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Problems

8.1 Compute the coherent point spread function (CPSF) of the low pass filtered

approximation generated via Eq.(8.3).

We find from Eq.(8.3) that

VLP (r) =
1

(2π)3

∫

|K|≤2k0

d3K Ṽ (K)eiK·r

=

∫
d3r′ V (r′)

H(r,r′)︷ ︸︸ ︷
1

(2π)3

∫

|K|≤2k0

d3K eiK·(r−r
′),

where H(r, r′) is the coherent point spread function associated with the low

pass image of the scattering potential. We can express the CPSF using spher-

ical polar integration variables to find that

H(r, r′) =
1

(2π)3

∫ 2k0

0

K2dK

∫

4π

dΩK e
iKK̂·(r−r

′) =
1

2π2

∫ 2k0

0

K2dK j0(K|r−r′|),

where we have used the result (cf., Example 3.4 of Chapter 3)

∫

4π

dΩK e
iKK̂·R = 4πj0(KR)

where j0 is the zero order spherical Bessel function of the first kind. If we now

use the recurrence relationship

x2j0(x) =
d

dx
[x2j1(x)]

and make a simple change of integration variables we find that

H(r, r′) =
1

2π2R3

∫ 2k0R

0

x2dx j0(x) =
2k2

0

π2R
j1(2k0R),

where R = |r− r′| and j1 is the spherical Bessel function of the first kind and

order one.

8.2 Complete the derivation of Eq.(8.6) using contour integration techniques.

80
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We begin with the second line from Eq.(8.6):

H̃(K) = 4π

∫ ∞

0

R2dRj20(k0R)j0(KR) =
2π

k2
0K

∫ ∞

−∞

dR

R
sin2(k0R) sin(KR),

where the contour of integration can be arbitrarily deformed since R = 0 is a

removable singularity. We now use the Euler identity to expand the product

of sin functions to obtain

H̃(K) = i
π

4k2
0K

∫ ∞

−∞

dR

R
[ei(2k0+K)R − ei(2k0−K)R + e−i(2k0−K)R

−e−i(2k0+K)R − 2eiKR + 2e−iKR].

Since the contour of integration can be arbitrarily deformed we will select

it to lie below the removable singularity at R = 0. Note that although R = 0

is removable for the entire integrand it is a pole for each component in the

above equation. We can thus use residue calculus to evaluate each component

and then sum them to obtain the final expression for H̃(K).

We first consider K > 2k0. In this case we can close the contour for the

second term, fourth term and sixth term in the l.h.p. to obtain zero. The

remaining terms all must be closed in the u.h.p. and each yields a residue of

unity so that we find that

H̃(K) = i
π

4k2
0K

2πi[1 + 1− 2] = 0, 2k0 < K <∞.

Now consider 0 < K < 2k0. In this case we close the first, second, and fifth

terms in the u.h.p. and the remaining terms in the l.h.p. to obtain

H̃(K) = i
π

4k2
0K

2πi[1− 1− 2] =
π2

k2
0K

, 0 < K < 2k0,

which then yield Eq.(8.6).

8.3 Fill in the steps in the derivation of Eq.(8.18) from Eq.(8.17).

The only missing step is that |s− s0| =
√

2− 2s · s0 =
√

2
√

1− cosα. The

rest of the steps are clearly explained in the text.

8.4 Verify that the FBP algorithm with s0 and s restricted to the solid angles Ωs0
and Ωs satisfies the integral equation Eq.(8.19).

The integral equation to be satisfied is

fB(s, s0) = − 1

4π

∫
d3r V (r)e−ik0(s−s0)·r

where fB is the Born approximation to the scattering amplitude and s0 and s

restricted to the solid angles Ωs0 and Ωs. If we substitute the FBP algorithm
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for the scattering potential in the above equation we obtain

fB(s, s0) = − 1

4π

∫
d3r

V (r)︷ ︸︸ ︷
− k3

0

4π3

∫
dΩs′0

∫
dΩs′ |s′ − s′0|fB(s′, s′0)e

ik0(s
′−s

′
0)·r e−ik0(s−s0)·r

=
k3
0

(2π)4

∫
dΩs′0

∫
dΩs′ |s′ − s′0|fB(s′, s′0)

