
MO D E R N C O D I N G T H E O R Y – F I G U R E S





Modern Coding¿eory –
Figures

B Y

T . R I C H A R D S O N A N D R . U R B A N K E

Cambridge University Press



Modern Coding¿eory – Figures

Copyright ©2008 by T. Richardson and R. Urbanke

All rights reserved

Library of Congress Catalog Card Number: 00–00000

isbn 0-000-00000-0



L I S T O F F I G U R E S

0.1 Basic point-to-point communications problem. . . . . . . . . . . . . . . 1
0.2 Basic point-to-point communications problem in view of the source-

channel separation theorem. . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 BSC(є). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Upper and lower bound on δ�(r). . . . . . . . . . . . . . . . . . . . . . . 4
0.5 Transmission over the BSC(є). . . . . . . . . . . . . . . . . . . . . . . . . 5
0.6 Error exponent of block codes (solid line) and of convolutional codes

(dashed line) for the BSC(є � 0.11). . . . . . . . . . . . . . . . . . . . . . 6
0.7 Venn diagram representation of C. . . . . . . . . . . . . . . . . . . . . . 7
0.8 Encoding corresponding to (x1,x2,x3,x4) = (0,1,0,1). ¿e number

of ones contained in each circle must be even. By applying one such
constraint at a time the initially unknown components x5, x6, and x7
can be determined. ¿e resulting codeword is (x1,x2,x3,x4,x5,x6,x7) =
(0,1,0,1,0,1,0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.9 Decoding corresponding to the receivedmessage (0, ?, ?,1,0, ?,0). First
we recover x2 = 1 using the constraint implied by the top circle. Next
we determine x3 = 0 by resolving the constraint given by the le circle.
Finally, using the last constraint, we recover x6 = 1. . . . . . . . . . . . . 9

0.10 Decoding corresponding to the received message (?, ?,0, ?,0,1,0). ¿e
local decoding fails since none of the three parity-check equations by
themselves can resolve any ambiguity. . . . . . . . . . . . . . . . . . . . . 10

0.11 ELDPC�nx3, n2 x6� [P
BP
B (G,є)] as a function of є for n = 2i, i > [10]. . . . . . 11

0.12 Le : Factor graph of f given in Example 2.2. Right: Factor graph for
the code membership function de�ned in Example 2.5. . . . . . . . . . . 12

0.13 Generic factorization and the particular instance. . . . . . . . . . . . . . 13
0.14 Generic factorization of gk and the particular instance. . . . . . . . . . . 14
0.15 Marginalization of function f from Example 2.2 via message passing.

Message passing starts at the leaf nodes. A node that has received mes-
sages from all its children processes the messages and forwards the re-
sult to its parent node. Bold edges indicate edges along which messages
have already been sent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

0.16 Message-passing rules. ¿e top row shows the initialization of the mes-
sages at the leaf nodes. ¿e middle row corresponds to the processing
rules at the variable and function nodes, respectively. ¿e bottom row
explains the �nalmarginalization step.xind]message-passing!rulesxind]belief
propagation!rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



vi list of figures

0.17 Factor graph for the MAP decoding of our running example. . . . . . . 17
0.18 Le : Standard FG in which each variable node has degree at most 2.

Right: Equivalent FSFG. ¿e variables in the FSFG are associated with
the edges in the FG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

0.19 Representation of a variable node of degree K as an FG (le ) and the
equivalent representation as an FSFG (right). . . . . . . . . . . . . . . . 19

0.20 Standard FG and the corresponding FSFG for theMAP decoding prob-
lem of our running example. . . . . . . . . . . . . . . . . . . . . . . . . . 20

0.21 Le : Mapping z = m(x, y). Right: Quantizer y = q(x). . . . . . . . . . . 21
0.22 Binary erasure channel with parameter є. . . . . . . . . . . . . . . . . . . 22
0.23 For є B δ, the BEC(δ) is degraded with respect to the BEC(є). . . . . . 23
0.24 Le : Tanner graph of H given in (3.9). Right: Tanner graph of [7,4,3]

Hamming code xind]code!Hamming corresponding to the parity-check
matrix on page 15. ¿is graph is discussed in Example 3.11. . . . . . . . . 24

0.25 Function Ψ(y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
0.26 Message-passing decoding of the [7,4,3]Hamming code xind]code!Hamming

with the received word y = (0, ?, ?,1,0, ?,0). ¿e vector x̂ denotes the
current estimate of the transmitted word x. A 0 message is indicated
as thin line, a 1 message is indicated as thick line, and a ? message is
drawn as dashed line. ¿e four rows correspond to iterations 0 to 3.
A er the �rst iteration we recover x2 = 1, a er the second x3 = 0,
and a er the third we know that x6 = 1. ¿e recovered codeword is
x = (0,1,0,1,0,1,0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

0.27 Bit erasure probability of 10 randomsamples fromLDPC �512x3,256x6� ;
LDPC �512,x2,x5�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

