→∞

e−x2

= 0: Given 0 < ε < 1 consider M =
√
− log ε.
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(f) lim
x→0

e−1/x2

= lim
x→0+

e−1/x2

= lim
t→∞

e−t2 = 0.

(g) lim
x→∞

x sin
1

x
= lim

t→0+

sin t

t
= 1.

(h) lim
x→∞

x sinx

x2 + 1
= lim

x→∞

x2

x2 + 1

sinx

x
= 1 · 0 = 0.

(i) lim
x→∞

(
√
x2 + x− x) = lim

x→∞

x√
x2 + x+ x

=
1

2
.

(j) lim
x→∞

(√
x+

√
x−

√
x−

√
x
)
= lim

x→∞

2
√
x√

x+
√
x+

√
x−

√
x
= 1.

4. Let p(x) = a0 + · · · + amx
m and q(x) = b0 + · · · + bnx

n, with am, bn ̸= 0.
Then:

� If m = n, the limit is am/bm.

� If m < n, the limit is 0.

� If m > n, the limit is ±∞, depending on the sign of am/bn.

6. There is M > a such that x > M implies |f(x)| < |L| + 1. Further, by
the boundedness theorem, there is L′ such that x ∈ [a,M ] implies |f(x)| < L′.
Therefore, for every x ∈ [a,∞), |f(x)| < max{|L|+ 1, L′}.

8. This is obvious if α ≤ 0. For α > 0, use 0 < e−xxα < e−xx[α]+1.

Thematic Exercises

Continuity and Intervals

A1. The given hint was: �Consider cases of whether A is bounded above or
below, and whether its supremum and in�mum belong to it.�

For example, suppose A is bounded above, but not below, and contains its
supremum. Let its supremum be b. Consider any x < b. Since A is not bounded
below, there is a ∈ A such that a < x < b. So x ∈ A. Hence A = (−∞, b].

The other cases can be covered similarly.

A2.

(a) Let c, d ∈ f(I) and c < y < d. We have a, b ∈ I such that f(a) = c,
f(b) = d. By the intermediate value theorem there is x between a and b
such that f(x) = y. Hence y ∈ f(I).

(b) We have I = [a, b]. By the extreme value theorem, f(I) ⊆ [m,M ] with
m,M ∈ f(I). Then the intermediate value theorem gives f(I) = [m,M ].

(c) Explore!

A3.

(a) We have shown that f([a, b]) = [m,M ]. If m < f(a) < M there is a
c ∈ (a, b] such that f(a) = f(c), a contradiction. So f(a) ∈ {m,M}. Sim-
ilarly, f(b) ∈ {m,M}. Hence, f maps [a, b] to [f(a), f(b)] or [f(b), f(a)].
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If f is not monotonic, there will be points x1, . . . , x4 (not necessarily
distinct) such that x1 < x2, x3 < x4, f(x1) < f(x2), and f(x3) > f(x4).
Let a = min{x1, . . . , x4} and b = max{x1, . . . , x4}.
Now, suppose that f([a, b]) = [f(a), f(b)]. Then a ≤ x4 ≤ b gives f(a) ≤
f(x4), hence f([a, x4]) = [f(a), f(x4)]. But then, a ≤ x3 ≤ x4 gives
f(x3) ≤ f(x4), a contradiction.

The f([a, b]) = [f(b), f(a)] case similarly leads to a contradiction as well.

(b) Since f : I → f(I) is a bijection, f−1 exists. As f is monotonic, so is
f−1. Since f is continuous, f(I) is an interval. Apply Theorem 3.2.9.

(c) We know that f(I) is an interval. We have to show that f(I) does not
have a maximum or a minimum element.

Suppose f is strictly increasing and y ∈ f(I). Let f(x) = y. Since I is
open, there are a, b ∈ I such that a < x < b. Then f(a) < y < f(b).

(d) Since f ◦f is a bijection, so is f . Then the continuity of f implies that it
is strictly increasing or strictly decreasing. In either case, f ◦f is strictly
increasing.

A4.

(a) Let ε = 1 and consider any δ > 0. Then

f(x+ δ/2)− f(x) = δ2/4 + δx > δx = 1, if x = 1/δ.

(b) Let ε = 1 and consider any δ > 0. Then g(x/2) − g(x) = 1/x. Let
x = min{1, δ}.

A5. Given ε > 0 there is a partition P = {x0, . . . , xn} of [a, b] such that
|f(x)− f(y)| < ε/2 whenever x, y belong to the same [xi−1, xi] subinterval. Let
δ = min{xi − xi−1 | i = 1, . . . , n }.

A6. Suppose f extends to a continuous function f̃ : [0, 1] → R. Then f̃ is
uniformly continuous. Hence f is uniformly continuous.

Now, suppose f is uniformly continuous. For each n ∈ N there is δn > 0
such that |x − y| < δn implies |f(x) − f(y)| < 1/n. The n = 1 case shows f is
bounded and so each f(0, δn) is a bounded interval. Let an = inf f(0, δn) and
bn = sup f(0, δn). Then the nested interval property applied to the intervals
[an, bn] gives ∩n[an, bn] ̸= ∅.

Note that bn − an ≤ 1/n so ∩n[an, bn] = {y0}. Extend f to f̃ : [0, 1] → R by
de�ning f̃(0) = y0. The proof of continuity of f̃ at x = 0 is left to the reader.

A7. Let lim
x→∞

f(x) = L. Given ε > 0, there is M such that x ≥ M implies

|f(x) − L| < ε/4. Now f is uniformly continuous on [a,M ] so there is a δ > 0
such that x, y ∈ [a,M ] and |x− y| < δ implies |f(x)− f(y)| < ε/2. This is the
required δ.
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4 | Di�erentiation

4.1 Derivative of a Function

Task 4.1.1. Given any ε > 0, choose δ = 1. Then |x − a| < δ implies
|f(x)− f(a)−m(x− a)| = 0 ≤ ε|x− a|.

Task 4.1.5. The function f(x) = |x| is continuous at every point but is
not di�erentiable at 0. We apply the characterisation of Theorem 4.1.2. If
f ′(0) = L, we have a function φ that is continuous at 0, satis�es φ(0) = 0, and

|x| − |0| −L(x− 0) = (x− 0)φ(x) for every x. Hence, for x ̸= 0, φ(x) =
|x|
x

−L.

But then lim
x→0

φ(x) does not exist.

Task 4.1.7. Let f(x) = c. Then lim
x→a

f(x)− f(a)

x− a
= lim

x→a
0 = 0.

Task 4.1.10. Apply Theorem 3.1.25.

Task 4.1.12. No. Consider f(x) = x3.

Exercises for �4.1

2.

(a) It is not even continuous at 0.

(b) lim
x→0+

√
|x| − 0

x− 0
= lim

x→0+

1√
x
does not exist.

4.

(a) For continuity, apply the sandwich theorem. The lack of di�erentiability
follows from the calculation below:

lim
x→0

x sin(1/x)− 0

x− 0
= lim

x→0
sin(1/x),which does not exist.

(b) lim
x→0

x2 sin(1/x)− 0

x− 0
= lim

x→0
x sin(1/x) = 0.

6.

(a) sin′(0) = lim
x→0

sinx− 0

x− 0
= lim

x→0

sinx

x
= 1.

(b) cos′(0) = lim
x→0

cosx− 1

x− 0
= lim

x→0

cosx− 1

x
= 0.

43
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8.

(a) f ′(−a) = lim
x→−a

f(x)− f(−a)
x− (−a)

= lim
t→a

f(−t)− f(−a)
−t+ a

= − lim
t→a

f(t)− f(a)

t− a
=

−f ′(a).
(b) Similar to (a).

10. f ′ is odd, so f ′(0) = f ′(−0) = −f ′(0).

12. (a) with (ii), (b) with (iii), (c) with (i).

4.2 Algebra of Derivatives

Task 4.2.2.

(a) The quotient rule gives the derivative to be
−1

(x− 1)2
, for x ̸= 1.

(b) The derivative exists at every x /∈ Z, and is zero there.

(c) The derivative exists for x ̸= 0, and is −n/xn+1.

Task 4.2.4. sec′ x =
( 1

cosx

)′
= − cos′ x

cos2 x
=

sinx

cos2 x
=

1

cosx

sinx

cosx
= secx tanx.

The other calculations are similar.

Task 4.2.7. Use loga x =
log x

log a
.

Exercises for �4.2

2.

(a) Di�erentiate both sides of the given formula and then multiply by x:

1x+ 2x2 + · · ·+ nxn =
nxn

x− 1
− xn+1 − x

(x− 1)2
.

(b) Di�erentiate both sides of the formula obtained in (a) and then multiply
by x:

12x+ 22x2 + · · ·+ n2xn =
n2xn

x− 1
− (2n+ 1)xn+1 − x

(x− 1)2
+

2nxn+1

(x− 1)3
.

4. Each di�erentiation lowers the degree by 1. So p(n) is constant and p(n+1)

is zero.

6.

(a) The rule is g′ = f ′1f2 · · · fn + f1f
′
2 · · · fn + · · ·+ f1f2 · · · f ′n.

(b) Apply (a).

8. First, suppose r > 0. Then r = m/n with m,n ∈ Z. Now:

(
xm/n

)′
= lim

y→x

ym/n − xm/n

y − x
= lim

y→x

(y1/n)m − (x1/n)m

(y1/n)n − (x1/n)n
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= lim
y→x

y(m−1)/n + y(m−2)/nx1/n + · · ·+ x(m−1)/n

y(n−1)/n + y(n−2)/nx1/n + · · ·+ x(n−1)/n

=
mx(m−1)/n

nx(n−1)/n
=
m

n
x(m/n)−1 = rxr−1

For r < 0, apply the reciprocal rule.

10. log x ≤ x− 1 =⇒ log(1 + x) ≤ x =⇒ 1 + x ≤ ex.

4.3 Chain Rule and Applications

Task 4.3.2.

(a) f ′(x) = 20x(x2 + 1)9, for every real x.

(b) g′(x) = −sgn(cosx) sin(x), when x is not an odd multiple of π/2.

(c) h′(x) = − sinx, for every real x.

(d) k′(x) =
sin 2x sinx2 − 2x sin2 x cosx2

sin2 x2
, when x2 is not an integer multiple

of π.

Task 4.3.6.

(a) g(x) is the inverse function of f(x) = x2 for x ≥ 0. Therefore,

g′(x) =
1

f ′(g(x))
=

1

2g(x)
=

1

2
√
x
, for x > 0.

(b) Apply (a) and the chain rule:

h′(x) =
1

2
√
x+

√
x

(
1 +

1

2
√
x

)
.

Task 4.3.9. (ax)′ = (ex log a)′ = ex log a(x log a)′ = ax log a.

Task 4.3.12.
d

dx
exp(

√
x2 + arctanx) =

exp(
√
x2 + arctanx)

2
√
x2 + arctanx

(
2x+

1

1 + x2

)
.

Task 4.3.14. f(x) = (sinx)cos x =⇒ g(x) = log f(x) = (cosx) log(sinx)

=⇒ g′(x) = −(sinx) log(sinx) +
cos2 x

sinx
=⇒ f ′(x) = f(x)g′(x)

= (sinx)1+cos x(cot2 x− log(sinx)).

Task 4.3.16. cosh′ x =
(ex + e−x

2

)′
=
ex − e−x

2
= sinhx,

sinh′ x =
(ex − e−x

2

)′
=
ex + e−x

2
= coshx.

Task 4.3.17. It is strictly increasing because sinh′ x = coshx > 0. To show it
is a surjection we �nd its pre-images:

y =
ex − e−x

2
⇐⇒ e2x − 2yex − 1 = 0 ⇐⇒ x = log(y +

√
y2 + 1).



46 CHAPTER 4. DIFFERENTIATION

Task 4.3.18. It is strictly increasing on (0,∞) because x > 0 gives cosh′ x =
ex − e−x

2
> 0. Further, y > 1 =⇒ y2 − 2y + 1 = (y − 1)2 > 0 =⇒ y +

1

y
> 2.

Hence x > 0 implies coshx =
ex + e−x

2
> 1 = cosh 0.

To establish surjectivity, we observe that given x ≥ 0 and y ≥ 1 we have:

y =
ex + e−x

2
⇐⇒ e2x − 2yex + 1 = 0 ⇐⇒ x = log(y +

√
y2 − 1).

Task 4.3.19. (sinh−1 x)′ =
1

cosh(sinh−1 x)
=

1√
1 + sinh2(sinh−1 x)

=
1√

x2 + 1
.

