
Appendix C

Concepts from multivariate calculus

In this appendix we provide a summary of several useful facts and results (without

proof) from differential calculus of several variables. We assume familiarity with

vectors and matrices (Appendices A and B), since they provide useful tools for

expressing properties of these functions in a concise manner.

C.1 Gradient and first-order directional derivatives

Let φ : R
n −→ R for some integer n ≥ 1, that is, φ is a scalar-valued function of

a vector. As usual, an element x ∈ R
n is denoted by x = (x1, x2, · · · , xn)T, where

T denotes the transpose. Let ‖x‖ denote a norm of x. The function φ is said to

be continuous at the point x if and only if for every ε > 0, there exists a δ > 0,

such that |φ(y) − φ(x)| < ε for all y such that ‖y − x‖ < δ. That is, φ(y) is “close”

to φ(x) whenever y is “close” to x in every direction. It is possible for a function

of several variables to be continuous in each of its component variables separately

without being continuous as a function of several variables. As an example, consider

(assuming n = 2)

φ(x) =
{

x1x2

x2
1 +x2

2

if x2
1 + x2

2 > 0

0 otherwise.
(C.1.1)

When x2 = 0, considered as a function of x1, φ(x) is identically zero for all x1 and

hence is continuous for all x1, including x1 = 0. A similar conclusion follows when

φ(x) is considered as a function of x2 for a fixed x1 = 0. Thus, φ(x) is continuous at

the origin when considered as functions of x1 and x2 separately. But as a function

of two variables, φ(x) is not continuous at the origin. For, along the line x1 = x2, it

can be verified that

φ(x) =
{

1
2

when x1 = x2 �= 0

0 for x1 = x2 = 0

Thus, there is a discontinuity in φ(x) in the direction x1 = x2 and hence φ(x) is not
continuous in R

2.
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672 Concepts from multivariate calculus

In the case of single variables, existence of derivatives implies continuity. A

function of several variables may possess partial derivatives with respect to each of

the variables and yet may not be continuous in R
n . For the function φ in (C.1.1),

it can be verified that the partial derivatives with respect to x1 and x2 exist and are

equal to zero at the origin and yet it is not continuous at the origin, as seen above.

Obviously partial derivatives relate to properties only along the coordinate direc-

tions and hence do not constitute an analog of the derivative. In search of the analog

of derivative, we turn to the notion of differentiability. Recall that when n = 1, we

say that a function is differentiable at x if and only if there exists a unique number

φ′(x), called the derivative of φ at x , such that for all t small

φ(x + t) − φ(x) = φ′(x)t + HOT(t) (C.1.2)

where HOT(t) denoting higher order terms in t is such that

lim
t→0

HOT(t)

t
→ 0.

Analogously, we say φ : R
n −→ R is differentiable at x ∈ R

n , if and only if, there

exists a vector u such that for every z ∈ R
n

φ(x + z) − φ(x) = 〈u, z〉 + HOT(z) (C.1.3)

where 〈u, z〉 = uTz is the inner product of u and z and HOT(z) denoting the higher

order terms in the components of z is such that

lim
‖z‖→0

HOT(z)

‖z‖ = 0. (C.1.4)

Comparing (C.1.2) with (C.1.3), we must expect the vector u to play the role of

derivative of φ. We now list several properties of interest to us.

If the vector u in (C.1.3) exists, then it is unique. For, let v be another vector

such that

φ(x + z) − φ(x) = 〈v, z〉 + HOT(z). (C.1.5)

Subtracting (C.1.5) from (C.1.3), we obtain

〈u − v, z〉 = HOT(z). (C.1.6)

Combining (C.1.4) and (C.1.6), it follows that u = v, and hence the uniqueness.

Gradient The unique vector u in (C.1.3), if it exists, is called the gradient of φ

at x and is denoted by ∇φ(x).

Condition for differentiability If φ : R
n −→ R has continuous partial deriva-

tives in the neighborhood of x, then φ is differentiable at x, and the gradient is given

by:

∇φ(x) =
(

∂φ

∂x1

,
∂φ

∂x2

, . . . ,
∂φ

∂xn

)T

. (C.1.7)
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Also, if φ is differentiable at x, then it is continuous at x. Let φ1(x) and φ2(x) be

functions from R
n to R, satisfying the conditions for differentiability. Then,

∇(φ1(x) + φ2(x)) = ∇φ1(x) + ∇φ2(x)

∇(cφ1(x)) = c∇φ1(x).

