
Introduction
In this book you will study the processes that lead to the formation of stars, the
energy sources that fuel them, what they do during their lifetimes, and what
happens when their fuel runs out. It is assumed that you already have a general,
qualitative idea of some events in the life cycles of stars. This book is intended to
take you beyond a description of events to an understanding of the physical
processes that bring them about. That is, the book will not only tell you what
happens, but will provide you with the physical tools to understand why, and to
use the physics to work out what will happen as a star ages.

A key point is that stellar evolution is a cyclic process: stars are born, live
their lives, and then die, but in doing so they seed the interstellar medium with
nuclear-processed material that forms the building blocks of a subsequent
generation of stars. We can, therefore, chose to begin an exploration of this cycle
at any point, and follow the process until we get back to where we started.

This book is divided into eight chapters, each of which provides a fairly
self-contained discussion of a particular phase in the life cycle of a star, or a
particular physical process. We begin in Chapter 1 by looking at the general
properties of stars on the main sequence of the Hertzsprung–Russell diagram,
then in Chapter 2 explore the key driver of stellar evolution, namely the process of
gravitational collapse. In Chapter 3 we explore the physics of nuclear fusion in
more detail, concentrating on the fusion reactions that power a star on the main
sequence. Chapter 4 examines how stars evolve from the main sequence to the
giant branch whilst the phase of helium burning is described in Chapter 5. The
next two Chapters, 6 and 7, consider advanced stages of stellar evolution and the
fate of stars including white dwarfs, neutron stars and black holes. The last part of
the book, in Chapter 8, considers how stars form out of the interstellar material
which has been enriched by previous generations of stars. This brings us full
circle back to the main sequence again, where we started.

The book is designed to be worked through in sequence; some aspects of later
chapters build on the knowledge gained in earlier chapters. So, whilst you could
dip in at any point, you will find if you do so that you are often referred back to
concepts developed elsewhere in the book. Our intention is, that if the book is
studied sequentially, it provides a self-contained, self-study course in stellar
astrophysics.

A special comment should be made about the exercises in this book. You may be
tempted to regard them as optional extras that are only there to help you refresh
your memory about certain concepts when you re-read the text in preparation for
an exam. Do not fall into this trap! The exercises are part of the learning. Several
of the important concepts are developed through the exercises and nowhere else.
Therefore, you should attempt each of them when you come to it. You will find
full solutions for every exercise at the end of this book, but do try to complete the
exercise yourself first before looking at the answer. A table of physical constants
is also given at the end of the book; use these values as appropriate in your
calculations.

For most calculations presented here, use of a scientific calculator is essential. In
some cases, you will be able to work out order of magnitude estimates without the
use of a calculator, and such estimates are invariably useful to check whether an
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Introduction

expression is correct. In some calculations you may find that use of a computer
spreadsheet, or graphing calculator, provides a convenient means of visualizing a
particular function. If you have access to such tools, please feel free to use them.

Finally, a note about the genesis of this book. It was originally written for an
astrophysics course which used, in addition, a book called The Physics of Stars by
A. C. Phillips. We commend that book to readers, and acknowledge the influence
that it had on the development of our approach to teaching this subject.

8



Chapter 1 Main-sequence stars

Introduction
In this chapter we present a set of topics concerning the physics of stars on the
main sequence. These topics serve to illustrate some of the general principles of
stellar astrophysics and allow you to begin a quantitative exploration of the
structure and behaviour of stars. We review the Hertzsprung–Russell diagram,
introduce some parameters of the Sun as a typical star, and consider the general
equations of stellar structure. We then present a summary of the nuclear fusion
reactions that occur in main-sequence stars and consider the amount of energy
released by the fusion of hydrogen. At this stage, we will not go into the detailed
quantum physics which underlies the nuclear fusion reactions of hydrogen
burning; that is left for Chapter 3. We begin by considering the question of just
what we mean by ‘a star’.

The starting point for the formation of a star is a cloud of cold gas, composed
primarily of hydrogen and helium, with traces of heavier elements (usually
referred to as metals). The cloud collapses due to its own gravity, and as
gravitational potential energy is released and converted into heat, the pressure,
density and temperature of the material increase. This causes the cloud to begin
glowing, initially at infrared and later at optical wavelengths. Ultimately, if the
cloud core reaches sufficiently high temperatures – in excess of several million
kelvin – nuclear reactions begin. These thermonuclear reactions provide a
non-gravitational source of energy release, whose heating provides pressure to
support the gas against further collapse. This changes the behaviour of the
object for which, previously, gravitation was the dominant factor, and marks the
transition of the object to a star. By definition, a star is an object in which nuclear
reactions are (or have been) sufficient to balance surface radiation losses.

1.1 The Hertzsprung–Russell diagram
When we observe stars, the two most obvious characteristics are their brightness
and colour. Using a star’s distance to calculate its luminosity (L) from its
brightness, and determining its temperature (T ) from its colour, reveals that
distinct relationships are found between luminosity and temperature as illustrated
in the Hertzsprung–Russell (H–R) diagram (e.g. Figure 1.1 overleaf). Stars
are not distributed randomly in this diagram. The location of a star in the
H–R diagram reflects its mass, radius, age, evolutionary state and chemical
composition. The most densely populated regions of the figure are where stars
spend most of their lives, whereas the probability of finding a star in a short-lived
phase is much lower, so fewer stars are seen in such states. Note that the H–R
diagram is a snapshot – a view at a single instant – of the evolutionary states of
many stars. It is not the evolutionary track that an individual star traces out over
its lifetime.
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Chapter 1 Main-sequence stars
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Figure 1.1 A schematic
Hertzsprung–Russell diagram.
This provides a snapshot of the
luminosity L and effective
surface temperature Teff of many
stars at different stages of
their evolution. Note that the
temperature increases from right
to left. Most of the stars lie
along a diagonal band, from
upper-left (hot and luminous) to
lower-right (cooler and fainter),
called the main sequence. The
second most populated region of
the diagram, top right, is called
the red-giant branch. The stars
toward the lower left lie on the
white-dwarf branch.

