
Solutions to exercises

Solutions to exercises
Exercise 1.1 First we need to convert the distance to SI units:

68 light-years = 68 × 9.461 × 1015 m

= 6.5 × 1017 m.

Then we can obtain the time taken by dividing the distance by the speed of travel:

time =
distance
speed

=
6.5 × 1017 m

12 × 103 m s−1

= 5.4 × 1013 s

=
5.4 × 1013 s

365.25 day yr−1 × (24 × 3600) s day−1

= 1.7 × 106 yr ≈ 2 Myr.

(Myr indicates 106 yr, or a megayear.)

Thus the time taken for Pioneer 10 to reach Aldebaran is almost 2 million years.

Exercise 1.2 In interpreting Figure 1.8, we note that both axes are logarithmic.

(a) The most favourable contrast ratio occurs when the vertical distance between
Jupiter’s curve and the Sun’s is minimized. The two curves are converging as they
disappear off the right-hand side of the figure, so the most favourable contrast
ratio occurs for wavelengths around (or greater than) 100µm. The value of the
contrast ratio at 100µm is approximately 10 000.

(b) The spectral energy distribution of Jupiter peaks at around 0.5µm. This is
very different (by a factor of around 200) to the wavelength of the most favourable
contrast ratio. The reason for the discrepancy is that the Sun’s spectral energy
distribution also peaks at around 0.5µm, and the second, thermal emission
component of Jupiter’s spectral energy distribution gives a more favourable
contrast ratio.

(c) Wavelengths around 20µm are at the peak of Jupiter’s thermal emission.
Though the contrast ratio (almost 100 000) is less favourable than at longer
wavelengths, the flux from Jupiter is over 20 times higher at 20µm than it is at
100µm. There is limited value in having a favourable contrast ratio if the flux
from both objects is immeasurably small!

Exercise 1.3 Kepler’s third law in the form used for planetary orbits is

a3

P 2
orb

=
G(M∗ + MP)

4π2
. (Eqn 1.1)

To make the estimate, we will consider the star as a small mass in orbit around a
much larger mass positioned at the centre of the Galaxy. We can therefore replace
M∗ + MP with Mtotal, where this is the mass of the Galaxy. We will use the
Galactocentric distance as the value for a, and this will allow us to make an
estimate of Porb, the time taken for a complete orbit around the Galaxy. Thus we
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have

Porb =

(
4π2a3

GMtotal

)1/2

. (S1.1)

To use this we need to convert all quantities into SI units (which we can
accomplish using the information in the Appendix):

Mtotal = 1012 M% = 1.99 × 1030 × 1012 kg ≈ 2 × 1042 kg,

a = 8 kpc = 8 × 103 × 3.086 × 1016 m ≈ 2 × 1020 m.

In each case we have retained only one significant figure as we are making a
rough estimate. Thus we have

Porb ≈
(

4π2(2 × 1020 m)3

7 × 10−11 N m2 kg−2 × 2 × 1042 kg

)1/2

≈
(

4 × 10 × 8 × 1060 m3

7 × 2 × 1031 kg m s−2 m2 kg−2 kg

)1/2

≈
(

3 × 1062 m3

1 × 1032 m3 s−2

)1/2

≈ (3 × 1030 s2
)1/2

≈ 2 × 1015 s.

It’s difficult to grasp how long 1015 s is, so we will convert the answer to years:

Porb ≈ 2 × 1015 s

3600 s h−1 × 24 h day−1 × 365.25 day yr−1

≈ 6 × 107 yr.

Thus we have deduced that it takes about 60 Myr for the Sun to complete its
orbit around the Galaxy. (Note: this is a very rough answer due to the initial
approximations and the accumulated rounding errors.)

Exercise 1.4 (a) Equation 1.12 has a simple dependence on i:

V ∝ sin i.

The function sin i has a maximum value of 1, when i = 90◦; this corresponds to
the line of sight to the system being exactly in the plane of the orbit, as shown in
Figure S1.1a. The minimum value of the radial velocity corresponds to sin i = 0,
which occurs when i = 0◦; this corresponds to the plane of the orbit coinciding
with the plane of the sky as viewed by the observer, as shown in Figure S1.1b.
The orbital velocities of the star and its planet are always orthogonal to the line of
sight, and zero radial velocity variation is observed. At intermediate orientations,
0◦ < i < 90◦, a finite radial velocity variation with amplitude less than that of the
true orbital velocity, v∗, of the star is observed, as shown in Figure S1.1c:
V = |v∗| sin i.
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v∗

v∗

v∗

i = 90◦

i = 0◦

0◦ ≤ i ≤ 90◦

i

(a)

(b)

(c)

Figure S1.1 (a) An elliptical orbit viewed from an orbital inclination of
i = 90◦; the z-axis lies in the plane of the orbit. (b) The same orbit viewed from
i = 0◦; the plane of the orbit coincides with the plane of the sky, and there is no
component of the orbital velocity in the direction towards or away from the
observer. (c) At intermediate orientations, 0◦ < i < 90◦, only the component
v∗ sin i of the orbital motion is in the direction towards or away from the observer.

(b) The eccentricity appears twice in Equation 1.12. Inside the brackets in the
numerator, it multiplies a constant (cos ωOP, where ωOP is a constant parameter of
the orbit). The radial velocity variability is exclusively in the cos(θ(t) + ωOP)
term, so this first occurrence of the eccentricity does not affect the radial velocity
variations. The second appearance of the eccentricity is in the denominator of
the terms that determine the amplitude multiplying the time-variable cosine
term. Here it contributes to the

√
1 − e2 term, which has the value 0 for e = 1

and the value 1 for e = 0. As the eccentricity approaches 1, this term in the
denominator approaches 0, and therefore the amplitude of the radial velocity
variation approaches infinity. As the eccentricity increases, the amplitude of the
radial velocity variations increases.

(c) The observed radial velocity is given by Equation 1.12:

V (t) = V0,z +
2πaMP sin i

(MP + M∗)P
√

1 − e2
(cos(θ(t) + ωOP) + e cos ωOP) .

The variable part of this is

2πaMP sin i

(MP + M∗)P
√

1 − e2
cos(θ(t) + ωOP),

and cos(θ(t) + ωOP) varies cyclicly between −1 and +1. The radial velocity
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amplitude is therefore

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
. (Eqn 1.13)

For the specific case of Jupiter orbiting around the Sun, we substitute the
appropriate subscripts:

ARV =
2πaMJ sin i

(MJ + M%)PJ

√
1 − e2

J

. (S1.2)

The data were conveniently all given in SI units except for PJ, which we must
convert from years to seconds:

PJ = 12 yr

= 12 yr × 365.25 days yr−1 × 24 h day−1 × 60 × 60 s h−1

= 3.8 × 108 s,

where we have given our converted value to two significant figures, while
performing the intermediate steps in the conversion to a higher precision.

Substituting values into Equation S1.2, we obtain

ARV =
2π × 8 × 1011 m × 2 × 1027 kg × sin i

2 × 1030 kg × 3.8 × 108 s ×√
1 − 0.0025

= 13 sin i m s−1.

Exercise 1.5 (a) No. Equation 1.13 also contains a factor P in the
denominator. Planetary orbits obey Kepler’s third law, so P 2 ∝ a3. This means
that P ∝ a3/2, so ARV ∝ a1−3/2 = a−1/2. The radial velocity amplitude
decreases as the planet’s orbital semi-major axis increases.

(b) Planet mass appears in both the denominator and the numerator of
Equation 1.13, giving a dependence

ARV ∝ MP

MP + M∗
.

The quantity on the right-hand side will increase with MP if M∗ is held fixed.
This proportionality also includes the only appearance of the stellar mass, M∗, in
Equation 1.13. If MP is held fixed, the right-hand side will decrease as M∗
increases.

The eccentricity contributes to Equation 1.13 solely through the factor
√

1 − e2 in
the denominator, so

ARV ∝ 1√
1 − e2

.

As e increases, (1 − e2) decreases, so the right-hand side of the proportionality
increases with increasing e.

We have already shown that the radial velocity amplitude decreases as the planet’s
orbital semi-major axis increases, so summarizing our analysis of Equation 1.13,
we see that the radial velocity amplitude is highest for massive planets in close-in
eccentric orbits around low-mass host stars.
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Exercise 2.1 (a) Equation 1.21 is

geometric transit probability ≈ R∗
a

. (Eqn 1.21)

To use this we need a value for the semi-major axis, a. Kepler’s third law
(Equation 1.1) can be expressed as

a3 = G(M∗ + MP)
P 2

4π2
, (S2.1)

so the orbital semi-major axis is

a = (G(M∗ + MP))
1/3

(
P

2π

)2/3

≈
(

GM∗
(

P

2π

)2
)1/3

, (S2.2)

where the approximation lies in neglecting the planet’s mass compared with that
of the star. Since Jupiter’s mass is ∼10−3 M% and other giant planets and stars
have masses of the same order of magnitude, to the precision at which we are
working this is a good approximation, so we will revert to using an equals sign in
the subsequent working. In SI units, the quantities that we need to substitute into
Equation S2.2 are

G = 6.67 × 10−11 N m2 kg−2,

M∗ = 1.12 M% = 1.12 × 1.99 × 1030 kg = 2.23 × 1030 kg,

P = 3.52 days = 3.52 × 24 × 3600 s = 3.04 × 105 s.

Consequently, we have

a =

(
6.67 × 10−11 × 2.23 × 1030

(
3.04 × 105

6.28

)2

N m2 kg−1 s2
)1/3

=
(
3.485 × 1029 kg m s−2 m2 kg−1 s2

)1/3

=
(
3.485 × 1029 m3

)1/3

= 7.04 × 109 m. (S2.3)

We are given the radius, R∗, and simply need to convert this to metres:

R∗ = 1.146 R% = 1.146 × 6.96 × 108 m = 7.98 × 108 m. (S2.4)

Consequently, substituting the values from Equations S2.3 and S2.4 into
Equation 1.21, we have

geometric transit probability ≈ R∗
a

≈ 7.98 × 108 m
7.04 × 109 m

≈ 0.113.

The probability of a planet in a circular orbit like HD 209458 b’s transiting from
any random line of sight is approximately 11%, i.e. better than 1 in 10!