Exercises for �4.3

2. Di�erentiate with respect to x at x0 to get
2x0
a2

− 2y0
b2
y′(x0) = 0. Hence,

y′(x0) =
b2

a2
x0
y0

, and the tangent line has equation y− y0 =
b2

a2
x0
y0

(x− x0). This

can be rearranged to
yy0 − y20

b2
=
xx0 − x20

a2
or

xx0
a2

− yy0
b2

= 1.

4.

−1 −0.5 0.5 1

−1

1

2 4 6
−1

1

6. First, tan2 x = sec2 x− 1 =⇒ tan2(arcsecx) = x2 − 1 =⇒ tan(arcsecx) ∈
{±

√
x2 − 1}. Now, x > 1 =⇒ arcsecx ∈ (0, π/2) =⇒ tan(arcsecx) > 0.

And, x < −1 =⇒ arcsecx ∈ (π/2, π) =⇒ tan(arcsecx) < 0. Hence,
tan(arcsecx) = (sgnx)

√
x2 − 1. Therefore,

arcsec′ x =
1

sec(arcsecx) tan(arcsecx)
=

1

x (sgnx)
√
x2 − 1

=
1

|x|
√
x2 − 1

.

8. Let f(x) = xx
x

and g(x) = log f(x) = xx log x. Example 4.3.13 gives

g′(x) = (xx)′ log x+ xx−1 = xx(1 + log x) log x+ xx−1.

Therefore, f ′(x) = f(x)g′(x) = xx
x+x−1(1 + x(1 + log x) log x).

10. See the solutions of Tasks 4.3.17 and 4.3.18.

4.4 The First Fundamental Theorem

Exercises for �4.4

2. (a) F ′(x) = 3x2(1 + x6)−3, (b) F ′(x) = 2x(1 + x4)−3 − (1 + x2)−3.

4. g′(x) =
√
1 + x3

√
1 + (

∫ x

0

√
1 + t3 dt)3.
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4.5 Extreme Values and Monotonicity

Task 4.5.9. The condition f ′ = f gives f(x) = Aex. Then 1 = f(0) = Ae0 =
A gives f(x) = ex.

Task 4.5.10. Let g = f2 + (f ′)2. Then g′ = 2ff ′ + 2f ′f ′′ = 2ff ′ − 2f ′f = 0
gives g = C, a constant. And g(0) = f(0)2 + 2f ′(0)2 = 0 gives C = 0.

Task 4.5.11. Apply the previous Task to f(x)− a cosx− b sinx.

Exercises for �4.5

2.

(a) We have f ′(x) = −(2/3)x−1/3 for x ̸= 0, while f ′(0) is not de�ned. So
the only critical point is x = 0.

(b) The candidates for absolute extremes are x = 0,±1. We have f(0) = 1,
f(±1) = 0. So the absolute maximum value is 1 (at 0) and the absolute
minimum value is 0 (at ±1).

4. We have f(0) = −2 < 0 and f(π/2) = π3/24 + π > 0. By the intermediate
value theorem, there is at least one zero.

Further, f ′(x) = x2 + 2 + 2 sinx ≥ x2 > 0 for x ̸= 0, while f ′(0) = 2 > 0.
Therefore f is strictly increasing and has at most one zero.

6. Proceed by induction. We already know that f ′ = 0 means f = constant.
Now suppose f (n+1) = 0 with n > 0. Then (f ′)(n) = 0 and by the induction

hypothesis, f ′ = b0+b1x+· · ·+bn−1x
n−1. Let g = f−b0x−

b1
2
x2−· · ·− bn−1

n
xn.

We �nd that g′ = 0, hence g = constant and f is a polynomial of degree n or
less.

8. We have g′(x) = −f ′(x) = −kg(x), so g(x) = Ae−kx and f(x) =M−Ae−kx.

10. The given condition gives the equation f ′(x) = f(x)/x. Hence we have(f(x)
x

)′
=
xf ′(x)− f(x)

x2
= 0 and

f(x)

x
= constant on each interval (−∞, 0)

and (0,∞). By the di�erentiability at x = 0 the two constants must be the
same.

12. By Darboux's theorem f ′ is either positive everywhere or negative every-
where.

4.6 Derivative Tests and Curve Sketching

Task 4.6.4. If its graph is a line.

Exercises for �4.6

2.

(a) The critical points are x = 0,±π/2. The function is increasing on
[−π,−π/2] and [0, π/2], it is decreasing on [−π/2, 0] and [π/2, π].
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(b) The only critical point is x = 0. It is increasing on [−3, 0] and decreasing
on [0, 3].

(c) The critical points are x = ±1. It is increasing on [−1, 1], decreasing on
[−3,−1] and [1, 3].

(d) The critical points are x = 1/2, 1. It is increasing on [−1, 1/2] and [1, 2],
decreasing on [1/2, 1].

4. In Example 4.6.9 we saw that the function has derivative 1/(1+x2). Hence
its di�erence with arctanx has zero derivative and is constant on each of these
intervals.

6.

(a) If u is positive at a critical point, then u′′ is positive at that point and
the point must be a local minimum and not a local maximum. Similarly,
if u is negative at a critical point, that point cannot be a local minimum.

(b) If u is not always zero, it either has a positive local maximum or a
negative local minimum!

8. We already know that ex − 1 − x > 0 for x > 0. Hence (ex − 1 − x −
x2/2)′ = ex − 1 − x > 0 and f(x) = ex − 1 − x − x2/2 is strictly increasing
for x > 0. Similarly, it is increasing for x ≥ 0. Therefore, x > 0 implies
f(x) > f(x/2) ≥ f(0) = 0.

Thematic Exercises

Convex Functions and Inequalities

A1. Apply the inequality (4.1).

A2. Apply A1 to a < b < d to get
f(b)− f(a)

b− a
≤ f(d)− f(a)

d− a
.

We can similarly obtain
f(d)− f(a)

d− a
≤ f(d)− f(c)

d− c
.

A3.

(a) Let a ∈ I. For x ̸= a de�ne g(x) =
f(x)− f(a)

x− a
. Then g is an increasing

function. Hence, f ′+(a) = lim
x→a+

g(x) = inf{ g(x) | x > a }

f ′−(a) = lim
x→a−

g(x) = sup{ g(x) | x < a }

By A2, we have that m ∈ { g(x) | x < a } and n ∈ { g(x) | x > a } im-
plies m ≤ n. This gives the existence of the limits as well as the desired
inequality.

(b) Apply A2.

(c) The existence of the one-sided derivatives gives continuity from each side.

A4. Consider f : [0, 1] → R, f(0) = 1 and f(x) = 0 for x > 0.
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A5.

(a) Consider a line through (a, f(a)), with slope m. It will be a support line
if and only if f ′+(a) ≥ m ≥ f ′−(a).

(b) The support line will be unique if and only if f ′+(a) = f ′−(a).

A6. The function (1 + x)r is convex and di�erentiable, while y = 1 + rx is
its tangent line through (0, 1).

A7. Apply A3(b).

A8. We have seen that f ′ will be an increasing function. Since it also has
the intermediate value property, it will be continuous.

A9.

(a) (1 − t)f(x) + tf(y) is the point on the secant line joining (x, f(x)) and
(y, f(y)), corresponding to the input (1− t)x+ ty.

(b) Suppose the tangent line meets the graph at a point (b, f(b)), with b ̸= a.
Then f((a+ b)/2) < (f(a) + f(b))/2, violating the tangent line being a
support line.

A10.

(a) If f has a local minimum at a then f ′−(a) ≤ 0 ≤ f ′+(a), hence the line
y = f(a) is a support line and there is a global minimum at a.

Suppose f has local minimums at a, b, and we have a < x < b. Since
a local minimum is also a global minimum, we have f(a) = f(b) = L.
Convexity gives f(x) ≤ L, hence f(x) = L.

(b) Apply (a). (This claim requires I to have the form [a, b].)

(c) If f ′(a) = 0 then the line y = f(a) is a support line.

A11.

(a) For n = 2 this is the characterising property of an interval. For n > 2,
we proceed by induction based on the following:

n∑
i=1

wixi = (1− wn)

n−1∑
i=1

wi

1− wn
xi + wnxn.

(b) Proceed by induction, using the approach in (a).

(c) Apply (b) to
∑n

i=1 αixi with αi =
wi∑n
i=1 wi

.

(d) −f is convex.

A12. The convexity of f(x) = x2, with wi = 1/n gives
( n∑

i=1

xi
n

)2

≤
n∑

i=1

x2i
n
,

that is, RMS ≥ AM .

The convexity of f(x) = − log x, with wi = 1/n gives log(

n∑
i=1

xi
n
) ≥

n∑
i=1

log(xi)

n
=

log(

n∏
i=1

xi)
1/n, hence AM ≥ GM .
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Apply AM ≥ GM to x−1
1 , . . . , x−1

n to get GM ≥ HM .

A13.

(a) The convex function f(x) = − log x gives − log
(ap
p

+
bq

q

)
≤ − log ap

p
−

log bq

q
.

(b) For the special case, apply Young's inequality:

n∑
i=1

aibi ≤
n∑

i=1

(api
p

+
bqi
q

)
=

1

p
+

1

q
= 1.

Reduce to the special case by considering a′i = ai/(
∑n

i=1 a
p
i )

1/p and
b′i = bi/(

∑n
i=1 b

q
i )

1/q.

(c) First,

n∑
i=1

|ai+bi|p ≤
n∑

i=1

(|ai|+|bi|)|ai+bi|p−1 =

n∑
i=1

|ai||ai+bi|p−1+

n∑
i=1

|bi||ai+bi|p−1.

Apply Hölder's inequality to each term on the right:

n∑
i=1

|ai + bi|p ≤
(( n∑

i=1

|ai|p
)1/p

+
( n∑

i=1

|bi|p
)1/p)( n∑

i=1

|ai + bi|(p−1)q
)1/q

=
(( n∑

i=1

|ai|p
)1/p

+
( n∑

i=1

|bi|p
)1/p)( n∑

i=1

|ai + bi|p
)1−1/p

A14.

(a) Let g have minimum value m and maximum value M . Then m,M ∈ I
and m ≤ x0 ≤M .

(b) Let y = F (x0) +m(x− x0) be a support line through (x0, F (x0)).

(c) Integrate both sides of the inequality in (b).

A15. Apply Jensen's inequality with F (x) = − log x.

A16. De�ne x0 =
∫ b

a
g(x)p(x) dx. Now apply the mean value theorem for

weighted integration to get x0 ∈ I.

Let y = F (x0) + m(x − x0) be a support line for F through (x0, F (x0)).
Then we have, for every x ∈ [a, b],

F (x0) +m(g(x)− x0) ≤ F (g(x)).

Multiply both sides by p(x) and integrate to get the desired inequality.

A17. Apply A16 with F (x) = x2.

A18. Apply A16 with I = (0,∞) and F (x) = 1/x.

A19. Denote ||f ||p =
( ∫ b

a
f(x)p dx

)1/p
and ||g||q =

( ∫ b

a
g(x)q dx

)1/q
. Now

follow the approach for A13(b). In the special case when ||f ||p = ||g||q = 1,
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apply Young's inequality:∫ b

a

f(x)g(x) dx ≤
∫ b

a

(f(x)p
p

+
g(x)q

q

)
dx =

1

p
+

1

q
= 1.

Reduce the general case to this special case by considering f/||f ||p and g/||g||q.

A20. Follow the approach of A13(c).



52 CHAPTER 4. DIFFERENTIATION



5 | Techniques of Integration

5.1 The Second Fundamental Theorem

Task 5.1.5. No, we do not know which constant will be in e�ect for x < 0.

Task 5.1.8. We have (x arctanx)′ =
x

1 + x2
+ arctanx, hence∫

arctanx dx = x arctanx−
∫

x

1 + x2
dx = x arctanx− log

√
1 + x2 + C.

Exercises for �5.1

2.

(a)
2

5
x5/2 +

10

3
x3/2 − 2x1/2 + C.

(b)
1

2
sin 2t+ C.

(c)
3

2
log |x− 1| − 1

2
log |x+ 1|+ C.

4. f(x) =

{
log x+ 1 if x > 0

log(−x) + 2 if x < 0
.

6.

(a)
1

2
log

1 +
√
3/2

1−
√
3/2

.

(b) 1− π

4
.

(c)
12

log 2
.

8. The given hint is not needed:

∫ a+2π

a

cos θ dθ = sin(2π + a)− sin a = 0.

