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A Word about Notebook Organization

This notebook and this commentary appears in Ch. 1 because mass determination

is  absolutely  fundamental  to  modern  astrophysics,  not  because  the  topic  is  easy  or  its

explanation  simple.  But  being  firmly  rooted  in  classical  not  relativistic  mechanics  should

make  it  seem  somewhat  more  familiar.  Because  we  will  be  using  actual  observations

within  the  computations,  the  subject  of  error  analysis  comes  up  rather  abruptly  here  and

computation of  errors  is  always a  complicating factor  to  any work,  as  undergraduate stu-

dents well know. To perform a correct error analysis on your own is even more harrowing

than  doing  it  under  an  instructor’s  direction  and  when  that  is  mixed  in  with  a  long  and

complicated  solution  to  a  physical  problem,  the  result  seems  hopelessly  difficult  for  the

novice.  

The  organization  we  have  chosen  here  and  throughout  these  notebooks  for  our

computational solutions is basically an algorithmic one, being more like a receipe than an

exposition. They are after all  basically computer programs. In an algorithm, input informa-

tion  needs  to  appear  just  before  it  is  required  in  the  progression  of  computation  without

regard to whether it  was easy or hard to obtain or whether it  needed lots of preprocesing

and editing. Some programming languages require a sort of receipe ingredient list through

variable  declarations,  but  not  Mathematica.  In  fact,  in  using Mathematica  we often unwit-

tingly contributes to the equation and comment clutter because in order to save intermedi-

ate  results  in  a  particular  symbolic  label  that  reminds  the  memory  of  what  it  represents,

one has to keep changing the variable’s name between steps of  a  calculation.  This  quirk

often  occurs  because  Mathematica  in  common  with  lots  of  computer  languages  allows

iteration  of  the  same  variable  across  the  regular  equal  sign.  Like  other  computer  lan-

guages, one can also hide long stretches of  “code” within the Mathematica  package con-

struct and thus clean up the mess that we show publicly for all to see. But this hiding fea-

ture does not just show what needs to be seen for instructional purposes in preference to

the “scratch pad” work that went on around it. You either hide stuff or you don’t. We do go

part way toward hiding programming content by using the built-in Mathematica  constructs

so  many  mathematical  details  that  in  older  texts  often  obscured  the  astrophysics  and

physics themselves are at least now hidden from view.

So  what  can  a  novice  student  do  ?  Our  suggestion  is  to  read  through  the  note-

books at first even if you intend to modify or run it and then outline the contents in a logical

fashion correlated with the textbook.  Most solutions consist of several parts: a) the geome-

try, b) the physics, c) the astronomy, and d) the astrophysics.  Actually because our note-

books are pseudo algorithms, the most appropriate means would be to construct the equiva-

lent of “flow charts”.  Thus reading our notebooks requires the same skills that one would

use in reading any computer program. But unlike a normal computer program, we link the

parts  (sometimes  extensive  sections)  together  with  verbal  comments  and  section  head-

ings. Some of our notebooks are fairly simple, others like this one that incorporates actual

data is very complicated, particularly if an error analysis is incorporated within it. You may

not like to do error analysis, but at least you have Mathematica to do all the grunt work for

you  and  ensure,  that  aside  from  typographical  errors,  the  computation  is  done  correctly.

There  is  at  least  one  bridge  builder  in  prison  because  an  error  analysis  was  done  incor-

rectly  and  people  died  as  a  result.  So  for  a  professional  scientist,  error  analysis  must

ALWAYS be taken seriously.
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 Mass Estimates from the Orbit of a Spectroscopic  

Binary: A Case History of a Preliminary Astrophysical 

Study. 

Introduction

Mass  is  a  property  of  material  objects  said  to  be  endowed  by  the  Higgs  boson  of

elemenetary  paticle  theory.  Mass  is  the  source  of  gravitational  fields  throughout  the  cos-

mos  and  everything  that  has  mass  contributes  to  this  field.  In  General  Relativity,  mass

curves space-time and this is where gravitational fields orignate. But even on a less sophis-

ticated  scale,  unless  born  on  an  orbiting  space  craft  and  living  continuously  in  space,

humans  intuitively,  but  perhaps  qualitatively,  know the  effects  of  gravity  and  how moving

masses are influenced by it. Because gravity is such a long range force, its effects are felt

across  immense  distances.  In  this  notebook,  we  explore  a  number  of  issues  illustrating

how the concept of mass occurs in the study of spectroscopic binaries and its value deter-

mined within astronomy and astrophysics.

Context  of  Single  Line  Spectroscopic  Binaries  within  the  Mass  Determination

Problem

If the radial velocity of one of two visual binary components can be determined from

spectroscopic  observations,  then  the  angular  orbital  ambiguities  in  the  orbital  inclination

and  the  ascending  node  W  encountered  in  the  analysis  for  orbital  elements  can  be

resolved directly. And if radial velocity information is available for both stars, the mass ratio

can also be obtained as an alternative to using astrometric data on proper motions. 

Can radial velocity information stand alone ?  Unfortunately the radial velocities in a

system of two stars may not yield the masses directly because the inclination is not deriv-

able unless the system is also either a visual or eclipsing binary. But even in principle, the

analysis of a visual binary system is more complicated than for a spectroscopic binary so

we  defer  consideration  of  that  case  until  Ch.  6  where  various  types  of  stellar  motion  are

considered. 

The Fundamental Equation

But  spectroscopic  methods  applied  even  to  single  line  binaries  can  obtain  the

orbital  period,  the  eccentricity,  the  daily  motion  n,  and  the  argument  of  periapsis  Ω

uniquely.  They can also determine which nodes are  which and the sign of  the inclination

when  used  in  conjunction  with  visual  or  interferometric  observations.  The  equation  for

orbital radial velocity (where z is along the line of sight, n is the daily (not yearly motion) =

2 Π/T(days), a is the semi-major axis, i is the inclination, Ν is the true anomaly, e the eccen-

tricity, and Ω the argument of periapsis) is 

d z

d t
=

n a sini

1-e2

HcosHΝ + ΩL + e cos ΩL
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The  observed  radial  velocities  will  have  the  motion  of  the  center  of  mass  in  each

and this is determined so that the line v=constant divides the radial velocity curve into two

equal areas. This has to be done first so that dz/dt is isolated. Creating a smoothed radial

velocity  curve  from  the  observations  is  our  first  challenge.  But  first  a  digression  about

errors.  

Rudiments of Error Analysis

Although  there  may  be  a  perception  that  theoretical  study  of  a  subject  through

computation can be accomplished without comparing with observations, scientific computa-

tion  requires  constant  checking  of  the  predicted  results  against  reality  through  statistical

analysis  of  available  data.  But  there  are  often  vast  problems.  First  getting  a  realistic  and

correct  error  analysis  is  often  more  difficult  than  just  getting  the  actual  solution  desired.

Secondly  the  predicted  quantities  are  often  not  the  observational  quantities,  but  rather

physical  quantities  derived  from  the  observations  through  theoretically  derived  formulae.

The errors of such theoretical quantities are obtained through a process called the propa-

gation  of  errors,  a  subject  whose  elementary  rules  with  which  most  students  who  have

taken an undergraduate physics or chemistry laboratory are familiar.  Thirdly error analysis

is not well understood by most students (and faculty ?) without lots of study and work. That

is  why  we  bring  this  up  right  in  the  beginning.  We review these  important  concepts  here

before  showing  how  we  calculate  them  for  a  faint  spectroscopic  binary  system  where

errors abound. 