0.28 Computation graph of height 2 (two iterations) for bit x1 and the code
C(H) for H given in (3.9). ¿e computation graph of height 2 (two
iterations) for edge e is the subtree consisting of edge e, variable node
x1, and the two subtrees rooted in check nodes c5 and c9. . . . . . . . . 28

0.29 Elements of C̊1(n, λ(x) = x, ρ(x) = x2) together with their proba-
bilities P�T > C̊1(n,x,x2)� and the conditional probability of error,
PBP
b (T,є). ¿ick lines indicate double edges. . . . . . . . . . . . . . . . . 29

0.30 Examples of basic trees, L(5) and R(7). . . . . . . . . . . . . . . . . . . . 30
0.31 Twelve elements of T̊1(λ, ρ) together with their probabilities. . . . . . . 31
0.32 Le : Element of C1(T) for a given tree T > T2. Right: Minimal such

element, i.e., an element of C1
min(T). Every check node has either no

connected variables of value 1 or exactly two such neighbors. Black and
gray circles indicate variables with associated values of 1 or 0, respectively. 32



list of figures vii

0.33 Le : Graphical determination of the threshold for (λ, ρ) = (x2,x5).
¿ere is one critical point, xBP � 0.2606 (black dot). xind]binary era-
sure channel!critical point Right: Graphical determination of the thresh-
old for optimized degree distribution described in Example 3.63. ¿ere
are two critical points, xBP1,2 � 0.1493,0.3571 (two black dots). . . . . . . 33

0.34 Le : Graphical determination of the threshold for (λ(x) = x2, ρ(x) =
x5). ¿e function v−1є (x) = (x~є)1~2 is shown as a dashed line for є =
0.35, є = єBP � 0.42944, and є = 0.5. ¿e function c(x) = 1 − (1 −
x)5 is shown as a solid line. Right: Evolution of the decoding process
for є = 0.35. ¿e initial fraction of erasure messages emitted by the
variable nodes is x = 0.35. A er half an iteration (at the output of the
check nodes) this fraction has evolved to c(x = 0.35) � 0.88397. A er
one full iteration, i.e., at the output of the variable nodes, we see an
erasure fraction of x = vє(0.88397), i.e., x is the solution to the equation
0.883971 = v−1є (x). ¿is process continues in the same fashion for each
subsequent iteration, corresponding graphically to a staircase function
which is bounded below by c(x) and bounded above by v−1є (x). . . . . 34

0.35 EXIT function of the [3,1,3] repetition code, the [6,5,2] parity-check
code, and the [7,4,3]Hamming code. xind]code!Hamming . . . . . . 35

0.36 ELDPC(n,x2,x5) [PBP
b (G,є, ℓ =ª)] as a function of є forn = 2i, i = 6, . . . ,20.

Also shown is the limitELDPC(ª,x2,x5) [PBP
b (G,є, ℓ�ª)], which is dis-

cussed in Problem 3.17 (thick curve). . . . . . . . . . . . . . . . . . . . . 36

0.37 Peeling decoder applied to the [7,4,3] Hamming code with the re-
ceived word y = (0, ?, ?,1,0, ?,0). ¿e vector x̂ indicates the current
estimate of the decoder of the transmitted codeword x. A er three de-
coding steps the peeling decoder has successfully recovered the code-
word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

0.38 Evolution of the residual degrees Rj(y), j = 0, . . . ,6, as a function of
the parameter y for the (3,6)-regular degree distribution. ¿e channel
parameter is є = єBP � 0.4294. ¿e curve corresponding to nodes of
degree 1 is shown as a thick line. . . . . . . . . . . . . . . . . . . . . . . . 38

0.39 Le : BP EXIT function hBP(є); Right: Corresponding EXIT function
h(є) constructed according to¿eorem 3.120. . . . . . . . . . . . . . . . 39

0.40 Le : EBP EXIT curve of the (l = 3,r = 6)-regular ensemble. Note that
the curve goes “outside the box” and tends to in�nity. Right: According
to Lemma 3.128 the gray area is equal to 1 − r(l,r) = l

r
=

1
2 . . . . . . . . 40



viii list of figures

0.41 Le : Because of¿eorem 3.120 and Lemma 3.128, at theMAP threshold
єMAP the two dark gray areas are in balance. Middle: ¿e dark gray area
is proportional to the total number of variables which the M decoder
introduces. Right: ¿e dark gray area is proportional to the total num-
ber of equations which are produced during the decoding process and
which are used to resolve variables. . . . . . . . . . . . . . . . . . . . . . 41

0.42 M decoder applied to a (l = 3,r = 6)-regular code of length n = 30. . . 42

0.43 Comparison of the number of unresolved variables for theMaxwell de-
coder applied to the LDPC �n,xl−1,xr−1� ensembles as predicted by
Lemma 3.134 with samples for n = 10,000. ¿e asymptotic curves are
shown as solid lines, whereas the sample values are printed as dashed
lines. ¿e parameters are є = 0.50 (le ), є = єMAP