The H–R diagram can be presented in different ways. The original, observational
diagram showed star brightness (measured as the absolute visual magnitude,
MV ) on the vertical axis and stellar spectral type on the horizontal axis. Spectral
type is very closely related to temperature and colour. Temperatures cannot be
measured directly for many stars, but colours can be, so the observational H–R
diagram is often a plot of MV against colour index (such as B − V ). The
theoretical H–R diagram uses quantities more closely related to computations of
stellar models, and plots luminosity, L, (energy radiated per unit time) against
effective surface temperature, Teff .

The Stefan–Boltzmann law states that the radiant flux F (radiant energy per
square metre of surface area per second) from a black body of temperature T is
given by F = σT 4, where σ = 5.671 × 10−8 W m−2 K−4 and is called the
Stefan–Boltzmann constant.

The radiant flux F passing through the surface of a spherical object of luminosityFrom now on radiant flux will be
referred to simply as flux. L and radius R (whose surface area is 4πR2) is simply

F =
L

4πR2
.

If the object is a black body, then its luminosity L, radius R and temperature T
are related by the equation

L

4πR2
= σT 4.
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1.1 The Hertzsprung–Russell diagram

How does this equation for a black body relate to a star? Moreover, if the Sun is a
ball of gas, what do we mean by its surface? Light is continually emitted and
reabsorbed by the hot gas that is the Sun. Near its outer layers, the fog-like gas
eventually becomes transparent enough that some of the light escapes without
being reabsorbed. However, the transition from being opaque to being transparent
happens over a considerable distance. This zone, which is almost 500 km thick, is
called the photosphere, and is the best definition we have for a surface for the
Sun. The same is true in other stars, though the thickness of the photosphere is
even greater in giants.

Because a star does not have an opaque, solid surface, light reaching an observer
comes from a range of depths in its gaseous outer layers, each layer having a
different temperature. What temperature should be used to characterize the
surface? A useful convention is to refer to the temperature which a black body of
the same luminosity and radius would have. This is called the effective surface
temperature Teff , and is defined as follows:

L = 4πR2σT 4
eff . (1.1)

From the definition, we see that the effective surface temperature is related to the
flux through the surface of the star, but how does it compare to the temperatures of
the gas in its outer layers? Fortunately, stars are very good approximations to
black bodies, since they absorb any light falling on them. Consequently, the
effective surface temperature coincides with the temperature at an intermediate
depth in the photosphere of the star. Deeper layers have temperatures higher than
Teff , while shallower layers in the photosphere have temperatures lower than Teff .
We will use the effective surface temperature to characterize the outer layers
or surface of the star, even though a star does not have a solid surface in the
conventional sense.

Note that Equation 1.1 involves three variables, L, R and Teff , so if two are
specified then the third can be calculated. Moreover, two of these are the axes of
the theoretical H–R diagram, Teff and L, so the third variable, R, can also be
calculated for the H–R diagram.

● Equation 1.1 gives the relationship between the luminosity, effective surface
temperature and radius of stars. How should it be changed for white dwarfs,
which are fading away, or young protostars, which have yet to begin
thermonuclear burning?

❍ Don’t mess with that equation! It works just fine as it is, for any black body. It
therefore applies to all stages of stellar evolution.

Exercise 1.1 Draw curves on Figure 1.1 to show where stars of radii 100 R%,
10 R%, 1 R% and 0.1 R% lie. To do this, calculate the luminosities of stars having
radii of 100 R%, 10 R%, 1 R% and 0.1 R%, for six values of effective surface
temperature: 2000 K, 4000 K, 6000 K, 10 000 K, 20 000 K and 40 000 K. Use the
values for the solar luminosity and radius, and the Stefan–Boltzmann constant σ
given at the end of this book. You could use a calculator to do this, but it will be
less tedious if you use a spreadsheet. ■

Make sure you understand the spacing and shape of the curves in Figure S1.1,
which shows the result of the exercise above. The curves are straight lines,

Figure references beginning
with ‘S’ are to be found in the
Solutions to exercises, at the end
of the book.
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Chapter 1 Main-sequence stars

separated by equal amounts, and the one corresponding to 1 R% passes through
the datum point for the Sun, although this is not shown. A key thing to note is that
both Figure 1.1 and Figure S1.1 are plotted using log–log scales, rather than
simple linear scales. The spacing and shapes of the curves can be understood by
taking logarithms of the equation L = 4πR2σT 4

eff , giving

log10 L = log10(4πσ) + 2 log10 R + 4 log10 Teff .

This is the equation for a straight line where log10 L is on the y-axis and log10 Teff

is on the x-axis. The coefficient of the x-axis term, i.e. the slope, is 4. The
intercept is log10(4πσ) + 2 log10 R, which clearly depends on the value of R.
Increasing or decreasing R by a factor of 10 changes 2 log10 R (and hence
log10 L) by +2 or −2 respectively, thus offsetting the curves of the 0.1 R% and
10 R% stars by equal amounts, but in opposite directions, from the 1 R% line.

1.2 The Sun as a typical star
Although it would be wrong to get the idea that all main-sequence stars are like
the Sun, it is the star that we know best, and so it is a useful reference point. We
will therefore consider the structure of the Sun, to help illustrate the properties of
main-sequence stars in general.

Only the surface properties of the Sun are directly observable, but these
measurements may be combined with theoretical models of the Sun’s interior to
predict its physical characteristics. The principal physical properties of the Sun
are listed in Table 1.1

Table 1.1 The physical properties of the Sun.