10.

(a) The quadratic q(x) has factors x − α and x − β. Matching the x2 co-
e�cient gives q(x) = (x − α)(x − β). Further, multiplying through by
(x− α)(x− β) gives Ax+B = C(x− β) +D(x− α), hence A = C +D
and B = −Cβ − Dα. Therefore, C = (Aα + B)/(α − β) and D =
(Aβ +B)/(β − α).

53
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(b) Apply (a).

12.

(a) In this case, let q(x) have minimum value m at x = a. Then m = b2 > 0
and q(x)− b2 = (x− a)2.

(b) Apply (a) to get
p(x)

q(x)
=

A(x− a)

(x− a)2 + b2
+

Aa+B

(x− a)2 + b2
.

5.2 Integration by Substitution

Task 5.2.8. No. 1/x is unbounded on this domain, so this integral is not
de�ned.

Exercises for �5.2

2.

(a) Write

∫
1 + ex

1− ex
dx =

∫ (
1 +

2ex

1− ex

)
dx = x+ 2

∫
ex

1− ex
dx, and sub-

stitute y = 1− ex.

(b) Substitute u = sin θ.

(c) Substitute u = cos θ.

(d) Substitute u = tan θ.

4.

∫
sinm x cos2k−1 x dx =

∫
sinm x(1− sin2 x)k−1 cosx dx

=

∫
um(1− u2)k−1 du (u = sinx)

=

∫ ( k−1∑
i=0

(−1)i
(
k − 1

i

)
um+2i

)
du

=
k−1∑
i=0

(−1)i
(
k − 1

i

)
um+2i+1

m+ 2i+ 1

=

k−1∑
i=0

(−1)i
(
k − 1

i

)
(sinx)m+2i+1

m+ 2i+ 1
.

6.

(a) 1/12. (b) 3π/8. (c) 16/15. (d) π/32.

5.3 Integration by Parts

Task 5.3.5.

(a)

∫
x2ex dx = x2ex − 2

∫
xex dx = x2ex − 2xex + 2

∫
ex dx

= (x2 − 2x+ 2)ex + C.

(b) 2x sinx+ (2− x2) cosx+ C.
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Exercises for �5.3

2.

(a) 1.

(b) (e2 + 1)/4.

(c) − log(
√
2 + 1) +

√
2− 1

23/2
π.

(d)
π

2
− 1.

4.

(a)

∫
cosn x dx =

∫
cosn−1 x cosx dx

= sinx cosn−1 x+ (n− 1)

∫
cosn−2 x sin2 x dx

= sinx cosn−1 x+ (n− 1)

∫
cosn−2 x dx− (n− 1)

∫
cosn x dx

(b)
sinx cos3 x

4
+

3 sinx cosx

8
+

3x

8
+ C.

(c)
(2n− 1)!

22nn(n− 1)!2
π.

(d)
22nn!2

(2n+ 1)!
.

6.

(a)

∫
dx

(x2 + a2)n−1
=

x

(x2 + a2)n−1
+ 2(n− 1)

∫
x2 dx

(x2 + a2)n

=
x

(x2 + a2)n−1
+ 2(n− 1)

(∫
dx

(x2 + a2)n−1
−

∫
a2 dx

(x2 + a2)n

)
(b) Similar to (a).

(c)

∫
secn x dx =

∫
secn−2 x sec2 x dx

= secn−2 x tanx− (n− 2)

∫
secn−2 x tan2 x dx

= secn−2 x tanx− (n− 2)

∫
secn x dx− (n− 2)

∫
secn−2 x dx

8.

∫ b

a

f(x)g(x) dx =

∫ b

a

f(x)G′(x) dx = f(x)G(x)
∣∣∣b
a
−

∫ b

a

f ′(x)G(x) dx

= f(b)G(b)− f(a)G(a)−G(c)

∫ b

a

f ′(x) dx

= f(b)G(b)− (f(b)− f(a))G(c)

= f(b)(G(b)−G(c)) + f(a)G(c).



56 CHAPTER 5. TECHNIQUES OF INTEGRATION

5.4 Partial Fractions

Exercises for �5.4

2. We have p(x) =
∑n−1

k=0 Ak(x−a)k = A0+A1(x−a)+ · · ·+An−i(x−a)n−1.

Therefore, p(i)(x) = i!Ai +
(i+ 1)!

1!
Ai+1(x − a) + · · · + (n− 1)!

(n− 1− i)!
An−1(x −

a)n−1−i.

4.

(a)
13

5
log(x+ 2)− 2 log x+

2

5
log(x− 3)

(b)
1

125
log

(x+ 2

x− 3

)
− 1

25

x+ 12

(x+ 2)(x− 3)

(c) arctanx+
1

2
log(x2 + 2)− 1√

2
arctan(x/

√
2)

(d)
log(x− 1)

25
− log(x2 + 4)

50
− 2

5

x+ 1

x2 + 4
+

7

25
arctan(x/2)

(e)
log(x− 1)

4
− log(x+ 1)

4
− arctanx

2

(f)
1

25/2
log

(x2 +√
2x+ 1

x2 −
√
2x+ 1

)
+

1

23/2
arctan(

√
2x+1)+

1

23/2
arctan(

√
2x−1)

6. There is an error in the given substitution: it should be t = tan(x/2). This
gives x = 2arctan t, from which we get:

dx

dt
=

2

1 + t2
,

sinx = sin(2 arctan t) = 2 sin(arctan t) cos(arctan t) = 2
t√

1 + t2
1√

1 + t2
=

2t

1 + t2
,

cosx = cos(2 arctan t) = 1− 2 sin2(arctan t) = 1− t2

1 + t2
=

1− t2

1 + t2
.

(a)

∫
dx

sinx+ cosx
=

∫
2

1 + 2t− t2
dt = − 1√

2
log

( t−√
2− 1

t+
√
2− 1

)
= − 1√

2
log

( tan(x/2)−√
2− 1

tan(x/2) +
√
2− 1

)
.

(b) x− 1√
2
arctan(

√
2 tanx).

5.5 Improper Integrals

Task 5.5.7. The condition α < 0 gives lim
x→0+

xα = ∞. Hence, for α ̸= −1,∫ 1

0

xα dx = lim
a→0+

∫ 1

a

xα dx = lim
a→0+

1− aα+1

α+ 1
=

{
1/(1 + α) if − 1 < α < 0

∞ if α < −1

The α = 1 case gives

∫ 1

0

xα dx = − lim
a→0+

log a = ∞.
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Task 5.5.10. Γ(1/2) =
∫∞
0
e−tt−1/2 dt. Substitute t = x2 with x ∈ [0,∞) to

get

Γ(1/2) = 2

∫ ∞

0

e−x2

dx.

Exercises for �5.5

2.

(a) π/2.

(b) 0. (Note: It is not enough to invoke the integrand being odd, convergence
has to be established.)

(c) 1.

4.

(a)

∫ π/2

0

secx dx = lim
x→π/2−

log(secx+ tanx) = ∞.

(b)

∫ ∞

2

1

x log x
dx = lim

x→∞
log(log x)− log(log 2) = ∞.

(c)

∫ 2

1

1

x log x
dx = log(log 2)− lim

x→1+
log(log x) = ∞.

(d)

∫ ∞

0

1√
9 + x2

dx = lim
x→∞

sinh−1(x/3) = ∞.

6. There is M such that x ≥M implies f(x)/g(x) ≤ L+ 1, hence 0 ≤ f(x) ≤
(L + 1)g(x). By the comparison theorem, convergence of

∫∞
M
g(x) dx implies

convergence of
∫∞
M
f(x) dx.

For the converse, use the existence ofN such that x ≥ N implies f(x)/g(x) ≥
L/2.

8. Statement: Let f, g be continuous on (a, b] and have vertical asymptotes at
a, with 0 ≤ f(x) ≤ g(x) for every x ∈ (a, b]. Let

lim
x→a+

f(x)

g(x)
= L ∈ R, L ̸= 0.

Then
∫ b

a
f(x) dx converges if and only if

∫ b

a
g(x) dx converges.

Proof: Similar to Exercise 6.

10.

(a) No. Suppose L > 0. Then there is M such that x ≥ M implies f(x) ≥
L/2 > 0. By the comparison theorem,

∫∞
M
f(x) dx diverges.

(b) No. Here are two examples with a = 0:

f(x) =

{
1 if x ∈ N
0 else

, g(x) =

 1 if x ∈ [n− 1

2n
, n+

1

2n
] with n ∈ N

0 else
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5.6 Ordinary Di�erential Equations

Task 5.6.3.

∫
dy

M − ky
=

∫
1 dt =⇒ −1

k
log(M − ky) = t + C =⇒

M − ky = Ae−kt.

Task 5.6.6.

∫
dy

y
=

∫
dx

x
=⇒ log |y| = log |x| + C =⇒ y = Ax, with

A = y(1).

Task 5.6.8.∫
(5y4 + 1) dy =

∫
(3x2 + 1) dx =⇒ y5 + y = x3 + x+ C.

Task 5.6.15. In Example 5.6.13, we found the general solution: y = A
ex

x
+
e2x

x
.

Now y(1) = 0 gives 0 = Ae+ e2, or A = −e.

Task 5.6.19. Statement: Consider an initial value problem y′ = f(y), y(0) =
y0, where f : (a, b) → R is negative and continuous, and y0 ∈ (a, b). This
initial value problem has a unique solution y : (α, β) → (a, b) which is a strictly
decreasing bijection.

Task 5.6.20. If f(y0) = 0 then y = y0 is a solution. If f(y0) ̸= 0 then f will
not change sign in some open interval around y0 and then Theorem 5.6.18 (and
Task 5.6.19) give a solution.

Example 5.6.7 shows that a solution may not be unique.

Exercises for �5.6

2. The substitution u = y/x gives 2xuu′ = −u2 − 1. Separation of variables
gives u2 + 1 = C/x, hence y2 = Cx− x2.

4.

(a) y = (x+ C)ex.

(b) y =
x2

5
+
C

x3
.

(c) y =
C − cosx

x3
.

(d) y = e− sin x
(∫

e2x+sin x dx+ C
)
.

6.

(a) The equilibrium solutions are y = nπ with n ∈ Z.
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π

2π

x

y

The equilibrium solutions are stable when n is odd and unstable when
n is even.

(b) The equilibrium solutions are y = nπ with n ∈ Z.

π

2π

x

y

All the equilibrium solutions are semistable.

(c) The equilibrium solutions are y = 0 and y = 1.

1

x

y

The equilibrium solution y = 0 is unstable, while y = 1 is stable.

(d) No equilibrium solutions.
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1

x

y

8.

(a) Let (x0, y0) be a point on a curve belonging to the orthogonal family.
The parabola passing through it is y = cx2 with c = y0/x

2
0. The tangent

to that parabola at (x0, y0) has slope m = 2cx0 = 2y0/x0. Hence, the
slope of the tangent of the curve from the orthogonal family is −1/m =
−x0/(2y0). So the orthogonal curve satis�es y′ = −x/(2y).

(b) 2yy′ = −x =⇒
∫
2y dy = −

∫
x dx =⇒ 2y2 + x2 = C. Clearly, C ≥ 0

and we can write C = k2.

10.

(a) From Theorem 5.6.18 we know that y(x) is strictly increasing. If y(x) is
bounded above, then the monotone convergence theorem gives lim

x→∞
y(x) =

M for some M > a. It follows that lim
x→∞

y′(x) = 0 and so 0 = f(M).

(b) Similar to (a).

Thematic Exercises

Second Order Linear ODE

A1. We have (f + f ′)′ = f + f ′ and (f − f ′)′ = −(f − f ′). Hence, f(x) +
f ′(x) = Cex and f(x)− f ′(x) = De−x. Therefore, f(x) = (C/2)ex +(D/2)e−x.

A2. Apply A1 to get f(x) = Aex + Be−x. Note that A + B = f(0) and
A−B = f ′(0).

A3. The initial conditions should have been f(0) = B and f ′(0) = A.

(a) k = 0 =⇒ f ′′ = 0 =⇒ f ′(x) = A =⇒ f(x) = Ax+B.

(b) Let g(x) = f(x/w). Then g′′(x) = f ′′(x/w)/w2 = −g(x), hence g(x) =
α sinx+β cosx, and f(x) = g(wx) = α sinwx+β coswx. Now f(0) = B
and f ′(0) = A give β = B and α = A.

(c) Similar to (b).

A4.