� 0.48815 (mid-
dle), and є = 0.46 (right). ¿e parameter є = 0.46 is not covered by
Lemma 3.134. Nevertheless, up to the point where the predicted curve
dips below zero the experimental data agrees well. . . . . . . . . . . . . 43

0.44 ¿e subset of variable nodes S = �7,11,16� is a stopping set. . . . . . . 44

0.45 ELDPC�nx3, n2 x6� [P
BP
B (G,є)] as a function of є for n = 2i, i > [10]. . . . . . 45

0.46 P(χ = 0, smin,є) for the ensemble LDPC �nx3, n2 x6�, where n = 500,1000,2000.
¿e dashed curves correspond to the case smin = 1, whereas the solid
curves correspond to the case where smin was chosen to be 12, 22, and
40, respectively. In each of these cases the expected number of ss of size
smaller than smin is less than 1. . . . . . . . . . . . . . . . . . . . . . . . . 46

0.47 P(χ = 1, smin = 12, ℓ,є) for the ensemble LDPC �500x3,250x6� and
the �rst 10 iterations (solid curves). Also shown are the correspond-
ing curves of the asymptotic density evolution for the �rst 10 iterations
(dashed curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

0.48 Probability distribution of the iterationnumber for the LDPC �nx3, n2 x6�
ensemble, lengths n = 400 (top curve), 600 (middle curve), and 800
(bottom curve) and є = 0.3. ¿e typical number of iterations is around
5, but, e.g., for n = 400, 50 iterations are required with a probability of
roughly 10−10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

0.49 Derivation of the recursion forA(v, t, s) for LDPC �Λ(x) = nxl,P(x) = nl
r
xr�

and an unbounded number of iterations. . . . . . . . . . . . . . . . . . . 49



list of figures ix

0.50 Scaling of ELDPC(n,x2,x5)[PB(G,є)] for transmission over the BEC(є)
and BP decoding. ¿e threshold for this combination is єBP � 0.4294.
¿e blocklengths/expurgation parameters are n~s = 1024~24, 2048~43,
4096~82, and 8192~147, respectively. ¿e solid curves represent the
exact ensemble averages. ¿e dotted curves are computed according
to the basic scaling law stated in ¿eorem 3.151. ¿e dashed curves
are computed according to the re�ned scaling law stated in Conjec-
ture 3.152. ¿e scaling parameters are α = 0.56036 and β~Ω = 0.6169;
see Table 3.154. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

0.51 Scaling ofELDPC�n,λ= 1
6 x+

5
6 x

3,ρ=x5�[PB(G,є)] for transmission over BEC(є)
and BP decoding. ¿e threshold for this combination is єBP � 0.482803.
¿e blocklengths/expurgation parameters are n~s = 350~14, 700~23,
and 1225~35. ¿e solid curves represent the simulated ensemble aver-
ages. ¿e dashed curves are computed according to the re�ned scaling
law stated in Conjecture 3.152 with scaling parameters α = 0.5791 and
β~Ω = 0.6887. ¿e two curves are almost on top of each other and are
hard to distinguish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

0.52 Evolution of n(1 − r)R1 as a function of the size of the residual graph
for several instances for the ensemble LDPC �n, λ(x) = x2, ρ(x) = x5�
for n = 2048 (le ) and n = 8192 (right). ¿e transmission is over the
BEC(є = 0.415). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

0.53 Growth rateG(ω) for the (3,6) (dashed line) as well as the (2,4) (solid
line) ensemble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

0.54 BAWGNC(σ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

0.55 ln coth S x S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

0.56 ¿e L-density aBAWGNC(σ)(y), the D-density aBAWGNC(σ)(y), as well as
the corresponding G-density aBAWGNC(σ)(�1, y) for σ = 5~4. . . . . . . 56

0.57 Le : Capacity of the BAWGNC (solid line) and the AWGNC (dashed
line) in bits per channel use as a function of EN~σ2. Also shown are the
asymptotic expansions (dotted) for large and small values of EN

σ2 dis-
cussed in Problem 4.12. Right: ¿e achievable (white) region for the
BAWGNC and r = 1

2 as a function of (Eb~N0)dB. . . . . . . . . . . . . . 57

0.58 Comparison of the kernels SdSaBEC(h)(ċ) (dashed line) with SdSaBSC(h)(ċ)
(dotted line) and SdSaBAWGNC(h)(ċ) (solid line) at channel entropy h = 0.1
(le ), h = 0.5 (middle), and h = 0.9 (right). . . . . . . . . . . . . . . . . . 58



x list of figures

0.59 Performance of Gallager’s algorithm A for the (3,6)-regular ensem-
ble when transmission takes place over the BSC. ¿e blocklengths are
n = 2i, i = 10, . . . ,20. ¿e le -hand graph shows the block error prob-
ability, whereas the right-hand graph concerns the bit error probabil-
ity. ¿e dots correspond to simulations. For most simulation points
the 95% con�dence intervals (see Problem 4.37) xind]con�dence inter-
val are smaller than the dot size. ¿e lines correspond to the analytic
approximation of the waterfall curves based on scaling laws (see Sec-
tion 4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

