
Appendix B

Matrices

This appendix provides an overview of several of the concepts and properties relat-
ing to matrices.

B.1 Definitions and basic operations

An m × n real matrix A is a two-dimensional rectangular array of mn real numbers
arranged in m rows and n columns as

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn

⎤⎥⎥⎥⎦ .

It is often denoted as A = [ai j ] with 1 ≤ i ≤ m called the row index and 1 ≤ j ≤ n
called the column index. The set of all real m × n matrices is denoted by R

m×n .
When m = n, it is called a square matrix of size or order m. When all the elements
of A are zero, it is called the null or zero matrix. The i th row of A is denoted by ai∗
and the j th column as a∗ j . Hence, the matrix A can be represented as

A = [ai j ] = [a∗1 a∗2 · · · a∗n] =

⎡⎢⎢⎢⎣
a1∗
a2∗

...
am∗

⎤⎥⎥⎥⎦ .

The set of elements (a11, a22, . . . , amm) is called the principal or main diagonal of
A. Diagonals parallel to this principal diagonal and above(below) the main diagonal
are called super(sub) diagonals.

Operations on matrices Let A, B, C be matrices in R
m×n , p, q be scalars, and

y ∈ R
m and x ∈ R

n .
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(a) Sum/Difference C = A ± B, where ci j = ai j ± bi j , is called the element-wise
sum/difference of matrices A and B.

(b) Scalar multiplication C = pA, where ci j = pai j , is called the multiplication
of A by the scalar p.

(c) Matrix-vector product y = Ax, where the i th element of y is defined by the
inner product of the i th row of A with x as

yi =
n∑

j=1

ai j x j for 1 ≤ i ≤ m.

Alternatively, y can also be expressed as a linear combination of the columns
of A as

y =
m∑

j=1

a∗ j x j

where the elements of the vector x are used as the coefficients of the linear
combination.

(d) Matrix-matrix product Let A ∈ R
m×n and B ∈ R

n×r . Then, the product C =
AB ∈ R

m×r can be defined in three equivalent ways:
(a) Inner product The element ci j is the inner product of the i th row of A,

and j th column of B:

ci j =
n∑

k=1

aikbk j , 1 ≤ i ≤ m, 1 ≤ j ≤ r.

(b) Scalar times a vector The j th column c∗ j of C is the linear combination
of the columns of A, using the elements of the j th column of B as the
coefficients, that is,

c∗ j =
n∑

i=1

a∗ j bi j , 1 ≤ j ≤ r.

(c) Outer product The product matrix C can also be expressed as the sum of
n outer product matrices obtained by the j th column of A and j th row of
B as

C =
n∑

j=1

a∗ j b j∗.

The following properties of these operations are easily verified:
(i) A + B = B + A

(ii) pA = Ap
(iii) AB �= BA
(iv) A(x + y) = Ax + Ay
(v) (A + B) + C = A + (B + C)

(vi) (p + q)A = pA + qA
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(vii) (AB)C = A(BC)
(viii) A + (−A) = 0

(ix) p(A + B) = pA + pB.

Special matrices, other operations and properties
Let A ∈ R

m×m , a square matrix.

(a) Diagonal matrix The matrix A is said to be a diagonal matrix, if ai j = 0 for
i �= j . Diagonal matrix A is denoted by

A = Diag(a11, a22, . . . , amm)

(b) Identity matrix Im is a diagonal matrix of order m with all its m diagonal
elements equal to 1, and all other elements zero. Thus,

I3 =
⎡⎣ 1 0 0

0 1 0
0 0 1

⎤⎦ .

(c) Upper/lower triangular matrix A is an upper triangular matrix, if ai j = 0,
for i > j . Similarly, A is a lower triangular matrix, if ai j = 0, for i < j .

(d) Tri-diagonal matrix A is tri-diagonal if ai j = 0 for |i − j | > 1.
(e) Transpose of a matrix If A ∈ R

m×n , then AT ∈ R
n×m is called the transpose

of A obtained by interchanging the columns and rows of A. It can be verified
that

(AT)T = A

(A + B)T = AT + BT

(AB)T = BTAT.

(f) Trace of a matrix If A ∈ R
m×m , trace of A denoted by tr(A) is (a scalar)

defined by the sum of its diagonal elements:

tr(A) =
m∑

i=1

aii .

It can be verified that

tr(A) = tr(AT)
tr(A + B) = tr(A) + tr(B)
tr(αA) = αtr(A)
tr(AB) = tr(BA)
tr(ABC) = tr(BCA) = tr(CAB)
tr(A−1BA) = tr(B)(A−1is defined below as item j).
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(g) Determinant of a matrix Let A ∈ R
m×m . Determinant of A, denoted by det(A)

is (a scalar) defined recursively as follows: For any row index i , fixed,

det(A) =
m∑

j=1

ai j Ai j

where Ai j is called the cofactor of the element ai j given by

Ai j = (−1)i+ j Mi j

with Mi j , called the minor of ai j which is the determinant of the n − 1 × n − 1
matrix obtained by deleting the i th row and j th column of A. It can be verified
that

det(AT) = det(A)
det(AB) = det(A)det(B)
det(A−1) = 1

det(A) (A
−1defined below as item j).

(h) Rank of a matrix Let A ∈ R
m×n . The number of linearly independent

columns(rows) of A (Appendix A) is called the column(row) rank of A. Thus,
the column (row) rank of A is less than or equal to n(m). It turns out that for any
given matrix A, its column and row ranks are always equal and this common
integer value is called the rank of A, and is denoted by Rank(A), that is

0 ≤ Rank(A) ≤ min{m, n}.
If the Rank(A) = min{m, n}, then it is said to be a matrix of full rank, otherwise
it is rank-deficient. We now list several important properties of rank.
(a) Rank(AT) = Rank(A)
(b) Rank(A + B) ≤ Rank(A) + Rank(B)
(c) Rank(A − B) ≥ |Rank(A) − Rank(B)|
(d) If A ∈ R

m×n and B ∈ R
n×r , then

Rank(AB) ≤ min{Rank(A), Rank(B)}
(e) If x, y ∈ R

m , then the rank of the outer product matrix xyT is unity, i.e.
Rank(xyT) = 1.

(i) Non-singularity of a matrix A square matrix A ∈ R
m×m is said to be non-

singular, if any one of the following conditions holds:
(a) det(A) �= 0.
(b) Rank(A) = m.
(c) All columns (rows) of A are linearly independent.

(j) Inverse of a matrix Let A ∈ R
m×m be non-singular. Then, there exists a

(unique) multiplicative inverse denoted by A−1 ∈ R
m×m , such that

AA−1 = A−1A = Im .
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It can be verified that

(A−1)−1 = A
(AB)−1 = B−1A−1

(AT)−1 = (A−1)T = A−T.

(k) Sherman–Morrison–Woodbury formula Let c, d ∈ R
m . Then cdT is a rank-

one outer-product matrix. Adding an outer-product matrix to a non-singular
matrix is called the rank-one perturbation. There is an interesting relation
between the inverse of A and that of (A + cdT).
(a) An identity The following identity is easily verified:

(Im + cdT)−1 = Im − cdT

1 + dTc
·

(b) Sherman–Morrison formula

(A + cdT)−1 = A−1 − A−1cdTA−1

1 + dTA−1c
·

(c) Woodbury’s Extension Let C ∈ R
m×k and D ∈ R

m×k be matrices of rank
k. Then

(A + CDT)−1 = A−1 − A−1C[Ik + DTA−1C]−1DTA−1.