(b) The assumptions implicitly made by adopting Equation 1.21 are (i) that the
orbit is randomly oriented, and (ii) that the orbit is circular. Since HD 209458 b
was discovered by the radial velocity technique, whose sensitivity to a given
planet decreases steadily as the orbital inclination decreases, the probability
of HD 209458 b transiting was actually slightly higher than suggested by
Equation 1.21. For a non-circular orbit, the planet spends time at a variety of
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distances, which will affect the probability of transiting. The probability depends
on e and ωOP as well as a. A final subtlety for eccentric orbits is that the planet
moves more quickly when it is closer to the star (as prescribed by Kepler’s second
law, or equivalently the conservation of angular momentum), so factoring in the
finite observational coverage renders the transits slightly less likely to be caught.
To quantitatively assess the relative importance of these three factors requires
more information than is given in the question.

Exercise 2.2 (a) We have

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
(Eqn 1.13)

and

a ≈
(

G(M∗ + MP)

(
P

2π

)2
)1/3

. (Eqn S2.1)

Assuming a circular orbit, e = 0, and making the approximation MP ) M∗, these
become

ARV =
2πaMP sin i

M∗P
(S2.5)

and

a =

(
GM∗

(
P

2π

)2
)1/3

. (Eqn S2.2)

Rearranging Equation S2.5, we have

MP sin i =
ARVM∗P

2πa
,

and substituting in for a, we obtain

MP sin i =
ARVM∗P

2π

(
2π

P

)2/3( 1

GM∗

)1/3

= ARV

(
M2∗P

2πG

)1/3

. (S2.6)

ARV and P are observables, and everything else on the right-hand side except for
M∗ is a constant, so this is the expression that we seek.

(b) The values for HD 209458 are

ARV = 84.67 ± 0.70 m s−1,

M∗ = 1.12 M% = 1.12 × 1.99 × 1030 kg = 2.23 × 1030 kg,

P = 3.52 days = 3.52 × 24 × 3600 s = 3.04 × 105 s,
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so we have

MP sin i = ARV

(
M2∗P

2πG

)1/3

= 84.67 m s−1

(
(2.23 × 1030)2 kg2 × 3.04 × 105 s

6.28 × 6.67 × 10−11 N m2 kg−2

)1/3

= 84.67 ×
(

3.609 × 1075 kg2 s

kg m s−2m2 kg−2

)1/3

m s−1

= 84.67 × 1.53 × 1025
(
kg3 m−3 s3

)1/3
m s−1

= 1.30 × 1027 kg.

In the above, we explicitly kept the units of all the quantities when we substituted
in, which allowed us to check that we (i) had got a dimensionally correct
expression in part (a), and (ii) were using an appropriate choice of units for each
quantity. If we had tried to use M∗ = 1.12 M% in the expression, our final units
would have been M2/3

% kg1/3, alerting us that there was something amiss. Of
course, assuming that the expression that we begin with is correct, if we use SI
units throughout then we should always obtain an answer in SI units. Using this
fact without working the units through wastes a valuable check of our working.

(c) We are given i = 86.71◦ ± 0.05◦, so sin i = 0.9984. Consequently,

MP =
1.30 × 1027 kg

sin i
=

1.30 × 1027 kg
0.9984

= 1.30 × 1027 kg.

Converting this to the other mass units requested:

MP =
1.30 × 1027 kg

1.90 × 1027 kg M−1
J

= 0.684 MJ

and

MP =
1.30 × 1027 kg

1.99 × 1030 kg M−1
%

= 6.53 × 10−4 M%.

(d) Thus we can work out the ratio between MP and M∗ for the HD 209458
system:

MP

M∗
=

6.53 × 10−4 M%
1.12 M%

= 5.83 × 10−4.

The planet’s mass is a factor of 2 less than a thousandth that of the star. Since we
have worked to a precision of only three significant figures, the approximation
MP ) M∗ was applicable.

(e) There are two basic approaches that could be used.

To tackle the problem analytically, the full versions of Kepler’s third law
(Equation 1.1) and Equation 1.13 would be used, and the algebra would need to
carry through all the instances of MP. This would result in a much more complex
expression, but it could still be solved.

To tackle the problem iteratively, we could replace the expression (MP + M∗)
with Mtotal in Kepler’s third law (Equation 1.1) and Equation 1.13. Then the
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method in parts (a)–(d) could be used to evaluate MP using the approximation
Mtotal ≈ M∗. This would be our first estimate for MP, and we could then refine
our estimate by using Mtotal ≈ M∗ + MP and calculating a new value for MP.
This technique should be repeated until, at the precision required, the new value
of MP does not differ from the value used to estimate it.

Exercise 2.3 (a) The bandpass is broad and centred on 700 nm, so we will use
the fiducial flux density value for the R band, which is centred on 700 nm. Since
the value of the sky brightness is already given in pixel units in Table 2.1, we can
slightly simplify the procedure outlined in the text. The sky flux density per pixel
is given by applying the standard conversion from magnitudes:

m1 − m2 = 2.5 log10(F2/F1), (S2.7)

where m1 = 6.8 (from Table 2.1), m2 = 0.0, the fiducial magnitude, F1 is
the flux density corresponding to m1, and F2 = 1.74 × 10−11 W m−2 nm−1

(the R band value from Table A.4 in the Appendix). Making F1 the subject of
Equation S2.7, we have

F1 = F2 × 10−(m1−m2)/2.5

= 1.74 × 10−11 W m−2 nm−1 × 10−6.8/2.5

= 1.74 × 10−11 × 1.91 × 10−3 W m−2 nm−1

= 3.32 × 10−14 W m−2 nm−1.

We will take 700 nm to be the typical wavelength of the radiation. Thus the
typical photon energy is

Eph = hν =
hc

λ

=
6.63 × 10−34 J s × 3.00 × 108 m s−1

700 × 10−9 m
= 2.84 × 10−19 J.

This allows us to convert from flux to photon rate, lsky:

lsky =
F1

Eph
=

3.32 × 10−14 W m−2 nm−1

2.84 × 10−19 J

= 1.169 × 105 s−1 m−2 nm−1.

We expect, therefore, lsky = 1.17 × 105 sky photons per second per square metre
of telescope aperture per nanometre included in the bandpass to fall on each pixel
of the PASS survey CCD.

Using the values that we are given: the telescope aperture is of diameter 2.5 cm,
so the collecting area is A = π

4 × 0.0252 m2 = 4.91 × 10−4 m2. The bandpass is
wide (Δλ = 300 nm), so the photon rate per pixel is

dnsky

dt
= 1.169 × 105 s−1 m−2 nm−1 × A × Δλ

= 1.169 × 105 s−1 m−2 nm−1 × 4.91 × 10−4 m2 × 300 nm

= 1.72 × 104 s−1.

We expect almost 20 000 sky photons per pixel per second for the PASS survey.

(b) The expected number of sky photons, nsky, per pixel in a 10 s exposure is

nsky = 1.72 × 104 s−1 × 10 s = 1.72 × 105,

291



Solutions to exercises

or almost 200 000 sky photons per pixel per exposure.

Exercise 2.4 We have

F =
L

4πr2
, (Eqn 2.2)

and we know that sources can be detected if F ≥ S. This means that a source will
be detected if

S ≤ L

4πr2
,

where we have substituted S ≤ F in Equation 2.2. The limiting distance will be
when the flux exactly equals S, so that the limiting distance, dmax, corresponds to

S =
L

4πd2
max

.

Making the distance the subject of the equation, this becomes

dmax =

(
L

4πS

)1/2

, (Eqn 2.3)

as required

Exercise 2.5

(a) The arc length is 2aθ, where θ is the angle indicated in Figure S2.1. From this
figure, we see that

sin θ =
R∗
a

,

V W

a
θ

θ

R∗

Figure S2.1 The two outer vertical lines indicate the path taken by light rays
on each side of the star to a distant observer. The rays are parallel. Points V and
W are the intersections of these lines with the planet’s orbit.

292



Solutions to exercises

so

θ = sin−1

(
R∗
a

)
.

Hence we have

Tdur = P × length of arc from V to W
2πa

= P × 2a sin−1(R∗/a)

2πa

=
P

π
sin−1

(
R∗
a

)
. (S2.8)

(b) The deviation between the exact and approximated values for Tdur is simply
the difference between the right-hand sides of Equations 2.6 and S2.8:

ΔTdur =
P

π

(
sin−1

(
R∗
a

)
− R∗

a

)
. (S2.9)

The fractional deviation is simply ΔTdur divided by Tdur, i.e.

ΔTdur

Tdur
=

P

π

(
sin−1

(
R∗
a

)
− R∗

a

)
P

π
sin−1

(
R∗
a

) = 1 −
R∗
a

sin−1

(
R∗
a

) .

(c) As we saw in the solutions to Exercises 2.1 and 2.2, Kepler’s third law tells us
that

a =

(
P

2π

)2/3

(GM∗)1/3.

(d) To evaluate ΔTdur/Tdur, we need to use our expression for a for the specific
values of M∗ = 1 M% and orbital period P = 1 day. Generally, it is advisable to
substitute in expressions to obtain the answer algebraically, before substituting in
numerical values. In this case, however, the quantity that we seek depends only
on the ratio R∗/a, and the algebraic expression for a is significantly more
complicated than this.

So, evaluating a with

P = 1 day = 86 400 s,

M∗ = 1.99 × 1030 kg,

G = 6.67 × 10−11 N m2 kg−2,

we have

a =

(
P

2π

)2/3

(GM∗)1/3

=
(
1.375 × 104 s

)2/3 (
1.327 × 1020 N m2 kg−1

)1/3

= 5.740 × 102 × 5.101 × 106 s2/3 N1/3 m2/3 kg−1/3

= 2.928 × 109 s2/3 (kg m s−2)1/3 m2/3 kg−1/3

= 2.93 × 109 m.
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In SI units, 1 R% = 6.96 × 108 m, so

R∗
a

=
6.96 × 108

2.93 × 109
= 0.238

and

sin−1

(
R∗
a

)
= sin−1(0.238) = 0.240,

so

ΔTdur

Tdur
= 1 − 0.238

0.240
= 0.0083 ≈ 1%.