There are two main types of errors. Although real situations are usually a mixture of

the two, we will consider the extremes where only one type is dominant: 

a) Independent Errors  -  These are errors that occur independently of  each other

so that their  linear correlations (as measured by the so-called covariance) are zero. Ran-

dom errors are usually of this type.

b)  Correlated  Errors  -  These  are  errors  that  occur  in  “synchronism” with  each

other  so that  their  interdependence is  measured by their  covariances (not  zero).  System-

atic and bias errors are usually of this type. 

 Functions  through  which  these  errors  can  propagate  are  either  linear  or  non-

linear.  Linear  functions  are  things  like  polynomial  sums.  Non-linear  functions  are  things

like  ratios  of  polynomial  sums  or  transcendental  functions.  Error  analysis  can  either  be

linear  or  nonlinear.   Least  squares  analysis  in  Mathematica  is  also  either  linear  or  non-

linear as we will be showing. Usually error analysis assumes the errors are “small enough”

that 1st order linear theory can be applied and hence only first order partial derivatives are

involved.  Linearized  error  propagation  is  a  well  known  technique  (See  Ch.  10  of  Meyer

(1975) for an excellent and full discussion.) and its relationship to least-squares is straight

forward. But as Meyer points out that there are nuances arising from special situations that

can lead one astray and the methods for handling such special cases are usually not found

in the elementary treatments. In that case one is fairly much at the mercy of the math.  For

example:
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example:

  a) For random or independent errors, the “standard” view point is that the errors

are  strictly  independent  (the  covariance  SxHiL xH jL between  them  is  zero).   There  are

instances where observational  variables are partially  correlated and if  this  is  known more

sophisticated  analyses  must  be  applied.  (See  Meyer  for  details.)   If  the  errors  can  be

treated  as  random,  the  general  algorithm  is  to  use  the  following  whether  the  function

through which the propagation is desired is linear or not:

      S f 8xHiL< = Ú i J ¶f H8x HiL<L
¶x HiL

Sx HiLN
2

 

 Specific to a function of two variables:

 

 Sz = I ¶f Hx,yL
¶x

S xM
2

+ J ¶f Hx,yL
¶y

S yN
2

 a) Sums and differences

 

 Sz = HS xL2
+ HS yL2

 

 b) Products and quotients  

                          
Sz

z
= I Sx

x
M
2

+ J
Sy

y
N
2

Extension to other  functions is  a straight  forward application of  the first  rule,  examples of

which will be shown below. 
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Extension to other  functions is  a straight  forward application of  the first  rule,  examples of

which will be shown below. 

  a)  For  correlated  errors  including  systematic  errors,  Meyer  discusses  several

ways to deal with them.  

   1)  The  simplest  way  given  by  Meyer  is  to  treat  the  errors  as  predicted  by  the

chain rule of the calculus keeping the negative signs if any. Then the error is the absolute

value of the final answer. This is similar to what is done for the mean deviation as opposed

to the rms deviation for the independent errors. This is very easy to implement via modifica-

tion of the uncorrelated formula but in a least squares situation it is rare for the coefficients

to be perfectly correlated rather they are related through the covariance function. 

  2) Another method (and one that we have chosen to implement below) assumes

that  the errors are linearly  and first  order  correlated between the variables two at  a  time.

Since the errors are correlated the covariances SxHiL xH jL between the variables are not zero.

The problem with this second situation is that one must know the covariance matrix for all

variables going into the propagation. While not a problem for least-squares fits particularly

when Mathematica can give the requires values for the function coefficients to you through

the options, “CorrelationMatrix” or “CovarianceMatrix”, it is a problem for all the other vari-

ables  used  in  the  propagation  formulae.   The  general  algorithm  is  to  use  the  following

whether the function through which the propagation is desired is linear or not:

Sf 8xi< = Úi, j
n J ¶f 8xi<

¶xi

N J
¶f 9x j=

¶x j

N Sxi x j

where Sxi xi
= Sxi

2

 

 Specifically  to  a  function  of  two  variables  where  Ρxy  is  the  linear  correlation  coefficient

between x and y. 

 

 Sz
2

= I ¶f Hx,yL
¶x

S xM
2

+ J ¶f Hx,yL
¶y

S yN
2

+2 
¶f Hx,yL

¶x
S x

¶f Hx,yL
¶y

S y 

  

 a) Sums and differences z=x±y

 

 Sz = Sx
2

+ Sy
2

± 2 Ρx y Sx Sy

 

 b) Products 

                          
Sz

z
=

Sx
2

x
2

+
Sy

2

y
2

+
2 Ρx y Sx Sy

x y

        

c) Quotients

                          
Sz

z
=

Sx
2

x
2

+
Sy

2

y
2

-
2 Ρx y Sx Sy

x y

                          

A main objection often raised in practice to these formulae is that the derived errors can be

smaller  than the random errors  formula involving the same variances and that  is  a  result

that  leads  to  the  opinion  that  systematic  errors  can  be  more  safely  ignored  than  random

errors  of  the  same equations.  But  that  is  how correlated  errors  work.  Uncorrected  corre-

lated errors treated as independent ones are larger than the equivalent independent errors

because the error of one variable is “aliased” into its associated variables. When there are

mixtures  of  the  two  type  of  errors,  the  true  error  falls  somewhere  in  between  the  two

extremes. The dilemma is chosing how to combine the two results. Lacking a priori informa-

tion usually leads to a simple rms combination of random and systematic. Since the treat-

ment of systematic effects is so controversial, investigators often want to err on the side of

conservatism and deal only with the random errors but this makes the derived errors larger

than they should be.  
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Sf 8xi< = Úi, j
n J ¶f 8xi<

¶xi

N J
¶f 9x j=

¶x j

N Sxi x j

where Sxi xi
= Sxi

2

 

 Specifically  to  a  function  of  two  variables  where  Ρxy  is  the  linear  correlation  coefficient

between x and y. 

 

 Sz
2

= I ¶f Hx,yL
¶x

S xM
2

+ J ¶f Hx,yL
¶y

S yN
2

+2 
¶f Hx,yL

¶x
S x

¶f Hx,yL
¶y

S y 

  

 a) Sums and differences z=x±y

 

 Sz = Sx
2

+ Sy
2

± 2 Ρx y Sx Sy

 

 b) Products 

                          
Sz

z
=

Sx
2

x
2

+
Sy

2

y
2

+
2 Ρx y Sx Sy

x y

        

c) Quotients

                          
Sz

z
=

Sx
2

x
2

+
Sy

2

y
2

-
2 Ρx y Sx Sy

x y

                          

A main objection often raised in practice to these formulae is that the derived errors can be

smaller  than the random errors  formula involving the same variances and that  is  a  result

that  leads  to  the  opinion  that  systematic  errors  can  be  more  safely  ignored  than  random

errors  of  the  same equations.  But  that  is  how correlated  errors  work.  Uncorrected  corre-

lated errors treated as independent ones are larger than the equivalent independent errors

because the error of one variable is “aliased” into its associated variables. When there are

mixtures  of  the  two  type  of  errors,  the  true  error  falls  somewhere  in  between  the  two

extremes. The dilemma is chosing how to combine the two results. Lacking a priori informa-

tion usually leads to a simple rms combination of random and systematic. Since the treat-

ment of systematic effects is so controversial, investigators often want to err on the side of

conservatism and deal only with the random errors but this makes the derived errors larger

than they should be.  

  c)  For  non-linear  propagation  of  errors,  the  true  situation  can  be  much  more

complicated  than  the  first  order  expansion  would  indicate  even  in  the  independent  error

case.  Meyers  derives  an  expression  for  propagation  involving  second  order  derivatives

and stresses  that  it  MUST be  used  if  the  first  order  derivatives  are  zero,  i.e.  the  case  of

function minimization for example. 