0.60 Performance of the decoder with erasures for the (3,6)-regular ensem-
ble when transmission takes place over the BSC. ¿e blocklengths are
n = 2i, i = 10, . . . ,20. ¿e le -hand graph shows the block error prob-
ability, whereas the right-hand graph concerns the bit error probability.
¿e dots correspond to simulations. ¿e lines correspond to the ana-
lytic approximation of the waterfall curves based on scaling laws (see
Section 4.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

0.61 Performance of the BP decoder for the (3,6)-regular ensemble when
transmission takes place over the BSC. ¿e blocklengths are n = 2i,
i = 10, . . . ,20. ¿e le -hand graph shows the block error probability,
whereas the right-hand graph concerns the bit error probability. ¿e
dots correspond to simulations. ¿e lines correspond to the analytic
approximation of the waterfall curves based on scaling laws. . . . . . . 61

0.62 Evolution of aℓ (densities of messages emitted by variable nodes) and
bℓ+1 (densities of messages emitted from check nodes) for ℓ = 0, 5, 10,
50, and 140 for the BAWGNC(σ = 0.93) and the code given in Exam-
ple 4.100. ¿e densities “move to the right,” indicating that the error
probability decreases as a function of the number of iterations. . . . . . 62

0.63 Evolution of PGal
ÑTℓ(x2,x5)(є) as a function of ℓ for various values of є. For

є = 0.03875,0.039375,0.0394531, and 0.039462 the error probability
converges to zero, whereas for є = 0.039465,0.0394922,0.0395313, and
0.0396875 the error probability converges to a non-zero value. For є �
0.03946365 the error probability stays constant. We conclude that єGal(3,6) �
0.03946365. Note that for є A єGal(3,6), PGal

ÑTℓ(x2,x5)(є) is an increasing
function of ℓ, whereas below this threshold it is a decreasing function.
In either case, PGal

ÑTℓ(x2,x5)(є) is monotone as guaranteed by Lemma 4.104. 63



list of figures xi

0.64 Evolution of PBP
ÑTℓ(x2,x5)(σ) as a function of the number of iterations ℓ for

various values of σ. For σ = 0.878,0.879.0.8795,0.8798, and 0.88 the
error probability converges to zero, whereas for σ = 0.9,1,1.2, and 2 the
error probability converges to a non-zero value. We see that σBP(3,6) �
0.881. Note that, as predicted by Lemma 4.107, PBP

ÑTℓ(x2,x5)(σ) is a non-
increasing function in ℓ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

0.65 Le : f(є,x) − x as a function of x for the (3,3)-regular ensemble and
є = єGal

� 0.22305. Right: f(є,x) − x as a function of x for the (3,6)-
regular ensemble and є = 0.037, є = єGal

� 0.394, and є = 0.042. . . . . . 65

0.66 Progress per iteration (change of error probability) of density evolu-
tion for the (3,6)-ensemble and the BAWGNC(σ) channel with σ �
0.881 as a function of the bit error probability. In formulae: we plot
E(aℓ) − E(aℓ−1) as a function of Pb = E(aBAWGNC(σ) e L(ρ(aℓ−1))),
where L(x) = x3 and ρ(x) = x5. For cosmetic reasons this discrete
set of points was interpolated to form a smooth curve. ¿e initial error
probability is equal to Q(1~0.881) � 0.12817. At the �xed point the
progress is zero. ¿e associated �xed point densities are a (emitted at
the variable nodes) and b (emitted at the check nodes). . . . . . . . . . . 66

0.67 EXIT function of the [3,1,3] repetition code and the [6,5,2] parity-
check code for the BEC (solid curve), the BSC (dashed curve), and also
the BAWGNC (dotted curve). . . . . . . . . . . . . . . . . . . . . . . . . 67

0.68 EXIT function of the (3,6)-regular ensemble on the BAWGN channel.
In the le -hand graph the parameter is ĥ � 0.3765 (σ � 0.816), whereas
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Figure 0.26: Message-passing decoding of the [7,4,3] Hamming code with the re-
ceived word y = (0, ?, ?,1,0, ?,0). ¿e vector x̂ denotes the current estimate of
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Figure 0.32: Le : Element of C1(T) for a given tree T > T2. Right: Minimal such
element, i.e., an element of C1