(e) Assuming that the star’s properties remain constant, the semi-major axis will
increase as P 2/3 with the increasing orbital period of the planet. The ratio R∗/a
will therefore decrease as P−2/3. The small angle approximation sin θ ≈ θ
becomes increasingly accurate as the angle, θ, decreases (where θ = R∗/a in this
case). So for longer orbital periods, the approximation will be better, and the
fractional deviation will be less than 1%. Demonstrating this numerically, for
P = 5.2 days,

a(5.2 days) = a(1 day)×
(

5.2

1

)2/3

= 2.93× 109 m × 3.00 = 8.79× 109 m,

so

R∗
a

=
6.96 × 108

8.79 × 109
= 0.0792

and

sin−1

(
R∗
a

)
= sin−1(0.0792) = 0.0793.

Consequently,

ΔTdur

Tdur
= 1 − 0.0792

0.0793
≈ 0.1%.

The approximation becomes ever more exact as the planet’s orbital period is
increased.

(f) The approximation used in Equation 2.6 is good to a precision of about 1% or
better for the calculation of the durations of transits of planets in orbits P > 1 day
around main sequence host stars. This precision should be sufficient for an
estimate.

Exercise 2.6 We have

Tdur ≈ PR∗
πa

. (Eqn 2.6)

Converting the values that we are given to metres and hours, we have

P = 1.3382 × 24 h = 32.12 h,

R∗ = 1.15 × 6.96 × 108 m = 8.00 × 108 m,

a = 0.023 × 1.5 × 1011 m = 3.45 × 109 m,
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and substituting in these values gives

Tdur ≈ 32.12 × 8.00 × 108 h m
π × 3.45 × 109 m

≈ 2.37 h.

So the transit duration is 2.4 hours (to 2 s.f.).

Exercise 2.7 (a) Equation 2.34 tells us that the number of transiting planet
discoveries predicted scales as L

3/2
∗ . If stars were more luminous, the signal

received would be stronger, and the signal-to-noise ratio at any given distance
would be better. This N ∝ L3/2 dependency is exactly the same as derived in
Equation 2.5, and arises from the dependency of the survey volume on the
luminosity of the sources (assuming a fixed flux threshold for detection).

(b) LSN is the limiting signal-to-noise ratio and is proportional to the flux from
the planet host star at the faint limit. This limiting host star brightness is an
example of the limiting flux, S, in Equation 2.5. The number of planets is
proportional to L

−3/2
SN according to Equation 2.34, and consequently this equation

expresses the same N ∝ S−3/2 relationship as Equation 2.5.

Exercise 2.8 Assuming, for simplicity, that the 16 cameras have been
constantly operational since 2004, we can estimate the number of months of
operation to date. At the time of writing (March 2009), this is about 5 years, or
60 months. Thus the number of data points is of the order of

number of points = Nmonths × ncameras × 5 × 108

= 60 × 16 × 5 × 108

= 4.8 × 1011

= 5 × 1011 (to 1 s.f.).

Thus the archive needs to organize and store on the order of 1012 unique
photometric data points.

Exercise 2.9 The minimum value of the ratio is almost zero: the value that
occurs for a barely detectable grazing transit.

The maximum value will correspond to a central transit, i.e. impact parameter
of b = 0.0. From the results of Exercise 2.5 we know that we can adopt the
approximate expression for the transit duration

Tdur(b = 0.0) ≈ PR∗
πa

, (Eqn 2.6)

so the ratio that we must calculate is
Tdur(b = 0.0)

P
≈ R∗

πa
. (S2.10)

Substituting for a from Kepler’s third law (Equation 1.1), i.e.

a = (G(M∗ + MP))
1/3

(
P

2π

)2/3

into Equation S2.10, we obtain

Tdur(b = 0.0)

P
≈ R∗

π

22/3π2/3

P 2/3G1/3M
1/3
∗

≈ R∗
(

4

πP 2GM∗

)1/3

.
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From this we can see that for a given star, the ratio will be a maximum for the
minimum value of the orbital period as

Tdur(b = 0.0)

P
∝ P−2/3.

At the time of writing (October 2009) the shortest-period known planet is
CoRoT-7 b with P = 0.85 days. Adopting this period and the mass and radius of
the Sun, we can obtain an estimate for the maximum value for the ratio. The input
values are

P = 0.85 days = 0.85 × 24 × 3600 s = 7.3 × 104 s,

R∗ = 6.96 × 108 m,

M∗ = 1.99 × 1030 kg,

so we have

Tdur(b = 0.0)

P
≈ R∗

(
4

πP 2GM∗

)1/3

≈ 6.96 × 108 m ×
(

4

π × (7.3 × 104)2 × 6.67 × 10−11 × 1.99 × 1030 s2 N m2 kg−2 kg

)1/3

≈ 0.085.

The transit duration varies between 0% and 8.5% of a planet’s orbital period.

Exercise 2.10 The radial velocity semi-amplitude is given by Equation 1.13 as

ARV =
2πaMP sin i

(MP + M∗)P (1 − e2)1/2
,

where the semi-major axis is given by Kepler’s third law (Equation 1.1) as

a =

[
GP 2(M∗ + MP)

4π2

]1/3

.

Substituting the second equation into the first, we have

ARV =

(
2πG

P

)1/3 MP sin i

(M∗ + MP)2/3(1 − e2)1/2
,

and rearranging to make MP the subject of the equation, we get

MP =
ARV(M∗ + MP)

2/3(1 − e2)1/2

sin i

(
P

2πG

)1/3

.

Now, if we assume that the radial velocities measured in the two spectra represent
the extremes of the reflex orbital motion of the star, the minimum orbital period of
the putative planet must be 12 hours, and the minimum value of the radial
velocity amplitude is given by the difference between the two radial velocity
measurements. Since the star has the same spectral type as the Sun, clearly
M∗ = M%, and the mass term on the right-hand side has a minimum value
of M

2/3
∗ . Also, we note that the maximum value of sin i is 1, so setting this at its

limit will also give a minimum value for MP. For such a short orbital period, the
orbit would circularize, so we may assume e ∼ 0, and the equation therefore
reduces to

MP ≥ ARVM
2/3
∗
(

P

2πG

)1/3

.
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So, if the observed radial velocity changes are due to the reflex motion caused by
an unseen orbiting body, the minimum mass of this object is

MP ≥ 104 m s−1 × (1.99 × 1030 kg)2/3 ×
(

12 × 3600 s

2π × 6.673 × 10−11 N m2 kg−2

)1/3

≥ 7.4 × 1028 m s−1 kg2/3 s1/3 N−1/3 m−2/3 kg2/3

≥ 7.4 × 1028 m s−1 kg2/3 s1/3 (kg m s−2)−1/3 m−2/3 kg2/3

≥ 7.4 × 1028 kg

≥ 39 MJ.

Since the putative planet has a mass in excess of almost 40 times the mass of
Jupiter (about 0.037 M%), this object may be a brown dwarf, but cannot be a
planet, and so can be eliminated from further follow-up.

Exercise 3.1 (a) The semi-major axis of the Earth’s orbit is a = 1 AU and the
period of the Earth’s orbit is P = 1 year. So, from Equation 3.1, the Earth’s
orbital speed is

v =
2πa

P

=
2π × 1 AU

1 year

=
2π × 1.496 × 1011 m
365.25 × 24 × 3600 s

= 2.98 × 104 m s−1.

So the orbital speed of the Earth is about 30 km s−1.

(b) Although this planet is at the same distance from its star as the Earth is from
the Sun, the orbital periods will differ because the star has a mass different to
that of the Sun. We can calculate the orbital period from Kepler’s third law
(Equation 1.1) as

P =

(
4π2a3

G(M∗ + MP)

)1/2

≈
(

4π2a3

GM∗

)1/2

≈
(

4π2 × (1.496 × 1011 m)3

6.673 × 10−11 N m2 kg−2 × 0.5 × 1.99 × 1030 kg

)1/2

≈ 4.46 × 107 s.

This orbital period is about 1.41 years. So, using Equation 3.1 once again, the
orbital speed of the planet is

v =
2πa

P
=

2π × 1 AU
4.46 × 107 s

=
2π × 1.496 × 1011 m

4.46 × 107 s
= 2.11 × 104 m s−1.

So the orbital speed of the planet is about 21 km s−1.
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Exercise 3.2 (a) We start from Equation 3.4:

Tdur =
P

π
sin−1

(√
(R∗ + RP)2 − a2 cos2 i

a

)
.

This can be rewritten as

Tdur =
P

π
sin−1

[(
R2∗
a2

+
2R∗RP

a2
+

R2
P

a2
− cos2 i

)1/2
]

.

Since a ' R∗ ' RP, the second and third terms inside the brackets are much
smaller than the first, so

Tdur ≈ P

π
sin−1

(
R2∗
a2

− cos2 i

)1/2

.

Since the term in the argument of the inverse sine function will be small, and
sin x ≈ x for small values of x in radians, we have

Tdur ≈ P

π

(
R2∗
a2

− cos2 i

)1/2

,

as required.

(b) To use this equation to determine i, we need to first obtain a value for a.
Kepler’s third law tells us that

a3

P 2
≈ GM∗

4π2
.

Since we have a Sun-like star, the right-hand side is the same for the planet in the
question and the Earth, so

a3

P 2
=

a3⊕
P2⊕

,

where a⊕ and P⊕ are the semi-major axis and the orbital period of the Earth,
respectively. Hence

a3 = a3
⊕

(
P

P⊕

)2

,

thus

a = a⊕
(

P

P⊕

)2/3

= 1 AU

(
6 days

365.25 days

)2/3

= 1.496 × 1011 m × (0.0164)2/3

= 9.67 × 109 m.

Now we must recast the equation to solve for i:

Tdur ≈ P

π

(
R2∗
a2

− cos2 i

)1/2

,
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so

T 2
durπ

2

P 2
≈
(

R∗
a

)2

− cos2 i,

thus

cos2 i ≈
(

R∗
a

)2

− T 2
durπ

2

P 2
,

giving

cos i ≈
[(

R∗
a

)2

−
(

Tdurπ

P

)2
]1/2

and finally

i ≈ cos−1

[(
R∗
a

)2

−
(

Tdurπ

P

)2
]1/2

.

Now, substituting in R∗ = 1 R% = 6.96 × 108 m, a = 9.67 × 109 m,
Tdur = 2 hours and P = 6 days = 144 hours, we have

i ≈ cos−1

[(
6.96 × 108 m
9.67 × 109 m

)2

−
(

2π h
144 h

)2
]1/2

≈ cos−1

[(
6.96

96.7

)2

−
( π

72

)2]1/2

≈ cos−1(0.0573)

≈ 86.7◦.