 

As  computational  analyses  have  become  more  sophisticated  and  wide  spread,  it  now

possible  to  apply  Monte  Carlo  methods  to  error  analysis.  For  example,  one  can  use  a

random (really pseudorandom) number generator to calculate a set of both variable errors

and function errors and apply them to the mean or derived parameter values. These errors

are  then  applied  to  the  evaluation  of  the  function  itself  multiple  times.  The  set  of  “new”

values are then calculated as sample means and the propagated errors then become the

standard deviation of those trial runs. 

The most difficult  decision in Monte Carlo analyses is  what distribution function and what

range of  variable is to be used. Fortunately,  Mathematica  provides a wide variety of  non-

uniform pseudorandom generators  so  the  proper  choice  is  usually  available.   If  observa-

tional  or  experimental  errors  are  to  be  evaluated,  the  Gaussian  pseudorandom  number

generator may be appropriate, not the usual uniform one. And even if a suitable generator

is  available,  the  parameters  of  the  distribution  is  not  always  obvious.   In  theoretical  and

computational  studies  that  have  no  real  data  available,  Monte  Carlo  error  estimation  is

used to indicate how sensitive given results are to errors both computational and observa-

tional but without a knowledge of what values will  occur in practice such simulations may

be  ad  hoc.   Thus  Monte  Carlo  methods  can  be  more  of  an  art  than  science,  but  since

undergraduate  students  rarely  encounter  either  correlated  or  Monte  Carlo  errors  we  give

an example of each below.  
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values are then calculated as sample means and the propagated errors then become the
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range of  variable is to be used. Fortunately,  Mathematica  provides a wide variety of  non-

uniform pseudorandom generators  so  the  proper  choice  is  usually  available.   If  observa-

tional  or  experimental  errors  are  to  be  evaluated,  the  Gaussian  pseudorandom  number

generator may be appropriate, not the usual uniform one. And even if a suitable generator

is  available,  the  parameters  of  the  distribution  is  not  always  obvious.   In  theoretical  and

computational  studies  that  have  no  real  data  available,  Monte  Carlo  error  estimation  is

used to indicate how sensitive given results are to errors both computational and observa-

tional but without a knowledge of what values will  occur in practice such simulations may

be  ad  hoc.   Thus  Monte  Carlo  methods  can  be  more  of  an  art  than  science,  but  since

undergraduate  students  rarely  encounter  either  correlated  or  Monte  Carlo  errors  we  give

an example of each below.  

The Observations and Their Preparation for Analysis

In  this  notebook  we  are  following  closely  the  analysis  procedure  given  in  Smart

(1960) where it is shown that integrals of the single line radial velocity curve are related to

the  orbit  parameters  in  the  dz/dt  equation  above.   If  the  radial  velocity  curve  for  the  star

being  studied  has  high  signal  to  noise  and  is  relatively  smooth  with  points  fairly  closely

spaced, getting the required integrals is a matter of numerical integration, a task for which

Mathematica  is  well  suited.  But  the  example  we  have  chosen  has  a  very  noisy  and

sparsely  populated  radial  velocity  curve  as  is  typical  of  modern  astrophysical  exploratory

research and the challenges such data presents. It is this type of data that research scien-

tists give to their undergraduate summer students to test their resourcefulness and so is a

good example for us to consider. Our goal is to (a) take a limited, non-optimal data set, (b)

produce a relatively smooth radial veleocity curve by piecewise least-squares curve fitting

if  necessary,  (c)  perform the necessary integrations analytically  with  the proper  computa-

tions  of  the  errors  at  each  step,  and  (d)  deduce  the  orbital  properties  (actually  the  short

and easy part) giving the errors with the final results. Does this sound like work ?  Well it is

but  fortunately  the  tricky  math  and  arithmetic  is  handled  quite  easily  by  Mathematica  to

produce results that compare favorably with the published results.  In a broad outline, the

steps carried out here will be typical for our notebooks involving both theory and observa-

tion. 

Importing spectroscopic binary data

There  is  a  treasure  trove  of  spectroscopic  binary  data  both  single  line  and  double

line continuing to be published in journal “The Observatory”  by R.F. Griffin as a long series

of papers describing continuations of work by Yoss and Griffin (1997, JA and A., 18,161).

The observations have been obtained with  photoelectric  spectrum scanners and many of

very long period have been published recently. These distant stars if located closer to the

sun would  have  been seen as  visual  binaries.  Hence it  is  appropriate  to  consider  one  of

them  as  our  spectroscopic  binary  example.  We  have  chosen  HD  108613  observed  from

1973 to 2010 (Griffin, 2010, Obs. 130, p.358). The file consists of Julian Date and velocity

in km/s only and will be used with unit weights. No spectrum type is available and there is

evidence of  photometric variability of  unknown origin.   Only the spectrum of  one star  can

be  seen  which  would  seem  to  make  the  analysis  simpler  but  alas  it  does  not  as  will  be

seen. 

It is worth pointing out for the novice that Griffin derived a set of orbital elements for

this  star  but  like  the  weights  no  element  errors  were  published.  Here  we  have  carried  a

completely independent solution of the orbital elements using Mathematica.  Unlike Griffin,

we have provided a complete error analysis for all  quantities including the usual indepen-

dent   errors,  the  linear  correlation  corrected  errors  and  finally  Monte  Carlo  derived  non-

linear errors.  The required Mathematica expressions are complex, ugly and except for the

Monte  Carlo  method  resulted  in  totally  outrageous  estimates  of  the  final  errors.   It  is  no

wonder that Griffin, if he calculated formal, independent errors in the usual manner, did not

publish any error estimates at all for his elements.  
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publish any error estimates at all for his elements.  

dataSS = Import@"HD108613.csv"D;

db1num = Length@dataSSD

70

ListPlot@dataSS, PlotRange ® All,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

44 000 46 000 48 000 50 000 52 000 54 000

time days

18

20

22

24

26

radial velocity Hkm�sL

This time series is not orthogonal. We need to see if the original points are linearly

correlated or not.  Hence 

linfit = LinearModelFit@dataSS, 81, t<, tD

FittedModelB 36.6351 - 0.00033362 t F

The linear correlation coefficient is 

rR = linfit@"RSquared"D

0.31003

Certainly  the  observations  are  somewhat  linearly  correlated.  This  almost  guaran-

tees that the power series coefficients will be strongly correlated also and that has serious

consequences for the subsequent error analysis that  will  lead us astray for  a while in the

data analysis process. 