∫
d3r eik0[(s

′−s
′
0)−(s−s0)]·r

=
k3
0

2π

∫
dΩs′0

∫
dΩs′ |s′ − s′0|fB(s′, s′0)δ [k0[(s

′ − s′0) − (s − s0)]]

Now fB(s′, s′0) in the above integral must be equal to −Ṽ [k0(s
′ − s′0)]/4π so

that we can use the inverse scattering identity given in Eq.(8.10b) to evaluate

the integral. Thus, we define

F̃ (K) = − 1

4π
Ṽ (K)δ[K− k0(s− s0)]

with K = k0(s
′− s′0) restricted to that region of K space that corresponds to

s′ ∈ Ωs′ and s′0 ∈ Ωs′0 , respectively. We then find that the r.h.s. of the above

equation becomes

k3
0

2π

∫
dΩs′0

∫
dΩs′ |s′ − s′0|fB(s′, s′0)δ [k0[(s

′ − s′0)− (s − s0)]]

=

∫

K≤2k0

d3K F̃ (K) = − 1

4π
Ṽ [k0(s− s0)] = fB(s, s0), s ∈ Ωs, s0 ∈ Ωs0 ,

where we have used the inverse scattering identity.

8.5 Complete the derivation of Eq.(8.21).

This follows immediately upon using the definition ofH(R) given in Eq.(8.4c).

8.6 Derive the expressions for T̂ T̂ † given in Eq.(8.31) and for T̂ †T̂ given in

Eq.(8.30).

Consider first T̂ †T̂ V with V ∈ HV

T̂ †T̂ V =
1

(4π)2

∫
dΩs0

∫
dΩs e

ik0(s−s0)·r
∫
d3r′ e−ik0(s−s0)·r′V (r′)

=

∫
d3r′

H(r−r
′)︷ ︸︸ ︷

1

(4π)2

∫
dΩs0

∫
dΩs e

ik0(s−s0)·(r−r
′) V (r′).

We can express H(R) in the form

H(R) =

[
1

4π

∫
dΩs0e

−ik0s0·R
] [

1

4π

∫
dΩse

ik0s·R
]

= j20(k0R)

which completes the proof.
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Now consider T̂ T̂ †f with f ∈ Hf

T̂ T̂ †f =
1

(4π)2

∫
d3r e−ik0(s−s0)·r

∫
dΩs′0

∫
dΩs′ e

ik0(s
′−s

′
0)·rf(s′, s′0)

=
1

(4π)2

∫
dΩs′0

∫
dΩs′

[∫
d3r e−ik0[(s−s0)−(s′−s

′
0)]·r

]
f(s′, s′0)

=
π

2

∫
dΩs′0

∫
dΩs′ δ(k0[(s− s0)− (s′ − s′0)])f(s

′, s′0)

which completes the proof.

8.7 Complete the derivation of Eq.(8.42).

On substituting Eq.(8.41) into Eq.(8.40) we obtain

U (s)(r; ν) ∼ − 1

4π

eik0r

r

∫

∂τ

dS′ [e−ik0s·r′ ∂

∂n′U
(s)(r′; ν)− U (s)(r′; ν)(−ik0n̂

′ · s)e−ik0s·r′]

=

f(s,ν)︷ ︸︸ ︷
− 1

4π

∫

∂τ

dS′ [
∂

∂n′U
(s)(r′; ν) + ik0(s · n̂′)U (s)(r′; ν)]e−ik0s·r′ e

ik0r

r
.

8.8 Express the generalized scattering amplitude given in Eq.(8.42) in terms of

Dirichlet data over a sphere that completely encloses the scattering volume

τ0. Use this result to express the generalized scattering amplitude in terms of

the multipole moments of the scattered field.