Measured property Value

Mass M% = 1.99 × 1030 kg
Radius R% = 6.96 × 108 m
Luminosity L% = 3.83 × 1026 W
Effective surface temperature T%,eff = 5780 K

Calculated property Value

Age t% = 4.55 × 109 years
Core density ρ%,c = 1.48 × 105 kg m−3

Core temperature T%,c = 15.6 × 106 K
Core pressure P%,c = 2.29 × 1016 Pa

In order to deduce further physical parameters of the Sun (and of other stars) it is
necessary to know a little more about how the gravitational potential energy of a
ball of gas is related to its other parameters, such as its mass, radius and internal
pressure. We explore the details of such relationships in Chapter 2, but for now
simply note the results in the box below.
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1.2 The Sun as a typical star

The gravitational potential energy of a star

The astrophysics of stars is intimately concerned with self-gravitating
balls of plasma. Gravity, which acts to make a body collapse, can be
opposed by internal pressure if the pressure is greater in the core, i.e. if a
pressure gradient exists, with pressure decreasing outwards. Hydrostatic
equilibrium exists when gravity is just balanced by the pressure gradient, so
the body neither contracts nor expands.

A very useful result describing the properties of such a system is
encapsulated in the virial theorem. This states that the volume-averaged
pressure needed to support a self-gravitating body in hydrostatic equilibrium
is minus one-third of the gravitational potential energy density (i.e. the
gravitational energy per unit volume). In symbols

〈P 〉 = −
1

3

EGR

V
. (1.2)

The negative sign is required because the gravitational potential energy is
defined as negative, while the pressure must be positive.

The gravitational potential energy of a sphere of uniform density may be
calculated by integrating over the mass contained within it. The procedure is
straightforward, but an unnecessary distraction, so we simply state the result:

EGR = −
3GM2

5R
, (1.3)

where M and R are the mass and radius of the star respectively. Real stars
will, of course, not have a uniform density, but the relationship above
provides a useful approximation in many cases.

The mean pressure inside the Sun (and indeed within any star in hydrostatic
equilibrium) is given by the virial theorem (see the box above). Assuming the Sun
to have a uniform density, combining Equations 1.2 and 1.3, and using solar
values for the mass and radius, gives

〈P%〉 =

(
−

1

3V%

)
×

(
−

3GM2%
5R%

)
=

GM2%
5V%R%

.

Since the Sun is a sphere, its volume is

V% =
4

3
πR3

% (1.4)

so the virial theorem for the average pressure inside the Sun may be rewritten as

〈P%〉 =
3GM2%
20πR4%

. (1.5)

● Using the values from Table 1.1, calculate the mean pressure inside the Sun.

❍ The mean pressure inside the Sun 〈P%〉 is

〈P%〉 =
3 × 6.673 × 10−11 N m2 kg−2 × (1.99 × 1030 kg)2

20π × (6.96 × 108 m)4

= 5.38 × 1013 Pa.
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Chapter 1 Main-sequence stars

This is about 400 times smaller than the Sun’s core pressure.

The mean density of the Sun is clearly just its mass divided by its volume. Since
the Sun is a sphere this is simply

〈ρ%〉 =
M%

4
3πR3%

=
3M%
4πR3%

. (1.6)

● Using the values from Table 1.1, calculate the mean density of the Sun.

❍ The mean density inside the Sun 〈ρ%〉 is

〈ρ%〉 =
3 × 1.99 × 1030 kg

4π × (6.96 × 108 m)3

= 1.41 × 103 kg m−3.

This is about 100 times smaller than its core density.

In order to calculate the mean temperature inside the Sun, we need to consider the
particles of which it is composed, since the mass of the particles determines how
the temperature and pressure are linked, via the ideal gas law. To do this, we need
to find a way of describing the average composition in terms of the masses of the
component particles. This is described in the following box.

Mean molecular mass

The composition of a star can be described in several ways, such as by
stating the mass fractions XZ of each of its constituent elements. However,
often a more convenient measure is the mean molecular mass of the material.
The mean molecular mass, µ, is the mean mass in amu (u) of the particles
making up a gas. The amu scale itself is defined such that the mass of a
carbon-12 atom, m(12C) = 12 amu exactly, so

1 amu = u = 1.661 × 10−27 kg.

Hence, the mean molecular mass is given by the sum of the mass of the
particles in amu divided by the total number of particles. In symbols, this is

µ =

∑
i

ni
mi
u∑

i
ni

, (1.7)

where ni is the number of particles of a particular type, and mi is the mass
of each of those particles of that type. The word molecular is a little
misleading, because the interiors of stars are too hot for molecules to exist,
and even most atoms are completely ionized, but the expression has survived
from its use in cooler environments. The mean molecular mass is sensitive
to both the chemical composition of the gas and its degree of dissociation
and ionization.

A related concept is the mean molecular mass in units of kilograms. This is
usually represented by the symbol m (‘m-bar’) and is simply

m = µu. (1.8)
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1.2 The Sun as a typical star

In most cases in stellar astrophysics it is sufficient to assume that the mass of
a hydrogen atom or ion is mH ≈ mp ≈ 1u and the mass of a helium atom or
ion is mHe ≈ mHe2+ ≈ 4u. Since the mass of an electron is almost 2000
times smaller than the mass of a proton it is usually sufficient to assume
me/u ≈ 0.

For example, the mean molecular mass of a neutral gas of pure molecular
hydrogen (H2) is µH2 ≈ 2, and the mean molecular mass of a neutral gas of
pure atomic hydrogen is µH ≈ 1. Finally, if we consider a neutral gas of
completely ionized hydrogen, there are two different types of particles
present: protons and electrons in a one-to-one ratio. The mean molecular
mass is therefore

µH+ =
Np(mp/u) + Ne(me/u)

Np + Ne
.

But since Np = Ne for a neutral gas and mp/u ≈ 1 and me/u ≈ 0, we can
write

µH+ ≈
Np

Np + Np

≈ 0.5.

Note that the mean molecular mass of ionized hydrogen is half that of neutral
hydrogen, which is half that of molecular hydrogen, even though exactly the
same numbers of protons and electrons are involved in each sample!

● What is the mean molecular mass of a neutral plasma containing fully
ionized atoms whose atomic number is of order ∼ 20 to 30?

❍ Atoms with atomic numbers ∼ 20 to 30 will typically contain as many
neutrons as protons. So a fully ionized atom of a given species with atomic
number Z will have a mass of mZ ∼ 2Zu. Each ion will also produce Z
electrons in the plasma, each of mass me. The mean molecular mass of a
plasma containing NZ ions is therefore

µZ ∼
(NZ(2Zu)/u) + (ZNZ(me)/u)

NZ + ZNZ

∼
(2Z + 0) NZ

(Z + 1)NZ
∼

2Z

Z + 1
.