Similarly, if A and B are invertible, then

(A + CBDT)−1 = A−1 − A−1C[B−1 + DTA−1C]−1DTA−1.

(l) Another useful matrix identity

[ATB−1A + D−1]ATB−1 = DAT[B + ADAT]−1.

(m) Moore–Penrose generalized inverse Let A ∈ R
m×n . Then, A+ ∈ R

n×m is
called the Moore–Penrose inverse of A if the following four conditions hold:
(a) AA+A = A
(b) A+AA+ = A+

(c) (A+A)T = A+A, (A+A is a symmetric matrix)
(d) (AA+)T = AA+, (AA+ is a symmetric matrix).

Remark B.1.1 AA+ ∈ R
m×m as a symmetric matrix represents the orthogo-

nal projection on to the subspace spanned by the columns of A, also called
the range space of A, R(A). Similarly, AA+ ∈ R

n×n as a symmetric matrix
represents the orthogonal projection on to the subspace spanned by the rows
of A, called the range space of AT, R(AT). When A ∈ R

m×m is non-singular,
then A+ = A−1 and AA−1 = A−1A = Im .
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x y

V W

T

Fig. B.2.1 Concept of a transformation of vector space V into W .

B.2 Linear transformation and operators

Let V and W be two vector spaces, and let T : V −→ W be a mapping or a
transformation that associates a vector x ∈ V to a vector y ∈ W , i.e. y = T (x).
Refer to Figure B.2.1. The vector space V is called the domain of T and the set
{y|y = T (x), for x ∈ V} is called the range of T . When V = W , then T is called
an operator. Thus, an operator is a transformation that maps a vector space into
itself.

The null space of T is the set of all x ∈ V such that T (x) = 0. The transformation
T is said to be one-to-one, if

T (x1) = T (x2) exactly when x1 = x2,

and T is called linear if

T (x1 + x2) = T (x1) + T (x2) − additivity

and for any scalar a ∈ R and every x ∈ V

T (ax) = aT (x) − homogeneity

hold.
Given a vector space, we can find a basis and a system of coordinates for it.

It is a fundamental fact that with respect to the chosen basis for V and W , every
linear transformation between finite dimensional vector spaces V and W can be
represented by a matrix A ∈ R

m×n , where n and m are respectively the dimensions
of V and W . Henceforth, we will not distinguish between the linear transformation
and the matrix representing it. Thus, y = T (x) is replaced with y = Ax, where
A ∈ R

m×n . In view of this, we can draw from the properties of matrices to draw
conclusions about linear transformations.

Remark B.2.1 It is obvious that there are more than one linear transformations
from the vector spaceV into the vector spaceW . The set of all linear transformations
from V to W is denoted by B(V,W). When V = W , the B(V) denotes the set of all
linear operators on V . When V is a finite-dimensional vector space, we can analyze
the properties of linear operators via the properties of square matrices.
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Examples of transformation/operator

(a) Translation The operator T : V −→ V is called a translation if

T (x) = x + a for every x ∈ V,

for some fixed a ∈ V . Since

T (x + y) = a + x + y �= T (x) + T (y) = 2a + x + y,

it follows that translation is not a linear operator.
A well-known translation operation in R

m is called centering defined by

T (x) = x − x̄1

where x̄ = 1
m

∑m
i=1 xi and 1 = (1 1 1 · · · 1)T, a vector with all its elements as

1. Translation leaves the distance between vectors unaltered, that is ‖x − y‖2 =
‖T (x) − T (y)‖2.

(b) Rotation Every m × m orthogonal matrix (recall Q is orthogonal if Q−1 =
QT, that is, QTQ = QQT = I) represents a rigid-body rotation in R

m . As an
example,

Q =
[

cos θ sin θ

− sin θ cos θ

]
is a 2 × 2 orthogonal matrix that represents a clockwise rotation by an angle θ .
Since QT = Q−1,

QT =
[

cos θ − sin θ

sin θ cos θ

]
gives the anti-clockwise rotation by an angle θ . Orthogonal rotation leaves the
lengths of the vectors unaltered, that is,

‖Q(x)‖2
2 = (Q(x))T(Q(x)) = xTQTQx = xTx = ‖x‖2

2 .

Remark B.2.2 Translation and rotation can also be viewed as mechanisms for
transformation of coordinate systems.

(c) General coordinate transformation LetB1 = {e1, e2, . . . , em} be the standard
basis for R

m . Let B2 = {g1, g2, . . . , gm} be a new basis for R
m . First express

each member of the new basis in terms of the standard basis as follows:

gi = t1i e1 + t2i e2 + · · · + tmi em, 1 ≤ i ≤ m, (B.2.1)
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where (t1i , t2i , . . . , tmi )T is the representation of the vector gi in the standard
basis. Rewriting these m relations in the matrix notation, we obtain:

[g1 g2 · · · gm] = [e1 e2 · · · em]

⎡⎢⎢⎢⎣
t11 t12 · · · t1m

t21 t22 · · · t2m
...

...
...

...
tm1 tm2 · · · tmm

⎤⎥⎥⎥⎦
or

G = ET

where G = [g1, g2, . . . , gm] ∈ R
m×m , the matrix formed by the members of the

new basis B2, E = [e1 e2 · · · em] ∈ R
m×m , the matrix formed by the members

of the standard basis B1 and T ∈ R
m×m is the matrix whose elements are the

coordinates of the new basis with respect to the standard basis. It can be readily
verified that T is a non-singular matrix.
Now consider a vector x ∈ R

m . Let

x = x1e1 + x2e2 + · · · + xmem (B.2.2)

be the representation of x in the standard basis B1 and let

x = x∗
1 g1 + x∗

2 g2 + · · · + x∗
mgm (B.2.3)

be the representation of the same x in the new basis B2. Now combining (B.2.1)
with (B.2.3), it follows that⎡⎢⎢⎢⎣

x1

x2
...
xm

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
t11 t12 · · · t1m

t21 t22 · · · t2m
...

...
...

...
tm1 tm2 · · · tmm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x∗
1

x∗
2

...
x∗

m

⎤⎥⎥⎥⎦
or

x = Tx∗. (B.2.4)

Thus, T : R
m −→ R

m is a matrix that provides a bridge between the representa-
tion of the vectors in the standard and new bases. This matrix T is non-singular
but is not orthogonal and, hence, sometimes called oblique rotation.

(d) Similarity transformation Let x and y denote two vectors in R
m in the standard

basis and let A be the matrix representation of a linear operator in the standard
basis such that y = Ax. Let T be the non-singular matrix that represents the
transformation of the standard basis B1 to the new basis B2. Let x∗ and y∗ be
the representation of x and y in the new basis B2, where x = Tx∗ and y = Ty∗.
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x T x

V W
T

T ∗y y
T ∗

< T x, y > = < x, T ∗y >

Fig. B.2.2 Definition of the adjoint operator.