(a) Suppose v(x) = eax/2f(x). Then

v′(x) = eax/2(f ′(x) + (a/2)f(x))
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v′′(x) = eax/2(f ′′(x) + af ′(x) + (a2/4)f(x)) = (a2/4− b)v(x)

The converse has a similar justi�cation.

(b) If d = 0 then v(x) = eax/2f(x) is a solution of v′′ = 0 and λ = −a/2.
Hence e−λxf(x) = A+Bx.

(c) We have λ1 = (−a +
√
d)/2, λ2 = (−a −

√
d)/2 and v′′ = (d/4)v.

Therefore, by (c) of A3,

eax/2f(x) = Ae(
√
d/2)x +Be−(

√
d/2)x, so f(x) = Aeλ1x +Beλ2x.

(d) We have r = −a/2 and w =
√
−d/2. By (b) of A3, we have

eax/2f(x) = A sin
(√

−d
2

)
x+B cos

(√
−d
2

)
x,

so f(x) = erx
(
A sinwx+B coswx

)
.

A5. Consider the cases when the roots are real and distinct, real and equal,
complex.

A6. Let f be any solution of f ′′ + af ′ + bf = g. Verify that f − fp is a
solution of f ′′ + af ′ + bf = 0.

A7.

(a) Substitution of fp(x) in the given equation leads to:

(−α− 3β + 2α) cosx+ (−β + 3α+ 2β) sinx = cosx

This gives α− 3β = 1 and β + 3α = 0.

(b) Consider f ′′(x) − 3f ′(x) + 2f(x) = 0. The characteristic equation is
λ2 − 3λ+ 2 = 0, which has roots λ = 1, 2. Hence its general solution is
fh(x) = Aex +Be2x.
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6 | Mean Value Theorems
and Applications

6.1 Mean Value Theorems

Task 6.1.5. Apply Rolle's theorem to f on [a, b] and [b, c] to get a′ ∈ (a, b)
and b′ ∈ (b, c) such that f ′(a′) = f ′(b′) = 0. Now apply Rolle's theorem to f ′

on [a′, b′].

Exercises for �6.1

2. Let f(t) = log y(t). Then f ′(t) ≤ K, hence f(t) ≤ f(0) +Kt for t ≥ 0.

4. Just compute f ′(c) for the given f and c.

6. Apply Rolle's theorem to f(x)− g(x).

8. We need to �nd a c such that f ′(c) = f(c)/c. Apply Rolle's theorem to
g(x) = f(x)/x.

10. We know that f is continuous on [0,∞) and di�erentiable on (0,∞).
Apply the mean value theorem to f on [0, c] to get t1 ∈ (0, c) such that f ′(t1) =
f(c)−f(0)

c−0 = sin(1/c). Now pick c1 ∈ (0, t1) such that sin(1/c1) = sin(1/c).
Apply the mean value theorem to f on [0, c1] to get t2 ∈ (0, c1) such that

f ′(t2) =
f(c1)−f(0)

c1−0 = sin(1/c1) = sin(1/c). Repeat.

12.

(a) The required M exists and is unique because x ̸= x1, x2.

(b) L(x1) = y1 = f(x1) implies G(x1) = 0, while L(x2) = y2 = f(x2) implies
G(x2) = 0. The choice of M gives G(x) = 0. Apply Rolle's theorem to
G to get c1 ∈ (x1, x) and c2 ∈ (x, x2) such that G′(c1) = G′(c2) = 0.
Then apply Rolle's theorem to G′ to get ξ ∈ (c1, c2) ⊂ (x1, x2) such that
G′′(ξ) = 0.

(c) We have G′′(t) = f ′′(t) − 2M . Hence, 0 = G′′(ξ) = f ′′(ξ) − 2M , and
M = f ′′(ξ)/2.

6.2 L'Hôpital's Rule

Task 6.2.7. lim
x→0

sinx− x+ x3/3!

x5
= lim

x→0

cosx− 1 + x2/2

5x4
= − lim

x→0

sinx− x

5 · 4x3
=

63
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− 1

5!

Exercises for �6.2

2. A mechanical application of L'Hôpital's rule fails to simplify these expres-

sions. For example, the expression in (a) leads to lim
x→0+

√
x cosx√
sinx

= lim
x→0+

√
x√

sinx
.

Instead, (a) can be resolved by applying the sandwich theorem, while (b) is re-

solved by substituting t = 1/x. This converts the problem to lim
t→∞

et

t
.

4.

(a) Apply L'Hôpital's rule:

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

(x− a)2
= lim

x→a

f ′(x)− f ′(a)

2(x− a)
=
f ′′(a)

2
.

(b) Apply L'Hôpital's rule n times.

6.

(a) We begin with 1 + x + x2 + · · · + xn =
1− xn+1

1− x
. Di�erentiating both

sides gives the required identity.

(b) Computing the limit gives:

1 + 2 + · · ·+ n = lim
x→1

1− (n+ 1)xn + nxn+1

(1− x)2
=
n(n+ 1)

2
lim
x→1

(xn−1 − xn)

1− x

=
n(n+ 1)

2
lim
x→1

xn−1 =
n(n+ 1)

2
.

8. Compute the following limits.

(a) lim
x→∞

x

log(1 + ex)
.

(b) lim
x→−∞

xex.

(c) lim
t→0+

sin t log t.

(d) lim
x→0+

(cosx)1/x.

(e) lim
x→0+

(log(1/x))x.

(f) lim
x→0+

x1/ log x.

(a) 1 (b) 0 (c) 0 (d) 1 (e) 1 (f) e

6.3 Taylor Polynomials

Task 6.3.1. If Tn is the nth Taylor polynomial of f centered at a, show that

T (k)
n (a) = f (k)(a) for k = 0, 1, . . . , n.

Consider each term of Tn. On di�erentiating k times, each term whose
degree is less than k will become zero. Each term with degree more than k will
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have a surviving x − a factor, hence will become zero for x = a. So the only
contribution will be from the f (k)(a)(x−a)k/k! term, and this will give f (k)(a).

Task 6.3.6. Check that the Taylor polynomials of log(1 + x) centred at a = 0

are x− x2

2
+
x3

3
· · ·+ (−1)n+1x

n

n
.

Let f(x) = log(1 + x). Then f (k)(x) =
(−1)k−1(k − 1)!

(1 + x)k
for k ≥ 1. Hence,

the k-th degree term of the Taylor polynomial is
f (k)(0)

k!
xk =

(−1)k−1

k
xk if

k ≥ 1 and 0 if k = 0.

Exercises for �6.3

2. There is an error in the problem statement. The equality to be proved is
T∫ f,n(x) =

∫ x

a
Tf,n−1(t) dt.∫ x

a

Tf,n−1(t) dt =

n−1∑
k=0

f (k)(a)

k!

∫ x

a

(t− a)k dt =

n−1∑
k=0

f (k)(a)

(k + 1)!
(x− a)k+1

=

n∑
k=1

f (k−1)(a)

k!
(x− a)k =

n∑
k=1

g(k)(a)

k!
(x− a)k

4.

(a)
1

2
+
x+ 1

22
+ · · ·+ (x+ 1)n

2n+1
.

(b) e+ e(x− 1) +
e

2!
(x− 1)2 + · · ·+ e

n!
(x− 1)n.

6. From f ′′ = f , we get f (k)(0) = f (k+2)(0) for k ≥ 0. Hence f (k)(0) = 0
when k is even, and f (k)(0) = 1 when k is odd. So the Maclaurin polynomials

are x+
x3

3!
+ · · ·+ x2n+1

(2n+ 1)!
.

8. Suppose f ′(a) > 2. Then f(a + 2) − f(a) = 2f ′(a) + 2f ′′(c) for some
c ∈ (a, a + 2). Hence, f(a + 2) − f(a) > 2 · 2 − 2 · 1 = 2. On the other hand,
|f(x)| ≤ 1 implies |f(a+ 2)− f(a)| ≤ 2.

Similarly, f ′(a) < −2 also leads to a contradiction.

10. We have (p − q)(n)(a) = 0 for every n ≥ 0. If p − q is not zero, it has a
degree n, and then (p− q)(n)(a) ̸= 0.

12.

(a) R can be de�ned in this manner because x ̸= a.

(b) No justi�cation needed.

(c) The de�nition of R gives g(x) = 0. The other terms are zero because

f (k)(a) = T
(k)
n (a) for k = 0, . . . , n.

(d) Assume x > a. Apply Rolle's theorem to g on [a, x] to get c1 ∈ (a, x)
such that g′(c1) = 0. Then apply Rolle's theorem to g′ on [a, c1] to get
c2 ∈ (a, c1) such that g′′(c2) = 0. Continue in this fashion.
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(e) We have g(n+1)(t) = f (n+1)(t)−R(n+1)!. Hence 0 = f (n+1)(ξ)−R(n+
1)!.

14. We get the estimate as follows:

sinx ≈ x− x3

3!
+
x5

5!
=⇒ sinx

x
≈ 1− x2

3!
+
x4

5!

=⇒
∫ 1

0

sinx

x
dx ≈ 1− 1

18
+

1

600
=

1703

1800
= 0.94611 . . .

The remainder theorem gives sinx = x− x3

3!
+
x5

5!
− cos(c(x))

7!
x7. Hence,

sinx

x
=

1− x2

3!
+
x4

5!
− cos c(x)

7!
x6. Therefore,

∣∣∣ ∫ 1

0

sinx

x
dx− 1703

1800

∣∣∣ ≤ 1

7!

∫ 1

0

x6 dx =
1

7! 7
= 0.000028.

6.4 Riemann Sums and Mensuration

Exercises for �6.4

2. Let f : [0, 1] → R be the Dirichlet function. For each partition of [0, 1]
choose a tag whose members are rational. Then I = 1 satis�es the hypotheses
of Theorem 6.4.2, but the conclusion is false.

4.

(a)

∫ π/4

0

√
1 + tan2 x dx =

∫ π/4

0

secx dx = log(
√
2 + 1).

(b) The function should have been y = (x− 1)3/2. Then:∫ 4

1

√
1 + 9

4 (x− 1) dx =
313/2 − 8

27
.

(c) The arc length is

∫ 1

0

√
1 + 9x4 dx. This integral cannot be evaluated by

elementary means.

6. The problem statement should have S(f, Pn) instead of L(f, Pn). The
inequalities also need slight corrections, as shown below.

We begin by observing that

S(f, P ) =

n∑
i=1

(
(xi − xi−1)

2 + (yi − yi−1)
2
)1/2

>

n∑
i=1

|yi − yi−1|.

(a) We have f( 1
2k ) =

(−1)k

2k and f( 1
2k+1 ) = 0. Hence,

S(f, Pn) >

2n−1∑
i=1

|yi − yi−1| = |y0|+ 2|y2|+ · · ·+ 2|y2n−2|

=
1

2
+

1

2
+

1

3
+ · · ·+ 1

n



6.5 Numerical Integration 67

(b) S(f, Pn) >
1

2
+

1

3
+ · · ·+ 1

n
>

∫ n+1

2

dx

x
= log(n+ 1)− log 2.

8. LetR > r. Consider the region bounded by the graphs of y+ =
√
r2 − (x−R)2

and y− = −
√
r2 − (x−R)2, with |x−R| ≤ r. A torus is obtained by rotating

this around the y-axis. The shell method gives the volume as follows:∫ R+r

R−r

2πx · 2
√
r2 − (x−R)2 dx = 4π

∫ r

−r

(R+ t)
√
r2 − t2 dt

= 4πR

∫ r

−r

√
r2 − t2 dt = 2π2Rr2.

10. Apply the shell method:

∫ R

r

2πx · 2
√
R2 − x2 dx =

4

3
π(R2 − r2)3/2.

12.

(a) Surface area from curved portions (Note that g′ = −f ′ and f + g = 2ℓ):

2π
(∫ b

a

f(x)
√
1 + f ′(x)2 dx+

∫ b

a

g(x)
√
1 + g′(x)2 dx

)
= 4πℓ

∫ b

a

√
1 + f ′(x)2 dx.

Surface area from �at caps:

π
(
f(a)2 − g(a)2 + f(b)2 − g(b)2

)
= 2πℓ((f(a)− g(a)) + (f(b)− g(b))).

Total surface area:

2πℓ
(
2

∫ b

a

√
1 + f ′(x)2 dx+ (f(a)− g(a)) + (f(b)− g(b))

)
= 2πℓP.

(b) Apply the discs method:

π

∫ b

a

(f(x)2 − g(x)2) dx = 2πℓ

∫ b

a

(f(x)− g(x)) dx = 2πℓA.