That is, ∇ is a linear operator (Appendix B). Also

∇(φ1(x)φ2(x)) = φ1(x)∇φ2(x) + φ2(x)∇φ1(x).

Directional derivative Let z denote an arbitrary unit vector in R
n . The direc-

tional derivative of φ at the point x in the direction z denoted by φ′(x; z) is defined

by

φ′(x; z) = lim
�t→0

φ(x + z�t) − φ(x)

�t
, (C.1.8)

assuming that the limit exists and is finite.

Let g(t) = φ(x + zt). Then, from

φ(x + z�t) − φ(x)

�t
= g(�t) − g(0)

�t

it follows that

φ′(x; z) = g′(0).

More generally, let y = x + zt . Then

φ′(y; z) = lim
�t→0

φ(y + z�t) − φ(y)

�t
= lim

�t→0

φ(t + �t) − g(t)

�t
= g′(t)

That is, the directional derivative of φ is the ordinary derivative of an auxiliary

function g.

Let ei , 1 ≤ i ≤ n, denote the i th unit vector in R
n . Then, φ′(x; ei ) is the partial

derivative of φ with respect to the variable xi denoted by ∂φ/∂xi .

Existence of partial derivatives of φ does not, however, guarantee the existence

of directional derivatives. For, consider the function φ in (C.1.1). It can be verified

that at the origin x = (0, 0)T, both the partial derivatives exist and are equal to

zero. But the directional derivative of φ at the origin does not exist in the direction

z = 1√
2
(1, 1)T, since φ is discontinuous in this direction as seen above.

Conditions for the existence of directional derivative If φ : R
n −→ R is such

that it has continuous partial derivatives at x, then φ has directional derivative

φ′(x; z) for every unit vector z.

Combining this with the condition for differentiability, it is seen that in this

case φ is also differentiable and the directional derivatives φ′(x; z) and the gradient

∇φ(x) are related through

φ′(x; z) = 〈z, ∇φ(x)〉 = zT∇φ(x) =
n∑

i=1

zi
∂φ

∂xi
. (C.1.9)
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Recall from Appendix A that the inner product of a vector with a unit vector

denotes the projection of that vector onto the unit vector. Accordingly, the direc-

tional derivative of φ(x) along the direction z is the projection of the gradient ∇φ(x)

onto z.

Again considering the function φ in (C.1.1), we leave it to the reader to verify

that ∂φ/∂xi is not continuous at x = (0, 0)T, and hence φ is not differentiable at

the origin,

Direction of maximum rate of change A differentiable function changes most

rapidly in the direction of the gradient. For, from (C.1.9) we have, since ‖z‖ = 1,

|φ′(x; z)| = ‖∇φ(x)‖ cos θ

where θ is the angle between z and ∇φ(x) (Appendix A). Clearly, this is maximum

when θ = 0. This property is the basis for the optimization procedures described

in Chapters 10 through 12.

If the directional derivative φ′(x; z) exists and is continuous, then it is linear in

z. That is,

φ′(x; z1 + z2) = φ′(x; z1) + φ′(x; z2)

φ′(x; cz) = cφ′(x; z)

for any real constant c.

Property C.1.1 The following statements are equivalent:

(a) The function φ belongs to the class C1.

(b) All the directional derivatives of φ exist and are continuous.

(c) All the partial derivatives of φ exist and are continuous.

Chain rule Let xi : R −→ R for 1 ≤ i ≤ n and φ : R
n+1 −→ R. Consider the

composite function

φ(x1(t), x2(t), . . . , xn(t), t) (C.1.10)

Then,

dφ

dt
= ∂φ

∂x1

dx1

dt
+ ∂φ

∂x2

dx2

dt
+ · · · + ∂φ

∂xn

dxn

dt
+ ∂φ

∂t
.

For example, x(t) = (x1(t), . . . , xn(t))T could denote the state of a dynamic system

evolving according to a differential equation.