Determination of the Period

The  first  task  is  to  determine  the  period.  We  have  selected  4  points  where  the

velocity  was  either  16.1  or  15.9.  These  were  JD  44007.97,  44240.14,  53094.05,  and

52768.97. 
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The  first  task  is  to  determine  the  period.  We  have  selected  4  points  where  the

velocity  was  either  16.1  or  15.9.  These  were  JD  44007.97,  44240.14,  53094.05,  and

52768.97. 

jD = 844 007.97, 44 240.14, 53 094.05, 52 768.97<;

DT1 = jD@@4DD - jD@@2DD

8528.83

DT2 = jD@@3DD - jD@@1DD

9086.08

Here is the mean period in days (Griffin gets 8973 ± 157 days) 

DT3 =
HjD@@4DD + jD@@3DDL

2

-
HjD@@1DD + jD@@2DDL

2

8807.46

Here is the mean period in years

DT3 � 365.25

24.1135

Here is the mean deviation on the period (days)

DDT = DT2 - DT3

278.625

Here is the mean deviation on the period (years)

DDT � 365.25

0.762834

DDT � DT3

0.0316351

The raw data needs to be resynchronized. 

dataS1 = dataSS;

numss = Length@dataS1D

70

Do@If@dataS1@@ii, 1DD < 48 500,

dataS1@@ii, 1DD = dataS1@@ii, 1DD + DT3;D, 8ii, 1, numss<D;

dataS2 = Sort@dataS1D;
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ListPlot@dataS2, PlotRange ® All,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

50 000 52 000 54 000 56 000

time days

18

20

22

24

26

radial velocity Hkm�sL

start = dataS2@@1, 1DD

48 609.2

Next  we  extend  the  data  set  past  one  period  so  that  we  can  do  the  integration

needed to find the Γ velocity (the motion of the center of mass)

dataS3 = Table@80, 0<, 8ii, 1, numss + 40<D;

Do@dataS3@@iiDD = dataS2@@iiDD, 8ii, 1, numss<D

Do@dataS3@@ii + numssDD = dataS2@@iiDD, 8ii, 1, 40<D

Do@dataS3@@ii + numss, 1DD = dataS2@@ii, 1DD + DT3, 8ii, 1, 40<D

ListPlot@dataS3, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

50 000 52 000 54 000 56 000 58 000 60 000

time days

18

20

22

24

26

radial velocity Hkm�sL

We redo the scale in days and replot.

Do@dataS3@@ii, 1DD = HdataS3@@ii, 1DD - startL, 8ii, 1, numss + 40<D
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ListPlot@dataS3, PlotRange ® 880, 14 000<, 815, 25<<,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

2000 4000 6000 8000 10 000 12 000 14 000

time days

16

18

20

22

24

radial velocity Hkm�sL

Piecewise Least Squares Smoothing of the Velocity Curve

This task is made difficult because there is no “standard” shape for a radial velocity curve.

The best one can do is obtain some sort of self-consistant polynomial approximation. The

velocity curve of HD 108613 is extremely noisy because the star itself is faint and perhaps

very distant. In order to smooth this curve and reduce the observational scatter we will first

fit segments of its light curve with cubic polynomials with no constant term.  If the observa-

tions had been sampled at equal intervals, this smoothing could have be accomplished by

Fourier smoothing techniques.

1) Smoothing the velocity minimum curve

a) Here is the minimum “plus” portion fit to a cubic

curvervp = Table@8dataS3@@ii, 1DD, dataS3@@ii, 2DD<, 8ii, 40, 80<D;

This is how we specify how the fit is to be done

xfit1 = LinearModelFitAcurvervp, 91, x, x
2
, x

3=, x, IncludeConstantBasis ® FalseE

FittedModelB 1.5942 + 0.00795247 x - 1.43564 ´ 10
-6

x
2

+ 9.04331 ´ 10
-11

x
3 F

This is a summary of the results in standard statistical format

xfit1@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

1 1.5942 6.86487 0.232225 0.817643

x 0.00795247 0.0033125 2.40075 0.0215044

x
2

-1.43564 ´ 10
-6

5.13168 ´ 10
-7

-2.79761 0.00812393

x
3

9.04331 ´ 10
-11

2.55677 ´ 10
-11

3.53701 0.00110924

This is the correlation coefficient of the fit

xfit1@"RSquared"D

0.981898
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These are the parameters (compare with the table).

cfit1 = xfit1@"BestFitParameters"D

91.5942, 0.00795247, -1.43564 ´ 10
-6

, 9.04331 ´ 10
-11=

These are the errors (compare with the table).

Σfit1 = xfit1@"ParameterErrors"D

96.86487, 0.0033125, 5.13168 ´ 10
-7

, 2.55677 ´ 10
-11=

Here is the equation in standard Mathematica form for additional use.

eqnss1 = Normal@xfit1D

1.5942 + 0.00795247 x - 1.43564 ´ 10
-6

x
2

+ 9.04331 ´ 10
-11

x
3

Here are the points and the plot. 

graphss1 = Table@
8curvervp@@ii, 1DD, eqnss1 �. x -> curvervp@@ii, 1DD<, 8ii, 1, Length@curvervpD<D;

ListPlot@8graphss1, curvervp<, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

5000 6000 7000 8000 9000

time days

18

20

22

24

26

radial velocity Hkm�sL

b) Here is the minimum “minus” portion fit to  a cubic

curvervm = Table@8dataS3@@ii, 1DD, dataS3@@ii, 2DD<, 8ii, 20, 45<D;

xfita = LinearModelFitAcurvervm, 9x, x
2
, x

3=, x, IncludeConstantBasis ® FalseE

FittedModelB 0.0298642 x - 0.0000119634 x
2

+ 1.37756 ´ 10
-9

x
3 F

xfita@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

x 0.0298642 0.00123737 24.1352 7.75491 ´ 10
-18

x
2

-0.0000119634 7.42711 ´ 10
-7

-16.1077 5.09545 ´ 10
-14

x
3

1.37756 ´ 10
-9

1.09384 ´ 10
-10

12.5938 8.37963 ´ 10
-12

xfita@"RSquared"D

0.999226
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cfit1a = xfita@"BestFitParameters"D

90.0298642, -0.0000119634, 1.37756 ´ 10
-9=

Σfit1a = xfita@"ParameterErrors"D

90.00123737, 7.42711 ´ 10
-7

, 1.09384 ´ 10
-10=

eqnssa = Normal@xfitaD

0.0298642 x - 0.0000119634 x
2

+ 1.37756 ´ 10
-9

x
3

c) Here is combined minimum velocity

graphssa = Table@
8curvervm@@ii, 1DD, eqnssa �. x -> curvervm@@ii, 1DD<, 8ii, 1, Length@curvervmD<D;

ListPlot@8graphssa, graphss1, curvervm, curvervp<,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

3000 4000 5000 6000 7000 8000 9000

time days

18

20

22

24

26

radial velocity Hkm�sL

It  certainly looks like the two curves overlap at some point. Let’s examine the files

from each to see if they indeed  have a common point of interersection. 

graphss1

883820.74, 16.0649<, 84057.95, 16.2672<, 84104.87, 16.3025<,

84159.78, 16.3421<, 84206.24, 16.3741<, 84412.02, 16.5013<,

84438.4, 16.5161<, 84484.86, 16.5413<, 84538.74, 16.5693<, 84757.05, 16.6717<,

84889.78, 16.7268<, 84922.76, 16.7399<, 84927.24, 16.7416<,

85226.82, 16.8525<, 85243.13, 16.8583<, 85287.77, 16.8741<, 85611.75, 16.9923<,

85652.77, 17.0081<, 85954.84, 17.1376<, 86016.21, 17.1674<, 86308.82, 17.3322<,

86372.74, 17.374<, 86694.81, 17.624<, 86729.18, 17.6551<, 86760.74, 17.6844<,

87431.31, 18.5218<, 87811.42, 19.2178<, 88135.26, 19.9655<, 88489.46, 20.9692<,

88584.18, 21.2734<, 88616.18, 21.3799<, 88807.46, 22.055<, 88835.36, 22.1592<,

88933.29, 22.537<, 88997.14, 22.7934<, 89174.46, 23.5491<, 89231.35, 23.8054<,

89267.32, 23.971<, 89374.18, 24.4796<, 89546.43, 25.353<, 89602.35, 25.6511<<
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graphssa