Since y = Ax, by substituting, we obtain

y = Ty∗ = Ax = ATx∗

or

y∗ = (T−1AT)x∗. (B.2.5)

In other words, T−1AT is the representation of the matrix A in the new basis
B2. This transformation of the matrix A to the matrix T−1AT is called the
similarity transformation. Similarity transformation preserves the eigenvalues
(Section B.5). That is, A and T−1AT have the same set of eigenvalues.

(e) Congruence transformation Let A ∈ R
m×m . If B ∈ R

m×m is a non-singular
matrix, then BTAB is called the congruent transformation of A. That is, A
and BTAB are said to be congruent matrices. Congruent transformation pre-
serves several properties of A. Thus, BTAB is symmetric, skew-symmetric,
positive (semi)definite, whenever A is symmetric, skew-symmetric or positive
(semi)definite.

(f) Adjoint Operator Let V and W be two vector spaces, each endowed with
its own inner product. Let < x, y >V denote the inner product of vectors x
and y in V . Likewise, < x, y >W is defined. Let T : V −→ W be a linear
transformation such that y = T x, where x ∈ V and y ∈ W . If there exists a
linear transformation T ∗ : W −→ V , such that

< T x, y >W=< x, T ∗y >V

then T ∗ is called the adjoint of T . Refer to Figure B.2.2 for an illustration.
We now specialize this definition. Let V ⊆ R

n and W ⊆ R
m . Then, both T

and T ∗ as linear operators have a matrix representation in the chosen basis forV
and W . Let A ∈ R

m×n and A∗ ∈ R
n×m be the matrices corresponding to T and

T ∗, where A : V −→ W and A∗ : W −→ V . Then, from the above definition,
we immediately have

< Ax, y >= (Ax)Ty = xTATy =< x, A∗y >= xTA∗y
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from which it follows that A∗ = AT. That is, when V and W are finite dimen-
sional vector spaces, transpose of A is, in fact, the adjoint of A.

When V = W = R
m , then A ∈ R

m×m is a linear operator and A∗ = AT is
called the adjoint operator. In the special case, when A is a symmetric matrix,
then A∗ = AT = A, and A is called a self-adjoint operator.

The following properties can be readily established.
(a) Adjoint A∗ of a linear transformation A is also linear.
(b) (A∗)∗ = A.
(c) (aA)∗ = aA∗.
(d) (A + B)∗ = A∗ + B∗.
(e) (AB)∗ = B∗A∗.
(f) If A is invertible, then (A−1)∗ = (A∗)−1.

Range and null space of a matrix Let V ⊆ R
n andW ⊆ R

m and A : V −→ W
be such that A ∈ R

m×n . The range of A, also known as column space of A, denoted
by R(A) is defined as (refer to Figure B.2.1)

R(A) = {
y ∈ R

m |y = Ax for all x ∈ V
} ⊆ W

is the set of linear combinations of the columns of A. That is, R(A) is the linear
vector space generated by the columns of A and, hence, is called the image of V
under A or simply as image space of A. Likewise, we can define

R(AT) = {
x ∈ R

n|x = ATy for all y ∈ R
m
} ⊆ V

called the range of AT which is also called the row space of A.
The null space of A denoted by N (A) is defined as

N (A) = {
x ∈ R

n|Ax = 0
} ⊆ V.

Thus, N (A) consists of all solutions to the homogeneous systems Ax = 0. It can
be verified that N (A) is a vector space and N (A) is also called the kernel of A.
Similarly, we can define

N (AT) = {
y ∈ R

m |ATy = 0
} ⊆ W

the null space of AT.
Indeed, given a matrix A ∈ R

m×n , there are four vector spaces – R(A), R(AT),
N (A) and N (AT) associated with A. In the following, we enlist several key prop-
erties and the relations between these four vector spaces.

(a) N (A) = R⊥(AT), that is, the null space of A is orthogonal to the range space
of AT. Similarly, N (AT) = R⊥(AT).

(b) When A is a square symmetric matrix, then R(A) = R(AT) and N (A) =
N (AT), and N (A) = R⊥(AT).

(c) Dim[R(A)] = Rank(A) = Dim[R(AT)].
(d) Dim[N (A)] = n − r , where r = Rank(A), is called the nullity of A.
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Consistent
b ∈ R(A)

Inconsistent
b �∈ R(A)

Homogeneous

b = 0

Non-
homogeneous

b �= 0

Ax = b
A ∈ m×n, b ∈ m

x ∈ n

m = n
Rank(A) = m

Full rank

m = n
Rank(A) = r < m

Rank deficient

m > n:
over-determined

m < n:
under-determined

m > n
Rank(A) = n

Full rank

m > n
Rank(A) = r < n

Rank deficient

m < n
Rank(A) = m

Full rank

m < n
Rank(A) = r < m

Rank deficient

Fig. B.3.1 A classification of linear systems.

(e) Dim[R(A)] + Dim[N (A)] = n for all A ∈ R
m×n .

(f) Dim[N (A)] = 0 exactly when A is square and non-singular.
(g) Dim[N (AT)] = m − r .

B.3 Solution of linear systems

Let A ∈ R
m×n and b ∈ R

m . Given A and b, the problem of finding the vector
x ∈ R

n such that Ax = b is known as the problem of solving a set of m equations
in n unknowns that are the components of x. If the vector b ∈ R(A), the range of
A (also known as the column space of A), then b must be expressible as a linear
combination of the columns of A and the coefficients of this linear combination
constitutes the components of the vector x we are seeking. In this case, the linear
system Ax = b is called a consistent system. If b does not belong to R(A), then
there does not exist a vector x ∈ R

n such that Ax = b and in this case it is termed
as an inconsistent system. When the vector b = 0, the linear system Ax = 0 is
called a homogeneous system, otherwise, it is known as a non-homogeneous sys-
tem. Recall that Rank(A) ≤ min(m, n). If Rank(A) = min(m, n), then the linear
system is said to be of full rank, otherwise, it is called rank deficient. If m, the
number of equations, is equal to n, the number of variables, it is called a deter-
mined system; if m > n, it is known as an over-determined system and if m < n,
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Over-determined
system

Rank(A) = n < m
x = A+b

A+ = (ATA)−1AT

Determined system
m = n

Rank(A) = m
x = A−1b

Under-determined
system

Rank(A) = n < m
x = A+b

A+ = AT(AAT)−1
x = A+b

A: full rank
Rank(A) = min{m, n}

A: rank-deficient
Rank(A) = r < min{m, n}

Consistent case
solution exists

Inconsistent case.
x = A+b

Ax = b, x ∈ n

A ∈ m×n, b ∈ m

Fig. B.3.2 Solution of linear systems in various cases where A+ is the Moore–Penrose
generalized inverse of A.

it is known as an under-determined system. By combining various attributes –
consistent/inconsistent, homogeneous/non-homogeneous, full-rank/rank-deficient,
and determined/over or under-determined, we get a variety of combinations that
are pictorially represented in Figure B.3.1.

(a) If m = n, and A is of full rank, it is always consistent and the solution exists
and is unique. If b �= 0, then x = A−1b and if b = 0, x = 0 is the only solution.