(c) If Tdur = 4 h and all other parameters of the system are as above, then we have

i ≈ cos−1

[(
6.96 × 108 m
9.67 × 109 m

)2

−
(

4π h
144 h

)2
]1/2

≈ cos−1

[(
6.96

96.7

)2

−
( π

36

)2]1/2

≈ cos−1(−0.002 43)1/2.

Since the square root of a negative number is not a real number, this equation is
invalid. That is, the transit duration is too long to be possible in such a system. We
would be forced to conclude that the measurements are erroneous or that the
candidate is an astrophysical mimic: probably it is either a blended eclipsing
binary or a grazing eclipse binary.

Exercise 3.3 (a) The signal is ΔF = 0.0164F , where we have used the depth
as given in the caption of Figure 3.5. The noise is 1.1 × 10−4F . So

Signal
Noise

=
0.0164F

1.1 × 10−4F
= 149.
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(b) The curvature in the transit floor causes a drop from approximately 0.9870F
at second contact to approximately 0.9835F at mid-transit. The ‘signal’ level is
therefore (0.9870 − 0.9835)F = 0.0035F .

If the scatter was more than about 0.3% (or 3 × 10−3F ), it would be difficult to
detect the curvature.

Exercise 3.4 As the light emerging from close to the limb of the planet has
γ = 80◦, so µ = cos γ = 0.174.

The linear limb darkening law (Equation 3.9) gives

I(µ)

I(1)
= 1 − u(1 − µ),

so

I(0.174)

I(1)
= 1 − 0.215 × (1 − 0.174)

= 0.82.

The logarithmic limb darkening law (Equation 3.10) gives

I(µ)

I(1)
= 1 − ul(1 − µ) − νlµ ln µ,

so

I(0.174)

I(1)
= 1 − 0.14 × (1 − 0.174) + 0.12 × 0.174 × ln 0.174

= 1 − 0.116 + 0.036

= 0.92.

The quadratic limb darkening law (Equation 3.11) gives

I(µ)

I(1)
= 1 − uq(1 − µ) − νq(1 − µ)2,

so

I(0.174)

I(1)
= 1 − 0.29 × (1 − 0.174) + 0.13 × (1 − 0.174)2

= 1 − 0.240 + 0.089

= 0.85.

Clearly, these three limb darkening prescriptions give markedly different amounts
of limb darkening. The form of limb darkening law adopted does make a
difference.

Exercise 3.5 The impact parameter is b = 3 R%/4, and the inclination angle is
i = 86.5◦, so the semi-major axis of the orbit is

a = b/ cos i = 3 R%/4 cos 86.5◦ = 12.3 R%

or

a = 12.3 × 6.96 × 108 m = 8.56 × 109 m.
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Using Kepler’s third law (Equation 1.1), the period of the orbit is

Porb =

(
4π2a3

GM∗

)1/2

=

(
4π2 × (8.56 × 109 m)3

6.673 × 10−11 N m2 kg−2 × 1.99 × 1030 kg

)1/2

= 4.32 × 105 s.

The orbital period is therefore 120 hours (or 5 days).

1 hour before or after mid-transit therefore corresponds to a phase angle of

±ωt =
±2πt

Porb
=

±(2π × 1 h)

120 h
= ±0.052 radians.

We therefore need to work out the position of the planet in three cases:
(i) ωt = 2π− 0.052 = 6.231 radians, (ii) ωt = 0 radians, (iii) ωt = 0.052 radians.

(i) In this case, the horizontal component of the planet’s position, with respect to
the centre of the star’s disc, is

a sin ωt = 12.3 R% × sin(6.231 radians) = −0.64 R%.

The vertical component of the planet’s position, with respect to the centre of the
star’s disc, is

a cos i cos ωt = 12.3 R% × cos 86.5◦ × cos(6.231 radians) = 0.75 R%.

(ii) In this case, the horizontal component of the planet’s position, with respect to
the centre of the star’s disc, is

a sin ωt = 12.3 R% × sin(0 radians) = 0.

The vertical component of the planet’s position, with respect to the centre of the
star’s disc, is

a cos i cos ωt = 12.3 R% × cos 86.5◦ × cos(0 radians) = 0.75 R%.

(iii) In this case, the horizontal component of the planet’s position, with respect to
the centre of the star’s disc, is

a sin ωt = 12.3 R% × sin(0.052 radians) = 0.64 R%.

The vertical component of the planet’s position, with respect to the centre of the
star’s disc, is

a cos i cos ωt = 12.3 R% × cos 86.5◦ × cos(0.052 radians) = 0.75 R%.

The curvature of the locus of the planet is too small to notice when working at this
level of precision, and the locus of the transit is as shown in Figure S3.1.
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0.75 R%

R%

R%

−R%

0.64 R%

locus of
transit

−R%
0.64 R%

Figure S3.1 The locus of the planetary transit.

Exercise 3.6 (a) Since we are told that the star has negligible limb darkening,
we may use the relationships appropriate to a stellar disc of uniform brightness.
The observed flux is given by

F (t) = Funocculted − ΔF

= πI0R
2
∗ − I0 Ae(t)

= I0

(
πR2

∗ − Ae(t)
)
, (S3.1)

where

Ae =


0 if 1 + p < ξ,

R2∗

(
p2α1 + α2 −

√
4ξ2 − (1 + ξ2 − p2)2

2

)
if 1 − p < ξ ≤ 1 + p,

πp2R2∗ if 1 − p ≥ ξ,

(Eqn 3.27)

with

p =
RP

R∗
, cosα1 =

p2 + ξ2 − 1

2ξp
, cos α2 =

1 + ξ2 − p2

2ξ
,

ξ =
a

R∗

(
sin2 ωt + cos2 i cos2 ωt

)1/2
and ω =

2π

Porb
.

(b) For p = 0.1 and ξ = 0.2, clearly 1 − p ≥ ξ, so the third case of Equation 3.27
is appropriate, which corresponds to the planet falling entirely within the
stellar disc. In this case, Ae = πp2R2∗ = πR2

P, so the change in flux is
ΔF = I0Ae = I0πR2

P. The relative change in flux is therefore

ΔF

F
=

I0πR2
P

I0πR2∗
=

R2
P

R2∗
,

as required.

(c) The orbital inclination, i, is known from the transit duration, Tdur. First
contact, at time t = t1, occurs when ξ1 = 1 + p, and second contact, at time
t = t2, occurs when ξ2 = 1 − p. Knowing these two times, and knowing the
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transit duration, Tdur, and the orbital period, P , we can evaluate ξ for the two
contact points:

ξ1 = 1 + p =
a

R∗

(
sin2 ωt1 + cos2 i cos2 ωt1

)1/2
=

a

R∗
Γ1,

ξ2 = 1 − p =
a

R∗

(
sin2 ωt2 + cos2 i cos2 ωt2

)1/2
=

a

R∗
Γ2,

where Γ1 and Γ2 have been introduced as shorthand for the known, but
complicated, expressions involving the measured times and the determined orbital
inclination. Consequently, we have two expressions relating p, a and R∗. We can
therefore treat these as simultaneous equations, eliminate a, and make p the
subject of the resulting equation:

p =
Γ1 − Γ2

Γ1 + Γ2
. (S3.2)

We recall that p = RP/R∗, so Equation S3.2 gives us the ratio of the star and
planet radii in terms of the measured contact times and the inclination.

(d) The method illustrated in part (b) depends on measuring the depth of the
transit, ΔF , and relating this to the fraction of the stellar flux occulted, which is
assumed to be proportional to the area of the planet’s disc. If the star is limb
darkened, the definition of ΔF is complicated: if we use the depth at the centre of
the transit, this will probably result in an erroneously large planet size. At
mid-transit the occulted fraction of the total stellar flux is likely to be greater than
(RP/R∗)2 because the bright central regions of the stellar disc are being occulted.
Limb darkening seriously affects the planet size deduced from this method.

On the other hand, the method illustrated in part (c) depends only on measuring
the timing at which the contact points occur. So long as the second and third
contacts can be clearly identified in the light curve, this method is unaffected by
the limb darkening.

Exercise 3.7

(a) A large planet will give rise to a prolonged ingress and egress, and the transit
will be relatively deep; a large impact factor means that the duration of the transit
is relatively short; and very little limb darkening implies that the transit floor will
be flat. A sketch of such a transit is shown in Figure S3.2a.

(a)

(b)

Figure S3.2 (a) A transit light curve for a large planet with a large impact
factor and very little limb darkening. (b) A transit light curve for a small planet
with a small impact factor and significant limb darkening.

303



Solutions to exercises

(b) A small planet will give rise to a short ingress and egress, and the transit will
be relatively shallow; a small impact factor means that the duration of the transit
is relatively long; and significant limb darkening implies that the transit floor will
be curved. A sketch of such a transit is shown in Figure S3.2b.

Exercise 4.1 We need to use Kepler’s third law, but recognize that a planet
in orbit around a solar-mass star with an orbital period of 1 year will have a
semi-major axis of 1 AU. Hence we can write

a3

M∗P 2
=

(1 AU)3

1 M% × (1 yr)2
.

(a) (i) In this case, the orbital period is given by

P =

(
a3

M∗
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
(1 AU)3

0.7 M%
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
1

0.7

)1/2

yr = 1.195 yr = 437 days.

(ii) In this case, the orbital period is given by

P =

(
a3

M∗
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
(1 AU)3

1.5 M%
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
1

1.5

)1/2

yr = 0.816 yr = 298 days.

(b) (i) In this case, the semi-major axis of the orbit is given by

a =

(
M∗P 2 × (1 AU)3

1 M% × (1 yr)2

)1/3

=

(
0.7 M% × (500 days)2 × (1 AU)3

1 M% × (1 yr)2

)1/3

= (0.7)1/3 ×
(

500

365.25

)2/3

AU = 1.095 AU.

(ii) In this case, the semi-major axis of the orbit is given by

a =

(
M∗P 2 × (1 AU)3

1 M% × (1 yr)2

)1/3

=

(
1.5 M% × (500 days)2 × (1 AU)3

1 M% × (1 yr)2

)1/3

= (1.5)1/3 ×
(

500

365.25

)2/3

AU = 1.411 AU.
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(c) (i) For a planet in a 1 AU orbit around a late M type star with M∗ = 0.2 M%,
the orbital period would be

P =

(
a3

M∗
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
(1 AU)3

0.2 M%
× 1 M% × (1 yr)2

(1 AU)3

)1/2

=

(
1

0.2

)1/2

yr = 2.236 yr = 817 days.