881970.28, 22.9355<, 82041.68, 22.8284<, 82325.78, 22.0755<,

82412.67, 21.7607<, 82661.18, 20.7127<, 82763.03, 20.2416<,

82923.05, 19.4819<, 82942.97, 19.387<, 82975.98, 19.2302<, 83030.77, 18.9717<,

83080.74, 18.7389<, 83259.07, 17.9464<, 83307.02, 17.7477<, 83311.5, 17.7295<,

83360.96, 17.5336<, 83424.82, 17.2947<, 83433.29, 17.2643<, 83656.05, 16.5949<,

83702.9, 16.4908<, 83774.79, 16.3598<, 83820.74, 16.2956<, 84057.95, 16.2389<,

84104.87, 16.2882<, 84159.78, 16.374<, 84206.24, 16.4712<, 84412.02, 17.1942<<

graphssa@@22DD

84057.95, 16.2389<

graphss1@@2DD

84057.95, 16.2672<

Yes indeed they do. graphssa [[22]] is identical to graphss1 [[2]]. The x value where

this happens is x =  4057.9 . Thus the minimum part of the velocity curve can be synthe-

sized piecewise with two cubics. 

2) Smoothing the velocity maximum curve.

Now  we  examine  the  maximum  part  of  the  velocity  curve  to   see  if  this  can  be

smoothed in a similar manner.  First  we plot  the whole range for reference without exces-

sive scrolling.

curverv2 = Table@8dataS3@@ii, 1DD, dataS3@@ii, 2DD<, 8ii, 60, 110<D;

plotdata = ListPlot@curverv2, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000 11 000 12 000

time days

18

20

22

24

26

radial velocity Hkm�sL

a) Here is the minimum “minus” portion fit to cubic

Next we subdivide this at approximately the maximum by trial and error

curverv2a = Table@8dataS3@@ii, 1DD, dataS3@@ii, 2DD<, 8ii, 60, 87<D;
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plotdata = ListPlot@curverv2a, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000

time days

18

20

22

24

26

radial velocity Hkm�sL

xfit2a = LinearModelFitAcurverv2a, 9x, x
2
, x

3=, x, IncludeConstantBasis ® FalseE

FittedModelB 0.00388753 x - 3.21868 ´ 10
-7

x
2

+ 1.90944 ´ 10
-11

x
3 F

xfit2a@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

x 0.00388753 0.000821538 4.73202 0.0000746228

x
2

-3.21868 ´ 10
-7

1.96386 ´ 10
-7

-1.63895 0.113749

x
3

1.90944 ´ 10
-11

1.15822 ´ 10
-11

1.6486 0.111742

xfit2a@"RSquared"D

0.999579

cfit2a = xfit2a@"BestFitParameters"D

90.00388753, -3.21868 ´ 10
-7

, 1.90944 ´ 10
-11=

Σfit2a = xfit2a@"ParameterErrors"D

90.000821538, 1.96386 ´ 10
-7

, 1.15822 ´ 10
-11=

eqnss2a = Normal@xfit2aD

0.00388753 x - 3.21868 ´ 10
-7

x
2

+ 1.90944 ´ 10
-11

x
3

graphss2a = Table@8curverv2a@@ii, 1DD, eqnss2a �. x -> curverv2a@@ii, 1DD<,

8ii, 1, Length@curverv2aD<D;
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plot2a = ListPlot@8graphss2a, curverv2a<,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000

time days

18

20

22

24

26

radial velocity Hkm�sL

b) Here is the maximum “plus” portion fit to cubic

curverv2b = Table@8dataS3@@ii, 1DD, dataS3@@ii, 2DD<, 8ii, 86, 110<D;

plotdatab = ListPlot@curverv2b, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

10 500 11 000 11 500 12 000 12 500

time days

18

20

22

24

26

radial velocity Hkm�sL

xfit2b = LinearModelFitAcurverv2b, 9x, x
2
, x

3=, x, IncludeConstantBasis ® FalseE

FittedModelB 0.0267956 x - 3.83809 ´ 10
-6

x
2

+ 1.44294 ´ 10
-10

x
3 F

xfit2b@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

x 0.0267956 0.00342275 7.82866 8.44029 ´ 10
-8

x
2

-3.83809 ´ 10
-6

5.95292 ´ 10
-7

-6.4474 1.73721 ´ 10
-6

x
3

1.44294 ´ 10
-10

2.58104 ´ 10
-11

5.59054 0.0000127732

xfit2b@"RSquared"D

0.999543

cfit2b = xfit2b@"BestFitParameters"D

90.0267956, -3.83809 ´ 10
-6

, 1.44294 ´ 10
-10=
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Σfit2b = xfit2b@"ParameterErrors"D

90.00342275, 5.95292 ´ 10
-7

, 2.58104 ´ 10
-11=

eqnss2b = Normal@xfit2bD

0.0267956 x - 3.83809 ´ 10
-6

x
2

+ 1.44294 ´ 10
-10

x
3

graphss2b = Table@8curverv2b@@ii, 1DD, eqnss2b �. x -> curverv2b@@ii, 1DD<,

8ii, 1, Length@curverv2bD<D;

plot2b = ListPlot@8graphss2b, curverv2b<,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

10 500 11 000 11 500 12 000 12 500

time days

18

20

22

24

26

radial velocity Hkm�sL

c)) Here is the maximum combined curve

plot2ab = ListPlot@8graphss2b, curverv2b, graphss2a, curverv2a<,

AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000 11 000 12 000

time days

18

20

22

24

26

radial velocity Hkm�sL

It looks like the curves do intersect at a common point. We look for that point manu-

ally. 
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graphss2b

8810 276.4, 26.6363<, 810 371.2, 26.0377<, 810 734.3, 23.8598<,

810 769.2, 23.6612<, 810 777.7, 23.6129<, 810 849.1, 23.2135<,

811 133.2, 21.7144<, 811 220.1, 21.2866<, 811 468.6, 20.15<, 811 570.5, 19.7236<,

811 730.5, 19.1031<, 811 750.4, 19.0302<, 811 783.4, 18.9116<,

811 838.2, 18.7209<, 811 888.2, 18.5537<, 812 066.5, 18.011<, 812 114.5, 17.8799<,

812 119., 17.868<, 812 168.4, 17.7401<, 812 232.3, 17.5855<, 812 240.8, 17.5658<,

812 463.5, 17.1264<, 812 510.4, 17.0534<, 812 582.2, 16.9548<, 812 628.2, 16.9004<<

Length@graphss2aD

28

graphss2a

886308.82, 16.5096<, 86372.74, 16.6444<, 86694.81, 17.3296<, 86729.18, 17.4034<,

86760.74, 17.4713<, 87431.31, 18.9507<, 87811.42, 19.8285<, 88135.26, 20.6048<,

88489.46, 21.4886<, 88584.18, 21.7317<, 88616.18, 21.8145<, 88807.46, 22.317<,

88835.36, 22.3914<, 88933.29, 22.6549<, 88997.14, 22.8285<, 89174.46, 23.3193<,

89231.35, 23.4795<, 89267.32, 23.5814<, 89374.18, 23.8874<, 89546.43, 24.3912<,

89602.35, 24.5575<, 89673.18, 24.7703<, 89764.11, 25.047<, 89896.46, 25.4566<,

89919.53, 25.5288<, 810 071.2, 26.0105<, 810 276.4, 26.6812<, 810 371.2, 26.9985<<

The intersection is at x=10276.4, graphss2b[[1]] and graphss2a[27]

Both maximum and minimum curve fits are “peaky” with the maximum more so. In

most cases such behavior would be unphysical, so we formulate a least squares transition

function  for  each  curve.  With  curves  generated  at  equispaced  x  values,  Mathematica

provides interpolations which are automatic spline fits by means of  the function Interpola-

tion[].  But  because  we  already  have  unequally  spaced  points,  we  would  rather  formulate

transition  functions  that  can  be  determined  from  unequal  intervals.  The  main  point  of  a

transition function is  to  match the slopes of  two curves that  have different  slopes coming

into  a  cusp  point  and  obtain  a  continuous  curve  that  comes  to  a  maximum or  minimum.