The key to this problem is that the Dirichlet and Neumann boundary con-

ditions of the scattered field over a sphere surrounding the scattering potential

are related to each other as was established in our treatment of the so-called

“Dirichlet to Neumann map” in Example 4.10. In that example we showed

that the generalized Fourier coefficients of the Dirichlet and Neumann bound-

ary conditions over any sphere lying outside a source volume are related via

the equation

vml =
k0h

+
l

′
(k0a)

h+
l (k0a)

uml (8.1)

where

uml =

∫
dΩU+(r)|r=aY ml ∗(r̂), vml =

∫
dΩ

∂

∂r
U+(r)|r=aY ml ∗(r̂)

are the generalized Fourier coefficients of the Dirichlet and Neumann bound-

ary conditions over a measurement sphere of radius a that exceeds the support

radius of the source (scattering potential in this problem).

To make use of Eq.(8.1) we use the multipole expansion of the plane wave

that was developed in Example 3.4:

e−ik0s·r′ = 4π

∞∑

l=0

l∑

m=−l
(−i)ljl(k0r

′)Y ∗m
l (r̂′)Y ml (s).
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Using this expansion and the derived expansion

ik0(s·n̂′)e−ik0s·r = − ∂

∂r′
e−ik0s·r′ = −4π

∞∑

l=0

l∑

m=−l
(−i)lk0j

′
l(k0r

′)Y ∗m
l (r̂′)Y ml (s)

in Eq.(8.42) we obtain

f(s, ν) = − 1

4π

∫

∂τ

dS′ ∂

∂n′U
(s)(r′; ν)[4π

∞∑

l=0

l∑

m=−l
(−i)ljl(k0r

′)Y ∗m
l (r̂′)Y ml (s)]

+
1

4π

∫

∂τ

dS′ U (s)(r′; ν)[4π
∞∑

l=0

l∑

m=−l
(−i)lk0j

′
l(k0r

′)Y ∗m
l (r̂′)Y ml (s)]

= −a2
∞∑

l=0

l∑

m=−l
(−i)l[jl(k0a)v

m
l − k0j

′
l(k0a)u

m
l ]Y ml (s)]

= −a2
∞∑

l=0

l∑

m=−l
(−i)l [jl(k0a)

k0h
+
l

′
(k0a)

h+
l (k0a)

− k0j
′
l(k0a)]u

m
l Y

m
l (s)].

As a final step we use the Wronskian

jl(x)h
′
l(x) − j′l(x)hl(x) =

i

x2

to simplify the above result to

f(s, ν) =
∞∑

l=0

l∑

m=−l
(−i)l+1 uml

k0h
+
l (k0a)

Y ml (s).

It is easy to verify that the above result is correct by using the multipole

expansion of the scattered field (see Section 6.5.3). Using the notation from

Section 6.5.3 we have that

U
(s)
+ (r, ν) = −ik0

∞∑

l=0

l∑

m=−l
qml (ν)h+

l (k0r)Y
m
l (r̂)

where the multipole moments qml (ν) can be determined from Dirichlet condi-

tions over any sphere surrounding the scattering potential. In particular, we

find that

qml (ν) =
i

k0h
+
l (k0a)

∫

4π

dΩU
(s)
+ (r, ν)Yml

∗(r̂) =
i

k0h
+
l (k0a)

uml (8.2)

where r denotes position on the measurement sphere having radius a larger

than the support radius of the scatterer. On substituting this expression for

the multipole moments in the multipole expansion and letting r → ∞ we
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obtain

U
(s)
+ (r, ν) ∼ −ik0

∞∑

l=0

l∑

m=−l
[

i

k0h
+
l (k0a)

uml ](−i)(l+1) e
ik0r

k0r
Y ml (r̂)

=

f(s,ν)︷ ︸︸ ︷
∞∑

l=0

l∑

m=−l
(−i)l+1 uml

k0h
+
l (k0a)

Y ml (s)
eik0r

r

which is the same result obtained above for the scattering amplitude.

Finally we note that Eq.(8.2) allows us to express the scattering amplitude

directly in terms of the multipole moments of the scattered field.

8.9 Derive Eqs.(8.44) directly from Eqs.(8.42). Hint: Use the relationship between

the spatial Fourier transforms of the scattered field and its normal derivative

over a plane surface derived in Example 4.4 of Chapter 4.