6.5 Numerical Integration

Task 6.5.5. (The last two requirements need to be corrected to q′(a) = y′a
and q′(b) = y′b.)

By shifting the domain we can assume b > a = 0. Let q(x) = αx3 + βx2 +
γx + δ. Then the supplied values of q(0) and q′(0) give us δ = y0 and γ = y′0.
The values of q(b) and q′(b) now give the following pair of linear equations for
α and β:

b3α+ b2β = yb − by′0 − y0

3b2α+ 2bβ = y′b − y′0

The coe�cient matrix has determinant −b4 ̸= 0, so there is a unique solution.
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Exercises for �6.5

2. In this example, Simpson's rule fails to outperform the Midpoint rule. The
reason is that, near 1, the fourth derivative takes much larger values than the
second derivative.

4. Let x0 < x1 < x2 < · · · < x2n be a partition of [a, b] into equal subintervals.
We compute the midpoint and trapeziodal rules using the partition x0 < x2 <
x4 < · · · < x2n. Let △x = (b− a)/2n. Then,

2

3
M b

a(f) +
1

3
T b
a(f) =

2

3

n∑
i=1

y2i−12△x+
1

3

(y0
2

+

n−1∑
i=1

y2i +
y2n
2

)
2△x

=
(
y0 + 2

n−1∑
i=1

y2i + 4

n∑
i=1

y2i−1 + y2n

)△x
3

= Sb
a(f).

6. We follow the pattern for the n = 2 case. Let x1 = −h
√

3/5, x2 = 0,

x3 = h
√
3/5. Then, let q(x) be a polynomial of degree at most 5 such that

q(xi) = f(xi) and q
′(xi) = f ′(xi) for i = 1, 2, 3. Fix a value of x. De�ne

g(t) = f(t)− q(t)−M(t− x1)
2(t− x2)

2(t− x3)
2,

where M is chosen so that g(x) = 0. Then g(xi) = g′(xi) = 0 for i = 1, 2, 3.
The four zeroes of g give three zeroes of g′, and these are distinct from the xi.
So we get 6 zeroes of g′. Repeated application of Rolle's theorem gives a zero
ξx of g(6). This leads to M = f (6)(ξx)/6!. Hence,

f(x)− q(x) =
f (6)(ξx)

6!
(x2 − 3h2/5)2x2.

This leads to:∫ h

−h

f(x) dx−G3(f) =

∫ h

−h

f(x) dx−G3(q) =

∫ h

−h

(f(x)− q(x)) dx

=
f (6)(ξ)

6!

∫ h

−h

(x2 − 3h2/5)2x2 dx

=
f (6)(ξ)

6!
h7

∫ 1

−1

(x2 − 3/5)2x2 dx =
8

7! 25
f (6)(ξ)h7.

Thematic Exercises

Curve Fitting: Error Analysis

A1. Mimic the proof of the remainder theorem. Fix x ̸= a and de�ne R
by f(x)− p(x) = R(x− x1) · · · (x− xn). Then de�ne g(t) = f(t)− p(t)−R(t−
x1) · · · (t− xn).

Observe that g(x) = g(x1) = · · · = g(xn) = 0. By repeated application of
Rolle's theorem, obtain ξ ∈ I such that g(n)(ξ) = 0.
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A2. (L2
j )

′(xk) = 2Lj(xk)L
′
j(xk) = 0 = L2

j (xk) if j ̸= k

(L2
j )

′(xj) = 2Lj(xj)L
′
j(xj) = 2L′

j(xj)

A3. Let Hj(x) = (a + bx)L2
j (x). Then Hj(xk) = 0 if k ̸= j. And

H ′
j(x) = bL2

j (x) + 2(a+ bx)Lj(x)L
′
j(x) gives H

′
j(xk) = 0 for k ̸= j. Now,

Hj(xj) = 1 =⇒ a+ bxj = 1

H ′
j(xj) = 0 =⇒ b+ 2L′

j(xj) = 0

Next, let Kj(x) = (a+bx)L2
j (x). Again, we have Kj(xk) = K ′

j(xk) = 0 if k ̸= j.

Kj(xj) = 0 =⇒ a+ bxj = 0

K ′
j(xj) = 1 =⇒ b = 1

A4. It is easy to see that H(x) has the required properties. If H1 and H2

both satisfy them, then (H1 −H2)(xj) = (H1 −H2)
′(xj) = 0 for every j. Thus

H1−H2 has a root of multiplicity 2 at each xj , hence must have degree at least
2n if it is non-zero.

A5. Mimic the solution to A1. Fix x ∈ [a, b] with x ̸= x0, . . . , xn. De�ne R
by f(x)−H(x) = R(x− x0)

2 · · · (x− xn)
2. De�ne

g(t) = f(t)−H(t)−R(t− x0)
2 · · · (t− xn)

2.

Observe that g(x) = g(x0) = · · · = g(xn) = 0 and g′(x0) = · · · = g′(xn) = 0.
Rolle's theorem gives n+1 new zeroes of g′, for a total of 2n+2. Then it gives
2n+ 1 zeroes of g′′ and so on, until we �nd a zero ξx of g(2n+2). Then:

0 = g(2n+2)(ξx) = f (2n+2)(ξx)− (2n+ 2)!R.

Riemann Integral

B1.

(a) The de�nition of Riemann integral gives δ > 0 such that △P < δ implies
|Rb

af(x) dx−R(f, P ∗)| < ε/2. Now choose n such b−a
n < δ.

(b) Let P be the partition x0 < · · · < xn andmi = inf{ f(x) | x ∈ [xi−1, xi] }.
Choose x∗i ∈ [xi−1, xi] such that f(x∗i )−mi <

ε
2(b−a) . Then,

R(f, P ∗)−L(f, P ) =
n∑

i=1

(f(x∗i )−mi)(xi−xi−1) <
ε

2(b− a)

n∑
i=1

(xi−xi−1) =
ε

2
.

(c) By combining (a) and (b), we obtain an n such that

U(f, P )− L(f, P ) < R(f, P ∗∗)−R(f, P ∗) + ε < 2ε.

B2.

n∑
i=1

mi(xi − xi−1)︸ ︷︷ ︸
L(f,P )

≤
n∑

i=1

f(x∗i )(xi − xi−1)︸ ︷︷ ︸
R(f,P∗)

≤
n∑

i=1

Mi(xi − xi−1)︸ ︷︷ ︸
U(f,P )

.
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B3.

(a) There are partitions Q1, Q2 such that U(f,Q1) −
∫ b

a
f(x) dx < ε/2 and∫ b

a
f(x) dx− L(f,Q2) < ε/2. Now choose Q = Q1 ∪Q2.

(b) We shall prove that U(f, P ) ≤ U(f,Q) + ε
2 . Let P = {x′0, . . . , x′n},

M ′
i = sup{ f(x) | x ∈ [x′i−1, x

′
i] } and Mi = sup{ f(x) | x ∈ [xi−1, xi] }.

We have:

M ′
i ≤

{
Mj if [x′i−1, xi] ⊆ [xj−1, xj ] for some j
M else

There are at most m cases of the second type. Hence,

U(f, P ) =

n∑
i=1

M ′
i(x

′
i−x′i−1) ≤

m∑
j=1

Mj(xj−xj−1)+mM
ε

2Mm
= U(f,Q)+

ε

2
.

We can similarly prove that L(f,Q)− ε
2 ≤ L(f, P ).

(c) On combining B2 with B3(a) and (b), we see that △P < δ gives

L(f,Q)− ε

2
≤ R(f, P ∗) ≤ U(f,Q) +

ε

2
.

Hence |R(f, P ∗)−
∫ b

a
f(x) dx| < ε. So

∫ b

a
f(x) dx ful�lls the requirements

to be the Riemann integral.



7 | Sequences and Series

7.1 Limit of a Sequence

Task 7.1.4. Suppose both L and L′ satisfy the requirements for lim an.
Suppose ε = |L − L′| ̸= 0. Then there is N ∈ N such that n ≥ N implies
|an − L|, |an − L′| < ε/2. Hence, n ≥ N implies |L− L′| < ε, a contradiction.

Task 7.1.5. Given any ε > 0, Let N = 1. Then n ≥ N gives |an − c| =
|c− c| = 0 < ε.

Task 7.1.7. Suppose an → L. Consider ε = 1. Given any N ∈ N, let
n = max{N, [L] + 2}. Then n ≥ N , but |an − L| > 1 = ε.

Task 7.1.8. If N works for an and ε, it also works for bn and ε.

If N works for bn and ε, then N + k works for an and ε.

Task 7.1.9. Suppose lim an = L > M . Let ε = L−M . There is N ∈ N such
that n ≥ N implies |an − L| < ε. Then an > L− ε =M , a contradiction.

Task 7.1.12. Note that ||an| − 0| = |an − 0|. Hence, if N works for |an| and
ε, it also works for an and ε.

Task 7.1.14.

(a) lim
n→∞

5n2 − 1

n2 + 3n− 1000
= lim

n→∞

5− 1/n2

1 + 3/n− 1000/n2
=

5− 0

1 + 0− 0
= 5.

(b) Apply the sandwich theorem: − 1

n
≤ sinn

n
≤ 1

n
gives lim

n→∞

sinn

n
= 0.

Task 7.1.16.

(a) Use N =M .

(b) If N works for bn and M , it also works for an and M .

(c) N works for an and ε = 1/M if and only if it works for |1/an| and M .

71
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Task 7.1.17.

an Bounded Above Bounded Below Bounded Unbounded

n é Ë é Ë

−n Ë é é Ë

(−1)n Ë Ë Ë é

(−1)nn é é é Ë

1/n Ë Ë Ë é

Task 7.1.19.

an Increasing Decreasing Monotone

n Ë é Ë

−n é Ë Ë

(−1)n é é é

1 Ë Ë Ë

1/n é Ë Ë

Task 7.1.27. Suppose lim an = L. Let ε > 0. There is N ∈ N such that
n ≥ N implies |an − L| < ε. Now, n ≥ N =⇒ 2n, 2n + 1 > N =⇒
|a2n − L|, |a2n+1 − L| < ε. Hence lim a2n+1 = lim a2n = L.

Next, suppose lim a2n+1 = lim a2n = L. Let ε > 0. There are No, Ne ∈ N
such that:

n ≥ No =⇒ |a2n+1 − L| < ε

n ≥ Ne =⇒ |a2n − L| < ε

Let N = max{2No + 1, 2Ne}.

Task 7.1.28. Apply the previous Task: lim a2n = lim
2n

2n+ 1
= 1

lim a2n+1 = − lim
2n+ 1

2n+ 2
= −1

Hence, lim
(−1)nn

n+ 1
does not exist.

Exercises for �7.1

2.

(a) 0 (b) ∞ (c) 0 (d) ∞

4. Choose N such that n ≥ N =⇒ |an| < ε2.

6. Let an/bn → L. Then an = (an/bn)bn → L · 0 = 0.

8. Fix an R such that L < R < 1. There exists N such that n ≥ N =⇒
|an|1/n < R =⇒ |an| < Rn. By the sandwich theorem, |an| → 0.
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10. Apply the root test to ann. Alternately, we have |an| < 1 for large n, hence
|an|n < |an| for large n. Now apply the sandwich theorem.

7.2 Sequences and Functions

Task 7.2.3. Follows from the continuity of the exponential function.

Task 7.2.6. lim log(1 + 2
n )

n = limn
(
log( 12 + 1

n )− log( 12 )
)
= log′( 12 ) = 2.

lim log(1− 1
n )

n = limn
(
log(−(−1+ 1

n ))−log(−(−1))
)
=
d

dx

∣∣∣
x=−1

log(−x) =
−1.

Task 7.2.7. False. Let f(0) = 1 and f(x) = 0 for x ̸= 0. Let an = 0 for every
n.

Task 7.2.8. Consider an = 1
nπ . Then an → 0, but

cos(1/an) + sin(1/an) = cos(nπ) + sin(nπ) = (−1)n

does not converge.

Task 7.2.13.

(a) ∞ (b) 0

Exercises for �7.2

2. Let f(x) = (1 + r/x)x. Then log f(x) = x log(1 + r/x), and

lim
x→∞

log f(x) = lim
t→0+

log(1 + rt)

t
= lim

t→0+

r

1 + rt
= r.

4.

(a) −1/
√
2 (b) 1/2 (c) log a (d) rxr−1

6.