Often cubic equations are used as splines but in our case we have had to go to 7th order

plus a constant. Ideally we should fit the new function with a centered variable (t - epoch)

were the epoch time is  that  that  where the maximum (or  minimum) occurs.  But  since the

we  really  don’t  know  the  epoch  accurately  ahead  of  time,  we  will  use  non-linear  least

squares fitting to find it.  The points we need fit  are to be found in the four plotting arrays

(lists), graphss1 (post-minimum), graphssa (pre-minimum) and graphss2a (pre-maximum),

graphss2b  (post-maximum).  Combining  most  of  the  points  from  each  list  should  give

enough data to do the regressions properly.

Creating Smooth Velocity Curves That Transition Smoothly Through Maxi-

mum and Minimum

numminR = Length@graphss1D

41
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numminL = Length@graphssaD

26

nummaxL = Length@graphss2aD

28

nummaxR = Length@graphss2bD

25

Here we select the number of samples from each file based on the numbers above. 

numca = 25; numc1 = 40; numc2a = 26; numc2b = 23;

minimumf = Table@0, 8ii, 1, Hnumca + numc1L<D;

maximumf = Table@0, 8ii, 1, Hnumc2a + numc2bL<D;

nummin = Length@minimumfD

65

nummax = Length@maximumfD

49

The pre minimum values are inserted into the first part of the new array. 

jj = numminL - numca;

Do@jj = jj + 1;

minimumf@@iiDD = 8graphssa@@jj, 1DD, graphssa@@jj, 2DD<;, 8ii, 1, numca<D

The post minimum values are inserted into the 2nd part of the new array. 

jj = 0;

Do@jj = jj + 1; minimumf@@iiDD = 8graphss1@@jj, 1DD, graphss1@@jj, 2DD<;,

8ii, numca + 1, nummin<D

The pre maximum values are inserted into the first part of the new array. Unlike the mini-

mum  case  where  the  extreme  points  were  trimmed  off  the  beginnings  and  ends  of  the

original  files.  Here  we  want  to  trim  off  mainly  the  points  around  the  peak  since  trial  and

error fitting has shown that to be causing a lack of fit of the maximum curve. 

jj = 0;

Do@jj = jj + 1;

maximumf@@iiDD = 8graphss2a@@jj, 1DD, graphss2a@@jj, 2DD<;, 8ii, 1, numc2a<D

The first half post maximum values are inserted into the 2nd part of the new array. 

jj = 1;

Do@jj = jj + 1; maximumf@@iiDD = 8graphss2b@@jj, 1DD, graphss2b@@jj, 2DD<;,

8ii, numc2a + 1, nummax<D

The minimum part of the velocity curve
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mincurve1 = NonlinearModelFitAminimumf,

an + bn Ht - tminL + cn Ht - tminL2
+ dn Ht - tminL3

+ en Ht - tminL4
+ fn Ht - tminL5

+

gn Ht - tminL6
+ hn Ht - tminL7

, 8an, bn, cn, dn, en, fn, gn, hn, tmin<, tE

NonlinearModelFit::sszero :

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.

There is a possibility that the method has stalled at a point that is not a local minimum. �

FittedModelB -34 237. + �9� + 1.63301 ´ 10
-24 H5334.12 + tL7 F

mincurve = Normal@mincurve1D

-34 237. + 22.3399 H5334.12 + tL - 0.00616267 H5334.12 + tL2
+

9.33049 ´ 10
-7 H5334.12 + tL3

- 8.38068 ´ 10
-11 H5334.12 + tL4

+

4.46908 ´ 10
-15 H5334.12 + tL5

- 1.31097 ´ 10
-19 H5334.12 + tL6

+ 1.63301 ´ 10
-24 H5334.12 + tL7

The fact that the initial constant comes out to be the real minimum velocity while the epoch

tmin comes out to be the time value expected for the minimum indicates that this 7th order

polynomial is an excellent  fit. 

mincurve1@"RSquared"D

0.999967

minparams1 = mincurve1@"BestFitParameters"D

9an ® -34 237., bn ® 22.3399, cn ® -0.00616267, dn ® 9.33049 ´ 10
-7

, en ® -8.38068 ´ 10
-11

,

fn ® 4.46908 ´ 10
-15

, gn ® -1.31097 ´ 10
-19

, hn ® 1.63301 ´ 10
-24

, tmin ® -5334.12=

minparams = 8minparams1@@1, 2DD, minparams1@@2, 2DD, minparams1@@3, 2DD,

minparams1@@4, 2DD, minparams1@@5, 2DD, minparams1@@6, 2DD,

minparams1@@7, 2DD, minparams1@@8, 2DD, minparams1@@9, 2DD<;

minerrors = mincurve1@"ParameterErrors"D

99.47387 ´ 10
-27

, 5.95141 ´ 10
-32

, 3.55873 ´ 10
-32

, 2.42883 ´ 10
-28

,

1.40237 ´ 10
-24

, 5.47644 ´ 10
-21

, 8.8403 ´ 10
-25

, 3.5173 ´ 10
-29

, 1.52336 ´ 10
-42=

As expressed by Meyer (1975), power series expansions fit by least squares are notorious

for producing coefficients that horridly correlated so that using just the standard errors in a

error propagation based on a random model can mislead considerably. Examination of the

covariance matrix shows just that tendency here. 