Specializing Eqs.(8.42) to the case of two parallel measurement planes lo-

cated at z = z< and z = z> outside and bounding the support of the scattering

potential we obtain

f(s, ν) = − 1

4π

∫

z<

dS′ [− ∂

∂z′
U (s)(r′; ν)− ik0(s · ẑ)U (s)(r′; ν)]e−ik0s·r′

− 1

4π

∫

z>

dS′ [
∂

∂z′
U (s)(r′; ν) + ik0(s · ẑ′)U (s)(r′; ν)]e−ik0s·r′

= − 1

4π
[− ∂̃

∂z′
U

(s)
z< (k0s||; ν)− ik0szŨ

(s)
z< (k0s||; ν)]e

−ik0szz<

− 1

4π
[
∂̃

∂z′
U

(s)
z> (k0s||; ν) + ik0szŨ

(s)
z> (k0s||; ν)]e

−ik0szz>

where Ũ
(s)
z and ∂̃

∂zU
(s)
z denote spatial Fourier transforms of the field and

its normal derivative over the plane z and s|| = (sx, sy) is the transverse

component of the unit propagation vector and sz its longitudinal component.

We now make use of the relationship between the spatial Fourier transforms

of the scattered field and its normal derivative over a plane surface derived in

Example 4.4 of Chapter 4. In that example it was shown that

∂̃

∂z
U

(s)
z (k0s||; ν) = ±ik0|sz|Ũ (s)

z (k0s||; ν)

with the plus sign holding if z lies to the right of the source of the field (in

this case the scattering potential) and the minus sign if z lies to the left of
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the source. On making use of these relationships we then find that

f(s, ν) = − 1

4π
[−

∂̃
∂z′ U

(s)
z< (k0s||;ν)︷ ︸︸ ︷

−ik0|sz|Ũ (s)
z< (k0s||; ν)−ik0szŨ

(s)
z< (k0s||; ν)]e

−ik0szz<

− 1

4π
[

∂̃
∂z′ U

(s)
z>

(k0s||;ν)︷ ︸︸ ︷
ik0|sz|Ũ (s)

z> (k0s||; ν)+ik0szŨ
(s)
z> (k0s||; ν)]e

−ik0szz>

We now have to evaluate the above for the two cases where sz > 0 (scattering

into the r.h.s.) and sz < 0 (scattering into the l.h.s.) We then obtain

f(s, ν) = − ik0

2π
szŨ

(s)
z> (k0s||; ν)e

−ik0szz> , sz > 0

f(s, ν) =
ik0

2π
szŨ

(s)
z< (k0s||; ν)]e

−ik0szz< sz < 0

which are precisely Eqs.(8.44).

8.10 Derive the second line in Eq.(8.55) from the first line.

We start with the first line in Eq.(8.55) which we write in the form

δn(ρ) =
1

2(2π)2

∫ π

−π
dα0

∫ ∞

0

KdK δ̃n(KK̂)eiKK̂·ρ

+
1

2(2π)2

∫ π

−π
dα0

∫ ∞

0

KdK δ̃n(KK̂)eiKK̂·ρ.

In the second integral we make the change of variables K → −K and α0 →
α0 + π. Under this change of integration variables we have that

K̂ = cosαx̂ + sinαŷ→ cos(α+ π)x̂ + sin(α+ π)ŷ = −K̂.

The second integral then becomes

1

2(2π)2

∫ 2π

0

dα0

∫ 0

−∞
−KdK δ̃n(KK̂)eiKK̂·ρ =

1

2(2π)2

∫ π

−π
dα0

∫ 0

−∞
|K|dK δ̃n(KK̂)eiKK̂·ρ

which when added to the first integral yield the second line in Eq.(8.55).

8.11 Complete the derivation of Eq.(8.59).

We wish to show that for circularly symmetric objects the filtered back

projection algorithm

δn(ρ) =
1

2(2π)2

∫ π

−π
dα0

∫ ∞

−∞
|K|dK P̃ δn(K)eiKξ̂·ρ

can be transformed into

δn(ρ) =
1

2π

∫ ∞

0

KdK P̃ δn(K)J0(Kρ).