Since Z ∼ 20 to 30 then an approximate answer is µZ ∼ 2. Hence any
neutral plasma of fully ionized heavy atoms will have a mean molecular
mass of about 2.

Exercise 1.2 Assume the Sun is fully ionized (and neutral) and comprises
92.7% hydrogen ions and 7.3% helium ions, plus the appropriate number of
electrons. Calculate the mean molecular mass of the particles in the Sun. ■

Now, if we assume that the gas of which the Sun is composed obeys the ideal gas
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Chapter 1 Main-sequence stars

law, then we may write its average pressure as

〈P%〉 =
〈ρ%〉 kTI

m
, (1.9)

where TI is a typical temperature inside the Sun and m is the mean mass of the
particles. Combining this with Equations 1.6 and 1.5, we have

TI =
mGM%
5kR%

. (1.10)

● Assuming that the average mass of the particles (nuclei and electrons) in the
Sun is m ≈ 0.6u, use the values from Table 1.1 to calculate the typical
temperature TI inside the Sun.

❍ The typical temperature inside the Sun TI is

TI =
0.6 × 1.661 × 10−27 kg × 6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

5 × 1.381 × 10−23 J K−1 × 6.96 × 108 m
= 2.75 × 106 K.

This is about 6 times smaller than the Sun’s core temperature.

1.3 The equations of stellar structure
There is a set of equations which can be used to describe the conditions inside the
Sun, and indeed within any main-sequence star. These are known as the equations
of stellar structure, and comprise four first-order differential equations which
describe the way in which a star’s mass distribution, pressure, luminosity and
temperature each varies as a function of distance from the star’s core. They are
supplemented by a set of four linking equations, which relate a star’s pressure,
luminosity, opacity and energy generation rate to its temperature and density. You
have already met the first of these linking equations above: Equation 1.1 links a
star’s luminosity to its effective surface temperature using the Stefan–Boltzmann
law.

A second of the linking equations is provided by a gas law. Clearly, the
temperature, density and pressure within a star are not constant, and in fact each
of these quantities will increase towards the core. In main-sequence stars, we can
assume that the pressure, density and temperature inside the star are linked by the
ideal gas law, which can be written as

P (r) =
ρ(r)kT (r)

m
, (1.11)

where m is the mean mass per particle inside the star. Recall that the notation
ρ(r) means that the density ρ is a function of the radial coordinate r in the star. It
is also worth noting that m may also vary as a function of radius, and such
abundance gradients are important in the post-main sequence stages of stellar
evolution. For now, however, we assume this quantity may be treated as a
constant.

We now proceed with the four differential equations of stellar structure, at this
stage simply presenting them with a little justification. Clearly the Sun does not
appear to change in size, and moreover there is no evidence that it has changed
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1.3 The equations of stellar structure

much in size over its recent lifetime. Hence, it is safe to assume that the Sun and
other stars on the main sequence, are in a state of hydrostatic equilibrium. The
pressure gradient at any point in the Sun must therefore be balanced by the
gravitational force per unit volume, and we can write:

dP (r)

dr
= −

Gm(r) ρ(r)

r2
, (1.12)

where m(r) is the mass interior to a sphere of radius r (sometimes referred to as
the enclosed mass at radius r) and ρ(r) is the density at radius r. The minus sign
reminds us that the pressure gradient increases inwards (i.e. the pressure is greater
at smaller radii) whilst the radial coordinate (r) increases outwards.

The mass and density are related by the equation of mass continuity. This is the
second of the four differential equations, and in a spherical geometry may be
written as:

dm(r)

dr
= 4πr2ρ(r). (1.13)

For stars in which the majority of the energy transport is provided by radiation
(rather than convection), another equation linking various properties is that of
radiative diffusion. The temperature gradient dT (r)/dr at some radius r within a
star depends on the temperature T (r), luminosity L(r), density ρ(r) and opacity
κ(r) (see the box below about opacity) at that radius according to:

dT (r)

dr
= −

3κ(r) ρ(r) L(r)

(4πr2)(16σ) T 3(r)
(1.14)

where σ is the Stefan–Boltzmann constant. The minus sign again indicates that
the temperature increases inwards (i.e. the temperature is greater at smaller r). In
the case of the Sun, and other stars of similar mass, radiative diffusion will
dominate in the region known (not surprisingly) as the radiative zone. In the Sun’s
case this lies between about 0.2 and 0.7 solar radii from the centre.

Finally, we note that the luminosity increases outwards from the core of a star, as
new sources of energy are encountered. The energy generation equation describes
the increase in luminosity L as a function of radius r:

dL(r)

dr
= 4πr2 ε(r) (1.15)

where ε(r) is the energy generation rate per unit volume.

Equations 1.12 to 1.15 comprise the fundamental differential equations of stellar
structure. They are based on simple assumptions of hydrostatic equilibrium and
spherical symmetry, and assume that energy is transported within the star only by
radiative diffusion. Modifications have to be made to these equations in cases
where convective energy transport is important (such as in the outer layers of the
Sun and other low-mass main-sequence stars), but in general they provide a
means of calculating the structures of typical stars.

In order to solve these differential equations, other information is needed which
relates the luminosity L(r), pressure P (r), opacity κ(r) and energy generation
rate ε(r) to the stellar density and temperature. The Stefan–Boltzmann law via
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Chapter 1 Main-sequence stars

Equation 1.1 and the ideal gas law via Equation 1.11 provide this information
in the first and second cases, whilst the Kramers opacity approximation
(Equation 1.16 below) can provide the link in the third case. You will meet the
final linking equation, namely an equivalent expression for the energy generation
rate, in Chapter 3. In order to then solve this complete set of equations, a set of
boundary conditions must also be selected. These quantify the behaviour of the
variable quantities at the extremes where r = 0 and r = R.

