
MIDTERM example 2
SI-MKS

Speed of light in free space c 2.99792458 108  m s 1–=

Planck’s constant  6.5821188926 10 16–  eV s=

 1.054571596 10 34–  J s=

Electron charge e 1.602176462 10 19–  C=

Electron mass m0 9.10938188 10 31–  kg=

Neutron mass mn 1.67492716 10 27–  kg=

Proton mass mp 1.67262158 10 27–  kg=

Boltzmann constant kB 1.3806503 10 23–  J K 1–=

kB 8.617342 10 5–  eV K 1–=

Permittivity of free space 0 8.8541878 10 12–  F m 1–=

Permeability of free space 0 4 10 7–  H m 1–=

Speed of light in free space c 1 00=

Avagadro’s number NA 6.02214199 1023  mol 1–=

Bohr radius aB 0.52917721 10–10 m=

aB
40

2

m0e2
-----------------=

Inverse fine-structure constant  1– 137.0359976=

 1–
40c

e2
------------------=
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Problem 1
A one-dimensional crystal with a primitive cell that contains one atom at each lattice 

site xn nL= , where n is an integer and L is the nearest neighbor atom spacing, has 

electron wave function k x   that can be expressed as a direct lattice sum of single-

electron Wannier functions  x   localized around each lattice site xn . 

(a) Show that k x  e
ikxn x xn– 

n
=  satisfies the Bloch condition 

k x L+  k x eikL=  for the electron wave function. (40%)

(b) The expectation value of electron energy to first-order is 

Ek =
k

*
x Ĥk x dx , where Ĥ  is the Hamiltonian such that Ĥk x  Ekk x = . 

Assuming little overlap between atomic electron wave functions that are separated by 
two or more nearest neighbor atom spacings and that the overlap integral 

t– * x xn– L Ĥ x xn–  xd= , find an expression for the electron dispersion rela-

tion, E k  , and an expression for the effective electron mass, meff k  , in the crystal. 

(60%)

Problem 2

(a) Derive the current density J  
ie
2m
--------– *

x
 

x
*

– 
 =  for a particle mass m and 

charge e moving in a real potential, V x  . (40%)
(b) If the particle in (a) is moving in a complex one-dimensional potential of the 

form V V1 iV2+= , where V1  and V2  are real constants, show that

J  
ie
2m
--------– *

x
 

x
*

– 
  2eV2


------------–= .  (40%)

(c) What physical effect does a positive value of V2  have on J ? If V2 0=  and 

 Be x– it–= , where B  and   are real constants, what is the value of J ? (20%)



 

Problem 3
In classical mechanics, the Hamiltonian for a one-dimensional harmonic oscillator with 
motion in the x-direction at frequency  is

H
p2

2m0

---------
m0

2

2
------------x2+=

where m0 is the mass of the particle and p is the particle momentum.

(a) Introduce the operator b̂
m0
2

---------- 
 

1 2

x̂
ip̂

m0
----------+ 

 = , find expressions for x̂  and p̂  in 

terms of b̂  and b̂
†

, substitute into the Hamiltonian and show that in quantum mechan-

ics Ĥ  b̂
†
b̂ 1 2+ = . (20%)

(b) Show that the n = 0 ground-state 0   is defined by b̂ 0  0= . (20%)
(c) Find the normalized ground-state wave function. (20%)
(d) Derive the standard deviation in position and momentum of each harmonic 

oscillator state n   and show that they satisfy the Heisenberg uncertainty relation. 
(20%)

(e) If the standard deviation in momentum is p 5 10 25–  kg m s 1–= , what is the 

value of the standard deviation in position for the state 0   and the state 3  ? (20%)

In answering this question, you may wish to use the standard integral 

e ax
2

– x 
a
---=d

–



 .

Problem 4
The first four energy eigenvalues and eigenfunctions for an electron with effective mass 
me

* 0.07 m0=  confined to the asymmetric potential well sketched in the following 
figure and bounded by barriers of infinite energy for x < 0 nm and x > 50 nm are: 
E1 = 0.0248 eV, E2 = 0.0973 eV, E3 = 0.2000 eV, E4 = 0.2062 eV.

(a) Sketch the corresponding wave functions and explain the qualitative differences 
between each wave function. (50%)

(b) What can you say about the dipole matrix elements 1 x 3   and 1 x 4   for opti-
cal transitions? (50%)
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