C.2 Hessian and second-order directional derivative

Let z and w be two unit vectors in R
n . Then the directional derivative of φ(x)

of second order with respect to the directions z and w, denoted by φ′′(x; z, w) is
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defined as the directional derivative in the direction w of the directional derivative

in the direction z of φ at the point x. Thus,

φ′′(x; z, w) = wT∇(zT∇φ(x)) = ∑n
i=1 wi

∂
∂xi

(∑n
j=1 z j

∂φ

∂x j

)
= ∑n

i=1

∑n
j=1 wi z j

(
∂2φ

∂xi ∂x j

)
= wT[∇2φ(x)]z (C.2.1)

where

∇2φ(x) =
[

∂2φ

∂xi∂x j

]
for 1 ≤ i, j ≤ n (C.2.2)

is an n × n symmetric matrix of second partial derivatives of φ(x), called the

Hessian of φ(x). Notice that φ′′(x; z, w) is linear in z and w and the right-hand

side expression in (C.2.1) is often called the bilinear form to emphasize the

linearity in z and w. When z = w, then

φ′′(x; z, w) = zT[∇φ(x)]z (C.2.3)

is a quadratic form in z.

Property C.2.1 The following conditions are equivalent:

(a) The function φ is of class C2.

(b) The second-order directional derivatives exist and are continuous in z and w.

(c) All the partial derivatives
∂2φ

∂xi ∂x j
of second order exist and are continuous.

Continuing in this fashion, one may define the class Cr consisting of functions

with continuous partial derivatives of order r > 2.

C.3 Vector-valued function of a vector

Let φ : R
n −→ R

m , where φ(x) = (φ1(x), φ2(x), . . . , φm(x))T be a vector-valued

function, where x = (x1, x2, . . . , xn)T. Consider a unit vector z ∈ R
n . Assume that

each component function φi (x), 1 ≤ i ≤ m, satisfy the conditions for the existence

of directional derivatives. Then, the directional derivative φ′(x; z) of φ(x) in the

direction z is a column vector defined by

φ′(x; z) = (φ′
1(x; z), φ′

2(x; z), . . . , φ′
m(x; z))T.
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Since each φi : R
n −→ R, from the definition (C.1.9), we obtain

φ′(x; z) =

⎛
⎜⎜⎜⎝

φ′
1(x; z)

φ′
2(x; z)

...

φ′
m(x; z)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

zT∇φ1(x)

zT∇φ2(x)
...

zT∇φm(x)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

∂φ1

∂x1

∂φ1

∂x2
· · · ∂φ1

∂xn
∂φ2

∂x1

∂φ2

∂x2
· · · ∂φ2

∂xn
...

...
. . .

...
∂φm

∂x1

∂φm

∂x2
· · · ∂φm

∂xn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z1

z2

...

zn

⎞
⎟⎟⎟⎠

= Dφ(x)z

(C.3.1)

where

Dφ(x) =
[

∂φi

∂x j

]
, 1 ≤ i ≤ m; 1 ≤ j ≤ n (C.3.2)

is an m × n matrix, called the Jacobian of φ(x).

Notice that when m = 1, Dφ(x) = [∇φ(x)]T, the transpose of the gradient of

φ(x). Thus, (C.3.1) can be succinctly written as

φ′(x; z) = Dφ(x)z. (C.3.3)

Let z and w be two unit vectors in R
n . Then, the second-order directional deriva-

tion of φ in the directions z and w denoted by φ′′(x; z, w), is defined as the directional

derivative in the direction w of the vector-valued function φ′(x; z) defined in (C.3.1).