1-2SpectBin.nb    21



mincovariance = mincurve1@"CovarianceMatrix"D �� MatrixForm

8.97542 ´ 10
-53 -5.63829 ´ 10

-58 -3.37149 ´ 10
-58 -2.30104 ´ 10

-54 -1.32858 ´ 10
-50 -5.18831

-5.63829 ´ 10
-58

3.54193 ´ 10
-63

2.11795 ´ 10
-63

1.4455 ´ 10
-59

8.34606 ´ 10
-56

3.25926

-3.37149 ´ 10
-58

2.11795 ´ 10
-63

1.26645 ´ 10
-63

8.64354 ´ 10
-60

4.99064 ´ 10
-56

1.94892

-2.30104 ´ 10
-54

1.4455 ´ 10
-59

8.64354 ´ 10
-60

5.89921 ´ 10
-56

3.40611 ´ 10
-52

1.33013

-1.32858 ´ 10
-50

8.34606 ´ 10
-56

4.99064 ´ 10
-56

3.40611 ´ 10
-52

1.96663 ´ 10
-48

7.67998

-5.18831 ´ 10
-47

3.25926 ´ 10
-52

1.94892 ´ 10
-52

1.33013 ´ 10
-48

7.67998 ´ 10
-45

2.99914

8.34565 ´ 10
-51 -5.24268 ´ 10

-56 -3.13493 ´ 10
-56 -2.13959 ´ 10

-52 -1.23536 ´ 10
-48 -4.82427

-3.29485 ´ 10
-55

2.0698 ´ 10
-60

1.23767 ´ 10
-60

8.44706 ´ 10
-57

4.87719 ´ 10
-53

1.90461

-1.44321 ´ 10
-68

9.06613 ´ 10
-74

5.42122 ´ 10
-74

3.69998 ´ 10
-70

2.1363 ´ 10
-66

8.34258

mincurve1@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

an -34 237. 9.47387 ´ 10
-27

-3.61383 ´ 10
30

5.357546495727143 ´ 10
-1664

bn 22.3399 5.95141 ´ 10
-32

3.75372 ´ 10
32

6.387315903063993 ´ 10
-1777

cn -0.00616267 3.55873 ´ 10
-32

-1.73171 ´ 10
29

4.174534455555614 ´ 10
-1590

dn 9.33049 ´ 10
-7

2.42883 ´ 10
-28

3.84156 ´ 10
21

1.748916013089006 ´ 10
-1161

en -8.38068 ´ 10
-11

1.40237 ´ 10
-24

-5.9761 ´ 10
13

3.131580966350929 ´ 10
-724

fn 4.46908 ´ 10
-15

5.47644 ´ 10
-21

816 055. 8.29629 ´ 10
-284

gn -1.31097 ´ 10
-19

8.8403 ´ 10
-25

-148 295. 2.46698 ´ 10
-242

hn 1.63301 ´ 10
-24

3.5173 ´ 10
-29

46 428. 4.32024 ´ 10
-214

tmin -5334.12 1.52336 ´ 10
-42

-3.50155 ´ 10
45

3.137475671353368 ´ 10
-2503

mincurve2 = Table@
8minimumf@@ii, 1DD, mincurve �. t ® minimumf@@ii, 1DD<, 8ii, 1, Length@minimumfD<D;

ListPlot@8minimumf, mincurve2<, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

3000 4000 5000 6000 7000 8000 9000

time days

18

20

22

24

radial velocity Hkm�sL

The maximum part of the velocity curve

The maximum of the rv curve is a bit sharper than that of minimum and so it was a some-

hwhat  harder  to  reproduce  it  satisfactorily.  Comments  on  how  to  construct  the  data  file

leaving peak points off are given above. First we redo the standard approach that worked

so  well  on  the  minimum  part  of  the  radial  velocity  curve.  In  that  polynomial  model,  the

order was seven but for the maximum fit it did not yield the expected am and tmax values.

In addition, the signs of the coefficients alternate, not a good sign that this is the correct fit.

Finally Mathematica issues a warning about convergence to a local minimum of the sum of

the  squares  instead  of  the  global  minimum  desired.  That  same  failing  of  proper  conver-

gence warning was issed by Meyer in his discussion of non-linear least-squares methodol-

ogy so it must be taken seriously here also. 
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The maximum of the rv curve is a bit sharper than that of minimum and so it was a some-

hwhat  harder  to  reproduce  it  satisfactorily.  Comments  on  how  to  construct  the  data  file

leaving peak points off are given above. First we redo the standard approach that worked

so  well  on  the  minimum  part  of  the  radial  velocity  curve.  In  that  polynomial  model,  the

order was seven but for the maximum fit it did not yield the expected am and tmax values.

In addition, the signs of the coefficients alternate, not a good sign that this is the correct fit.

Finally Mathematica issues a warning about convergence to a local minimum of the sum of

the  squares  instead  of  the  global  minimum  desired.  That  same  failing  of  proper  conver-

gence warning was issed by Meyer in his discussion of non-linear least-squares methodol-

ogy so it must be taken seriously here also. 

maxcurve1 = NonlinearModelFitAmaximumf,

am + bm Ht - tmaxL + cm Ht - tmaxL2
+ dm Ht - tmaxL3

+ em Ht - tmaxL4
+ fm Ht - tmaxL5

+

gm Ht - tmaxL6
+ hm Ht - tmaxL7

, 8am, bm, cm, dm, em, fm, gm, hm, tmax<, tE

NonlinearModelFit::sszero :

The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.

There is a possibility that the method has stalled at a point that is not a local minimum. �

FittedModelB �1� F

maxcurve1@"RSquared"D

0.999947

maxcurve = Normal@maxcurve1D

-2.68747 ´ 10
8

- 59 631.4 H-41 183.2 + tL -

5.66458 H-41 183.2 + tL2
- 0.000298625 H-41 183.2 + tL3

-

9.43581 ´ 10
-9 H-41 183.2 + tL4

- 1.78701 ´ 10
-13 H-41 183.2 + tL5

-

1.87825 ´ 10
-18 H-41 183.2 + tL6

- 8.45191 ´ 10
-24 H-41 183.2 + tL7

maxparams1 = maxcurve1@"BestFitParameters"D

9am ® -2.68747 ´ 10
8
, bm ® -59 631.4, cm ® -5.66458,

dm ® -0.000298625, em ® -9.43581 ´ 10
-9

, fm ® -1.78701 ´ 10
-13

,

gm ® -1.87825 ´ 10
-18

, hm ® -8.45191 ´ 10
-24

, tmax ® 41 183.2=

maxparams = 8maxparams1@@1, 2DD, maxparams1@@2, 2DD, maxparams1@@3, 2DD,

maxparams1@@4, 2DD, maxparams1@@5, 2DD, maxparams1@@6, 2DD,

maxparams1@@7, 2DD, maxparams1@@8, 2DD, maxparams1@@9, 2DD<

9-2.68747 ´ 10
8
, -59 631.4, -5.66458, -0.000298625, -9.43581 ´ 10

-9
,

-1.78701 ´ 10
-13

, -1.87825 ´ 10
-18

, -8.45191 ´ 10
-24

, 41 183.2=

maxerrors = maxcurve1@"ParameterErrors"D

99.84994 ´ 10
-28

, 2.8698 ´ 10
-33

, 1.0309 ´ 10
-34

, 1.95903 ´ 10
-30

,

3.10672 ´ 10
-26

, 3.28923 ´ 10
-22

, 2.05741 ´ 10
-26

, 3.20918 ´ 10
-31

, 5.82092 ´ 10
-45=
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maxcurve1@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

am -2.68747 ´ 10
8

9.84994 ´ 10
-28

-2.72841 ´ 10
35

5.046549556495583 ´ 10
-1387

bm -59 631.4 2.8698 ´ 10
-33

-2.0779 ´ 10
37

2.719066400059621 ´ 10
-1462

cm -5.66458 1.0309 ´ 10
-34

-5.4948 ´ 10
34

3.477840580841610 ´ 10
-1359

dm -0.000298625 1.95903 ´ 10
-30

-1.52435 ´ 10
26

6.545737547048920 ´ 10
-1017

em -9.43581 ´ 10
-9

3.10672 ´ 10
-26

-3.03723 ´ 10
17

6.923152552084629 ´ 10
-669

fm -1.78701 ´ 10
-13

3.28923 ´ 10
-22

-5.43293 ´ 10
8

5.470725699408782 ´ 10
-319

gm -1.87825 ´ 10
-18

2.05741 ´ 10
-26

-9.12921 ´ 10
7

5.27307 ´ 10
-288

hm -8.45191 ´ 10
-24

3.20918 ´ 10
-31

-2.63367 ´ 10
7

2.07478 ´ 10
-266

tmax 41 183.2 5.82092 ´ 10
-45

7.07503 ´ 10
48

1.413399005442366 ´ 10
-1923

The non-convergence most likely results because the procedure was unable to reach the

peak points properly at that order as can be seen below

maxcurve2 = Table@
8maximumf@@ii, 1DD, maxcurve �. t ® maximumf@@ii, 1DD<, 8ii, 1, Length@maximumfD<D;

