MIDTERM example 2

SI-MKS

Speed of light in free space ¢ = 299792458 x 10° m s~
= 6.5821188926 x 10 '° eV s
h = 1.054571596 x 10 * J s

St

Planck’s constant

Electron charge e = 1.602176462 x 10" C

Electron mass m, = 9.10938188 x 10" kg

Neutron mass m, = 1.67492716 x 10" kg

Proton mass m, = 1.67262158 x 107 kg

Boltzmann constant ks = 1.3806503 x 10> J K
ky = 8.617342x10° eV K '

Permittivity of free space €, = 8.8541878 x 10" F m"'

Permeability of free space Lo = 4m % 10"Hm'

Speed of light in free space c = l/m

Avagadro’s number N, = 6.02214199 x 10” mol '

Bohr radius ag = 0.52917721x10 ’m

a4y = 47’5807:12

mge
Inverse fine-structure constant o' = 137.0359976
ol = 4n§§hc

Applied quantum mechanics



Problem 1
A one-dimensional crystal with a primitive cell that contains one atom at each lattice

site x, = nL, where n is an integer and L is the nearest neighbor atom spacing, has

electron wave function y,(x) that can be expressed as a direct lattice sum of single-

electron Wannier functions ¢(x) localized around each lattice site x,, .

(a) Show that . (x) = Zeikx”d)(xfx,,) satisfies the Bloch condition

y(x +L) = y(x)et*L for the electron wave function. (40%)
(b) The expectation value of electron energy to first-order is
E, = j'\y;(x)ﬁl\uk(x)dx, where H is the Hamiltonian such that I:I\yk(x) = Ey(x).

Assuming little overlap between atomic electron wave functions that are separated by
two or more nearest neighbor atom spacings and that the overlap integral

-t = j'cb*(x —-x,t L)Izld)(x —x,)dx , find an expression for the electron dispersion rela-

tion, E(k), and an expression for the effective electron mass, m(k), in the crystal.
(60%)

Problem 2

(a) Derive the current density J = — @( v\, v

V3 Ve ) for a particle mass m and
charge e moving in a real potential, V(x). (40%)

(b) If the particle in (a) is moving in a complex one-dimensional potential of the
form V' = V,+iV,,where V, and V, are real constants, show that

(c) What physical effect does a positive value of 7, have on J? If V, = 0 and

—Kx —iot

v = Be , where B and « are real constants, what is the value of J ? (20%)




Problem 3

In classical mechanics, the Hamiltonian for a one-dimensional harmonic oscillator with
motion in the x-direction at frequency ® is

2 2
_Pp mo® >
H=4+—+—
2m, 2

where m, is the mass of the particle and p is the particle momentum.

~ 1/2 A
(a) Introduce the operator b = (W;o;:) ) (x + n—;—p— , find expressions for x and p in
0

terms of b and b’ , substitute into the Hamiltonian and show that in quantum mechan-
ics H = hoo(b'b+1/2). (20%)

(b) Show that the n = 0 ground-state |0) is defined by I;|O) = 0.(20%)
(¢) Find the normalized ground-state wave function. (20%)
(d) Derive the standard deviation in position and momentum of each harmonic

oscillator state |n) and show that they satisfy the Heisenberg uncertainty relation.
(20%)

(e) If the standard deviation in momentum is Ap = 5 x 107 kg m s”', what is the
value of the standard deviation in position for the state |0) and the state |3) ? (20%)

In answering this question, you may wish to use the standard integral
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Problem 4
The first four energy eigenvalues and eigenfunctions for an electron with effective mass
m, = 0.07 x m, confined to the asymmetric potential well sketched in the following
figure and bounded by barriers of infinite energy for x < 0 nm and x > 50 nm are:
E;=0.0248 eV, E, =0.0973 eV, E5 =0.2000 eV, £, = 0.2062 eV.

(a) Sketch the corresponding wave functions and explain the qualitative differences
between each wave function. (50%)

(b) What can you say about the dipole matrix elements (1|x|3) and (1|x|4) for opti-
cal transitions? (50%)
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