(a) 1/e (b) 4

8. Let f(x) = cosx − x. We have f(0) = 1 and f(π/2) = −π/2. Hence,
the intermediate value theorem gives the existence of c ∈ (0, π/2) such that
f(c) = 0.

The Newton-Raphson iteration is xn+1 = xn +
cosxn − xn
sinxn + 1

. This gives:

x1 = π/4 = 0.7854, x2 = 0.7395, x3 = 0.7391, x4 = 0.7391.
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10.

(a) We are looking for a solution of −c = c−(1+c2) arctan c. Let f(x) = 2x−
(1+x2) arctanx. Then f(1) = 2−π/2 > 0 and f(2) = 4−5 arctan 2 < 0.

(b) The Newton-Raphson iteration for seeking c is

xn+1 = x− 2xn − (x2n + 1) arctanxn
1− 2xn arctanxn

.

This gives x1 = 1.5, x2 = 1.400, x3 = 1.392 and x4 = 1.392.

7.3 Sum of a Series

Task 7.3.5.
∑n

k=1 1/k is an upper sum for
∫ n+1

1
dx/x.

Task 7.3.7.

(a) Converges (b) Converges (c) Diverges

Task 7.3.8. Let Tm be the mth partial sum of
∑∞

n=k an. That is, Tm =∑k+m−1
n=k an. Then, Tm = Sm+k−1 − Sk−1. Hence Tm converges ⇐⇒ Sm+k−1

converges ⇐⇒ Sm converges. Further,

∞∑
n=1

an = limSm = limSm+k−1 = Sk−1 + limTm = Sk−1 +

∞∑
n=k

an.

Task 7.3.10.

(a) Let an = sin(nπ/2). Then a4n+1 = 1 =⇒ an ̸→ 0.

(b) Let an = (−1)n n−1
n . Then a2n → 1 =⇒ an ̸→ 0.

Exercises for �7.3

2.
1

n(n+ 2)
=
A

n
+

B

n+ 2
=⇒ 1 = A(n+ 2) +Bn =⇒ A =

1

2
, B = −1

2
.

Therefore,

k∑
n=1

1

n(n+ 2)
=

1

2

((
1− 1

3

)
+
(1
2
− 1

4

)
+

(1
3
− 1

5

)
+ · · ·+

(1
k
− 1

k + 2

))
=

1

2

(
1 +

1

2
− 1

k + 1
− 1

k + 2

)
→ 3

4
.

4.

Convergent: (d), (f), (g), (h), (j).

Divergent: (a), (b), (c), (e), (i).

6.

∞∑
n=1

an converges =⇒ an → 0 =⇒ a2n ≤ an for large n.
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8.

(a) True.
∑
an converges =⇒

∑
an+1 converges =⇒

∑
(an + an+1)

converges.

(b) False. Consider
∑

(−1)n.

10. The condition an/bn → 0 gives an < bn for large n. Apply the comparison
test.

12. Let Sk =
∑k

n=1 an and Tk =
∑k

n=1 2
na2n . These are increasing sequences,

hence they are convergent if and only if they are bounded. Now,

S2k−1 = a1 + (a2 + a3) + (a4 + · · ·+ a7) + · · ·+ (a2k−1 + · · ·+ a2k−1)

≥ a2 + 2a4 + 4a8 + · · ·+ 2k−1a2k = 1
2Tk

This shows that if
∑
an converges then

∑
2na2n converges. For the converse,

we note that

S2k−1 ≤ a1 + 2a2 + 4a4 + · · ·+ 2k−1a2k−1 = Tk−1.

14. We have seen that log(N+1) ≤
N∑

n=1

1

n
≤ log(N)+1. Now log(x+1) = 100

gives x = e100−1 = 2.7×1043, while log(x)+1 = 100 gives x = e99 = 9.9×1042.
So the number of terms to cross 100 is between 9.9× 1042 and 2.7× 1043.

7.4 Absolute and Conditional Convergence

Task 7.4.6. We have |an| = a+n + a−n . Therefore, the convergence of
∑
a+n

and
∑
a−n implies the convergence of

∑
|an|.

The converse follows from the inequalities |an| ≥ a+n and |an| ≥ a−n .

Task 7.4.7. We are given that
∑

(a+n −a−n ) converges. If either
∑
a+n or

∑
a−n

converges, then so does
∑

|an| =
∑

(a+n + a−n ).

Exercises for �7.4

2. The required accuracy will be obtained after k terms, provided

0.5k+1

(2k + 3)!
< 0.005.

This happens at k = 1. Hence

∞∑
n=0

(−0.5)n

(2n+ 1)!
≈ 1− 0.5

3!
= 0.917.

4.

(a) Diverges.

(b) Converges absolutely.

(c) Converges conditionally.

(d) Converges absolutely.

6. Let Sk =
∑k

n=1 an and Tk =
∑k

n=1 |an|. The triangle inequality gives
|Sk| ≤ Tk ≤

∑
|an|. Hence, −

∑
|an| ≤ Sk ≤

∑
|an|. Now let k → ∞.
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8. Let Sk =
∑k

n=1 an, Ok =
∑k

n=1 a2n−1, Ek =
∑k

n=1 a2n. Then,

S2k = Ok + Ek

S2k+1 = Ok+1 + Ek

These identities show:

� limSk exists if and only if both limOk and limEk exist.

� If these limits exist, then limSk = limOk + limEk.

10.

(a) Proof by induction on m. For m = 1 the equality holds because S1 = a1.
Assume the equality folds for m. Then,

m+1∑
n=1

anbn =

m−1∑
n=1

(bn − bn+1)Sn + bmSm + am+1bm+1

=

m∑
n=1

(bn − bn+1)Sn + bm+1Sm + am+1bm+1

=

m∑
n=1

(bn − bn+1)Sn + bm+1Sm+1.

(b) Apply the sandwich theorem, using the boundedness of Sm.

(c) Since bn is a decreasing sequence,

m−1∑
n=1

|(bn − bn+1)Sn| ≤M

m−1∑
n=1

(bn − bn+1) =M(b1 − bm) ≤Mb1

Now, (c) shows that
∑m−1

n=1 (bn − bn+1)Sn is convergent. We also know
that bmSm converges. Hence, (a) shows that

∑
anbn converges.

12.

(a) 0 ≤
n∑

k=1

(xk − yk)
2 = 2(1−

n∑
k=1

xkyk) =⇒
n∑

k=1

xkyk ≤ 1

0 ≤
n∑

k=1

(xk + yk)
2 = 2(1 +

n∑
k=1

xkyk) =⇒
n∑

k=1

xkyk ≥ −1

(b) We have
∥∥∥ x

||x||

∥∥∥ =
∥∥∥ y

||y||

∥∥∥ = 1. Therefore,
∣∣∣ n∑
k=1

xk
||x||

· yk
||y||

∣∣∣ ≤ 1.

Thematic Exercises

Stirling's Formula

A1. Since 1/x is a convex function, the tangent line to its graph at
(1 + 1

2n ,
2n

2n+1 ) lies below the graph. This gives log(1 + 1
n ) >

1
n · 2n

2n+1 = 2
2n+1 .

Hence,

1 + 1
n > e

2
2n+1 or (1 + 1

n )
n+1/2 > e.
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A2.
an+1

an
=

(n+ 1)!

((n+ 1)/e)n+1
√
n+ 1

· (n/e)
n
√
n

n!
=

e

(1 + 1
n )

n+1/2
< 1.

A3.

1 2 3 n− 1 n

Since log x is a concave function, the tangent lines to its graph lie above the
graph. Combined with the observation log 1.5 < 1, this gives 1 + log 2 + log 3 +
· · ·+ log(n− 1) + 1

2 log n >
∫ n

1
log x dx.

A4.

log an =

n∑
k=2

log k − (n+ 1
2 ) log n+ n =

n−1∑
k=2

log k − (n− 1
2 ) log n+ n

>

∫ n

1

log x dx+ (n− 1)− (n− 1
2 ) log n = 1

2 log n ≥ 0.

A5. For the second equality, apply the integral calculations from Example
5.3.11.

A6. The inequalities follow from 0 ≤ sinx ≤ 1 for x ∈ [0, π/2]. They lead to∫ π/2

0
sin2n+2 x dx∫ π/2

0
sin2n x dx

≤
∫ π/2

0
sin2n+1 x dx∫ π/2

0
sin2n x dx

≤ 1.

Example 5.3.11 gives∫ π/2

0
sin2n+2 x dx∫ π/2

0
sin2n x dx

=
4n+1(n+ 1)!2

(2n+ 2)!
· (2n)!
4nn!2

=
4(n+ 1)2

(2n+ 2)(2n+ 1)
→ 1.

A7. We know that an =
n!

(n/e)n
√
n

converges to some L > 0. Therefore

a2n
a2n

→ L2

L
= L. But A5 and A6 show that

a2n
a2n

→
√
2π.

Gamma and Beta Functions

B1. Let a < x < b be points in the domain of f and g. Then,

f(x) + g(x) ≤ f(a) +
f(b)− f(a)

b− a
(x− a) + g(a) +

g(b)− g(a)

b− a
(x− a)

= (f(a) + g(a)) +
(f(b) + g(b))− (f(a) + g(a))

b− a
(x− a)
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B2. Write the convexity inequality for fn(x) and let n→ ∞ on both sides.

B3. Let a < x < b be points in the domain of f . By repeated bisection, we

can �nd a sequence cn → x such that c1 = a, c2 = b, and cn+1 =
cn + cn−1

2
or

cn + cn−2

2
.

We can prove by strong induction that f(cn) ≤ f(a) +
f(b)− f(a)

b− a
(cn − a)

for n ≥ 3.

For n = 3:

f(c3) = f(a+b
2 ) ≤ 1

2 (f(a) + f(b)) = f(a) +
f(b)− f(a)

b− a
(c3 − a).

Assuming the inequality holds up to n, we consider the two possibilities for the
n+ 1 case:

f(cn+1) = f
(cn + cn−1

2

)
≤ 1

2
(f(cn) + f(cn−1))

≤ f(a) +
1

2

f(b)− f(a)

b− a
((cn − a) + (cn−1 − a))

= f(a) +
f(b)− f(a)

b− a
(cn+1 − a),

f(cn+1) = f
(cn + cn−2

2

)
≤ 1

2
(f(cn) + f(cn−2))

≤ f(a) +
1

2

f(b)− f(a)

b− a
((cn − a) + (cn−2 − a))

= f(a) +
f(b)− f(a)

b− a
(cn+1 − a).

Now that the inequality is extablished, we prove our result by letting n→ ∞.

B4. We have (log ◦fn)(x) → (log ◦f)(x) for every x. Apply B2.

B5. The problem statement should have also included the condition a > 0.

For x = 0, we have Q(0, y) = ax2 ≥ 0.

For x ̸= 0, Q(x, y) = x2(a + 2c(y/x) + b(y/x)2. The sign of Q depends on
the sign of a+ 2c(y/x) + b(y/x)2, which is a quadratic in y/x. Its discriminant
is −4(ab− c2). Hence ab− c2 ≥ 0 if and only if the quadratic does not change
sign. And a > 0 ensures the sign is positive.

B6. First, log f and log g are convex, hence continuous. So f, g are
continuous. Therefore log(f + g) is continuous. Hence, it is enough to show
that log(f + g) is weakly convex.

We note that

log f is weakly convex ⇐⇒ log(f(x+y
2 )) ≤ log(f(x)) + log(f(y))

2
for every x, y

⇐⇒ log(f(x+y
2 )2) ≤ log(f(x)f(y)) for every x, y
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⇐⇒ f(x+y
2 )2 ≤ f(x)f(y) for every x, y.

B5 gives the following:

f(x)f(y)− f(x+y
2 )2 ≥ 0 =⇒ f(x)α+ 2f(x+y

2 )αβ + f(y)β ≥ 0 for all α, β,

g(x)g(y)− g(x+y
2 )2 ≥ 0 =⇒ g(x)α+ 2g(x+y

2 )αβ + g(y)β ≥ 0 for all α, β.

Hence,

(f(x) + g(x))α+ 2
(
f(x+y

2 ) + g(x+y
2 )

)
αβ + (f(y) + g(y))β ≥ 0 for all α, β.

Again apply B5 to get:

(f(x) + g(x))(f(y) + g(y))−
(
f(x+y

2 ) + g(x+y
2 )

)2

≥ 0.

B7.

(a) Every function cax is log convex. Hence gn(x) is log convex, as a sum of
log convex functions.