min(T). Every check node has either no connected
variables of value 1 or exactly two such neighbors. Black and gray circles indicate
variables with associated values of 1 or 0, respectively.
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Figure 0.34: Le : Graphical determination of the threshold for (λ(x) = x2, ρ(x) =
x5). ¿e function v−1є (x) = (x~є)1~2 is shown as a dashed line for є = 0.35, є = єBP �
0.42944, and є = 0.5. ¿e function c(x) = 1 − (1 − x)5 is shown as a solid line.
Right: Evolution of the decoding process for є = 0.35. ¿e initial fraction of erasure
messages emitted by the variable nodes is x = 0.35. A er half an iteration (at the
output of the check nodes) this fraction has evolved to c(x = 0.35) � 0.88397. A er
one full iteration, i.e., at the output of the variable nodes, we see an erasure fraction
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Figure 0.35: EXIT function of the [3,1,3] repetition code, the [6,5,2] parity-check
code, and the [7,4,3]Hamming code.
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Figure 0.36: ELDPC(n,x2,x5) [PBP
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b (G,є, ℓ�ª)], which is dis-

cussed in Problem 3.17 (thick curve).
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Figure 0.37: Peeling decoder applied to the [7,4,3] Hamming code with the re-
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the decoder of the transmitted codeword x. A er three decoding steps the peeling
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Figure 0.42: M decoder applied to a (l = 3,r = 6)-regular code of length n = 30.
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Figure 0.43: Comparison of the number of unresolved variables for theMaxwell de-
coder applied to the LDPC �n,xl−1,xr−1� ensembles as predicted by Lemma 3.134
with samples for n = 10,000. ¿e asymptotic curves are shown as solid lines,
whereas the sample values are printed as dashed lines. ¿e parameters are є = 0.50
(le ), є = єMAP

� 0.48815 (middle), and є = 0.46 (right). ¿e parameter є = 0.46
is not covered by Lemma 3.134. Nevertheless, up to the point where the predicted
curve dips below zero the experimental data agrees well.



44 list of figures

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

10

9

8

7

6

5

4

3

2

1

Figure 0.44: ¿e subset of variable nodes S = �7,11,16� is a stopping set.



list of figures 45

0.1 0.2 0.3 0.4

10-2

10-1

є

PBP
B

єB
P
�
0.
42
94

Figure 0.45: ELDPC�nx3, n2 x6� [P
BP
B (G,є)] as a function of є for n = 2i, i > [10].



46 list of figures

0.1 0.2 0.3 0.4

10-13
10-11
10-9
10-7
10-5
10-3

є

PIT
B

Figure 0.46: P(χ = 0, smin,є) for the ensemble LDPC �nx3, n2 x6�, where n =
500,1000,2000. ¿e dashed curves correspond to the case smin = 1, whereas the
solid curves correspond to the case where smin was chosen to be 12, 22, and 40, re-
spectively. In each of these cases the expected number of ss of size smaller than smin
is less than 1.
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Figure 0.47: P(χ = 1, smin = 12, ℓ,є) for the ensemble LDPC �500x3,250x6� and
the �rst 10 iterations (solid curves). Also shown are the corresponding curves of
the asymptotic density evolution for the �rst 10 iterations (dashed curves).
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Figure 0.48: Probability distribution of the iteration number for the
LDPC �nx3, n2 x6� ensemble, lengths n = 400 (top curve), 600 (middle curve), and
800 (bottom curve) and є = 0.3. ¿e typical number of iterations is around 5, but,
e.g., for n = 400, 50 iterations are required with a probability of roughly 10−10.
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Figure 0.50: Scaling of ELDPC(n,x2,x5)[PB(G,є)] for transmission over the BEC(є)
and BP decoding. ¿e threshold for this combination is єBP � 0.4294. ¿e
blocklengths/expurgation parameters are n~s = 1024~24, 2048~43, 4096~82, and
8192~147, respectively. ¿e solid curves represent the exact ensemble averages.
¿e dotted curves are computed according to the basic scaling law stated in ¿e-
orem 3.151. ¿e dashed curves are computed according to the re�ned scaling law
stated in Conjecture 3.152. ¿e scaling parameters are α = 0.56036 and β~Ω =
0.6169; see Table 3.154.
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3,ρ=x5�[PB(G,є)] for transmission over
BEC(є) and BP decoding. ¿e threshold for this combination is єBP � 0.482803.
¿e blocklengths/expurgation parameters are n~s = 350~14, 700~23, and 1225~35.
¿e solid curves represent the simulated ensemble averages. ¿e dashed curves are
computed according to the re�ned scaling law stated in Conjecture 3.152 with scal-
ing parameters α = 0.5791 and β~Ω = 0.6887. ¿e two curves are almost on top of
each other and are hard to distinguish.
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Figure 0.52: Evolution of n(1 − r)R1 as a function of the size of the residual graph
for several instances for the ensemble LDPC �n, λ(x) = x2, ρ(x) = x5� for n = 2048
(le ) and n = 8192 (right). ¿e transmission is over the BEC(є = 0.415).
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2 as a function of(Eb~N0)dB.