(b) If m > n, it becomes an over-determined system. The unique solution is given
by x = A+b where A+ is the Moore–Penrose inverse of A. In the special case
when A is of full rank, this generalized inverse is given by A+ = (ATA)−1AT.

(c) If m < n, it becomes an under-determined system. The unique solution is given
by x = A+b, where A+ is the Moore–Penrose inverse. In the special case when
A is of full rank, this generalized inverse is given by A+ = AT(AAT)−1.

A summary of these solutions is given in Figure B.3.2.

B.4 Special matrices

Symmetric Matrix The matrix A ∈ R
m×m is symmetric if AT = A. The following

properties are easily verified:
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(a) A−1 is symmetric if A is.
(b) If A and B are symmetric, then AB is symmetric exactly when A and B commute,

that is AB = BA.
(c) If A ∈ R

m×n , then AAT ∈ R
m×m and ATA ∈ R

n×n are both symmetric matrices
called Grammian.

(d) The eigenvalues of a real-symmetric matrix are real.

Skew symmetric matrix The matrix A ∈ R
m×m is skew symmetric if AT = −A.

Thus, the diagonal elements of a skew-symmetric matrix are zeros. Given any matrix
A ∈ R

m×m –

(a) As = (A + AT)/2 is a symmetric matrix, and
(b) Ass = (A − AT)/2 is a skew-symmetric matrix.

As and Ass are called the symmetric and skew-symmetric parts of A, respectively.
Bilinear form Let A ∈ R

m×n and x ∈ R
m and y ∈ R

n . Then fA(x, y) : R
m ×

R
n −→ R (scalar-valued function of two vectors) defined by:

fA = xTAy

is called the bilinear form, since the components of the vectors x and y appear in
their first degree in fA(x, y).

Quadratic form Let A ∈ R
m×m and x ∈ R

m . Then QA : R
m −→ R (scalar-

valued function of a vector) is defined as

QA(x) = xTAx

which is a second-degree multivariate polynomial in the elements of x. As an
example, when n = 2,

QA(x) = a11x2
1 + (a12 + a21)x1x2 + a22x2

2 .

Since QA(x) is a scalar, we immediately have

[QA(x)]T = xTATx = QA(x) = xTAx.

Thus,

QA(x) = 1/2[xTATx + xTAx] = xT

(
A + AT

2

)
x = xTAsx

where As is the symmetric part of A. Henceforth, without loss of generality, we
assume that the matrix A in QA(x) is a symmetric matrix, and

QA(x) = a11x2
1 + 2a12x1x2 + a22x2

2.
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Positive/negative definite matrix A real symmetric matrix A ∈ R
m×m is said

to be positive definite if

xTAx
{

> 0 if x �= 0
= 0 exactly when x = 0.

A rea-symmetric matrix A is said to be positive semi-definite if

xTAx ≥ 0 for all x ∈ R
m .

Thus, A is positive definite when the quadratic form xTAx vanishes only at the
origin and positive semi-definite if, in addition to the origin, xTAx vanishes at
least for one x �= 0. A real symmetric matrix A is said to be negative definite and
negative semi-definite, if the above properties hold with the inequalities reversed.
The matrix A is said to be indefinite if xTAx ≥ 0 for some x ∈ R

m and < 0 for
some other values of x.

We now list several important properties of positive and positive semi-definite
matrices.

(a) The diagonal elements, the principal minors of all orders and the determinant
of a positive definite matrix are all positive.

(b) Positive definiteness does not imply that the elements of the matrix are positive.
For example,

A =
[

4 −2
−2 2

]
is positive definite, but

B =
[

2 2
3 1

]
is not positive definite.

(c) A−1 is positive definite if A is.
(d) If A is positive definite and B is non-singular, then (B−1)TAB−1 is positive

definite.
(e) Eigenvalues of a real-symmetric and positive definite matrix are all real and

positive, and those of a positive semi-definite matrix are real and non-negative.
(f) If A is a symmetric and positive definite, then there exists an orthogonal matrix

Q such that QTAQ = Λ = Diag(λ1, λ2, . . . , λm) where λi > 0 are the eigen-
values of A and the columns of Q are the corresponding orthonormal set of
eigenvectors.

(g) From QTAQ = Λ, we immediately have

A = QΛQT = QΛ1/2Λ1/2QT = (QΛ1/2)(QΛ1/2)T = CCT.

Thus, if A is positive definite, we have an important decomposition of A = CCT.
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Diagonally dominant matrix A square matrix A ∈ R
m×m is said to be diago-

nally dominant if

|aii | ≥
∑
j �=i

|ai j |

and strictly diagonally dominant if strict inequality holds for all i = 1, 2, . . . , m.
It can be shown that a diagonally dominant matrix is non-singular.

Orthogonal matrix A matrix Q ∈ R
m×m is said to be an orthogonal matrix, if

Q−1 = QT, that is QTQ = QQT = Im . The following are properties of an orthog-
onal matrix.

(a) If Q is orthogonal, it is non-singular.
(b) The columns (rows) of Q ∈ R

m×m form a complete orthonormal basis for R
m

(c) If x ∈ R
m , then ‖x‖2 = ‖Qx‖2, that is the Euclidean norm is invariant under an

orthogonal transformation; hence, orthogonal transformations are called iso-
metric transformations.

(d) det(QTAQ) = det(A).
(e) If Q1 and Q2 are orthogonal, then so is their product Q1Q2.
(f) As a linear transformation, orthogonal transformation represents a rigid body

rotation. Thus,

Q =
[

cos θ sin θ

− sin θ cos θ

]
is an orthogonal matrix representing a clockwise rotation by an angle θ .

Permutation matrix P = [pi j ] ∈ R
m×m is a permutation matrix if pi j ∈ {0, 1}

and there is only one 1 in each row and in each column. For example,

P =
⎡⎣ 0 1 0

0 0 1
1 0 0

⎤⎦ is a permutation matrix. Some other properties of permutation

matrices are as follows.

(a) I, the identity matrix, is a permutation matrix.
(b) If A ∈ R

m×m is any matrix and P ∈ R
m×m is a permutation matrix, then PA

permutes the rows of A and AP permutes the columns of A.
(c) Every permutation matrix is orthogonal.
(d) Product of two permutation matrices is also a permutation matrix.
(e) Since PPT = I, we get det(P) = ±1, and hence every permutation matrix is

non-singular.

Idempotent matrix A matrix P ∈ R
m×m is said to be idempotent if P2 = P.

(a) With the exception of the identity matrix, every idempotent matrix is singular.
(b) If P is idempotent, then so is (I − P).
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(c) If P1 and P2 are idempotent, then P1P2 is idempotent only when they commute,
and P1 + P2 is idempotent when P1P2 = P2P1 = 0.

(d) If A ∈ R
m×n and B ∈ R

m×n , and Rank(A) = n = Rank(B), then

P = B(ATB)−1AT

is idempotent. When A = B, then

P = A(ATA)−1AT

is clearly idempotent.

Remark B.4.1 Idempotent matrices play a very basic role in the sense that every
projection matrix is idempotent. Further, every symmetric, idempotent matrix
defines an orthogonal projection that plays a critical role in the solution of lin-
ear least squares problems.