Thus,

φ′′(x; z, w) =

⎛
⎜⎜⎜⎝

wT∇φ′
1(x; z)

wT∇φ′
2(x; z)

...

wT∇φ′
m(x; z)

⎞
⎟⎟⎟⎠ . (C.3.4)

Recall that, for 1 ≤ k ≤ m,

φ′
k(x; z) =

n∑
j=1

z j
∂φk

∂x j
,

and so ∇φ′
k(x; z) is the gradient vector of φ′

k(x; z). We have

∇φ′
k(x; z) = ∇

[∑n
j=1 z j

∂φk

∂x j

]

=
(

∂
∂x1

∑n
j=1 z j

∂φk

∂x j
, ∂

∂x2

∑n
j=1 z j

∂φk

∂x j
, . . . , ∂

∂xn

∑n
j=1 z j

∂φk

∂x j

)T

= ∇2φk(x)z (C.3.5)

where ∇2φk(x) is the Hessian of φk(x).
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Table C.3.1 Gradients of some useful linear and quadratic functions

Function φ Gradient

φ(x) = aTx, a ∈ R
n, x ∈ R

n ∇φ(x) = a

φ(x) = aTh(x), a ∈ R
n, x ∈ R

n

h(x) = (h1(x), h2(x), . . . , hn(x))T
∇φ(x) = DT

h(x)a, where Dh(x) ∈ R
n×n is

the Jacobian of h(x)

φ(x) = 1

2
xTAx − bTx, x ∈ R

n , b ∈ R
n ,

A ∈ R
n×n

∇φ(x) = Asx − b, where As = A+AT

2
, is

the symmetric part of A.

φ(x) = 1

2
xTAx − bTx, x ∈ R

n , b ∈ R
n ,

A ∈ R
n×n , symmetric

∇φ(x) = Ax − b

φ(x) = 1

2
hT(x)Ah(x), x ∈ R

n , A ∈ R
n×n ,

symmetric,
h(x) = (h1(x), h2(x), . . . , hn(x))T

∇φ(x) = DT
hAh(x), where Dh(x) ∈ R

n×n

is the Jacobian of h(x)

φ(x) = 1

2
hT(x)Ag(x), x ∈ R

n , A ∈ R
n×m ,

h(x) = (h1(x), h2(x), . . . , hn(x))T,
g(x) = (g1(x), g2(x), . . . , gm(x))T

∇φ(x) = 1

2
[DT

h(x)Ag(x) + DT
g (x)ATh(x)],

where Dh(x) ∈ R
n×n is the Jacobian of

h(x), and Dg(x) ∈ R
m×n is the Jacobian of

g(x)

φ(x) = 1

2
aTb(x), x ∈ R

n , a ∈ R
n ,

b(x) = (b1(x), b2(x), . . . , bn(x))T,
bi (x) = (x)TBi x, Bi ∈ R

n×n , symmetric,
1 ≤ i ≤ n

∇φ(x) = ∑n
i=1 ai Bi x

η(x) = φoψ(x) = φ(ψ(x)), where
φ : R

n −→ R
p , ψ : R

m −→ R
n , and

n, m, and p are positive integers. Then,
η : R

m −→ R
p is called the composite

function.

Dη(x) = Dψ (y)Dφ(x), where y = φ(x)
and Dφ ∈ R

p×n , Dψ ∈ R
n×m , and

Dη ∈ R
p×m are the Jacobians of φ, ψ ,

and η, respectively

Combining (C.3.4) and (C.3.5), we obtain

φ′′(x; z, w) =

⎛
⎜⎜⎜⎝

wT∇2φ1(x)z
wT∇2φ2(x)z

...

wT∇2φm(x)z

⎞
⎟⎟⎟⎠ . (C.3.6)

Symbolically, we denote the vector of second variation of φ : R
n −→ R

m as

φ′′(x; z, w) = D2
φ(x; z, w) (C.3.7)

and when w = z, then as

φ′′(x; z, z) = D2
φ(x; z). (C.3.8)

Table C.3.1 contains a listing of gradients of many functions of interest in the main

body of this book.
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C.4 Taylor series

Scalar-valued function of a vector Let φ : R
n → R be in class C2. Then,

φ(x + y) ≈ φ(x) + 〈y, ∇φ(x)〉 + 1

2
〈y, ∇2φ(x)y〉 (C.4.1)

for any y ∈ R
n , such that ‖y‖ is small.

Vector-valued function of a vector Let φ : R
n −→ R

m be such that

each component of φ is a class C2 function. Then, for any vector

y ∈ R
n

φ(x + y) ≈ φ(x) + Dφ(x)y + 1

2
D2

φ(x; y). (C.4.2)

The first term φ(x) on the right-hand side of (C.4.1) and (C.4.2) is independent of

y. The second term – 〈y, ∇φ(x)〉 in (C.4.1) and Dφ(x)y in (C.4.2) is linear in y.