58 list of figures

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.0

Figure 0.58: Comparison of the kernels SdSaBEC(h)(ċ) (dashed line) with SdSaBSC(h)(ċ)
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Figure 0.59: Performance of Gallager’s algorithm A for the (3,6)-regular ensem-
ble when transmission takes place over the BSC. ¿e blocklengths are n = 2i,
i = 10, . . . ,20. ¿e le -hand graph shows the block error probability, whereas the
right-hand graph concerns the bit error probability. ¿e dots correspond to simula-
tions. For most simulation points the 95% con�dence intervals (see Problem 4.37)
are smaller than the dot size. ¿e lines correspond to the analytic approximation of
the waterfall curves based on scaling laws (see Section 4.13).
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Figure 0.60: Performance of the decoder with erasures for the (3,6)-regular en-
semble when transmission takes place over the BSC. ¿e blocklengths are n = 2i,
i = 10, . . . ,20. ¿e le -hand graph shows the block error probability, whereas the
right-hand graph concerns the bit error probability. ¿e dots correspond to simu-
lations. ¿e lines correspond to the analytic approximation of the waterfall curves
based on scaling laws (see Section 4.13).
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Figure 0.61: Performance of the BP decoder for the (3,6)-regular ensemble when
transmission takes place over the BSC. ¿e blocklengths are n = 2i, i = 10, . . . ,20.
¿e le -hand graph shows the block error probability, whereas the right-hand graph
concerns the bit error probability. ¿e dots correspond to simulations. ¿e lines
correspond to the analytic approximation of the waterfall curves based on scaling
laws.
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Figure 0.62: Evolution of aℓ (densities of messages emitted by variable nodes) and
bℓ+1 (densities of messages emitted from check nodes) for ℓ = 0, 5, 10, 50, and 140
for the BAWGNC(σ = 0.93) and the code given in Example 4.100. ¿e densities
“move to the right,” indicating that the error probability decreases as a function of
the number of iterations.



list of figures 63

0 5 10 15 20 25 30 ℓ

10-4

10-3

10-2

PG
al Ñ T ℓ
(x

2
,x

5 )

є
=
0.03875

є = 0.0396875

Figure 0.63: Evolution of PGal
ÑTℓ(x2,x5)(є) as a function of ℓ for various values of є.

For є = 0.03875,0.039375,0.0394531, and 0.039462 the error probability converges
to zero, whereas for є = 0.039465,0.0394922,0.0395313, and 0.0396875 the error
probability converges to a non-zero value. For є � 0.03946365 the error prob-
ability stays constant. We conclude that єGal(3,6) � 0.03946365. Note that for
є A єGal(3,6), PGal

ÑTℓ(x2,x5)(є) is an increasing function of ℓ, whereas below this thresh-
old it is a decreasing function. In either case, PGal

ÑTℓ(x2,x5)(є) ismonotone as guaranteed
by Lemma 4.104.
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Figure 0.64: Evolution of PBP
ÑTℓ(x2,x5)(σ) as a function of the number of iterations

ℓ for various values of σ. For σ = 0.878,0.879.0.8795,0.8798, and 0.88 the error
probability converges to zero, whereas for σ = 0.9,1,1.2, and 2 the error probability
converges to a non-zero value. We see that σBP(3,6) � 0.881. Note that, as predicted
by Lemma 4.107, PBP

ÑTℓ(x2,x5)(σ) is a non-increasing function in ℓ.
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Figure 0.66: Progress per iteration (change of error probability) of density evolution
for the (3,6)-ensemble and the BAWGNC(σ) channel with σ � 0.881 as a function
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nodes) and b (emitted at the check nodes).
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Figure 0.73: Scaling of ELDPC(n,x2,x5)[PB(G,h)] for transmission over the
BAWGNC(h) and a quantized version of belief propagation decoding implemented
in hardware. ¿e threshold for this combination is (Eb~N0)�dB � 1.19658. ¿e
blocklengths n are n = 1000, 2000, 4000, 8000, 16,000, and 32,000, respectively.
¿e solid curves represent the simulated ensemble averages. ¿e dashed curves are
computed according to the scaling law of Conjecture 4.176 with scaling parameters
α = 0.8694 and β = 5.884. ¿ese parameters were �tted to the empirical data.
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Figure 0.76: Upper bound on λ′(0)ρ′(1), i.e., 1~B, for the KSI case (solid curve),
computed according to (5.1), and for the USI case (dashed curve).
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82 list of figures