Opacity

The opacity, κ (the Greek lower case letter kappa), of some material is its
ability to block radiation. It is expressed as an absorption cross-section per
unit mass, so has the unit m2 kg−1. Perfectly transparent matter would have
an opacity of zero (see Figure 1.2).

The opacity of material is caused by several physical processes, the four
most common being: bound–bound atomic transitions, bound–free
transitions (i.e. ionization), free–free (thermal bremsstrahlung)
interactions, and electron scattering (especially in fully ionized [hot and/or
low-density] material where there are a lot of free electrons). To calculate
the opacity of some material, the contribution of each process must be
computed, and all contributions added.

transmitted
photon

1 kg

cross-sectionabsorption

absorbed
photon

= 10−4 m2

Figure 1.2 Schematic
of opacity: if 1 kg of
material contains
11 particles,
each presenting
an absorption
cross-section of
10−4 m2, the opacity of
the material is
11 ×10−4 m2 kg−1. In
practice, the number of
particles will be ' 11,
and the absorption
cross-section of each
will be ) 10−4 m2.

Fortunately, these calculations have been done for us, and two useful
generalizations can be made:

1. For stellar-composition material at temperatures T ≥ 30 000 K, the opacity
κ is dominated by free–free and bound–free absorption, for which an
approximate form is κ ∝ ρT−3.5 (see Figure 1.3 on page 19). Any opacity
of this form,

κ(r) = κ0ρ(r)T−3.5(r), (1.16)

is called a Kramers opacity, after the Dutch physicist Hendrik (Hans)
Kramers who first found this solution in 1923. The Kramers opacity is a
very useful approximation, but you should note that it is just that, and not a
fundamental physical law.
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1.3 The equations of stellar structure

2. In low-density environments and at very high temperature, scattering by free
electrons dominates. In electron scattering, the absorption per free electron
is independent of temperature or density, so this opacity source has an almost
constant absorption per electron, and therefore per unit mass of ionized
material. It is responsible for the flat tail at high temperature in Figure 1.3,
which sets a lower limit on the opacity at high temperature and low density.

● If the absorbing particles in Figure 1.2 exhibit a Kramers opacity, and their
temperature is doubled, what happens to the opacity and their absorption
cross-sections? If the particles are electrons, so that the opacity is due
entirely to electron scattering, what happens to the opacity if the
temperature is doubled?

❍ The opacity of particles exhibiting a Kramers opacity decreases if the
temperature is increased. The overall opacity would decrease by a factor
23.5 ≈ 11, to ≈ 10−4 m2 kg−1. Since there are still 11 particles, we infer
that their individual absorption cross-sections must also decrease by a
factor of ≈ 11, to ≈ 9 × 10−5 m2. Electron scattering, on the other hand,
depends only on the number of free electrons, not their temperature, so in
the second case the opacity would be unchanged.

● Table 1.1 gives the central temperature and central density of the Sun. Use
these values to mark a cross on Figure 1.3 indicating the conditions in the
solar core. Based on where it lies, do you expect the opacity of the material
in the core of the Sun to be dominated by a Kramers opacity or by electron
scattering?

❍ The point for the solar core lies just above the curve for ρ = 105 kg m−3, at
log10(T/K) = 7.19, where the opacity is seen to be ≈ 2 × 10−1 m2 kg−1.
This is still on the sloping part of the opacity–temperature curves,
indicating that Kramers opacity still dominates over electron scattering.

The stellar structure equations describe the radial gradients dP (r)/dr, dm(r)/dr,
dT (r)/dr and dL(r)/dr in terms of a number of variables including m(r), P (r),
ρ(r), κ(r), L(r), T (r), ε(r) and r. Ideally one would like to be able to write
down expressions for all of these quantities as a function of the radial coordinate
r, but alas it is rather difficult to do so. Over the years there have been several
attempts to develop simplistic models that use approximations to achieve this, and
they can in many cases provide valuable insights into the physics of stars.

In fact, it is possible to infer some important relationships between the
stellar structure variables by making just a few simple approximations. The
mathematical treatment that we will follow to illustrate this is straightforward
enough, but rather tedious and would serve as a distraction at this stage of the
book, so we provide just a few insights rather than mathematical rigour.

The first step is to divide each stellar structure variable by its maximum value or
its average value in the star. For example, whenever the enclosed mass m(r)
occurs in a stellar structure equation, we divide it by the total mass of the star M .
Of course, we must perform the same division on both sides of the stellar structure
equation. This step recasts the stellar structure equations in terms of normalized
variables m(r)/M , P (r)/Pc, T (r)/Tc etc., where Pc and Tc are the pressure and

19



Chapter 1 Main-sequence stars

temperature at the core of the star.
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Figure 1.3 Opacity for solar
composition material, as a
function of temperature (on the
horizontal axis) and density, in a
log–log plane. Each curve
is labeled by the value of
the density ρ in kg m−3. In
the regime T ≥ 30 000 K,
i.e. T ≥ 104.5 K, the curves
(in the log–log plane) are
roughly linear with slope −3.5,
and more or less uniformly
spaced for equal increments of
log density, confirming that
log10 κ = const + log10 ρ −
3.5 log10 T , or equivalently
κ ∝ ρT−3.5. Electron scattering
has an almost constant
cross-section per unit mass, and
is the dominant opacity at high
temperatures and low densities,
where it sets a lower bound on
the opacity values.

The second step is to assume that all stars have the same structure when compared
using normalized variables. (This assumption is reasonable — and hence useful
— for some stars, but poor — and hence unhelpful — for others.) According to
this assumption, although the total masses of two stars, M1 and M2, may differ,
and their central temperatures Tc,1 and Tc,2 also may differ, their structures are
similar enough that the variation of normalized temperature T (r)/Tc with
normalized enclosed mass m(r)/M is the same for both objects.

The outcome of taking the two steps described above is that we can write a
companion equation for each of the stellar structure equations given above. The
companion equation differs from the original in four respects:

1. each occurrence of a derivative is replaced by a simple ratio of the
corresponding variables,

2. each occurrence of a stellar structure variable is replaced by either its
maximum or average value,
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1.3 The equations of stellar structure

3. the equals sign = is replaced by the symbol ∝ meaning ‘is proportional to’,
and

4. any physical constants can be dropped.