The third term – 1
2
〈y, ∇2φ(x)y〉 in (C.4.1) and 1

2
D2

φ(x; y) in (C.4.2) is quadratic
in y where D2

φ(x; y) is defined in (C.3.8). If we exclude the quadratic terms in y
from the right-hand side of (C.4.1) and (C.4.2), the resulting two-term expansion

of φ(x + y) is called the first-order Taylor series. The three-term expansion as

given in (C.4.1) and (C.4.2) has come to be known as the second-order Taylor

series.

C.5 First and second variations

In this section we develop basic properties relating to the notion of first and sec-
ond variations of functions. It will be shown that there is an intimate relation

between the notion of first/second variation and the first-order/second-order direc-

tional derivatives.

Scalar-valued function Let φ : R
n −→ R and let δx = (δx1, δx2,. . . , δxn)T

denote a small increment† or variation in x ∈ R
n . Let �φ(x) = φ(x + δx) − φ(x)

denote the actual change or variation that φ(x) suffers resulting from the variation

δx in x, where it is assumed that ‖δx‖ is small. We can approximate �φ(x) using

the first-order Taylor series as

�φ(x) ≈ δφ(x) = 〈δx, ∇φ(x)〉 (C.5.1)

where δφ(x) is called the first variation in φ induced by δx. That is, the first

variation in φ(x) is defined as the first-order approximation to the actual change,

�φ that φ suffers resulting from the variation δx in x. Comparing this with the

† A note on the notation is in order. It is customary to use � to denote the actual change and δ as the
first variation operator. For independent variables (�x1, �x2, . . . , �xn)T = �x = δx =
(δx1, δx2, . . . , δxn)T, but for dependent variables δφ is an approximation for the actual change �φ.
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definition of the directional derivative in (C.1.9), it follows that

δφ(x) = ‖δx‖ φ′
(

x,
δx

‖δx‖
)

. (C.5.2)

Consequently, the first variation operator δ is linear. That is, ifφ1, φ2 : R
n −→ R,

then

δ(aφ1(x) + bφ2(x)) = aδφ1(x) + bδφ2(x) (C.5.3)

for any real constants a and b. It can be verified that

δ(a) = 0 where a is a constant

and δ(φ1(x)φ2(x)) = φ1(x)δφ2(x) + [δφ1(x)]φ2(x)

⎫⎬
⎭ (C.5.4)

The first variation of the first variation is called the second variation and is denoted

by δ2φ(x). Clearly,

δ2φ(x) = δ[δφ(x)]

= δ[〈δx, ∇φ(x)〉]
= 〈δx, δ[∇φ(x)]〉
= ∑n

i=1 δxiδ
(

∂φ

∂xi

)
= ∑n

i=1 δxi

[∑n
j=1 δx j

(
∂2φ

∂xi ∂x j

)]
= ∑n

i=1

∑n
j=1 δxiδx j

[
∂2φ

∂xi ∂x j

]
= 〈δx, ∇2φ(x)δx〉 (C.5.5)

where, recall that, ∇2φ(x) is the Hessian of φ(x). Comparing the expression for the

second variation with that of the second-order directional derivative in (C.2.3), it

follows that

δ2φ(x) = ‖δx‖2φ′′
(

x;
δx

‖δx‖ ,
δx

‖δx‖
)

. (C.5.6)

It can be verified that δ2 is also a linear operator, that is,

δ2(aφ1(x) + bφ2(x)) = aδ2φ1(x) + bδ2φ2(x) (C.5.7)

where a and b are real constants.

Also

δ2(φ1(x)φ2(x)) = [δ2φ1(x)]φ2(x) + 2[δφ1(x)][δφ2(x)] + φ1(x)[δ2φ2(x)] (C.5.8)

Vector-valued functions Let φ : R
n −→ R

m , where φ(x) = (φ1(x), φ2(x),

. . . , φm(x))T and x ∈ R
n . Then, the first variation δφ(x) is a vector given
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Table C.5.1 Variations of some useful functions

Function φ First Variation

φ(x) = 〈a, x〉 where a, x ∈ R
n δφ = 〈a, δx〉

φ(x) = 1

2
〈x, Ax〉 = 1

2
xTAx, where

A ∈ R
n×n is a symmetric and

positive definite matrix.