G B

g

ḡ
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Figure 0.83: L-densities of density evolution at iteration 1, 2, 4, and 10. ¿e le 
pictures show the densities of the messages which are passed from the code toward
the part of the FSFG which estimates the channel state. ¿e right-hand side shows
the density of the messages which are the estimates of the channel state and which
are passed to the part of the FSFG corresponding to the code.
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Figure 0.84: Two speci�c maps ψ for the 4-PAM constellation.
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Figure 0.85: Transition probabilities pY SX[1]�y S x[1]� for σ � 0.342607 as a function
of x[1] = 0~1 (solid/dashed). ¿e two cases correspond to the two maps ψ shown in
Figure 0.84.
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Figure 0.86: Multilevel decoding scheme. ¿e two decoding parts correspond to the
two parts of (5.25).
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Figure 0.87: BICM decoding scheme. ¿e two decoding parts correspond to
I�X[1];Y� and I�X[2];Y�, respectively.
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and rate one-half de�ned byG = 7~5. ¿e two square boxes are delay elements. ¿e
7 corresponds to 1+D+D2. ¿ese are the coe�cients of the “forward” branch (the
top branch of the �lter) with 1 corresponding to the le most coe�cient. In a similar
manner, 5 corresponds to 1+D2, which represents the coe�cients of the “feedback”
branch. Again, the le most coe�cient corresponds to 1.
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Figure 0.96: BCJR algorithm applied to the code C(G = 7~5,n = 5) assuming
transmission takes place over the BSC(є = 1~4). ¿e received word is equal to
�ys, yp� = (1001000,1111100). ¿e top �gure shows the trellis with branch la-
bels corresponding to the received sequence. We have not included the prior p�xsi�,
since it is uniform. ¿emiddle and bottom�gures show the α- and the β- recursion,
respectively. On the very bottom, the estimated sequence is shown.
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Figure 0.99: Encoder for C(G = 21~37,n,π = (π1,π2)), where π1 is the identity
permutation.
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Figure 0.101: FSFG for the optimum bit-wise decoding of an element of P(G,n).



102 list of figures

0.4 0.5 0.6 0.7 0.8

10-5
10-4
10-3
10-2
10-1

10-6 (Eb~N0)dB

Pb

(E
b~N

0)B
P dB
�
0.
53
7

Figure 0.102: EP(G=21~37,n,r=1~2)[Pb(C,Eb~N0)] for an alternating puncturing pat-
tern (identical on both branches), n = 211, . . . ,216, 50 iterations, and transmis-
sion over the BAWGNC(Eb~N0). ¿e arrow indicates the position of the thresh-
old (Eb~N0)BPdB � 0.537 (σBP � 0.94) which we compute in Section 6.5. ¿e dashed
curves are analytic approximations of the error �oor discussed in Lemma 6.52.
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Figure 0.103: Computation graph corresponding to windowed (w = 1) iterative de-
coding of a parallel concatenated code for two iterations. ¿e black factor nodes
indicate the end of the decoding windows and represent the prior which we impose
on the boundary states.
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bi-in�nite trellis de�ned by a rational functionG(D). Associatedwith all systematic
variables are iid samples from a density a, whereas the parity bits experience the
channel b. ¿e resulting densities of the outgoing messages are denoted by c and d,
respectively.
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Figure 0.105: Evolution of cℓ for ℓ = 1, . . . ,25 for the ensemble P(G = 21~37, r =
1~2), an alternating puncturing pattern of the parity bits, and transmission over the
BAWGNC(σ). In the le picture σ = 0.93 (Eb~N0 � 0.63 dB). For this parameter
the densities keep moving “to the right” toward ∆ª. In the right picture σ = 0.95
(Eb~N0 � 0.446 dB). For this parameter the densities converge to a �xed point
density.
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Figure 0.106: EXIT chart method for the ensemble P(G = 21~37, r = 1~2) with
alternating puncturing on the BAWGN channel. In the le -hand picture the pa-
rameter is σ = 0.93, whereas in the right-hand picture we chose σ = 0.941.
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Figure 0.108: Exponent 1

n log2(aw,n) of the regular weight distribution of the code
C(G = 7~5,n) as a function of the normalized weight w~n for n = 64,128, and 256
(dashed curves). Also shown is the asymptotic limit (solid line).
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Figure 0.109: Exponent 1

n log2(pw,n) as a function of the normalized weightw~n for
the ensemble P(G = 7~5,n, r = 1~3) and n = 64,128, and 256. ¿e normalization
of the weight is with respect to n, not the blocklength.
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indicated by thick lines. ¿e cycle of length 4, formed by (starting on the le ) S6 �
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Figure 0.111: EXIT chart for transmission over the BEC(h � 0.6481) for an asym-
metric (big-numerator) parallel concatenated ensemble.
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Figure 0.113: Alternative view of the FSFG of a standard parallel concatenated code.
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Figure 0.114: FSFG of an irregular parallel concatenated turbo code.
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Figure 0.115: Binary feed-forward convolutional encoder of memorym = 2 and rate
one-half de�ned by (p(D) = 1 + D + D2,q(D) = 1 + D2).
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Figure 0.116: FSFG for the optimal bit-wise decoding of S(Go,Gi,n, r).
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Figure 0.117: Tanner graph of a standard irregular LDPC code.
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Figure 0.118: Encoder for an RA code. Each systematic bit is repeated l times; the
resulting vector is permuted and fed into a �lter with response 1~(1+D) (accumu-
late).
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Figure 0.119: Tanner graph of an RA code with l = 3.
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Figure 0.120: Tanner graph corresponding to an IRA code.
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Figure 0.121: Tanner graph of an ARA code.
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Figure 0.122: Tanner graph of an irregular LDGM code.
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Figure 0.123: Tanner graph of a simple LDGM code.
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Figure 0.124: Tanner graph of an MN code.
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Figure 0.125: Base graph.
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Figure 0.126: Le : m copies of base graph withm = 5. Right: Li ed graph resulting
from applying permutations to the edge clusters.
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Figure 0.127: Ω-network for 8 elements. It has log2(8) = 3 stages, each consisting of
a perfect shu�e.