A worked example is given below to make this clearer.

Worked Example 1.1

As an illustration of the use of the stellar structure equations, we use them to
derive an approximate mass–luminosity relationship for high-mass stars on
the main sequence. In such stars, the main source of opacity is electron
scattering, so for them the opacity is roughly constant (i.e. independent of
temperature or density).

Solution

In the following, we use M and R to represent the star’s total mass and
radius, L for its surface luminosity, Pc for its central pressure, Tc for its
central temperature, ρ for its mean density and κ for its mean opacity.

We begin by writing the companion equation to Equation 1.13 for mass
continuity. In this case we can replace dm(r)/dr, by the simple ratio, M/R.
We can also replace r by the radius R and ρ(r) by the mean density ρ.
So, the companion equation to the mass continuity equation is simply
M/R ∝ R2ρ which may be re-written as (i) ρ ∝ M/R3. This of course
makes sense, since the average density is just ρ = M/4

3πR3.

The equation of hydrostatic equilibrium (Equation 1.12) gives rise to the
companion equation Pc/R ∝ Mρ/R2 which using (i) from above may be
re-written as (ii) Pc ∝ M2/R4.

For an unchanging chemical composition, the ideal gas law leads to the
expression Pc ∝ ρTc. Substituting for ρ and Pc using (i) and (ii) from above,
this becomes (iii) Tc ∝ M/R.

Finally, the temperature gradient equation leads to Tc/R ∝ κρL/R2T 3
c ,

which can immediately be re-arranged as T 4
c ∝ κρL/R. Now substituting

for ρ using (i) this becomes T 4
c ∝ κML/R4 and then substituting for Tc

using (iii) we have (iv) L ∝ M3/κ.

Now, as noted at the beginning of this example, in a high-mass
main-sequence star, the opacity is constant, so the mass–luminosity
relationship for such stars is approximately L ∝ M3.

Exercise 1.3 Following a similar process to that in the above worked example,
what would be an approximate relationship between the mass, luminosity and
radius of a low-mass main-sequence star, in which the opacity may be represented
by a Kramers opacity? ■

The two mass–luminosity relationships derived in the previous worked example
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Chapter 1 Main-sequence stars

and exercise may be summarized as:

L ∝ M3 for high-mass main-sequence stars (1.17)

L ∝ M5.5R−0.5 for low-mass main-sequence stars. (1.18)

The latter equation is known as the Eddington mass–luminosity–radius
relationship. Note, these equations are only approximations to the real situation,
for the reasons mentioned, and we have ignored factors such as differing chemical
composition, for instance. Nonetheless, they are good approximations for real
stars and demonstrate the power of this simple analysis in tackling complex
situations.

1.4 The proton–proton (p–p) chain
With hydrogen being the most abundant element in the Universe it is
understandable that hydrogen is both the starting point for stellar nuclear burning
and, as it turns out, the longest-lasting nuclear fuel. In this section we examine the
first of two hydrogen-burning processes, beginning with that which dominates in
the Sun and other low-mass main-sequence stars.

As a contracting pre-main-sequence star heats up, it reaches a temperature of
about 106 K at which protons can undergo fusion with any pre-existing light
nuclei, such as deuterium (D), lithium (Li), beryllium (Be) and boron (B).
However, these reactions are extremely rapid and release only a limited amount of
energy because the light nuclei are present in such small quantities. In order to
begin life properly as star, a different reaction must be initiated, one in which
protons are combined with each other to make heavier nuclei. If one could simply
combine two protons to make a nucleus of 2

2He, then hydrogen burning would be
very rapid. However, a nucleus of helium containing no neutrons is not stable, so
this is not how hydrogen fusion proceeds.

Instead, at a temperature of about 107 K, the first step in the proton–proton chain
occurs when two protons react to form a nucleus of deuterium, which is called a
deuteron:

p + p −→ d + e+ + νe,

where the deuteron (d) comprises a proton (p) and a neutron (n). This first step is
therefore a weak interaction in which a proton has been converted into a neutron,
with the release of a positron (e+) and an electron neutrino (νe). It is important to
note that this first step is incredibly slow. On average, an individual proton in the
core of the Sun will have to wait for about 5 billion years before it undergoes such
a reaction. (Although, since the core of the Sun contains a huge number of
protons, some of them will react as soon as the conditions are right for them to do
so.) This reaction therefore effectively governs the length of time for which a star
will undergo hydrogen fusion – its main sequence lifetime.

Once a deuterium nucleus has formed it will rapidly capture another proton to
form a nucleus of helium-3, in the reaction:

d + p −→ 3
2He + γ.

However, from here, the helium-3 nucleus can undergo one of two reactions. In
the Sun, 85% of the time, the helium-3 nucleus will react with another helium-3
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1.5 The mass defect

nucleus to form a helium-4 nucleus directly, in the reaction:
3
2He + 3

2He −→ 4
2He + p + p.

This set of reactions constitutes the first branch of the p–p chain, (ppI).

In the rest of the cases, the helium-3 nucleus will react with an existing helium-4
nucleus to form a nucleus of beryllium-7 as follows:

3
2He + 4

2He −→ 7
4Be + γ.

Virtually every beryllium-7 nucleus will subsequently capture an electron to form
lithium-7, which then reacts with a further proton to produce two helium-4 nuclei:

e− + 7
4Be −→ 7

3Li + νe

p + 7
3Li −→ 4

2He + 4
2He.

This set of reactions constitutes the second branch of the p–p chain, (ppII).

In a very tiny proportion of cases, the beryllium-7 nucleus will instead react
directly with a proton forming a nucleus of boron-8 which subsequently
undergoes beta-plus decay to beryllium-8, which in turn splits into two helium-4
nuclei:

p + 7
4Be −→ 8

5B
8
5B −→ 8

4Be + e+ + νe

8
4Be −→ 4

2He + 4
2He.

This set of reactions constitutes the third branch of the p–p chain, (ppIII).