δφ = 〈δx, Ax〉

φ(x) = 1

2
(z − Hx)T(z − Hx) where

z ∈ R
m , x ∈ R

n and H ∈ R
m×n .

δφ(x) = 〈HT(Hx − z), δx〉.

by

δφ =

⎛
⎜⎜⎜⎝

δφ1

δφ2

...

δφm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

〈δx, ∇φ1(x)〉
〈δx, ∇φ2(x)〉

...

〈δx, ∇φm(x)〉

⎞
⎟⎟⎟⎠ = Dφ(x)δx (C.5.9)

where Dφ ∈ R
m×n is the Jacobian of φ. Using (C.5.5), the second variation of φ is

given by

δ2φ(x) = δ[δφ(x)] =

⎛
⎜⎜⎜⎝

δ[δφ1(x)]

δ[δφ2(x)]
...

δ[δφm(x)]

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

〈δx, [∇2φ1(x)]δ(x)〉
〈δx, [∇2φ2(x)]δ(x)〉

...

〈δx, [∇2φm(x)]δ(x)〉

⎞
⎟⎟⎟⎠ .

(C.5.10)

Comparing this for the second variation with the expressions for the second-order

directional derivatives in (C.3.6) – (C.3.8), it readily follows that

δ2φ(x) = ‖δx‖2

⎛
⎜⎜⎜⎝

〈z, ∇2φ1(x)z〉
〈z, ∇2φ2(x)z〉

...

〈z, ∇2φm(x)z〉

⎞
⎟⎟⎟⎠ = ‖δx‖2D2

φ(x; z) (C.5.11)

where the unit vector z = δx/‖δx‖. Variations of several functions of interest are

given in Table C.5.1.
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(a) Convex set (b) Non-convex set

Fig. C.6.1 Examples of convex and non-convex sets.

z

φ(z)

aφ(x) + (1 − a)φ(y)

φ(ax + (1 − a)y)

x ax + (1 − a)y y

chord

φ(z)

Fig. C.6.2 An Example of a convex function.

C.6 Convex functions

Let S be a subset of R
n . Then S is said to be a convex set if for every pair of points

x and y in S

ax + (1 − a)y ∈ S for all a ∈ [0, 1]. (C.6.1)

That is, the line segment connecting x and y lies entirely in S. Refer to

Figure C.6.1 for examples of convex and non-convex sets in R
2.

A function φ : S −→ R is said to be a convex function if

φ(ax + (1 − a)y) ≤ aφ(x) + (1 − a)φ(y) (C.6.2)

for all a ∈ [0, 1] and for every pair of points x, y ∈ S. The function φ is said to

be strictly convex, if (C.6.2) holds with strict inequality for all a ∈ [0, 1] and for

every pair of points x and y ∈ S. An example of a convex function is given in

Figure C.6.2.

It is clear from the definition that the function lies below the chord joining the

points (x, φ(x)) and (y, φ(y)). A function φ is said to be concave if −φ is convex.

Thus, φ(x) = x2 is convex, and φ(x) = −x2 is concave. But φ(x) = x3 is neither

convex nor concave.

We now state several properties without proof.
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(a) Let x1, x2, . . . , xm be a set of m points lying in a convex set S ∈ R
n . Let

a1, a2, . . . , am be a set of non-negative real numbers such that
∑m

i=1 ai = 1. If

φ : S −→ R is a convex function, then

φ

(
m∑

i=1

ai xi

)
≤

m∑
i=1

aiφ(xi ). (C.6.3)

(b) A linear function is convex.

(c) A weighted sum of convex functions with positive weights is convex.

(d) Let φ : R
n −→ R

m given by φ(x) = (φ1(x), φ2(x), . . . , φm(x))T. Let a =
(a1, a2, . . . , am)T, be any real vector, and define

S = {
x ∈ R

n|φi (x) ≤ ai for 1 ≤ i ≤ m
}
. (C.6.4)

Then, S is a convex set if each φi (x) is a convex function for 1 ≤ i ≤ m.