128 list of figures

1 2 3

1 2 3 4

base graph with one multiple edge
1112131415 2122232425 3132333435

11121314
15

21222324
25 3132333435 4142434445

li ed base graph

Figure 0.128: Le : Base graph with amultiple edge between variable node 1 to check
node 1. Right: Li ed graph.
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Figure 0.129: FSFG of a simple code over F4 and its associated parity-check matrix
H. ¿e primitive polynomial generating F4 is p(z) = 1 + z + z2.
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Figure 0.130: FSFG of a simple code over F4 and its associated parity-check matrix
H. ¿e primitive polynomial generating F4 is p(z) = 1 + z + z2.
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Figure 0.131: Le : Performance of the (2,3)-regular ensemble over F2m , m =

1,2,3,4 of binary length 4320 over the BAWGNC(σ). Right: EXIT curves for the
(2,3)-regular ensembles over F2m for m = 1,2,3,4,5,6, and transmission over the
BEC(є).
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Figure 0.133: Value of α as a function of γ for l = 2, 3, 4, 5 and r = 6.
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Figure 0.134: H in upper triangular form.
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Figure 0.135: H in approximate upper triangular form.
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Initialize: Set H0 = H and t = g = 0. Go to Continue.

Continue: If t = n−k−g then stop and outputHt. Otherwise, if theminimum
residual degree is 1 go to Extend, else go to Choose.

Extend: Choose uniformly at random a column c of residual degree 1 inHt.
Let r be the row (in the range [t+ 1,n− k− g]) ofHt that contains
the (residual) non-zero entry in column c. Swap column c with
column t + 1 and row r with row t + 1. (¿is places the non-zero
element at position (t+1, t+1), extending the diagonal by 1.) Call
the resulting matrix Ht+1. Increase t by 1 and go to Continue.

Choose: Choose uniformly at randoma column c inHt withminimumpos-
itive residual degree, call the degree d. Let r1,r2, . . . ,rd denote the
rows ofHt in the range [t+1,n−k−g]which contain the d residual
non-zero entries in column c. Swap column c with column t + 1.
Swap row r1 with row t + 1 and move rows r2,r3, . . . ,rd to the
bottom of the matrix. Call the resulting matrix Ht+1. Increase t by
1 and increase g by d − 1. Go to Continue.

Figure 0.136: Greedy algorithm to perform approximate upper triangulation.
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Figure 0.137: Tanner graph corresponding to H0.
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Figure 0.138: Tanner graph a er splitting of node 1.
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Figure 0.139: Tanner graph a er one round of dual erasure decoding.
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Figure 0.140: 1 − z − ρ(1 − λ(z)).
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Figure 0.141: Element chosen uniformly at random from LDPC (1024, λ, ρ), with
(λ, ρ) as described in Example A.19, a er the application of the greedy algorithm.
For the particular experiment we get g = 1. ¿e non-zero elements in the last row
(in the gap) are drawn larger to make them more visible.
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Figure 0.142: Element chosen uniformly at random from LDPC �2048,x2,x5� a er
the application of the greedy algorithm. ¿e result is g = 39.
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Figure 0.143: Evolution of the di�erential equation for the (3,6)-regular ensemble.
For u� � 0.0247856 we have λ̃′(0)r = 1, L̃2 � 0.2585, L̃3 � 0.6895, and g � 0.01709.
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Figure 0.144: Le : Example K(x),δ = 0.125. Right: Logarithm (base 10) K(x).
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Figure 0.145: Exponent G(r = 1~2,ω) of the weight distribution of typical ele-
ments of G(n, k = n~2) as a function of the normalized weight ω. For w~n >
(δGV,1−δGV) the number of codewords of weightw in a typical element of G(n, k)
is 2n(G(r,w~n)+o(1)).
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Figure 0.146: Le : Graph G from the ensemble LDPC �10,x2,x5�; Middle: Graph H
from the ensembleG7(G,7) (note that the labels of the sockets are not shown – these
labels should be inferred from the order of the connections in themiddle �gure); the
�rst 7 edges that H has in common with G are drawn in bold; Right: the associated
graph ϕ7,30(H).¿e two dashed lines correspond to the two edges whose endpoints
are switched.
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Figure 0.147: Le : Two SDS-distributions SAS (thick line) and SBS (thin line). Right:
Since R 1

z SAS(x)dx B R 1
z SBS(x)dx we know that SAS_ SBS.
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Figure 0.148: De�nition of q on (zB, zA) pair.