(b) Each gn(x) is a Riemann sum for the integral f(x), with mesh b/n.
Therefore gn(x) → f(x) for every x.

(c)

∫ ∞

0

ϕ(t)tx−1 dt = lim
n→∞

∫ n

0

ϕ(t)tx−1 dt.

B8.

(a) Apply induction to prove that f = Γ on every (0, n]. The n = 1 case holds
by hypothesis. Assume the statement is true for n. Now let x ∈ (n, n+1].
Then x− 1 ∈ (0, n], hence f(x− 1) = Γ(x− 1). Therefore,

f(x) = (x− 1)f(x− 1) = (x− 1)Γ(x− 1) = Γ(x).

(b) Apply Exercises A1 and A2 of Chapter 4.

(c) We prove the �rst inequality:

log(f(n))− log(f(n− 1)) ≤ log(f(n+ x))− log(f(n))

x

=⇒ x log
( f(n)
f(n−1)

)
≤ log

( f(n+x)
f(n)

)
=⇒ (n− 1)x ≤ (x+ n− 1)(x+ n− 2) · · ·xf(x)

(n− 1)!

(d) Trivial.

(e) Sandwich theorem.

B9.

(a) We have B(x, y) =
∫ 1/2

0
tx−1(1 − t)y−1 dt +

∫ 1

1/2
tx−1(1 − t)y−1 dt. The

�rst integral is improper (at 0) when 0 < x < 1, while the second one
is improper (at 1) when 0 < y < 1. The convergence of the �rst inte-

gral is established by comparision with
∫ 1/2

0
2tx−1 dt, of the second by

comparison with
∫ 1

1/2
2(1− t)y−1 dt.
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(b) Substitute s = 1− t.

(c) Substitute t = sin2 θ.

(d) Let 0 < a < b < 1. Then,∫ b

a

tx(1− t)y−1 dt =

∫ b

a

( t

1− t

)x

(1− t)x+y−1 dt

= − t
x(1− t)y

x+ y

∣∣∣b
a
+

x

x+ y

∫ b

a

(1− t)y−1tx−1 dt

=
ax(1− a)y − bx(1− b)y

x+ y
+

x

x+ y

∫ b

a

(1− t)y−1tx−1 dt

→ x

x+ y
B(x, y) as a→ 0, b→ 1.

(Note: The more obvious integration by parts, based on the original
factoring, gives only B(x+ 1, y) = x

yB(x, y + 1).)

B10.

(a) B7 shows that B(x, y) and Γ(x + y) are log convex, as functions of x.
Hence, so is their product.

(b) f(x+1) = B(x+1, y)Γ(x+y+1) = x
x+yB(x, y)(x+y)Γ(x+y) = xf(x).

(c) f(1) =
( ∫ 1

0
(1− t)y−1 dt

)
Γ(y + 1) = 1

yΓ(y + 1) = Γ(y).

B11. From B9(c), we get B(1/2, 1/2) = 2
∫ π/2

0
1 dθ = π.

Hence,
Γ(1/2)2

Γ(1)
= π, and Γ(1/2) =

√
π.



8 | Taylor and Fourier Series

8.1 Power Series

Task 8.1.11. arctanx =

∫ x

0

1

1 + t2
dt =

∫ x

0

∞∑
n=0

(−1)nt2n dt

=

∞∑
n=0

(−1)n

2n+ 1
x2n+1 = x− x3

3
+
x5

5
−+ · · · .

Task 8.1.13. Apply Abel's theorem to the Maclaurin series of arctanx. At

x = 1 it becomes

∞∑
n=0

(−1)n

2n+ 1
, hence is convergent. Left continuity of the series

and of arctanx at x = 1 gives

π

4
= arctan(1) =

∞∑
n=0

(−1)n

2n+ 1
.

Exercises for �8.1

2.

∞∑
n=1

xn

n2
.

4.

(a)
1

1− x
=

1

−2− (x− 3)
= −1

2
· 1

1 +
(
x−3
2

) . Now |x− 3| < 2 gives

1

1− x
= −1

2

∞∑
n=0

(−1)n
(x− 3

2

)n

.

(b) ex = e3ex−3 = e3
∞∑

n=0

(x− 3)n

n!
.

6. The problem statement should have had e = q/p, so that 1/e = p/q. We
know that 2 < e < 3, hence q > 3.

(a) q!(
1

e
−s) = q!

(p
q
−

q∑
n=2

(−1)n

n!

)
= (q−1)!p−

q∑
n=2

(−1)nq(q−1) · · · (n+1).

81
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(b) We apply Theorem 7.4.1(b):

|q!r| = q!
∣∣∣1
e
− s

∣∣∣ = q!
∣∣∣1
e
−

q∑
n=2

(−1)n

n!

∣∣∣ ≤ q!

(q + 1)!
=

1

q + 1
.

Further,

|q!r| = q!
∣∣∣1
e
− s

∣∣∣ ≥ q!
∣∣∣ q+2∑
n=2

(−1)n

n!
−

q∑
n=2

(−1)n

n!

∣∣∣ = 1

q + 2
.

The contradiction is that (a) makes q!|r| an integer, while (b) puts it in (0, 1).

8. The series 1− x+ x2 − x3 · · · equals 1

1 + x
on (−1, 1). Hence its left-hand

limit at 1 is 1/2. But it diverges at 1.

8.2 Taylor Series

Task 8.2.2. If r = n ∈ W then
(
r
k

)
= 0 for every k > n.

Conversely,
(
r
n

)
= 0 implies r ∈ {0, 1, . . . , n− 1}.

Task 8.2.4. We can follow the steps of Example 8.2.3. Alternately, we can
combine the result of Example 8.2.3 with term-by-term di�erentiation.

Task 8.2.5. |Rn(x)| =
∣∣∣f (n+1)(ξn)

(n+ 1)!
(x− c)n+1

∣∣∣ ≤ |M(x− c)|n+1

(n+ 1)!
→ 0.

Task 8.2.8. Let the Maclaurin series of secx be b0 + b1x+ b2x
2 + · · · . Then

b0 =
1

a0
= 1, b1 = − 1

a0
a1b0 = 0,

b2 = − 1

a0
(a1b1 + a2b0) = −1 · (0− 1

2
· 1) = 1

2
, etc.

Exercises for �8.2

2.

(a) Apply the ratio test.

(b) Use term-by-term di�erentiation.

4.

(a) We have (sin−1)′(x) =
1√

1− x2
= (1−x2)−1/2 =

∞∑
n=0

(
−1/2

n

)
(−1)nx2n.

Therefore, sin−1 x = sin−1 0+

∫ x

0

(sin−1)′(t) dt =

∞∑
n=0

(−1)n
(
−1/2

n

)
x2n+1

2n+ 1
.

(b) We have (sinh−1)′(x) =
1√

1 + x2
=

∞∑
n=0

(
−1/2

n

)
x2n.
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Therefore, sinh−1 x = sinh−1 0+

∫ x

0

(sinh−1)′(t) dt =

∞∑
n=0

(
−1/2

n

)
x2n+1

2n+ 1
.

6.

(a) The Maclaurin series of the numerator is 1
4x

5 + 13
120x

7 + · · · . Hence,

lim
x→0

2(tanx− sinx)− x3

x5
= lim

x→0

(1
4
+

13

120
x2 + · · ·

)
=

1

4
.

(b) The Maclaurin series of the numerator and denominator give:

lim
x→0

sinh(x2)− x2

(sinx− x)2
= lim

x→0

x6/6 + x10/120 + · · ·
x6/36− x8/360 + · · ·

= lim
x→0

1/6 + x4/120 + · · ·
1/36− x2/360 + · · ·

= 6.

(c) lim
x→0

log(1 + x+ x2) + log(1− x+ x2)

x(ex − 1)
= lim

x→0

x2 + x4/2 + · · ·
x2 + x3/2 + · · ·

= lim
x→0

1 + x2/2 + · · ·
1 + x/2 + · · ·

= 1.

(d) lim
x→∞

(
x− x2 log

(
1 +

1

x

))
= lim

x→0

x− log(1 + x)

x2

= lim
x→0

(1
2
− x

3
+ · · ·

)
=

1

2
.

8.3 Fourier Series

Task 8.3.4. Use the following:∫ π

−π

cosmx cosnx dx =
1

2

∫ π

−π

(cos(m− n)x+ cos(m+ n)x) dx∫ π

−π

sinmx sinnx dx =
1

2

∫ π

−π

(cos(m− n)x− cos(m+ n)x) dx

Task 8.3.7. Put x = π/4 in the Fourier series of the square wave function.

Task 8.3.8.

Assume 0 < a < π. Then,

a0 = 0,

an =
1

π

∫ a−π

−π

cosnx dx− 1

π

∫ a

a−π

cosnx dx+

∫ π

a

cosnx dx

=
2

nπ

(
sinn(a− π)− sinna

)
=

2

nπ
((−1)n − 1) sinna,

bn =
1

π

∫ a−π

−π

sinnx dx− 1

π

∫ a

a−π

sinnx dx+

∫ π

a

sinnx dx

= − 2

nπ

(
cosn(a− π)− cosna

)
= − 2

nπ
((−1)n − 1) cosna
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Therefore,

an =


0 if n is even

− 4

nπ
sinna if n is odd

, bn =


0 if n is even

4

nπ
cosna if n is odd

.

The value of the Fourier series at x = 1 is

4

π

(
−

∑
n odd

1

n
sinna cosna+

∑
n odd

1

n
cosna sinna

)
= 0.

Task 8.3.9.

2 sin θ/2 ·
(1
2
+

m∑
n=1

cosnθ
)
= sin θ/2 +

m∑
n=1

2 cosnθ sin θ/2

= sin θ/2 +

m∑
n=1

(
sin(n+ 1

2 )θ − sin(n− 1
2 )θ

)
= sin(m+ 1

2 )θ.

When θ = 2nπ, the right hand side is unde�ned, while the left hand side has
value m + 1/2. Since these are the only points of disagreement, it follows that
the right hand side has limit m+1/2 at these points. This is the sense in which
the equality extends to all points.

Task 8.3.13. Put x = 0 in the Fourier series of Example 8.3.12.

Task 8.3.14.

(a) ⟨f, f⟩ = 1
π

∫ π

−π
f(x)2 dx ≥ 1

π

∫ π

−π
0 dx = 0.

(b) Obvious.

(c) Apply the homogeneity property of integration.

(d) Apply the additivity property of integration.

(e) ||f + g||2 = ⟨f + g, f + g⟩ = ⟨f, f⟩+ ⟨f, g⟩+ ⟨g, f⟩+ ⟨g, g⟩ = ||f ||2+ ||g||2.

Task 8.3.16. Bessel's inequality shows that the series
∑
a2n and

∑
b2n con-

verge. Hence an, bn → 0.

Exercises for �8.3

2. Recall that if g has period 2π then
∫ π

−π
g(x) dx =

∫ T+2π

T
g(x) dx for any T .

a′0 =
1

π

∫ π

−π

f(x− a) dx =
1

π

∫ π−a

−π−a

f(x) dx =
1

π

∫ π

−π

f(x) dx = a0,

a′n =
1

π

∫ π

−π

f(x− a) cosnx dx =
1

π

∫ π−a

−π−a

f(x) cosn(x+ a) dx

=
1

π

∫ π

−π

f(x)(cosnx cosna− sinnx sinna) dx

= an cosna− bn sinna.
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The b′n calculation is similar.

4. Apply Exercise 10 of �3.4.

6. Using the hint, we have

π4

90
= 1 +

1

24
+

1

34
+ · · · =

(
1 +

1

34
+

1

54
+ · · ·

)
+
( 1

24
+

1

44
+

1

64
· · ·

)
=

(
1 +

1

34
+

1

54
+ · · ·

)
+

1

24
· π

4

90

8. The series should have been given as

∞∑
n=1

sinnx√
n

. To establish the conver-

gence, we apply Dirichlet's test (Exercise 10 of �7.4), noting that:

� 1/
√
n is a decreasing sequence with limit 0.

� The partial sums
∑m

k=1 sinnx are bounded for �xed x, since:

x = 2kπ =⇒
m∑

k=1

sinnx = 0

x ̸= 2kπ =⇒
∣∣∣ m∑
k=1

sinnx
∣∣∣ = ∣∣∣cosx/2− cos(m+ 1

2 )x

2 sinx/2

∣∣∣ ≤ 1

| sinx/2|

However, the series cannot be the Fourier series of an integrable function as it
violates Bessel's inequality.