All three branches are summarized in Figure 1.4 (overleaf). In stars with higher
core temperatures, the proportions of nuclei undergoing fusion via the ppII and
ppIII branches are higher than in the Sun.

● The proton–proton chain comprises nine reactions in three branches, but just
one reaction determines the overall rate at which hydrogen burning proceeds.
Which reaction is the bottleneck and why?

❍ The slowest reaction in the series is the first one, p + p −→ d + e+ + νe.
This is slowest because during the collision of the protons, one of them must
undergo a β+-decay, p −→ n + e+ + νe. The β+-decay is mediated by the
weak nuclear force, so has a very low probability of occurring.

1.5 The mass defect
The proton–proton chain converts four hydrogen nuclei (protons) into a 4

2He
nucleus, two positrons that quickly collide with electrons and are annihilated, and
two neutrinos. Hence, branch I of the p–p chain may be summarized as:

2e− + 4p −→ 4
2He + 2νe + 2γpd + 4γe.

(The unconventional subscripts used here on the γ-rays are to distinguish the
γ-rays from the p + d reaction from those from the electron–positron annihilation.)

The energy released in these reactions can be assessed from the differences in the
masses of each particle, and the masses of the nuclei can be obtained from the
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Chapter 1 Main-sequence stars

atomic masses of their isotopes. We use the atomic mass unit (amu) scale where
m(12C) = 12 amu exactly, so 1 amu = 1.660 540 × 10−27 kg. Isotope tables give
the atomic masses of hydrogen and helium-4 as:

m(11H) = 1.007 825 amu = 1.673 534 × 10−27 kg

m(42He) = 4.002 60 amu = 6.646 478 × 10−27 kg.
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Figure 1.4 The p–p chain consists of three branches (ppI, ppII and ppIII). Each
of them results in the creation of nuclei of helium-4 from four protons. The
relative proportions of each branch occurring in the Sun are shown.

These include one electron for hydrogen and two electrons for helium, where
m(e−) = 9.109 × 10−31 kg, so subtracting the electronic component gives
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1.5 The mass defect

nuclear masses mn(
1
1H) = 1.672 623 × 10−27 kg for the 1

1H nucleus and
mn(

4
2He) = 6.644 656 × 10−27 kg for the 4

2He nucleus.

The reaction sequence has the following mass difference:

Δm = initial mass – final mass

= 2m(e−) + m(4p) − mn(
4
2He) − m(2νe) − m(2γpd) − m(4γe)

= (2 × 9.109 × 10−31 kg) + (4 × 1.672623 × 10−27 kg)

− 6.644656 × 10−27 kg − 0 − 0 − 0

= 4.7658 × 10−29 kg.

This mass difference is called the mass defect. Note for future reference that this
corresponds to the fraction ≈ 0.0066 of the original mass of four protons.

Einstein’s famous equation E = mc2 expresses the mass–energy equivalence and
gives the energy released from this change in mass. The energy associated
with the mass defect is given the symbol ΔQ, and in our example is
ΔQ = (Δm)c2 = 4.2833 × 10−12 J = 26.74 MeV. Some of this is in the form of
the kinetic energy of reaction products, and some is in the form of the two
γpd-rays and the four γe-rays. Most of this energy is quickly absorbed by the
surrounding particles and thus appears as the increased kinetic energy of the gas.
However, the two neutrinos do not interact with the local gas, and escape from the
star unimpeded. They carry off a small amount of energy, on average 0.26 MeV
each for the neutrinos in the first branch of the p–p chain, reducing the effective
energy contribution to the star to 26.74MeV − (2 × 0.26MeV) = 26.22 MeV.

● In most of the exercises in this book only four significant figures are given for
the physical constants. However, in the calculation above we have used seven
for the atomic and nuclear masses. Why?

❍ Whenever you have to subtract nearly equal quantities, the number of
significant figures decreases. Consider

4m(p) − mn(
4
2He) = 6.690 492 × 10−27 kg − 6.644 656 × 10−27 kg

= 0.045 836 × 10−27 kg.

Although the nuclear masses are quoted to 7 significant figures, the numbers
are so similar that only 5 significant figures remain after the subtraction. If we
had begun with only 4 figures, we would have been left with only 2, and
numerical accuracy would have been lost.

Exercise 1.4 Following a similar procedure to that outlined above for the
first branch of the proton–proton chain, what is the energy released by the
reactions comprising the second branch of the proton–proton chain? (Note: Of the
neutrinos released in the reaction where a beryllium-7 nucleus captures an
electron, 90% of them carry away an energy of 0.86 MeV, whilst the remaining
10% carry away an energy of 0.38 MeV, depending on whether or not the
beryllium-7 is created in an excited state.) ■

You have seen that each instance of the first branch of the p–p chain contributes
26.22 MeV of energy to the star and each instance of the second branch of
the p–p chain contributes 25.67 MeV of energy. Since the first branch
occurs 85% of the time and involves two proton–proton reactions, and the
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second branch occurs 15% of the time but involves only one proton–proton
reaction, the average energy released for each reaction between two protons is
(0.85 × 26.22 MeV)/2 + (0.15 × 25.67 MeV) = 15.0 MeV.

1.6 The carbon–nitrogen–oxygen (CNO) cycle
The proton–proton chain is the main fusion reaction in the Sun, but it is not the
main one in many more-massive main-sequence stars. Here there are two closed
cycles of reactions which not only convert hydrogen into helium, but also convert
carbon-12 nuclei (formed in an earlier generation of stars and incorporated when
the star formed) into carbon-13 and various isotopes of nitrogen and oxygen.

The carbon–nitrogen (CN) cycle uses 12
6C as a catalyst. That is, if the CN cycle

completes, any 12
6C involved in the reaction sequence is returned at the end

without being consumed. An illustrative view, emphasizing the cyclical nature,
and also showing the associated oxygen–nitrogen (ON) cycle which requires
higher temperatures, is shown in Figure 1.5. Collectively these two cycles are
known as the carbon–nitrogen–oxygen cycle or CNO cycle.