(e) Intersection of convex sets is a convex set.

(f) Let φ and a be as defined in Property (4) above. Then,

S = {
x ∈ R

n|φi (x) = ai for 1 ≤ i ≤ m
}
. (C.6.5)

is a convex set if each φi (x) is a linear function.

(g) Condition for global minimum Let φ be a convex function over a convex set

S. Then, φ has a unique minimum.

To verify this, assume the contrary. Let z be a global minimum and y be a

local minimum, that is φ(z) < φ(y). Since both S and φ are convex, we have,

for any a ∈ [0, 1]

φ(az + (1 − a)y) ≤ aφ(z) + (1 − a)φ(y)

< aφ(z) + (1 − a)φ(z) = φ(y).

Now, given any ε > 0, we can choose a such that (az + (1 − a)y) is at distance

ε from y. Thus, there is a point close to y where the function value is less than

φ(y). This contradicts the assumption that φ attains a local minimum at y.

Hence, the uniqueness of the minimum.

(h) If φ : R
n −→ R is convex, then it is continuous.

(i) Let I be an interval of the real line, and let φ : I −→ R be a convex function.

If x < y < z, then

φ(y) − φ(x)

y − x
≤ φ(z) − φ(x)

z − x
≤ φ(z) − φ(y)

z − y
.

(j) Let S be a convex set in R
n , and φ : S −→ R, be a continuously differentiable

function. Then, φ is convex, if and only if

φ(y) ≥ φ(x) + (y − x)T∇φ(x) (C.6.6)

for all x, y ∈ S.

(k) If strict inequality holds in (C.6.6), then φ is strictly convex.
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(l) Let φ : R
n −→ R be a convex function. Then ∇φ(x) = 0, if and only if, x is

a global minimum.

(m) Let φ : R
n −→ R be twice continuously differentiable. Then

(a) φ(x) is convex if the Hessian ∇2φ(x) is non-negative definite for all x.

(b) φ(x) is strictly convex if ∇2φ(x) is positive definite.

(n) Let A be a real symmetric matrix of order n, and let φ(x) = xTAx. Then φ(x) is

strictly convex if and only if A is positive definite. Since I, the identity matrix is

positive definite, clearly φ(x) = xTIx = xTx = ‖x‖2
2 is strictly convex. It can

be verified that any vector norm is convex.

C.7 Function of a matrix

Matrix-valued function of a scalar
Let x ∈ R. For each pair of indices i j where 1 ≤ i, j ≤ n define Fi j : R → R

and define a matrix F(x) = [Fi j (x)] ∈ R
n×n of these functions. The derivation of

F(x) with respect to x is an n × n matrix and is given by

dF(x)

dx
=

[
dFi j (x)

dx

]
. (C.7.1)

As an example, let n = 2 and

F =
[

1 + x2 3 − x3

x3 x4 − x3

]
.

Then

dF
dx

=
[

2x −3x2

3x2 4x3 − 3x2

]
.

Scalar-valued function of a matrix
Let X = [xi j ] ∈ R

n×n . Define F : R
n×n → R be the scalar-valued function of

the elements of the matrix X. Examples of such functions include the trace and

determinant of matrices. The derivative of F with respect to the matrix X denoted

by ∂ F/∂X is a matrix given by

∂ F

∂X
=

[
∂ F

∂xi j

]
. (C.7.2)

For example, let n = 2 and

X =
[

x11 x12

x21 x22

]
.

Consider

F(X) = x2
11 + x2

22 + x11x22 − x12x21.
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Then

∂ F(X)

∂X
=

[
2x11 0

0 2x22

]
+

[
x22 −x21

−x12 x11

]
.

Matrix-valued function of a matrix
Let X ∈ R

n×n and F : R
n×n → R

n×n where F(X) = [Fi j (X)] and for each i j ,

Fi j : R
n×n → R is a scalar valued function of a matrix X. In our development we

are specifically interested in special function of the matrix F(X). Recall that the

trace of F(X), denoted by tr[F(X)] is given by

tr[F(X)] =
n∑

i=1

Fii (X) (C.7.3)

Then, the derivative of this scalar valued function of a matrix is given by

∂ tr[F(X)]

∂X
= ∂

∂X

[
n∑

i=1

Fii (X)

]
=

n∑
i=1

∂ Fii (X)

∂X
(C.7.4)

which is clearly the sum of n matrices.