(ii) For a planet in a 500-day orbit around a late M type star with M∗ = 0.2 M%,
the semi-major axis would be

a =

(
M∗P 2 × (1 AU)3

1 M% × (1 yr)2

)1/3

=

(
0.2 M% × (500 days)2 × (1 AU)3

1 M% × (1 yr)2

)1/3

= (0.2)1/3 ×
(

500

365.25

)2/3

AU = 0.721 AU.

(d) Exoplanets have been discovered around stars with a range of masses, from
late M type with M∗ ∼ 0.2 M% to stars of mass significantly greater than that of
the Sun. A planetary orbit with a given semi-major axis can therefore correspond
to a range of orbital periods, spanning a factor of almost 3 in the examples above.
Similarly, a planetary orbit with a given period can correspond to a range of
orbital semi-major axes, spanning a factor of around 2 in the examples above.

Exercise 4.2 (a) Figure 1.4 in the box on ‘The nearest stars and planets’
shows that of the roughly 330 known stars within 10 pc, almost 240 are M stars,
i.e. about 72% of the stars (including the white dwarfs) are M stars. Of the A–M
spectral type stars, about 80% are M stars. We are not told how many of these
stars are main sequence stars, and we will assume that they all are; this is justified
because stars spend most of their lifetimes on the main sequence. Reading from
Figure 4.8c, the fraction of M stars hosting one or more planets is ∼2 ± 1%. Thus
we expect the number of M stars within 10 pc hosting RV planets to be

NP,M ≈ 240 × (0.02 ± 0.01) ≈ 4.8 ± 2.4.

Similarly, there are 71 F, G, K stars within 10 pc, and reading off the graph, the
fraction of these hosting planets is ∼4.1 ± 0.6%. Thus we expect the number of
F, G, K stars hosting RV planets to be

NP,FGK ≈ 71 × (0.041 ± 0.006) ≈ 2.9 ± 0.4.

Finally, there are 4 A stars within 10 pc in the RECONS census, and for the
highest-mass F stars and the A stars, Figure 4.8c suggests that ∼9± 3% host giant
planets. Thus

NP,A ≈ 4 × (0.09 ± 0.03) ≈ 0.36 ± 0.12 ≈ 0.4 ± 0.1.

Gathering this together, the total number of systems hosting RV-detectable giant
planets within 10 pc is expected to be about

NP,RV ≈ (4.8 ± 2.4) + (2.9 ± 0.4) + (0.4 ± 0.1) ≈ 8.1 ± 2.9.
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Thus the fraction of stars within 10 pc hosting RV-detectable planets is expected
to be

fraction hosting planets =
number hosting planets

total number
≈ 8.1 ± 2.9

330
≈ 0.02 ± 0.009.

(b) Over the mass range shown in Figure 4.8c, i.e. 0.1–1.9 M%, the main
sequence luminosity increases from 10−3 L% to 10 L%, i.e. by a factor of 104.
Equation 2.2 tells us that the flux from a source decreases as the inverse square of
the distance, and consequently the distance at which a star of luminosity L is
brighter than V ∼ 10 varies as

dmax =

(
L

4πS10

)1/2

, (Eqn 2.3)

where we have used the notation S10 for the flux corresponding to magnitude
V ∼ 10. Thus the most massive A stars in the range are visible at distances about
100 times the limiting distance for the least massive M stars in the range. Since
the volume of space included within a limiting distance dmax is given by

volume ∝ d3
max,

the magnitude limit includes A stars in a volume 106 times the volume for
M stars. If we assume that our local volume is representative of the relative
numbers of A stars and M stars, then Figure 1.4 suggests that the ratio of A stars
to M stars will be roughly

NA

NM
≈ 4 × 106

239
≈ 104. (S4.1)

Thus the magnitude-limited sample is strongly biased in favour of the more
luminous, more massive stars. The number that we obtained in Equation S4.1 is
an overestimate of the ratio of the numbers in the lowest-mass bin and the
highest-mass bin in Figure 4.8c since we used the extremes (M∗ = 0.1 M% and
M∗ = 1.9 M%) rather than the average masses within the bins for the estimate, but
it illustrates the point.

Since the magnitude-limited sample is dominated by the highest-mass bin, we
expect that the percentage of stars with RV-detectable planets will be more or less
the value for that bin, i.e. we expect that the percentage of stars with planets will
be ∼9 ± 3%, where we have read the number from Figure 4.8c.

(c) The two estimates are different. The answer in part (a) is effectively the
fraction for the lowest-mass bin in Figure 4.8c because the volume-limited sample
is dominated by these lowest-mass stars. The answer in part (b) is effectively the
fraction for the highest-mass bin in Figure 4.8c because the flux-limited sample is
dominated by these luminous high-mass stars.

(d) The answer in part (a) suggests that we should expect roughly 8 RV-detectable
planets within 10 pc. Figure 1.4 shows 18 planets, but this includes the 8 in the
Solar System, so it shows 10 exoplanets. This is consistent with our estimate,
which is not surprising as both Figure 1.4 and Figure 4.8c draw on the known
census of exoplanets. We should expect more exoplanets to be discovered within
10 pc, however, as the RV precision of available instrumentation improves, and
longer time bases are sampled. These factors will allow previously undiscovered
exoplanets to be detected.
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Exercise 4.3 The reflex RV amplitude is given by Equation 1.13 as

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
.

In all the cases here, the planetary mass is negligible compared to that of the star,
so MP + M∗ ≈ M∗.

Hence for GJ 581 b, the reflex RV amplitude of the star is

ARV,b =
2π × (0.041 × 1.496 × 1011 m) × (15.64 × 5.97 × 1024 kg)

(0.31 × 1.99 × 1030 kg) × (5.369 × 24 × 3600 s)

= 12.6 m s−1.

Similarly, for GJ 581 c

ARV,c =
2π × (0.07 × 1.496 × 1011 m) × (5.36 × 5.97 × 1024 kg)

(0.31 × 1.99 × 1030 kg) × (12.929 × 24 × 3600 s) × (1 − 0.17)1/2

= 3.4 m s−1,

for GJ 581 d

ARV,d =
2π × (0.22 × 1.496 × 1011 m) × (7.09 × 5.97 × 1024 kg)

(0.31 × 1.99 × 1030 kg) × (66.8 × 24 × 3600 s) × (1 − 0.38)1/2

= 3.1 m s−1,

and for GJ 581 e

ARV,e =
2π × (0.03 × 1.496 × 1011 m) × (1.94 × 5.97 × 1024 kg)

(0.31 × 1.99 × 1030 kg) × (3.149 × 24 × 3600 s)

= 1.9 m s−1.

If, at a given time, the contributions to the reflex RV amplitude from each planet
are all in phase with each other, then the maximum total amplitude that may be
observed is simply (12.6 + 3.4 + 3.1 + 1.9) m s−1 = 21 m s−1.

Exercise 4.4 In Worked Example 4.1 we calculated that the pressure in the
core of Jupiter is approximately 1013 Pa, or 108 bar. So Figure 4.12 indicates that
the core temperature of Jupiter is roughly log(T/K) = 4.4, or T = 25 000 K. The
degeneracy parameter is θ = 0.03. We can therefore rearrange Equation 4.18 to
give the number density of electrons as

n =

(
2πmkTF

h2

)3/2

=

(
2πmkT

θh2

)3/2

=

(
2π × (9.109 × 10−31 kg) × (1.381 × 10−23 J K−1) × (25 000 K)

0.03 × (6.626 × 10−34 J s)2

)3/2

= 1.8 × 1030 (kg J−1 s−2)3/2

= 1.8 × 1030 (kg kg−1 m−2 s2 s−2)3/2

= 1.8 × 1030 m−3.
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Exercise 4.5 (a) The energy radiated away is Erad = L Δt, and the change in
gravitational energy is ΔEGR = (dEGR/dt) Δt. We have

L = −ζ − 1

ζ

dEGR

dt
, (Eqn 4.25)

so

Erad = L Δt = −ζ − 1

ζ

dEGR

dt
Δt = −ζ − 1

ζ
ΔEGR, (S4.2)

which is the general expression that we require.

(b) In the case of an ideal diatomic gas, we know that ζ = 3.2, so using
Equation S4.2 we have

Erad = −ζ − 1

ζ
ΔEGR = −2.2

3.2
ΔEGR = −0.69ΔEGR.

(c) As the planet contracts, its gravitational energy decreases, and as calculated
above, around 70% of this energy can be radiated away. The remainder of the
‘lost’ gravitational energy goes to increasing the internal energy of the material of
which the planet is composed. Hence conservation of energy is maintained.

(d) The temperature, pressure and density of the H2 gas during the collapse must
all increase. As noted above, the internal energy of the gas will increase, and this
will raise the temperature. Since the same amount of gas is contained within a
smaller volume, an increase in temperature implies an increase in pressure, via the
ideal gas law PV = nkT . Similarly, since the mass is constant but the volume is
decreasing, the density of the gas must also increase.

Exercise 5.1 (a) Using Equation 5.5 we have

Teq,⊕ =
1

2

[
(1 − A⊕) L%

σπa2⊕

]1/4

,

and we are told that A⊕ = 0.30. The other constants that we require are

L% = 3.83 × 1026 J s−1,

a⊕ = 1 AU = 1.496 × 1011 m,

σ = 5.671 × 10−8 J m−2 K−4 s−1.

Substituting in, we have

Teq,⊕ =
1

2

[
(1 − 0.3)3.83 × 1026 J s−1

5.67 × 10−8 J m−2 K−4 s−1 × 3.14 × (1.50 × 1011 m)2

]1/4

=
1

2

[
0.7 × 3.83 × 1026 K4

5.67 × 10−8 × 3.14 × (1.50 × 1011)2

]1/4

= 255 K,

where we have restricted ourselves to three significant figures in the calculations
as we were given A⊕ to only two significant figures.

(b) The temperature that we have calculated for the Earth is about −19◦C, which
is in reasonable agreement with the actual temperature that we experience here on
Earth. It is, of course, slightly cooler than the actual temperature, but there are a
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number of assumptions that are not completely valid. For example, the Earth does
not have a uniform temperature and it does not radiate as a perfect black body.