Nilpotent matrix A matrix A ∈ R
m×m is said to be a nilpotent matrix of index

k if Ak = 0 and Ak−1 �= 0. Strictly lower triangular matrices, for example, are
nilpotent. For example,

L =
⎡⎣ 0 0 0

1 0 0
2 3 0

⎤⎦
is a nilpotent matrix of index 3.

Grammian matrix If A ∈ R
m×n , then ATA ∈ R

n×n and AAT ∈ R
m×m are called

Grammian matrices.

(a) Grammian matrices are symmetric.
(b) If A is of full rank, then its Grammian is a symmetric positive definite, since

xT(ATA)x = (Ax)TAx = ‖Ax‖ > 0 for all x �= 0, and likewise for ATA.
(c) If A is not of full rank, then the Grammian matrices are symmetric positive

semi-definite matrices.
(d)

Rank(ATA) = Rank(A) = Rank(AAT)
R(ATA) = R(AT), N (ATA) = N (A)
R(AAT) = R(A), N (AAT) = N (AT).

Projection matrix Let u and v be two vectors in R
m such that uTv �= 0. Then,

it can be verified that

Span(v) ⊕ Span(u⊥) = R
m

where u⊥ is the set of all vectors orthogonal to u. Thus, R
m is a direct sum of these

two subspaces, since

Span(v) ∩ Span(u⊥) = {0} .
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u

Span {u⊥}
z∗

z

αv

v

Span {v}

z1

z2

v1

z

v2

Fig. B.4.1 Oblique projections.

(Notice that the subspaces Span(v) and Span(u⊥) are required to be orthogonal to
each other.) Refer to Figure B.4.1 for an illustration.

The intuitive notion of projection of a vector z is related to the concept of
“shining light” on z in the direction parallel to v and let z∗ be the “shadow” cast by
z on Span(u⊥). Then, z∗ is called the oblique projection of z onto Span(u⊥) along
Span(v). Referring to Figure B.4.1, by construction, for some real constant a, we
have

u ⊥ z∗ = z − av

from which, we obtain

uT(z − av) = 0 or a = uTz
uTv

.

Hence,

z∗ = z − uTz
uTv

v = z − vuT

uTv
z =

[
I − vuT

uTv

]
z = Pz

where

P =
[

I − vuT

uTv

]
is called the (oblique) projection matrix, projecting vectors z ∈ R

m on to the
Span{u⊥} along the Span{v}.
(a) This matrix P is idempotent.
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(b) (I − P) = 1
uTv vuT is a rank-one outer-product matrix and denotes the projection

matrix projecting vectors z ∈ R
m on to the Span{v} along Span{u⊥}.

(c) (I − P) is an idempotent matrix.
(d) P and hence (I − P) are not symmetric.

We now generalize the above development. Let {v1, v2, . . . , vm} be a set of
linearly independent vectors in R

m . Let V1 = Span {v1, v2, . . . , vn} and V2 =
Span {vn+1, vn+2, . . . , vm}. Clearly,

R
m = V1 + V2 and V1 ∩ V2 = {0}

that is, R
m is the direct sum of V1 and V2. Any z ∈ R

m can be expressed as z =
z1 + z2, where z1 ∈ V1 and z2 ∈ V2. z1(z2) is called the oblique projection of z
on to V1(V2) along V2(V1). Refer to Figure B.4.1. Let P1 and P2 be the respective
projection matrices, that is,

z1 = P1z and z2 = P2z

then P1(P2) is called the oblique projection matrix on V1(V2) along V2(V1).
Let V1 = [v1, v2, . . . , vn] ∈ R

m×n , and V2 = [vn+1, vn+2, . . . , vm] ∈ R
m×(m−n)

be two matrices. We have V = [V1, V2] ∈ R
m×m is non-singular, and

P1vi = vi for i = 1 to n, P1v j = 0 for j = n + 1 to m
P2v j = v j for j = n + 1 to m, P2vi = 0 for i = 1 to n.

Then,

P1V = P1[V1, V2] = [P1V1, P1V2] = [V1, 0]

and

P1 = [V1, 0]V−1 = [V1, V2]

[
In 0
0 0

]
V−1 = V�1V−1

where

�1 =
[

In 0
0 0

]
.

Similarly,

P2V = P2[V1, V2] = [P2V1, P2V2] = [0, V2]

and

P2 = [0, V2]V−1 = [V1, V2]

[
0 0
0 Im−n

]
V−1 = V�2V−1

where

�2 =
[

0 0
0 Im−n

]
.
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The following properties of (oblique) projection matrices P1 and P2 are readily
established.

(a) P1 and P2 are idempotent.
(b) I = P1 + P2.
(c) P1 and P2 are not symmetric.

We now conclude this development with the following result without proof:

� Every (oblique) projection matrix is idempotent and conversely every idempotent
matrix defines an oblique projection.

Orthogonal projection matrix When v = u in Figure B.4.1, then the light
shines parallel to v = u, and the shadow z∗ is called orthogonal projection of z on
to u⊥. In this case,

z∗ =
[

I − uuT

uTu

]
z = Pz

with

P =
[

I − uuT

uTu

]
.

(a) P is an orthogonal projection to the Span{u⊥}.
(b) P2 = P.
(c) (I − P)z = uuT

uTu z is an orthogonal projection on to the Span{u}.
(d) P is a symmetric matrix.

An important conclusion from this is that every orthogonal projection matrix is
idempotent and symmetric. In fact, the converse is also true.

We now generalize the notion of orthogonal projection. Let R
m = V1 + V2 with

V1 ∩ V2 = {0} and V1⊥V2, that is, every vector in V1 is orthogonal to every vector
in V2. In this case, V1 = Span{v1, v2, . . . , vn} and V2 = Span{vn+1, vn+2, . . . , vm}
are called orthogonal complements of each other.

Again denoting V1 = [v1, v2, . . . , vn] ∈ R
m×n , and V2 = [vn+1, vn+2, . . . ,

vm] ∈ R
m×(m−n) are such that

VT
1 V1 ∈ R

n×n is non-singular.

VT
2 V2 ∈ R

(m−n)×(m−n) is non-singular.

VT
1 V2 = 0 = VT

2 V1.

Notice that we are not requiring {v1, v2, . . . , vn} to be orthogonal; nor do we require
{vn+1, vn+2, . . . , vm} to be orthogonal. All we need is their linear independence and
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that V1⊥V2. As an example,

V1 =
⎡⎣ 1 1

0 1
0 0

⎤⎦ and V2 =
⎡⎣ 0

0
2

⎤⎦ .

If P1 and P2 are the orthogonal projection matrices onto the subspaces V1 and V2,
we have the following.

(a) P1 = V1(VT
1 V1)−1VT

1 ∈ R
m×m .

(b) P2 = V2(VT
2 V2)−1VT

2 ∈ R
m×m .

(c) I = P1 + P2.
(d) P2

1 = P1 and P2
2 = P2.

(e) P1 and P2 are symmetric.
(f) In addition, if the basis vectors v1, v2, . . . , vn are orthonormal vectors, and

likewise vn+1, vn+2, . . . , vm are also orthonormal, then VT
1 V1 = In and VT

2 V2 =
Im−n and P1 = V1VT

1 and P2 = V2VT
2 .