We now illustrate the computation of these derivatives for special cases of interest

to us.

(a) Let A ∈ R
n×n , X ∈ R

n×n and F(X) = AX. Then from

F(X) = AX =

⎡
⎢⎢⎢⎣

A1∗
A2∗

...

An∗

⎤
⎥⎥⎥⎦ [

X∗1 X∗2 · · · X∗n

]

we obtain that the

tr[F(X)] =
n−1∑
k=0

Ak∗ X∗k . (C.7.5)

Thus, the gradient of the scalar Ak∗ X∗k w.r.t. the column vector X∗k is given

by

∇[Ak∗ X∗k] = AT
k∗

Now combining each of these columns in a matrix we readily obtain

∂ tr(X)

∂X
= [

AT
1∗ AT

2∗ · · · AT
n∗

]
. (C.7.6)
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Remark C.7.1 Since tr(A) = tr(AT) and tr(A B) = tr(B A), we can obtain a

variety of interesting corollaries.

∂ tr(AX)

∂X
= AT = ∂ tr(XA)

∂X

= ∂ tr(ATXT)

∂X
= ∂ tr(XTAT)

∂X
(C.7.7)

and

∂ tr(ATX)

∂X
= A = ∂ tr(XAT)

∂X
= ∂ tr(AXT)

∂X
= ∂ tr(XTA)

∂X
. (C.7.8)

Similarly, it can be verified that

∂ tr[ABX]

∂X
= BTAT = ∂ tr[XAB]

∂X
= ∂ tr[BXA]

∂X
. (C.7.9)

(b) Let A ∈ R
n×n , X ∈ R

n×n and F(X) = XTAX. Then

F(X) =

⎡
⎢⎢⎢⎣

XT
∗1

XT
∗2

...

XT
∗n

⎤
⎥⎥⎥⎦ A

[
X∗1 X∗2 · · · X∗n

]

and

tr[F(X)] =
n−1∑
k=0

XT
∗k AX∗k . (C.7.10)

The gradient of the scalar XT
∗kAX∗k w.r.t. the column vector X∗k is given by

∇[XT
∗k A X∗k] = 2AX∗k . (C.7.11)

Again combining these columns in a matrix we obtain

∂ tr(XTAX)

∂X
= 2A

[
X∗1 X∗2 · · · X∗n

]
= 2AX. (C.7.12)

The following formulae readily follow from this:

∂ tr[XXTA]

∂X
= 2AX = ∂ tr[AXXT]

∂X

= ∂ tr[XTATX]

∂X
= ∂ tr[XXTA]

∂X
= ∂ tr[AXXT]

∂X
.

(C.7.13)
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(c) Let A ∈ R
n×n , X ∈ R

n×n and F(X) = XAXT. Then

F(X) =

⎡
⎢⎢⎢⎣

X1∗
X2∗

...

Xn∗

⎤
⎥⎥⎥⎦ A

[
XT

1∗ XT
2∗ · · · XT

n∗
]

and

tr[F(X)] =
n−1∑
k=0

Xk∗AXT
k∗ (C.7.14)

from which we obtain the gradient of the kth term on the right-hand side w.r.t.

XT
k∗ as

∇[Xk∗ AXT
k∗] = 2 AXT

k∗. (C.7.15)

In the matrix of the derivative of tr[XAXT] w.r.t. X, recall that the derivative

with respect to a row vector Xk∗ will appear as a row. Thus, the kth row of

the derivative we are seeking is given by the transpose of the r.h.s. of (C.7.15),

namely 2Xk∗ AT. Combining all these rows, we get

∂ tr[XXTA]

∂X
= 2

⎡
⎢⎢⎢⎣

X1∗
X2∗

...

Xn∗

⎤
⎥⎥⎥⎦ AT = 2 XAT. (C.7.16)

Notes and references

There are numerous books on multivariate calculus and we mention only two –

Apostol (1957) and Sikorski (1969). Rockafellar (1970) is an excellent reference

for convexity.