Exercise 5.2 We have

Teq =
1

2

[
(1 − A)L∗

σπa2

]1/4

. (Eqn 5.5)

Since we are just asked for an approximate numerical value, we will not
consider the error range that we have been given for L∗, and will simply adopt
L∗ ≈ 1.61 L%. Substituting in the values that we are given, therefore, we have

Teq ≈ 1

2

[
1.61 × 3.83 × 1026 J s−1

5.67 × 10−8 J m−2 K−4 s−1 × 3.14(0.0471)2(1.50 × 1011 m)2

]1/4

(1 − A)1/4

≈ 1
2

[
6.98 × 1013 K4

]1/4
(1 − A)1/4

≈ 1
2 [2890] (1 − A)1/4 K

≈ 1400(1 − A)1/4 K,

as required.

Exercise 5.3 (a) Referring to the figure, the transit depth is around 15%, i.e.
ΔF/F = 0.15.

(b) We know that the transit depth is related to the ratio of the stellar and
planetary radii by

ΔF

F
=

R2
P

R2∗
. (Eqn 1.18)

Consequently, the transit depth of HD 209458 b at the wavelength of Lyman α
implies that

R2
P

R2∗
= 0.15

and so

RP =
√

0.15R∗
= 0.387 × 1.15 × 6.96 × 108 m

= 3.1 × 108 m

≈ 1
2 R%

≈ 4 RJ.

This inferred value for RP is approximately three times bigger than the currently
accepted value for the radius of the planet, as it must be since the transit depth
in Lyman α is approximately ten times deeper than the depth in the optical
continuum. As we saw in Section 4.5, no known giant planets have radii this big,
nor do models predict planetary radii of this size (cf. Section 4.4).

(c) The occulted area of the star in Lyman α is far larger than the area of the
planet’s disc as inferred from the optical continuum. This suggests that the planet
has a large cloud of hydrogen surrounding it, so the area that absorbs in the
spectral lines of hydrogen is far larger than the area of the planet’s disc. The cloud
of hydrogen will be transparent except at the wavelengths absorbed by hydrogen
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atoms. The most obvious explanation for the existence of this cloud surrounding
the planet is that it is being evaporated off the surface of the planet by the intense
irradiation of the nearby host star.

Exercise 5.4 (a) Equation 1.13 is

ARV =
2πaMP sin i

(MP + M∗)P
√

1 − e2
.

Comparing this with the expression that we require, it is clear that we need to
eliminate a from the equation. We can do this by using Kepler’s third law

a3

P 2
=

G(M∗ + MP)

4π2
, (Eqn 1.1)

which yields

a =

(
P 2G(M∗ + MP)

4π2

)1/3

,

and substituting this into Equation 1.13, we obtain

ARV =
2π

P

P 2/3G1/3(M∗ + MP)
1/3

22/3π2/3

MP sin i(1 − e2)−1/2

MP + M∗
.

Collecting terms,

ARV =

(
2πG

P

)1/3 MP sin i

(MP + M∗)2/3
(1 − e2)

−1/2
,

as required.

(b) If MP ) M∗ and e ≈ 0.0, then the expression for ARV simplifies to

ARV ≈
(

2πG

P

)1/3 MP sin i

M
2/3
∗

.

We need to express each of the variables P , MP and M∗ as a normalized quantity.
To do this we need to multiply and divide through by the appropriate quantities:

ARV ≈ (2πG)1/3

(
P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3 M⊕
yr1/3 M2/3

%

≈
(

2πG

yr M2%

)1/3

M⊕
(

P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3

≈
(

2π × 6.67 × 10−11 N m2 kg−2

365.25 × 24 × 3600 s × (1.99 × 1030)2 kg2

)1/3

× 5.97 × 1024 kg

(
P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3

≈
(

3.353 × 10−78 kg m s−2 m2 kg−2

s kg2

)1/3

× 5.97 × 1024 kg

(
P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3

≈ 0.0894 m s−1

(
P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3

.
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Exercise 5.5 (a) We have

AS = VS sin iS

(
R2

P

R2∗ − R2
P

)
, (Eqn 5.27)

and for an exo-Earth RP ) R∗, so

AS ≈ VS sin iS
R2

P

R2∗
.

We are required to express this in terms of normalized variables, so again we
multiply and divide through by the appropriate quantities:

AS ≈
(

R⊕
R%

)2

× 5 × 103 m s−1

(
VS sin iS

5 km s−1

)(
RP

R⊕

)2(R∗
R%

)−2

≈
(

6.37 × 106 m
6.96 × 108 m

)2

× 5 × 103 m s−1 ×
(

VS sin iS

5 km s−1

)(
RP

R⊕

)2(R∗
R%

)−2

≈ 0.42 m s−1 ×
(

VS sin iS

5 km s−1

)(
RP

R⊕

)2(R∗
R%

)−2

,

as required.

(b) We are asked to express the ratio AS/ARV for an exo-Earth in terms of
normalized parameters. We already obtained a suitable expression for ARV in our
work for Exercise 5.4:

ARV ≈ 0.0894 m s−1

(
P

yr

)−1/3(MP sin i

M⊕

)(
M∗
M%

)−2/3

, (Eqn 5.17)

which we can divide into the expression that we just obtained for AS:

AS

ARV
≈ 0.42 m s−1

0.0894 m s−1

(
VS sin iS

5 km s−1

)(
RP

R⊕

)2(R∗
R%

)−2(P

yr

)1/3(MP sin i

M⊕

)−1(M∗
M%

)2/3

≈ 4.69

(
VS sin iS

5 km s−1

)(
RP

R⊕

)2(MP sin i

M⊕

)−1(P

yr

)1/3( ρ∗
ρ%

)2/3

,

where we gathered the MR−3 terms for the star in question and the Sun to form
the ratio of densities.

(c) Exo-Earths will exhibit transits of depth ΔF ∼ 10−4F once a year.
Performing photometry of the required precision over several years will be
challenging, so this is not a terribly promising prospect. The reflex radial velocity
amplitude of exo-Earths is ∼10 cm s−1, which is beyond the capabilities of the
best currently available instruments (November 2009), and may be less than the
typical intrinsic radial velocity variability of main sequence stars (cf. Figure 4.1).
It is possible that exo-Earths may be detected by their radial velocity variations, as
the intrinsic stellar variability can probably be characterized and largely removed,
but this will be challenging. The amplitude of the Rossiter–McLaughlin effect is
about 5 times greater than the reflex radial velocity amplitude, and at 0.42 m s−1 it
is within the capabilities of the best current instrumentation, e.g. HARPS.

Exercise 6.1 Before we begin any calculations, we will express the sizes and
distances that we are given in Table 6.1 in a uniform set of units. We note that the
sizes and distances always appear in the relevant equations as ratios of two
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lengths: they must do so, as neither temperature nor secondary eclipse depth has
dimensions of length. Consequently, it doesn’t really matter which unit we
choose to express all the lengths in, but the simplest thing to do is to convert all
three lengths to SI units, as the conversion factors in each case are given in the
Appendix. Applying the conversion factors, we obtain Table S6.1.

Table S6.1 Selected parameters of HD 189733 b and its host star for use in
Exercises 6.1 and 6.3.

Quantity Value Units Value Units

a 0.030 99 AU 4.64 × 109 m
RP 1.14 RJ 8.15 × 107 m
R∗ 0.788 R% 5.48 × 108 m
Teff 5000 K

Tbright(16µm) 4315 K

The first step in calculating the secondary eclipse depth, ΔFSE/F , is to calculate
the day side temperature of the planet, Tday. The appropriate equation is

T 4
day = (1 − P )(1 − A)

R2∗
2a2

T 4
eff, (Eqn 6.4)

and we are told to assume that no heat is redistributed to the night side of the
planet, so P = 0, and that A = 0.05. First rearranging Equation 6.4, then
substituting these values and the appropriate values from Table S6.1, we obtain(

Tday

Teff

)4

= (1 − P )(1 − A)
R2∗
2a2

so(
Tday

5000 K

)4

= (1)(0.95)
(5.48 × 108 m)2

2 × (4.64 × 109 m)2

= 0.95 × 0.006 97

= 6.63 × 10−3

thus

Tday = 5000 K × (6.63 × 10−3)1/4

= 5000 K × 0.285

= 1427 K.

We are not given any information on the star HD 189733 beyond the radius,
the effective temperature, and the brightness temperature at 16µm. We are
told to assume that the star emits as a black body (though we know that it
doesn’t because the brightness temperature at 16µm differs from the effective
temperature) to estimate the fractional depth of the secondary eclipse. Without
further information, we cannot comment on how justified we are in making this
approximation for the stellar flux at 24µm.

The simplest form of the equations holds if we can use the Rayleigh–Jeans law
rather than the unapproximated Planck function. To assess whether this is a
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good approximation, we need to evaluate hc/(k Tday) and compare this to the
wavelength in question, λc = 24µm. Using our value of Tday, we have

hc

k Tday
=

6.626 × 10−34 J s × 2.998 × 108 m s−1

1.381 × 10−23 J K−1 × 1427 K

= 1.01 × 10−5 m

= 10.1µm. (S6.1)

The essence of the Rayleigh–Jeans law is the replacement of
exp(hc/(λk Tday)) − 1 with hc/(λk Tday). With the value that we obtained in
Equation S6.1, the Rayleigh–Jeans approximation uses

hc

λk Tday
≈ 10µm

24µm
≈ 0.42,

while the full Planck function would use

exp

(
hc

λk Tday

)
− 1 = 1.52 − 1 = 0.52.

Thus we can see that the approximation is good to within 20%, which is probably
adequate given that we have already approximated both the planet and star as
black body emitters. We will use the Rayleigh–Jeans law, but note that this is
perhaps overestimating the planet flux by 20%.

Adopting Equation 6.15, which is appropriate to the Rayleigh–Jeans regime and
the black body approximations discussed above, we have

ΔFSE

F
≈
[
(1 − P )(1 − A)

2a2

]1/4 R2
P

R
3/2
∗

≈
[

(1)(0.95)

2(4.64 × 109 m)2

]1/4 (8.15 × 107 m)2

(5.48 × 108 m)3/2

≈ 0.0063,

i.e. the secondary eclipse depth is predicted to be 0.6%.