The CN-cycle can be considered as starting with a carbon-12 nucleus. This
captures a proton to form nitrogen-13, which then undergoes beta-plus decay to
carbon-13. This captures two further protons to form nitrogen-14 and then
oxygen-15. A beta-plus decay to nitrogen-15 is then followed by the capture of a
proton, emission of an alpha-particle (i.e. helium-4 nucleus) and the recovery of
the original carbon-12 nucleus.
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Figure 1.5 The CNO cycle is
made up of two parts: the CN
cycle which operates at lower
temperatures, and the ON cycle
which becomes more important
at higher temperatures. The
cycles contain essentially only
three types of reactions: The
notation p,γ indicates the
capture of a proton with the
emission of a γ-ray, which
increase the atomic number and
atomic mass number by one, the
notation β+νe indicates a
beta-plus decay accompanied by
neutrino emission, and the
notation p,α indicates a reaction
that closes each cycle with the
capture of a fourth proton,
followed by the emission of a
helium nucleus (α-particle) and
the recovery of the starting
nucleus.

Similarly, the ON-cycle can be considered as starting with a nitrogen-14 nucleus.
This captures a proton to form oxygen-15, which then undergoes beta-plus decay
to nitrogen-15. This captures two further protons to form oxygen-16 and then
fluorine-17. A beta-plus decay to oxygen-17 is then followed by the capture of a
proton, emission of an alpha-particle (i.e. helium-4 nucleus) and the recovery of
the original nitrogen-14 nucleus.

We shall return to the physics of the p–p chain and the CNO-cycle in Chapter 3.
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Summary of Chapter 1

Summary of Chapter 1
1. The Hertzsprung–Russell diagram is of fundamental importance for

describing the properties of stars and for tracking their evolution. It has two
forms: the observational H–R diagram plots absolute visual magnitude MV

versus colour index (often B − V ) or spectral type; the theoretical H–R
diagram plots luminosity L versus effective surface temperature Teff on a
log–log scale.

2. L = 4πR2σT 4
eff relates stellar radius, luminosity and effective surface

temperature. Loci of constant radius in the H–R diagram are diagonal lines
from upper left to lower right.

3. The virial theorem, which is derived from the condition for hydrostatic
equilibrium, concludes that the average pressure needed to support a
self-gravitating system is minus one-third of the gravitational potential
energy density 〈P 〉 = −EGR/3V .

4. The gravitational potential energy of a spherical cloud of gas of uniform
density is EGR = −3GM2/5R. This is a useful approximation for most
stars.

5. The mean molecular mass of a sample of gas is given by the sum of the mass
of the particles in amu divided by the total number of particles. The mean
molecular masses for three forms of hydrogen are: µH2 ≈ 2; µH ≈ 1 and
µH+ ≈ 0.5. The mean molecular mass of the Sun is µ% ≈ 0.6.

6. We can express some average properties of a star using the following
equations:

• the mean density: 〈ρ〉 = 3M/4πR3;

• the mean (volume-averaged) pressure:
〈P 〉 = −EGR/3V ≈ 3GM2/20πR4

• and the typical internal temperature: TI ≈ GMm/5kR

• where, by the ideal gas law: 〈P 〉 = 〈ρ〉 kTI/m.

7. There are four differential equations which characterize stellar structure in
terms of the star’s pressure gradient, mass distribution, temperature gradient
and luminosity gradient, each as a function of radius:

dP (r)

dr
= −

Gm(r) ρ(r)

r2
(Eqn 1.12)

dm(r)

dr
= 4πr2 ρ(r) (Eqn 1.13)

dT (r)

dr
= −

3κ(r) ρ(r) L(r)

(4πr2)(16σ) T 3(r)
(Eqn 1.14)

dL(r)

dr
= 4πr2 ε(r). (Eqn 1.15)

They can be solved by combining them with four linking equations which
relate a star’s pressure, luminosity, opacity and energy generation rate to its
temperature and density.
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8. Useful approximations to the structure of stars may be obtained by rewriting
the stellar structure equations and the linking equations as simple
proportionalities between the maximum or average values of the various
stellar parameters.

9. For stellar-composition material at temperatures T ≥ 30 000 K, the opacity
κ is dominated by free–free and bound–free absorption, for which
κ(r) ∝ ρ(r)T−3.5(r). Any opacity of this form is called a Kramers opacity.
In low-density environments and at very high temperature, scattering by free
electrons dominates. In this case the absorption per free electron is
independent of temperature or density, so this opacity source has an almost
constant absorption per electron.

10. Based on a simple analysis, the stellar structure equations and the two
different opacity relations indicate the following mass–luminosity
relationships:

L ∝ M3 for high-mass main-sequence stars

L ∝ M5.5R−0.5 for low-mass main-sequence stars.

11. Thermonuclear burning begins at Tc ≈ 106 K to 107 K with the most
abundant and least complex nucleus, the proton (hydrogen nucleus). The
main branch (ppI) of the proton–proton chain can be written:

p + p −→ d + e+ + νe

p + d −→ 3
2He + γ

3
2He + 3

2He −→ 4
2He + 2p.

A crucial step in the p + p −→ d + e+ + νe reaction is a β+-decay,
p −→ n + e+ + νe. This is the bottleneck in the reaction chain.

12. The mass defect – the difference in the masses of the reactants and products
of the nuclear reactions – quantifies the energy liberated into the gas, via
E = mc2. The main branch of the p–p chain liberates ≈ 26.7 MeV, of which
≈ 0.5 MeV is carried away from the star by the neutrinos from the two
p −→ n + e+ + νe reactions.

13. There are three branches to the p–p chain, each delivering slightly different
energy per event and occurring with different frequency. In the Sun, ppI
occurs 85% of the time, ppII accounts for almost all of the rest, and ppIII
occurs in a very tiny proportion of cases. The average energy released per
proton–proton fusion event is ≈ 15 MeV.

14. The second main hydrogen-burning process is the CNO cycle, in which
carbon, nitrogen and oxygen nuclei are used as catalysts while synthesizing
helium from hydrogen. The CN cycle operates first, and the ON cycle comes
into play at higher temperatures.
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