Remark: Can you see why

∞∑
n=1

cosnx√
n

should be replaced by

∞∑
n=1

sinnx√
n

?

8.4 Complex Series

Task 8.4.1. Apply mathematical induction:

zn+1 = znz = |z|n(cosnθ + i sinnθ)|z|(cos θ + i sin θ)

= |z|n+1(cos(nθ + θ) + i sin(nθ + θ))

Task 8.4.2. 1 + i =
√
2(cos π

4 + i sin π
4 ) =⇒ (1 + i)1000 = 2500(cos 250π +

i sin 250π) = 2500.

Task 8.4.3. wn = 1 =⇒ 1−wn = 0 =⇒ (1−w)(1+w+w2+· · ·+wn−1) = 0.

Task 8.4.5.

(a) Use |zn − 0| = ||zn| − 0|.
(b) Use |zn − L| = |(zn − L)− 0|.
(c) Use ||zn| − |L|| ≤ |zn − L|.

Task 8.4.9. Use zn =
∑n

k=1 zk −
∑n−1

k=1 zk.

Task 8.4.10. Mimic the proof of Theorem 7.3.6.
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Task 8.4.11. Apply Theorem 8.4.6 to the partial sums of these series.

Task 8.4.13. Let zn = xn + iyn. Then |xn|, |yn| ≤ |zn|. If
∑

|zn| converges,
so do

∑
|xn| and

∑
|yn|, hence also

∑
xn and

∑
yn. Now apply Task 8.4.11.

Task 8.4.14. Apply the rearrangement theorem for real series to the real and
imaginary parts.

Task 8.4.19. Same calculations as in the real case.

Task 8.4.21. Apply Theorem 8.4.20.

Task 8.4.22. eiθeiϕ = (cos θ+i sin θ)(cosϕ+i sinϕ) = cos(θ+ϕ)+i sin(θ+ϕ) =
ei(θ+ϕ).

Task 8.4.24.

(a) Theorem 8.4.23 gives eze−z = ez−z = e0 = 1. This shows (ez)−1 = e−z

as well as ez ̸= 0.

(b) Any z can be expressed as |z|eiθ. Since |z| > 0, we have r ∈ R such that
er = |z|. Then z = er+iθ.

(c) Let z = x + iy. Then ez = ex cos y + iex sin y. Therefore, ez = 1 ⇐⇒
ex cos y = 1 and ex sin y = 0 ⇐⇒ y ∈ 2πZ and x = 0.

Task 8.4.26.

||f + g||2 =
1

2π

∫ π

−π

(f(x) + g(x))(f(x) + g(x)) dx

=
1

2π

∫ π

−π

(
f(x)f(x) + f(x)g(x) + g(x)f(x) + g(x)g(x)

)
dx

= ||f ||2 + ⟨f, g⟩+ ⟨f, g⟩+ ||g||2 = ||f ||2 + ||g||2.

Task 8.4.27. Example 8.4.25 shows that ⟨ek, en⟩ = 1 if k = n, and is

zero otherwise. Let fm(x) =
∑m

n=−m f̂(n)einx. For −m ≤ n ≤ m, we have

⟨f − fm, en⟩ = ⟨f, en⟩ − ⟨fm, en⟩ = f̂(n) − f̂(n) = 0. Hence, ⟨f − fm, fm⟩ = 0.
This implies

m∑
n=−m

|f̂(n)|2 = ||fm||2 ≤ ||f − fm||2 + ||fm||2 = ||f ||2.

Bessel's inequality follows by letting m→ ∞.

Exercises for �8.4

2. The correct statement is |z + w|2 + |z − w|2 = 2(|z|2 + |w|2). The proof is:

|z + w|2 + |z − w|2 = (z + w)(z + w) + (z − w)(z − w)

= |z|2 + zw + wz + |w|2 + |z|2 − zw − wz + |w|2

= 2|z|2 + 2|w|2.



8.4 Complex Series 87

4.

n∑
k=1

eikx = eix
einx − 1

eix − 1
= ei(n+1)x/2 e

inx/2 − e−inx/2

eix/2 − e−ix/2

= (cos(n+ 1)x/2 + i sin(n+ 1)x/2)
sin(nx/2)

sin(x/2)
.

Now match the real and imaginary parts:

(a)

n∑
k=1

cos(kx) =
cos(n+ 1)x/2 sin(nx/2)

sin(x/2)
=

sin(n+ 1/2)x− sin(x/2)

2 sin(x/2)
.

(b)

n∑
k=1

sin(kx) =
sin(n+ 1)x/2 sin(nx/2)

sin(x/2)
=

cos(x/2)− cos(n+ 1/2)x

2 sin(x/2)
.

6.
1

(1− z)2
=

1

((1− i)− (z − i))2
=

1

(1− i)2

∞∑
n=0

n+ 1

(1− i)n
(z − i)n.

The radius of convergence is R = lim
n→∞

|1− i|
(n+ 1)1/n

=
√
2. So the series

converges on the open disc { z | |z − i| <
√
2 }, and diverges when |z− i| >

√
2.

It diverges on the circle |z − i| =
√
2, since

∣∣ n+ 1

(1− i)n
(z − i)n

∣∣ = ∣∣ n+ 1

(1− i)n

√
2
n∣∣ = |n+ 1| ̸→ 0.

8.

(a) The points eiy, y ∈ Z, are densely distributed on the unit circle. Mul-
tiplying by ex gives rays from the origin through these points. The set
can't be completely drawn but a reasonable impression can be given as
follows:

(b) The points eiy form the unit circle. Scaling by ex, x ∈ Z, creates con-
centric circles:
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(c) A spiral:

(d) z = π
2 e

iθ =⇒ ez = e(π/2) cos θei(π/2) sin θ. The values ei(π/2) sin θ twice
traverse a semicircle (shown as a dashed curve below). The scaling by
e(π/2) cos θ a�ects each location twice, once pulling it towards the origin,
and once pushing it out. This creates the following heart-shaped curve.

10. Follows directly from the de�nitions.

Thematic Exercises

Uniform Convergence

A1.

(a) Obvious.

(b) Obvious.

(c) ||cf || = sup{ |cf(x)| | x ∈ A } = sup{ |c| |f(x)| | x ∈ A }
= |c| sup{ |f(x)| | x ∈ A } = |c| ||f ||.

(d) For any x ∈ A, |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ||f ||+ ||g||.

A2. Apply A1.

A3.

(a) 0 ≤ |fn(x)− f(x)| ≤ ||fn − f || → 0.

(b) Let fn(x) = xn on [0, 1]. Then fn
pw−−→ f , where f(x) =

{
1 if x = 1
0 else

.

And, ||fn − f || ≥ |fn(1− 1
n )− f(1− 1

n )| = (1− 1
n )

n → 1

e
> 0.

A4. We have N such that n ≥ N =⇒ ||fn − f || < 1. De�ne

M = max
{
||f1||, ||f2||, . . . , ||fN−1||, ||f ||+ 1

}
.
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A5.

(a) Follows from the uniform convergence of fn to f .

(b) Let n ≥ N . We have fn(x)− ε
b−a ≤ f(x) ≤ fn(x)+

ε
b−a . Let P be a parti-

tion with points {x0, x1, . . . , xn}. De�ne mi = inf{ f(x) | x ∈ [xi−1, xi] },
Mi = sup{ f(x) | x ∈ [xi−1, xi] },
m′

i = inf{ fn(x) | x ∈ [xi−1, xi] },
M ′

i = inf{ fn(x) | x ∈ [xi−1, xi] }.
We have m′

i − ε
b−a ≤ mi ≤Mi ≤M ′

i +
ε

b−a . Let △xi = xi − xi−1. Then

n∑
i=1

m′
i△xi − ε ≤

n∑
i=1

mi△xi ≤
n∑

i=1

Mi△xi ≤
n∑

i=1

M ′
i△xi + ε.

(c) ChooseN as in (a). Choose a partition P such that U(fN , P )−L(fN , P ) <
ε. Then (b) gives U(f, P )− L(f, P ) < 3ε. Hence f is integrable. And,∣∣∣ ∫ b

a

fn −
∫ b

a

f
∣∣∣ ≤ ∫ b

a

|fn − f | ≤ ||fn − f ||(b− a) → 0.

A6.

(a) Follows from the uniform convergence of fn to f .

(b) Follows from the continuity of fN at x.

(c) |f(x)− f(y)| ≤ |f(x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f(y)| < ε.

A7.

(a) Apply A5 to the sequence of partial sums.

(b) Apply A6 to the sequence of partial sums.

A8.

(a) Use |fn(x)| ≤ ||fn|| ≤Mn.

(b)
∣∣∣f(x)− m∑

n=1

fn(x)
∣∣∣ = ∣∣∣ ∞∑

n=m+1

fn(x)
∣∣∣ ≤ ∞∑

n=m+1

|fn(x)| ≤
∞∑

n=m+1

Mn. Hence,∥∥∥f −
m∑

n=1

fn

∥∥∥ ≤
∞∑

n=m+1

Mn → 0 as m→ ∞.

A9. Apply the Weierstrass M-test.

A10.

(a) Apply A9. (The hint is not needed.)

(b) Apply A9. (This observation is interesting because, in general, the be-
haviour at the endpoints of the interval of convergence can be di�erent.
But now we see that absolute convergence at one yields absolute conver-
gence at the other.)
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A11.

(a) Since f ′ is continuous, it is integrable. By Exercise 3 of �8.3, the Fourier
coe�cients of f ′ are nan and nbn. By Bessel's inequality,

∑
n2a2n and∑

n2b2n converge.

(b) If |an| > 1/n then n|an|2 > |an|. Hence |an| ≤ max{ 1
n2 , n

2a2n}. The
convergence of

∑
1/n2 and

∑
n2a2n therefore gives the convergence of∑

|an|.
(c) Use |an cosnx| ≤ |an| and |bn cosnx| ≤ |bn|.

Irrationality of Some Numbers

B1. Suppose that r = p/q with p ∈ Z and q ∈ N. Then qnp− pnq ̸= 0 and
qnp− pnq → 0. But this is impossible, since the qnp− pnq are integers.

B2. Integration by parts.

B3. Proof by induction, using B2.

B4.

(a) 0 ≤ x ≤ a =⇒ 0 ≤ a− x ≤ a =⇒ 0 ≤ xn(a− x)n

n!
≤ a2n

n!
.

(b) From (a) we see that e−xfn(x) converges uniformly to 0 on [0, a]. Apply
Exercise A5 of this chapter.

B5. We shall give the proof for x = 0. Since a ∈ N, we have (a − x)n =∑n
j=0 cjx

j with cj ∈ Z. Hence, fn(x) =
∑n

j=0
cj
n!x

j+n. By considering the
Taylor coe�cients of fn(x) we obtain

f (k)n (0) =

 0 if k < n or k > 2n
ck−n

n!
k! if n ≤ k ≤ 2n

.

B6. Let a ∈ N. Then B3, B4, B5 give sequences pn, qn of integers such that
qne

−a − pn ̸= 0 and qne
−a − pn → 0. By B1, e−a is irrational. Hence ea is also

irrational. So ea is irrational for every non-zero integer.

Let r = p/q with p, q ∈ Z. If er is rational, so is (er)q = ep, a contradiction.

B7. If log r is rational then r = elog r is irrational.



Errata

Chapter 2

�2.2, Exercise 14(b) The hint that this case can be covered by considering
shifts, is not helpful. An alternate approach has beeen provided.

Chapter 5

�5.4, Exercise 6: The given substitution should have been t = tan(x/2).

Exercise A3 The initial conditions should have been f(0) = B and f ′(0) = A.

Chapter 6

�6.3, Exercise 2: There is an error in the problem statement. The equality to
be proved is T∫ f,n(x) =

∫ x

a
Tf,n−1(t) dt.

�6.4, Exercise 6: The problem statement should have S(f, Pn) instead of
L(f, Pn). The given inequalities also need slight corrections, which have been
provided in the solution.

�6.5, Task 6.5.5: The last two requirements need to be corrected to q′(a) = y′a
and q′(b) = y′b.

Chapter 7

Exercise B5 The problem statement should have the additional condition a >
0.

Chapter 8

�8.1, Exercise 6: The problem statement should have e = q/p (instead of
e = p/q).

�8.3, Exercise 8: The given series should be

∞∑
n=1

sinnx√
n

(instead of

∞∑
n=1

cosnx√
n

).

�8.4, Exercise 2: The correct statement of the parallelogram identity is |z +
w|2 + |z − w|2 = 2(|z|2 + |w|2).
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