Exercise 6.2

(a) We have

ΔfP,λ =

(
RP

d

)2 [
Bλ(Tday) − Bλ(Tnight)

]
, (Eqn 6.12)

which gives us the amplitude ΔfP,λ in flux units, assuming that the orbit is
edge-on. If the orbit is not edge-on, we will always see part of both the day side
and the night side hemispheres. The amplitude given in Equation 6.12 is a
maximum value, attained only for exactly edge-on orbits. Having noted this
caveat, to obtain contrast units we simply divide through by the total flux of the
system:

peak to peak amplitude in contrast units =
ΔfP,λ

f∗,λ + fP,λ
.

Since f∗,λ ' fP,λ we can make the approximation

peak to peak amplitude in contrast units ≈ ΔfP,λ

f∗,λ
.

313



Solutions to exercises

To find the amplitude in a bandpass centred on wavelength λc, we need to
integrate over the bandpass (just as we did in Worked Example 6.2):

ΔFP

F
=

∫ λu

λl
ΔfP,λ Qλ dλ∫ λu

λl
f∗,λ Qλ dλ

,

where, as in Worked Example 6.2, Qλ is the weighting as a function of
wavelength. If we assume that we can take the fluxes at the central wavelengths as
proportional to the integrated flux over the bandpass, then

ΔFP

F
=

ΔfP,λc

f∗,λc

=

(
RP

d

)2 [
Bλc(Tday) − Bλc(Tnight)

]× ( d

R∗

)2 1

Bλc(Tbright)

=
Bλc(Tday) − Bλc(Tnight)

Bλc(Tbright)

(
RP

R∗

)2

,

which is the expression that we were asked for.

(b) For a transiting hot Jupiter, the orbit is within a few degrees of edge-on, so
Equation 6.18 gives the amplitude of the phase function more or less exactly.
Since the system is transiting, the quantity RP/R∗ can be determined empirically
from the transit depth. The flux from the star can be measured, and consequently
the only unknowns in Equation 6.18 are the day side and night side fluxes. The
amplitude of the phase function in flux units can also be measured, for use in
Equation 6.12. Assuming that the distance to the star is known, e.g. from the star’s
spectral type and apparent brightness, we have two equations and everything but
the day side and night side fluxes is empirically known. In the case of a transiting
planet, therefore, it is possible to deduce the temperature difference between the
day side and night side hemispheres, so long as we assume that both hemispheres
emit as black bodies.

(c) In the case of a hot Jupiter planet that does not transit, the orbital orientation
will be unknown, and the full amplitude as described in Equation 6.18 would not
be seen. The ratio RP/R∗ would be unconstrained, so with these unknown factors
it would not be possible to deduce the temperature difference between the two
hemispheres.

Exercise 6.3 (a) In Figure 6.5 the base of the secondary eclipse is one quarter
of the way up from 0.994 to 0.996 on the vertical axis. Therefore the value of the
relative intensity during the secondary eclipse is 0.9945. The values shown are
normalized so that the out-of-eclipse level is 1.0000. The deficit during the
secondary eclipse is therefore

ΔFSE = (1.0000 − 0.9945)F = 0.0055F.

In contrast units, therefore,
ΔFSE

F
= 0.0055.

The secondary eclipse depth is just over one half of one per cent.

(b) In terms of the full Planck function, the secondary eclipse depth is given by

ΔFSE

F
≈ pλc

(
RP

a

)2

+
Bλc(Tday)

Bλc(Tbright)

(
RP

R∗

)2

, (Eqn 6.13)
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and we are told that we can ignore the reflection component, so we have

ΔFSE

F
=

Bλc(Tday)

Bλc(Tbright)

(
RP

R∗

)2

,

where we have reverted to an equality, but note that we have approximated the
integral over the bandpass and neglected the reflection term. The full Planck
function is rather unwieldy, but we can simplify it by noting that we can express
the equation with a ratio of Planck functions as the subject:

Bλ(Tday)

Bλ(Tbright)
=

ΔFSE

F

(
R∗
RP

)2

.

Substituting in for the Planck function, this becomes

exp(hc/(λck Tbright)) − 1

exp(hc/(λck Tday)) − 1
=

ΔFSE

F

(
R∗
RP

)2

, (Eqn 6.19)

which is the first expression that we were asked to derive. Manipulating this to
isolate Tday, we have(

exp

(
hc

λck Tbright

)
− 1

)
F

ΔFSE

(
RP

R∗

)2

= exp

(
hc

λck Tday

)
− 1

so(
exp

(
hc

λck Tbright

)
− 1

)
F

ΔFSE

(
RP

R∗

)2

+ 1 = exp

(
hc

λckTday

)
thus

loge

[(
exp

(
hc

λck Tbright

)
− 1

)
F

ΔFSE

(
RP

R∗

)2

+ 1

]
=

hc

λck Tday
.

Making Tday the subject of the equation, we have

Tday =
hc

λck

[
loge

[(
exp

(
hc

λck Tbright

)
− 1

)
F

ΔFSE

(
RP

R∗

)2

+ 1

]]−1

.

(Eqn 6.20)

This equation, the second that we were asked to derive, gives us a (complicated)
expression for Tday.

(c) Either of the expressions in part (b) can be used. Since Equation 6.20 has Tday

as its subject, we will use that one. The expression is complicated, so we will
break down the evaluation using the specific values for the 16µm secondary
eclipse of HD 189733 b. First we note that the quantity hc/λck appears twice, so
we will evaluate that. The wavelength is the central wavelength, λc, of the
bandpass is 16µm. Consequently,

hc

λck
=

6.626 × 10−34 J s × 2.998 × 108 m s−1

16 × 10−6 m × 1.381 × 10−23 J K−1

= 899.0 K.

Similarly, using the values in the question and Table S6.1, we can evaluate

F

ΔFSE

(
RP

R∗

)2

=
1

0.0055

(
8.15 × 107 m
5.48 × 108 m

)2

= 4.0 (to 2 s.f.),
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where we quote the result to only two significant figures because our estimate of
ΔFSE from the eclipse depth is no better than this. The exponential function on
the right-hand side is

exp

(
hc

λck Tbright

)
= exp

(
899.0 K
4315 K

)
= exp(0.20835) = 1.2316.

Substituting these values into Equation 6.20, we have

Tday = 899.0 K [loge [(1.2316 − 1) × 4.0 + 1]]−1

= 899.0 K [loge [0.9265 + 1]]−1

= 1.525 × 899.0 K

= 1371 K = 1400 K (to 2 s.f.),

where in the first line we used the convention that multiplication takes precedence
to avoid yet another set of brackets surrounding the terms ‘(1.2316 − 1) × 4.0’.

(d) The essence of the Rayleigh–Jeans law is to replace exp(hc/λckT ) − 1 with
hc/λckT . For the star, we have Tbright(16µm) = 4315, which means that

hc

λckT
= 0.2084,

while

exp

(
hc

λckT

)
− 1 = 0.2316.

These are in the same ballpark, but differ by more than 10%. Since we can read
the most uncertain of the input quantities, ΔFSE, from the graph at a better
precision than this, it would probably not be justified to use the Rayleigh–Jeans
law instead of the full Planck function to evaluate the 16µm flux from the star
HD 189733 b.

Comment : In Exercise 6.1 we made a bigger approximation, but in that
exercise, we were making an estimate; here we are deriving results from
state-of-the-art observations.

The planet has a day side temperature of 1400 K, which gives

hc

λckT
= 0.6422,

while

exp

(
hc

λckT

)
− 1 = 0.9006.

In this case it is clear that the Rayleigh–Jeans law would introduce a discrepancy
of about 30% in the flux from the planet. It would not be a justifiable
approximation.

(e) If the wavelength of the observation were shorter, the quantity hc/λckT
would become bigger, and the approximation, which is valid for hc/λckT ) 1,
would be worse. The Rayleigh–Jeans law is most applicable at long wavelengths.

(f) If the brightness temperature of the star were higher, the quantity hc/λckT
would become smaller, and the approximation, which is valid for hc/λckT ) 1,
would be better. The Rayleigh–Jeans law is most applicable at high temperatures.
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Exercise 7.1 The magnitude of the force of gravity due to the Sun acting on the
Earth is F% = G M%M⊕/(12 AU2), while the magnitude of the force of gravity
due to Jupiter acting on the Earth is FJ = GMJM⊕/((5 − 1)2 AU2) when they are
at their closest separation. The ratio of these forces is

F%
FJ

=
M% × 16

10−3 M% × 1
= 1.6 × 104.

So the gravitational force due to the Sun is about sixteen thousand times stronger
than the gravitational force due to Jupiter, and this is of course independent of the
mass of the Earth.

Exercise 7.2 Using Equation 7.22,

τcirc =
2

21

QP

kdP

(
a3

GM∗

)1/2
MP

M∗

(
a

RP

)5

=
2

21
× 105 ×

(
(7.63 × 109 m)3

(6.673 × 10−11 N m2 kg−2) × (2.39 × 1030 kg)

)1/2

× 9.31 × 1026 kg
2.39 × 1030 kg

×
(

7.63 × 109 m
1.24 × 108 m

)5

= 1.73 × 1014 s,

which is around 5 million years.

Exercise 7.3 The equilibrium temperature of a planet is given by

Teq =
1

2

(
(1 − A)L∗

σπa2

)1/4

. (Eqn 5.5)

Rearranging this to make a the subject,

a =
1

(2Teq)2

(
(1 − A)L∗

σπ

)1/2

.

(a) So, for the A type star, the inner boundary of the habitable zone, where
Teq = 373 K, is given by

a =
1

(2 × 373 K)2

(
(1 − 0) × 10 × 3.83 × 1026 J s−1

5.671 × 10−8 J m−2 K−4 s−1 × π

)1/2

= 2.635 × 1011 m

= 1.76 AU.

Similarly, the outer boundary of the habitable zone for the A type star, where
Teq = 273 K, is given by

a =
1

(2 × 273 K)2

(
(1 − 0) × 10 × 3.83 × 1026 J s−1

5.671 × 10−8 J m−2 K−4 s−1 × π

)1/2

= 4.918 × 1011 m

= 3.29 AU.

So the width of the habitable zone of the A type star is estimated as about 1.5 AU.
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(b) Now, since a ∝ L
1/2
∗ , and the luminosity of the K type star is 100 times

smaller than that of the A type star, the inner and outer limits of the habitable zone
for the K type star will be 10 times smaller than those for the A type star (all else
being equal). As a result, the inner edge is at about 0.18 AU and the outer edge is
at about 0.33 AU. The width of the habitable zone of the K type star is therefore
estimated as about 0.15 AU.