We conclude this discussion with the following fact.

� Every orthogonal projection matrix is symmetric and idempotent and conversely
every symmetric and idempotent matrix defines an orthogonal projection.

B.5 Eigenvalues and eigenvectors

Let A ∈ R
m×m . If x ∈ R

m , a non-null vector and λ is a scalar (real or complex),
such that

Ax = λx or (A − λI)x = 0

then the pair (λ, x) is called the eigenvalue and eigenvector (simply called the eigen
pair) of the matrix A. The linear homogeneous equation on the right above has a
non-null solution only when det(A − λI) = 0, which is an mth-degree polynomial,
called the characteristic polynomial in λ. Since the mth-degree polynomial has m
roots – real or complex with complex roots occurring in conjugate pairs, A ∈ R

m×m

has m eigenvalues. If

det(A − λI) = (λ − λ1)m1 (λ − λ2)m2 · · · (λ − λk)mk

then there are k distinct eigenvalues λ1 through λk with mi being the multiplicity
of λi and

∑k
i=1 mi = m. Here mi is called the algebraic multiplicity of λi . The set

of all eigenvalues of A is called the spectrum of A. The magnitude of the largest
eigenvalue is called the spectral radius and is denoted by ρ(A). We now list several
properties.
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(a) Distinct eigenvalues have distinct eigenvectors. That is, if (λ1, x1) and (λ2, x2)
are such that λ1 �= λ2, then x1 and x2 are linearly independent.

(b) There could be more than one eigenvector corresponding to the same
eigenvalue – witness the identity matrix Im . For Im , 1 is the only eigenvalue,
but it has m linearly independent eigenvectors.

(c) If (λ, x) is an eigen pair of A, then x ∈ N (A − λI), the null space of (A − λI).
The number of distinct, that is, linearly independent eigenvectors x correspond-
ing to the eigenvalue m is known as the geometric multiplicity. Thus, geometric
multiplicity denotes the dimension of N (A − λI). Recall that the dimension of
N (A − λI) = Rank(A − λI) which is known as the nullity of (A − λI). It is a
fact that

geometric multiplicty of λ ≤ algebraic multiplicity of λ

(d) If B ∈ R
m×m is non-singular, then B−1AB is similar to A. It can be verified that

similar matrices have the same set of eigenvalues. Thus, if (λ, x) is an eigen
pair of B−1AB then (λ, Bx) is the corresponding pair for A.

(e) tr(A) = m1λ1 + m2λ2 + · · · + mkλk , where mi is the algebraic multiplicity of
λi .

(f) det(A) = λ
m1
1 λ

m2
2 . . . λ

mk
k .

(g) Gerschgorin circles Let A = [ai j ]. Define a disk or circle Di in the complex
plane

Di =
{

z

∣∣∣∣∣|aii − z| ≤
∑
j �=i

|ai j |
}

, i = 1, 2, . . . , m

which is centered at aii and radius
∑

j �=i |ai j |. Then, every eigenvalue of A lies
in the union of the disks Di denoted by S = ∪m

i=1 Di .
(h) Let λ = 0 be an eigenvalue of A ∈ R

m×m with algebraic multiplicity p and
geometric multiplicity q (with q ≤ p), then

Rank(A) = m − q ≥ m − p

that is, the rank of a matrix may exceed the number of non-zero eigenvalues –
witness a nilpotent matrix

A =

⎡⎢⎢⎣
0 a1 a2 a3

0 0 b1 b2

0 0 0 c1

0 0 0 0

⎤⎥⎥⎦ .

.
(i) If (λ, x) is an eigen pair for A, then (λk, x) is the corresponding eigen pair for

Ak for any integer k ≥ 1.
(j) If (λ, x) is an eigen pair of A, then (λ + a, x) is the corresponding eigen pair of

(A + aI) for any real scalar a.
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(k) Let p(x) = a0 + a1x + a2x2. Then, p(A) = a0I + a1A + a2A2 is called a
matrix polynomial in A of degree 2. If (λ, x) is an eigen pair of A, then (p(λ), x)
is an eigen pair of the matrix p(A).

We now state the properties of the eigenvalues of special matrices.
Symmetric matrices Let A ∈ R

m×m be a symmetric matrix

(a) Eigenvalues of A are real.
(b) The number of non-zero eigenvalues of A = Rank(A).
(c) Eigenvectors of a real symmetric matrix are orthogonal. Without loss of gen-

erality, we can assume that they are also normalized.
(d) Let P = [x1, x2, . . . , xm] denote the orthonormal matrix of the m eigenvectors

of A. Then AP = PΛ, where Λ = Diag(λ1, λ2, . . . , λn), the diagonal matrix
of the eigenvalues of A.

(e) Spectral decomposition Since P is orthogonal, we can rewrite A as

A = PΛPT = [x1 x2 · · · xm]

⎡⎢⎢⎢⎣
λ1

λ1

. . .

λm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xT
1

xT
2

...
xT

m

⎤⎥⎥⎥⎦
= ∑m

i=1 λi xi xT
i = ∑m

i=1 λi Pi

(B.5.1)

where Pi = xi xT
i are the rank-one outer-product matrices. Recall that Pi =

xi xT
i

xT
i xi

= xi xT
i (since xi ’s are normalized) denotes the orthogonal projection

matrix onto the Span{xi }. This expansion of A as the linear combination of
the orthogonal projection matrices is called the spectral decomposition of A.

Simultaneous Diagonalizability If A ∈ R
m×m and B ∈ R

m×m are two symmet-
ric matrices, then there exists a common orthogonal matrix P such that

AP = P� and BP = P�

where Λ and � are diagonal matrices of eigenvalues of A and B, respectively,
exactly when AB = BA.

Krylov Subspace Let y ∈ R
m be any vector. Then, there exists an eigenvector

x of A that belongs to the vector space

K(A, y) = {
y, Ay, A2y, . . . , Ar−1y

}
for some integer r ≥ 0, called the Krylov subspace

Rayleigh coefficient Let A ∈ R
m×m be a symmetric matrix. Then,

r (x) = xTAx
xTx

(B.5.2)

is called the Rayleigh coefficient.
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Properties of Rayleigh coefficient

(a) Let A ∈ R
n×n and B ∈ R

n×n be two symmetric and positive definite matrices.
Let λ ∈ R and x ∈ R

n be such that

Ax = λBx. (B.5.3)

Then, λ is called the generalized eigenvalue and x is called the corresponding
generalized eigenvector of the pair (A, B). Multiplying both sides of (B.5.3)
by B−1, from (B−1A)x = λx it follows that λ and x are the eigenvalue and
eigenvector of (B−1A). Further, multiplying both sides of (B.5.3) by xT and
rearranging we readily see that λ is given by Rayleigh coefficient

λ = xTAx
xTBx

. (B.5.4)

(b) Let A and B be two symmetric positive matrices. Consider the function

g(λ) = ‖ (A − λB)x ‖2
B−1

= xT[(A − λB)B−1(A − λB)]x

= xT(AB−1A)x − 2λ(xTAx) + λ2(xTBx) (B.5.5)

The stationary point of g(λ) is obtained by solving

0 = dg

dλ
= −2(xTAx) + 2λ(xTBx).