To make this transformation we set Kξ̂ ·ρ = Kρ cos(φ−α0) where φ is the
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angle of ρ relative to the positive x axis and, as usual, α0 is the angle of the

ξ axis relative to the positive x axis. We then find that
∫ π

−π
dα0e

iKξ̂·ρ =

∫ π

−π
dα0e

iKρ cos(φ−α0) =

∫ π

−π
dα0e

iKρ cosα0 = 2πJ0(Kρ),

since the integral has to be independent of φ. Using this result we then obtain

δn(ρ) =
1

4π

∫ ∞

−∞
|K|dK P̃ δn(K)J0(Kρ) =

1

2π

∫ ∞

0

KdK P̃ δn(K)J0(Kρ)

where we have used the fact that for circularly symmetric objects P̃ δn(−K) =

P̃ δn(K).

8.12 Derive Eq.(8.71a).

This is obtained by using the same procedure as employed in Example 8.1

with the exception that the angle α formed by the unit vector s with the

positive ξ axis now varies only from α = 0 to α = π corresponding to forward

scattering. Because of this the Ewald circles are now only semi-circles and so

the limiting Ewald circle has a radius of
√

2k0 so that the algorithm returns

the low pass filtered approximation given in Eq.(8.71b).

8.13 Derive Eq.(8.72).

This form follows from the change of integration variable α → κ specified

in the text. In particular, we set

s = ξ̂ cosα+ η̂ sinα, s0 = η̂, s0 · s = sinα

so that

k0(s− s0) =

κ︷ ︸︸ ︷
k0 cosα ξ̂ + [

γ︷ ︸︸ ︷
k0 sinα−k0]η̂, s0 · s =

γ

k0
, dκ = −γdα.

On making these change of integration variables we find that Eq.(8.71a) be-

comes

δnLP (ρ) =
k2
0

2(2π)2

∫ π

−π
dα0

∫ π

0

dα
√

1− (s · s0)2δ̃n[k0(s− s0)]e
ik0(s−s0)·ρ

=
k2
0

2(2π)2

∫ π

−π
dα0

∫ k0

−k0

dκ

γ

√
1− (

γ

k0
)2δ̃n[k0(s − s0)]e

i[κξ+(γ−k0)η]

=
k0

2(2π)2

∫ π

−π
dα0

∫ k0

−k0

dκ

γ

|κ|︷ ︸︸ ︷√
k2
0 − γ2 δ̃n[k0(s − s0)]e

i[κξ+(γ−k0)η]

We now make use of Eq.(8.70) and make the replacement

δ̃n[k0(s− s0)] =
γ

k0ei(γ−k0)l0
δ̃WR(κ, α0)

to obtain

δnLP (ρ) =
1

2(2π)2

∫ π

−π
dα0

∫ k0

−k0

dκ |κ|δ̃WR(κ, α0)e
i[κξ+(γ−k0)(η−l0)].
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8.14 Complete the derivation of Eq.(8.73a); i.e, show that

1

2π

∫ π

−π
dα0e

i[κξ+(γ−k0)η] = J0(
√
κ2 + (γ − k0)2ρ),

where α0 is the angle formed by the η coordinate axis with the fixed x axis.

[Hint: write κξ + (γ − k0)η as the dot product of two vectors.]

Following the hint we set

κξ̂ + (γ − k0)η̂ = v, ξξ̂ + ηη̂ = ρ

to find that

1

2π

∫ π

−π
dα0e

i[κξ+(γ−k0)η] =
1

2π

∫ π

−π
dα0e

iv·ρ =
1

2π

∫ π

−π
dα0e

i
√
κ2+(γ−k0)2ρ cos θ

where θ is the angle formed between the two vectors v and ρ. As α0 varies

between −π and +π the angle θ varies over a full 2π radians and the integral

yields the result

1

2π

∫ π

−π
dθei
√
κ2+(γ−k0)2ρ cos θ = J0(

√
κ2 + (γ − k0)2ρ).

8.15 Derive Eq.(8.75b).

We have

δ̃n(K) =

N∑

j=1

δnj

∫
d2ρ circ[aj(ρ− ρj)]e

−iK·ρ =

N∑

j=1

δnje
−iK·ρ

j

∫
d2ρ circ(ajρ)e−iK·ρ

= 2π

N∑

j=1

δnje
−iK·ρ

j

∫ aj

0

ρdρJ0(Kρ) = 2π

N∑

j=1

δnj
J1(Kaj)

K
e−iK·ρ

j .