Exercise 7.4 An exoplanet might exist in a stable orbit around any one of the
six component stars (e.g. Figure S7.1a or b). Alternatively, an exoplanet could
have a stable orbit around any one of the three binary pairs that make up the
system (e.g. Figure S7.1c or d), or around the quadruple system that constitutes
the ‘visual binary’ (Figure S7.1e). Finally, one might even have an exoplanet in a
stable orbit around the entire sextuple system (Figure S7.1f), although such a
planet would likely be only loosely bound to the system as it would be necessarily
very distant from the centre of mass.

(a) (b)

(c) (d)

(e) (f)

P
P

P
P

P
P

Figure S7.1 See solution to Exercise 7.4. ‘P’ indicates the possible location of
a planet.

Exercise 7.5 (a) The maximum offset of the transit time occurs when the sine
function has a value of ±1. In this case, the offset is |δt2| ≈ P2a1µ1/2πa2.
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Now, the reduced mass is µ1 ≈ M1/M∗, which in this case is µ1 ≈ 3 × 10−6. So

|δt2| ≈ 30 days × 0.072 AU × 3 × 10−6

2π × 0.19 AU
.

The maximum offset is therefore 5.4 × 10−6 days or 0.47 seconds.

(b) If the mass of the inner planet were 10 times larger, the maximum offset in the
transit time would also be 10 times larger, i.e. 4.7 seconds.

Exercise 7.6 The maximum transit timing offset will occur when the cosine
term in the numerator of the right-hand side of Equation 7.28 is ±1 and when the
sine term in the denominator is 1. The timing offset is then

|δt2| ≈ P2µ1a1

√
1 − e2

2

2πa2(1 − e2)
.

(a) When e2 = 0.1, this becomes

|δt2| ≈ 30 days × 3 × 10−6 × 0.072 ×√
0.99

2π × 0.19 × 0.9
≈ 6.0 × 10−6 days = 0.52 s.

(b) When e2 = 0.5, this becomes

|δt2| ≈ 30 days × 3 × 10−6 × 0.072 ×√
0.75

2π × 0.19 × 0.5
≈ 9.4 × 10−6 days = 0.81 s.

Exercise 7.7 Using Equation 7.29, we first note that the reduced mass is
µ2 ≈ M2/M∗ ≈ 0.5 × 10−3. The TTV is therefore

δt1 ≈ (0.5 × 10−3 × 0.5 × 100 days) ×
(

0.05

0.42

)3

≈ 4.2 × 10−5 days

= 3.6 seconds.

Exercise 7.8 (a) Using Equation 7.30, the maximum TTV is

δt2 ≈ 12 days
4.5 × 3

× 3 × 10−6

10−3
≈ 2.7 × 10−3 days ≈ 4 minutes.

(b) Using Equation 7.31, the libration period of this TTV is

Plib ≈ 0.5 × 3−4/3 × (10−3)−2/3 × 12 days ≈ 139 days.

So the maximum TTV would recur roughly every 11 or 12 transits.

Exercise 7.9 (a) Rearranging Equation 7.32, we have

aMMM ≈ 2πa × 21/2 × MP δtM

P

≈ 2 × π × 0.05 AU × 21/2 × 10−3 M% × 30 s
4 × 24 × 3600 s

≈ 3.86 × 10−8 AU M%.
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Rearranging Equation 7.33, we have

a
−1/2
M MM ≈ 21/2[MP(MP + M∗)]1/2 δTM

Tdur a1/2

≈ 21/2 × [10−3 × (10−3 + 1)]1/2 M% × 15 s

3 × 3600 s × 0.051/2 AU1/2

≈ 2.78 × 10−4 AU−1/2 M%.

Now, dividing the first of these by the second, we get

a
3/2
M ≈ 1.39 × 10−4 AU3/2,

so

aM ≈ 2.68 × 10−3 AU = 4.0 × 108 m

(which is around four hundred thousand kilometres).

So, if the TTV and the transit duration variation are due to the presence of an
exomoon, they imply that this moon must be orbiting fairly close to the planet.
(The radius of Jupiter is about 7 × 107 m, and the radius of a hot Jupiter exoplanet
may well be somewhat larger.)

Substituting this orbital radius back into the first equation,

MM ≈ 3.86 × 10−8

2.68 × 10−3
M% ≈ 1.44 × 10−5 M%,

which is about five times the mass of the Earth.

(b) Kepler’s third law applied to the orbit of the putative exomoon around the
exoplanet may be written as

PM =

(
4π2a3

M

G(MP + MM)

)1/2

≈
(

4π2 × (4.0 × 108 m)3

6.67 × 10−11 N m2 kg−2 × (10−3 + 1.4 × 10−5) × 1.99 × 1030 kg

)1/2

≈ 1.37 × 105 s.

The orbital period of the exomoon would therefore be about 38 hours.

Exercise 7.10 Using Equation 7.32,

δtM ≈ aMMM

21/2MP

P

2πa

≈ 109 m × 3 × 10−6

21/2 × 10−3
× 46 × 24 × 3600 s

2π × 0.2 × 1.5 × 1011 m
≈ 45 s.

The maximum TTV is therefore less than 1 minute.

Using Equation 7.33,

δTM ≈
(

a

aM

)1/2 MM

[MP(MP + M∗)]1/2

Tdur

21/2

≈
(

0.2 × 1.5 × 1011 m
109 m

)1/2

× 3 × 10−6

[10−3 × (10−3 + 0.5)]1/2
× 5 × 3600 s

21/2

≈ 9.3 s.
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The maximum transit duration variation is therefore of order 10 seconds.

Exercise 7.11 The Hill radius for the planet is given by Equation 7.24 as

RH = a

(
MP

3M∗

)1/3

= 0.05 AU ×
(

10−3 M%
3 M%

)1/3

= 0.0035 AU.

Hence the Hill radius is about 5.2 × 108 m or just over 7 RJ.

Exercise 7.12 From Equation 7.16, the Roche limit is

dR = RM

(
2MP

MM

)1/3

= 6.4 × 106 m ×
(

2 × 10−3

3 × 10−6

)1/3

= 5.6 × 107 m.

The Roche limit for this planet and moon is therefore about 56 thousand
kilometres.

Exercise 7.13 We first note that the reduced mass is

µT ≈ MT

MP
≈ 3 × 10−6 M%

10−3 M%
≈ 3 × 10−3.

The maximum TTV is given by Equation 7.34 as

δt ≈ 3 × 10−3 × 4 days × 25◦

360◦
≈ 8.3 × 10−4 days = 72 seconds.

Exercise 8.1 We need to apply

geometric transit probability =
R∗ + RP

a
≈ R∗

a
(Eqn 1.21)

and substitute in the appropriate solar and terrestrial values. Thus

geometric transit probability ≈ R%
1 AU

≈ 6.96 × 108 m
1.50 × 1011 m

≈ 0.0047.

We are told to assume that Kepler will observe 5000 such stars, so the number of
transiting exo-Earths detected will be

total exo-Earths detected = geometric transit probability × 5000

= 0.0047 × 5000 = 23.

Kepler is predicted to find just over 23 exo-Earths, with the (optimistic)
assumption that each star hosts a single planet in an orbit like Earth’s. The actual
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anticipated number is less than this, by a factor (of perhaps roughly 10 or so) that
depends on the planeticity and the value of α(a,MP) over the range within which
planets would be classed as exo-Earths (cf. Subsection 4.2.2).

Exercise 8.2 (a) The density is simply the mass divided by the volume, so

ρ =
3MP

4π R3
P

=
3

4π

6.55 M⊕
(2.68 R⊕)3

. (S8.1)

This gives

ρ =
0.75 × 6.55 × 5.97 × 1024 kg
π × (2.68 × 6.37 × 106 m)3

= 1876 kg m−3.

In terms of the density of Earth, Equation S8.1 tells us that

ρ =
6.55

19.25
ρ⊕ = 0.340ρ⊕.

Thus we see that GJ 1214 b is just over one-third as dense as Earth.

(b) The magnitude of the acceleration due to gravity on the surface of a planet is

gP =
GMP

R2
P

, (Eqn 4.48)

so on the surface of GJ 1214 b we have

gP =
6.673 × 10−11 N m2 kg−2 × 6.55 × 5.97 × 1024 kg

(2.68 × 6.37 × 106 m)2

= 8.95 m s−2.

This is very similar to the value of g on Earth, which is 9.81 m s−2.

(c) Humans would be rather comfortable on a planet with this value of gravity.
Golf would be perfectly feasible, and it would appear to be possible to hit a ball
somewhat farther than on Earth (assuming comparable values of air resistance)
because the downwards acceleration during flight would be slightly less than on
Earth, so the ball would travel further before landing.

Exercise 8.3 (a) The appropriate equation to use is

AS

ARV
≈ 4.7

(
VS sin iS

5 km s−1

)(
RP

R⊕

)2(MP sin i

M⊕

)−1(P

yr

)1/3( ρ∗
ρ%

)2/3

,

(Eqn 5.31)

and everything to the right of the first term in parentheses is 1, because each of the
terms is normalized to the Earth or the Sun. We are told that the Sun’s spin period
is 25 days, so we have

VS =
2π R%
Prot

=
2π × 6.96 × 108 m
25 × 24 × 3600 s

= 2.0 × 103 m s−1 (to 2 s.f.).
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The only thing left to evaluate is sin iS. We are viewing so that the Earth transits
with an impact parameter of b = 0, so we know i = 90◦. The ecliptic is the plane
of the Earth’s orbit, so iS = (90− 7.15)◦. Putting these values into Equation 5.31,
we have

AS

ARV
≈ 4.7

(
2.0 × 103 m s−1 sin 82.85◦

5 km s−1

)
≈ 1.9 (to 2 s.f.).

The amplitude of the Rossiter–McLaughlin effect is almost twice the reflex radial
velocity amplitude.

(b) With 8 planets, the Sun’s reflex radial velocity curve will be a superposition
of the effects of all of them. Since the Earth is a low-mass component of the Solar
System, it will be difficult to unambiguously isolate the Sun’s reflex radial
velocity due to the Earth. Measurements would need to be made for longer than
the orbital period of Jupiter. The Rossiter–McLaughlin effect could be measured
in a few hours, and would verify that a terrestrial-planet-sized body was transiting
the host star. The reflex radial velocity amplitude allows the mass of the planet to
be deduced; without a measurement of this amplitude, the mass of the planet
would remain unknown.
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