That is,

λ = xTAx
xTBx

. (B.5.6)

Since

d2g

dλ2
= xTBx > 0

it follows that λ in (B.5.6) is the minimizer of g(λ). That is, the Rayleigh
coefficient (B.5.6) minimizes the norm in (B.5.5).

(c) Let

r (x) = xTAx
xTBx

. (B.5.7)

Then, it can be verified that

∇r (x) = 2

(xTBx)
[Ax − r (x)Bx]. (B.5.8)

This gradient vanished exactly when x is such that r (x) is the generalized
eigenvalue of the pair (A, B), that is

Ax = r (x)Bx. (B.5.9)
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(d) Let r (x) be given by (B.5.7). Let B = GGT be the Cholesky factorization of B
(Chapter 9). Then defining y = GTx and substituting into (B.5.7) we obtain

r (y) = yTA1y
yTy

(B.5.10)

where

A1 = G−1AG−T (B.5.11)

is a symmetric and positive definite matrix. Given this equivalence between
r (x) in (B.5.7) and r (y) in (B.5.10), without loss of generality we can analyze
the simpler form in (B.5.10).

(e) Let A ∈ R
n×n be a symmetric and positive definite matrix. Then

r (x) = xTAx
xTx

= xTAx
‖ x ‖2

=
(

x
‖ x ‖

)T

A
(

x
‖ x ‖

)
= (̂x)TA(̂x)

where x̂ is the unit vector in the direction of x. Hence without loss of generality
consider

r (x) = xTAx when ‖ x ‖= 1. (B.5.12)

(f) Let (λi , pi ), i = 1, 2, . . . , N be the eigenvalue/vector pair of the matrix A in
(B.5.12), where it is assumed that

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn > 0. (B.5.13)

If P = [p1, p2, . . . , pn] and Λ = Diag[λ1, λ2, . . . , λn], then we get

AP = PΛ.

It can be verified that P is orthogonal and PTP = PPT = I. Using this fact it
follows that

A = PΛPT or PTAP = Λ. (B.5.14)

Hence, any vector x ∈ R
n can be expressed as a linear combination of the

columns of P, that is,

x = Py. (B.5.15)

Substituting (B.5.15) and using (B.5.14) we get

r (x) = xTAx = yT(PTAP)y = yTΛy = r (y). (B.5.16)

That is,

r (y) =
n∑

i=1

λi y2
i (B.5.17)
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where y = (y1, y2, . . . , yn)T is such that
n∑

i=1

y2
i = 1. (B.5.18)

Combining this with (B.5.13), we get

λn ≤
n∑

i=1

λi y2
i ≤ λ1. (B.5.19)

More precisely, we get

λ1 = max
‖y‖=1

{yTAy} = max
‖x‖=1

{xTAx} (B.5.20)

and

λn = min
‖y‖=1

{yTAy} = min
‖x‖=1

{xTAx}. (B.5.21)

To understand the relation between r (x) and other eigenvalues, let S1 =
Span{p1} and let S⊥

1 denote the set of all vectors orthogonal to S1. Then, for
x ∈ S⊥

1 we get

0 = pT
1 x = p1Py = eT

1 PTPy = eT
1 y (B.5.22)

where e1 = (1, 0, 0, . . . , 0)T. That is, y is a vector whose first component y1 =
0. Thus,

λ2 = max
‖ y ‖= 1

y1 = 0

{
n∑

i=2

λi y2
i

}

= max
‖ y ‖= 1

y1 = 0

{
yTΛy

}

= max
‖ x ‖= 1
x ∈ S⊥

1

{
xTAx

}
. (B.5.23)

Similarly, if

Sj = Span{p1, p2, . . . , pn}
then

λ j = max
‖ x ‖= 1
x ∈ S⊥

j

{
xTAx

}
. (B.5.24)

These properties play a crucial role in the numerical computation of the eigenvalues
of A.
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Eigenvalues of orthogonal matrices

(a) If Q ∈ R
m×m is orthogonal, then Q can have only two values {+1, −1}.

(b) The eigenvectors of Q are real and orthogonal.

Eigenvalues of projection matrices

(a) Eigenvalues of a projection matrix can only take two values {0, 1}.
(b) tr(P) = Rank(P).

Symmetric and positive definite matrix Let A ∈ R
m×m .

(a) If A is symmetric and positive (negative) definite, then all the eigenvalues are
positive (negative).

(b) If A is symmetric and positive (negative) semi-definite then the eigenvalues are
non-negative (non-positive);

(c) The matrix A is said to be indefinite if the eigenvalues simultaneously take
positive/zero/negative values.

(d) Let A ∈ R
m×m be a symmetric and positive definite matrix. Then

Q(x) = xTAx

denotes a hyper ellipsoid in R
m . If

Λ = Diag(λ1, λ2, . . . , λn)

is the diagonal matrix of the eigenvalues and P = [x1, x2, . . . , xm]. The orthog-
onal matrix of the corresponding eigenvectors of A, then

AP = PΛ and A = PΛPT.

Hence,

Q(x) = xT(PΛPT)x = (Px)TΛ(Px).

If x = PTy or Px = y (a rigid-body rotation of the standard coordinate system
using the orthogonal matrix P), then

Q(x) = Q(PTy) = = yTΛy
= λ1 y2

1 + λ2 y2
2 + · · · + λm y2

m .

In other words, Q(x) in the hyper-ellipsoid whose m principal axes coincide
with the m orthogonal eigenvectors of A and 1/

√
λi denotes the length of the

semi-axis in the i th principal direction.

B.6 Matrix norms

Let A ∈ R
m×m and denote A = [ai j ]. Conceptually, there are two ways in which

one can approach the definition of the matrix norm. When viewed as a mathematical
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entity or object, we can define the norm to denote its size. The Frobenius norm of
a matrix is defined as follows:

‖A‖F =
[

m∑
i=1

m∑
j=1

a2
i j

]1/2

.

This is an extension of the concept of Euclidean norm for vectors. Dually, when
viewed as an operator/mapping vectors to vectors we can define the matrix norm
by its action using vector norms. Let p denote 1, 2, or ∞. Let x ∈ R

n and y = Ax.
Then, y is called the image of x under A. Define

‖A‖p = sup
‖x‖�=0

‖Ax‖p

‖x‖p
= sup

x�=0

∥∥∥∥A(
x

‖x‖p
)

∥∥∥∥ = max
‖x=1‖

‖Ax‖p .

Thus, the p-norm of A is the maximum of the ratio of the p-norm of y = Ax to that
of x where the maximum is taken over all unit vectors. For this reason, this is also
known as the induced norm. If ‖A‖p > 1(< 1), then A magnifies (contracts) the
length of the vector x. When p = 1, 2, or ∞, we get the one, two or the infinity
norm of A. From the above definition, we have the following useful inequalities:

‖Ax‖ ≤ ‖A‖ ‖x‖
‖AB‖ ≤ ‖A‖ ‖B‖ ,

where A, B ∈ R
m×m . It can be shown that we can compute the matrix norms rather

directly as follows:

(N1) ‖A‖1 = max j
{∑

i |ai j |
}

– Column norm.
(N2) ‖A‖∞ = maxi

{∑
i |ai j |

}
– Row norm.

(N3) ‖A‖2 = σ1, where σ 2
1 is the maximum eigenvalue of ATA. Recall that σ1 is

the largest singular value of A.

When A is symmetric, from ATA = A2 and the fact that λ2 is the eigenvalue of
A2, where λ is an eigenvalue of A, it follows that ‖A‖2 = |λmax |, where λmax is
the maximum eigenvalue of A. Further, these matrix norms are equivalent and the
following inequalities hold.

‖A‖2 ≤ [‖A‖1 ‖A‖∞
]1/2

1√
m

‖A‖∞ ≤ ‖A‖1 ≤ √
m ‖A‖∞

1√
m

‖A‖1 ≤ ‖A‖2 ≤ √
m ‖A‖1

‖A‖2 ≤ ‖A‖F ≤ √
m ‖A‖2 .

Furthermore, the spectral radius ρ(A) is less than or equal to any matrix norm of A,
that is, ρ(A) ≤ ‖A‖. This fact is very useful in proving convergence of an iterative
process.



B.7 Condition number of a matrix 667

Example B.6.1

A =
[

5.0 −2.0
−3.0 4.0

]
.

Then ‖A‖1 = max{8.0, 6.0} = 8.0, ‖A‖∞ = max{7.0, 7.0} = 7.0, and ‖A‖F =
7.348. Eigenvalues of ATA are given by the solution of

det[ATA − λI] = λ2 − 54λ + 196 = 0.

Thus, σ 2
1 = 50.087 and σ 2

2 = 3.913, and, hence, σ1 = 7.07 and σ2 = 1.978. Hence,
‖A‖2 = 7.07. Again, it can be verified that the eigenvalues of A are given by the
roots of

det(A − λI) = λ2 − 9λ + 14 = 0

Thus, the eigenvalues are given by λ1 = 7, and λ2 = 2.0. All the inequalities given
above are easily verified.

The reader can easily verify that the norm of an identity matrix is 1 under
all matrix norms. Clearly, each of the norms, ‖A‖1 and ‖A‖∞, require (n2 − n)
additions and (n − 1) comparisons. But, the spectral norm ‖A‖2 is rather expensive
to compute. This latter computation could require O(n3) operations. Spectral norms
are, however, very useful in theoretical analysis of convergence of iterative methods.

Neumman series If x is a real number such that |x | < 1, then

(1 − x)−1 = 1

1 − x
= 1 + x + x2 + x3 + · · · +

is a well-known identity. If A ∈ R
m×m is such that ‖A‖ < 1. Then, it can likewise

be verified that

(I − A)(I + A + A2 + A3 + · · · ) = I

from which it follows that

(I − A)−1 = I + A + A2 + · · · + Ak + · · ·

which is called the Neumman series expansion of the inverse of (I − A).

B.7 Condition number of a matrix

Let A ∈ R
m×m be a matrix. The condition number of a matrix, denoted by κ(A) is

defined as

κ(A) = ‖A‖ ∥∥A−1
∥∥
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where A−1 is the inverse of A. Thus, the value of the condition number is norm
dependent. Since I = AA−1, using the property of matrix norms, we get

1 = ‖I‖ = ∥∥AA−1
∥∥ ≤ ‖A‖ ∥∥A−1

∥∥ = κ(A).

Thus, for any matrix,

1 ≤ κ(A) ≤ ∞.

Matrices with small (large) condition numbers are said to well (ill) conditioned.
Since the eigenvalues of A−1 are the reciprocals of those of A, we have∥∥A−1

∥∥
2 = max

i
{ 1

|λi | } = 1

mini {|λi |}
and spectral condition number

κ2(A) = ‖A‖2

∥∥A−1
∥∥

2 = maxi {|λi |}
mini {|λi |} .

Using the relation between various norms, we immediately have

1
m κ2(A) ≤ κ1(A) ≤ mκ2(A)
1
m κ∞(A) ≤ κ2(A) ≤ mκ∞(A)
1

m2 κ1(A) ≤ κ∞(A) ≤ m2κ1(A).

Much like the matrix norms, the spectral condition number theoretically useful, is
rather difficult to compute. However, κ1(A) and κ∞(A) can be readily computed
and we can estimate κ2(A) using these inequalities.

It turns out that we are often more interested in the order of magnitude of κ(A)
rather than its exact value. There are excellent subroutines for computing κ1(A) in
the widely available LAPACK library.

It can be verified

κ(AB) ≤ κ(A)κ(B)

and

κ(αA) ≤ κ(A)

where A, B ∈ R
m×m , and α �= 0. Thus, condition number is independent of the

scaling of the matrix.
In conclusion, we wish to emphasize that there is no connection or correlation

between det(A), the determinant of A, and κ(A), the condition number of A. Let
A ∈ R

m×m be a diagonal matrix where each diagonal element is 1/2. Then

det(A) = 1

2n
−→ 0 as n −→ ∞
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but

κp(A) = 1 for p = 1, 2, or ∞.

Similarly, if A ∈ R
m×m is an upper triangular matrix such that

ai j =
⎧⎨⎩

1 i = j
−1 i > j
0 i < j

then, det(A) = 1 and κ∞(A) = n2n−1 −→ ∞ as n −→ ∞.

B.8 Sensitivity analysis: solution of linear systems

Challenges facing the design of algorithms for scientific computing involves, among
other things computation and/or control of accumulation of round-off errors result-
ing from finite-precision arithmetic. These are basically two approaches to this
problem. In the forward analysis, we strive to compute the overall accumulated
uncertainty resulting from a sequence of computations of an algorithm. The back-
ward analysis, on the other hand, is a technique in which we throw back the round-
off errors as perturbations on the input data to the algorithm. This latter technique
pioneered by J. H. Wilkinson [1965] reduces the round-off error to sensitivity
analysis.

We now quote without proof a basic result relating to the sensitivity analysis in
linear systems. Let

Ax = b

be the given system and let κ(A) be the condition number of A. Let f ∈ R
m and

B ∈ R
m×m and ε > 0 be a real parameter. Let y be the solution of the perturbed

system

(A + εB)y = b + ε f.

Notice that ε ‖B‖ / ‖A‖ and ε ‖ f ‖ / ‖b‖ denote the relative errors induced by the
perturbations εB and ε f in A and b respectively. It can be shown that the relative
error in the solution y is given by

‖y − x‖
‖x‖ ≤ κ(A)

(
ε
‖B‖
‖A‖ + ε

f

‖b‖
)

.

Since κ(A) ≥ 1 amplifies the relative errors in A and b. Thus, for given relative
errors on A and b, the relative errors in the solution are directly proportional to
κ(A). Herein lies one of the fundamental consequences of the conditioning of
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A – the larger the value of κ(A), the larger is the potential for errors in the computed
solution, that is, the larger is the sensitivity of the solution.

Notes and references

The material covered in this Appendix is normally the basis for the standard first year
graduate level course on matrices. There are virtually countless books dealing with
these topics. We mention only a handful of classics – Bellman (1960), Basilevsky
(1983), Golub and van Loan (1989), Trefethen and Bau (1997), and Meyer (2000).