ListPlot@8maximumf, maxcurve2<, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000 11 000 12 000

time days

18

20

22

24

26

radial velocity Hkm�sL

Several attempts were made to increase the order of the fit but because the pre and post

maximum curves are so well  reproduced these did not produce the desired results.  Next

we try specifying the desired time of peak passage to force the non-linear method to pass

the  local  minimum.  First  we  sort  the  original  data  using  a  Mathematica  “pure” function

(similar to that given in the online Help under Sort[])  that produces a list with the maximum

velocity  entry  first.  (For  more  information about  “pure” functions  in  Mathematica  put  Pure

Functions in the help search field and a number of links to on-line references will appear.)

You can now see the maximum points and select  either  their  times or  velocities or  some

combination of the two.  
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smax = Sort@maximumf, ð1@@2DD > ð2@@2DD &D

8810 371.2, 26.0377<, 810 071.2, 26.0105<, 89919.53, 25.5288<,

89896.46, 25.4566<, 89764.11, 25.047<, 89673.18, 24.7703<, 89602.35, 24.5575<,

89546.43, 24.3912<, 89374.18, 23.8874<, 810 734.3, 23.8598<, 810 769.2, 23.6612<,

810 777.7, 23.6129<, 89267.32, 23.5814<, 89231.35, 23.4795<, 89174.46, 23.3193<,

810 849.1, 23.2135<, 88997.14, 22.8285<, 88933.29, 22.6549<, 88835.36, 22.3914<,

88807.46, 22.317<, 88616.18, 21.8145<, 88584.18, 21.7317<, 811 133.2, 21.7144<,

88489.46, 21.4886<, 811 220.1, 21.2866<, 88135.26, 20.6048<, 811 468.6, 20.15<,

87811.42, 19.8285<, 811 570.5, 19.7236<, 811 730.5, 19.1031<,

811 750.4, 19.0302<, 87431.31, 18.9507<, 811 783.4, 18.9116<, 811 838.2, 18.7209<,

811 888.2, 18.5537<, 812 066.5, 18.011<, 812 114.5, 17.8799<, 812 119., 17.868<,

812 168.4, 17.7401<, 812 232.3, 17.5855<, 812 240.8, 17.5658<,

86760.74, 17.4713<, 86729.18, 17.4034<, 86694.81, 17.3296<, 812 463.5, 17.1264<,

812 510.4, 17.0534<, 812 582.2, 16.9548<, 86372.74, 16.6444<, 86308.82, 16.5096<<

Now you have a choice about where to put the maximum.  In the previous fit, the maximum

of the function comes out to be nearest the second point so we chose it. The problem with

that earlier maximum curve fit is that the derived coefficients and their errors were incorrect

because the sum of the squares was a local not global minimum. But now we can chose a

time closer to the actual maximum for the epoch. If we were purists we would run this with

this epoch and then run it again with the actual functional maximum. But doing this numeri-

cally achieves little in terms of  smaller errors so we run only once. You can try using the

functional  maximum if  you wish to  see that   numerically  it  is  not  necessary to  rerun.  The

difference between the two is 1 in the fourth significant figure. 

tmax1 = smax@@2, 1DD

10 071.2

Dtmax1 = 0.5;

Since  we  now  specify  the  epoch  of  the  expansion  we  can  return  to  the  LinearModelFit[]

routine to analyze the maximum curve once again.

yfunction = CollectAExpandAam1 + bm1 Ht - tmax1L + cm1 Ht - tmax1L2
+ dm1 Ht - tmax1L3

+

em1 Ht - tmax1L4
+ fm1 Ht - tmax1L5

+ gm1 Ht - tmax1L6
+ hm1 Ht - tmax1L7E, tE

am1 - 10 071.2 bm1 + 1.01429 ´ 10
8

cm1 - 1.02151 ´ 10
12

dm1 +

1.02878 ´ 10
16

em1 - 1.0361 ´ 10
20

fm1 + 1.04348 ´ 10
24

gm1 - 1.05091 ´ 10
28

hm1 +

Ibm1 - 20 142.4 cm1 + 3.04286 ´ 10
8

dm1 - 4.08603 ´ 10
12

em1 +

5.1439 ´ 10
16

fm1 - 6.21662 ´ 10
20

gm1 + 7.30435 ´ 10
24

hm1M t +

Icm1 - 30 213.6 dm1 + 6.08573 ´ 10
8

em1 - 1.02151 ´ 10
13

fm1 +

1.54317 ´ 10
17

gm1 - 2.17582 ´ 10
21

hm1M t
2

+

Idm1 - 40 284.7 em1 + 1.01429 ´ 10
9

fm1 - 2.04302 ´ 10
13

gm1 + 3.60073 ´ 10
17

hm1M t
3

+

Iem1 - 50 355.9 fm1 + 1.52143 ´ 10
9

gm1 - 3.57528 ´ 10
13

hm1M t
4

+

Ifm1 - 60 427.1 gm1 + 2.13 ´ 10
9

hm1M t
5

+ Hgm1 - 70 498.3 hm1L t
6

+ hm1 t
7

We  now  have  the  coefficient  expressions  in  the  original  expansion  to  get  back  into  the

assumed form. 
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maxcurve3 =

NonlinearModelFit@maximumf, yfunction, 8am1, bm1, cm1, dm1, em1, fm1, gm1, hm1<, tD

FittedModelB 43 992.2 - 35.0002 t + 0.0118019 t
2

- �23� �1� + �1� - �23� t
5

+ 5.58285 ´ 10
-19

t
6

- 8.45191 ´ 10
-24

t
7 F

maxcurve3@"RSquared"D

0.999947

Once again  we examine the  covariance matrix  for  the  least  squares fit  to  see how badly

the various values are correlated with each other and as for  the analysis of  the minimum

curve the coefficients are highly correlated. 

maxcovariance = maxcurve3@"CovarianceMatrix"D �� MatrixForm

1.03978 ´ 10
-37 -1.91224 ´ 10

-42 -1.34936 ´ 10
-39 -4.24425 ´ 10

-37 -3.26738 ´ 10
-33 -4.98058

-1.91224 ´ 10
-42

3.51678 ´ 10
-47

2.48159 ´ 10
-44

7.80554 ´ 10
-42

6.009 ´ 10
-38

9.15972

-1.34936 ´ 10
-39

2.48159 ´ 10
-44

1.75111 ´ 10
-41

5.50792 ´ 10
-39

4.2402 ´ 10
-35

6.46348

-4.24425 ´ 10
-37

7.80554 ´ 10
-42

5.50792 ´ 10
-39

1.73245 ´ 10
-36

1.3337 ´ 10
-32

2.03301

-3.26738 ´ 10
-33

6.009 ´ 10
-38

4.2402 ´ 10
-35

1.3337 ´ 10
-32

1.02673 ´ 10
-28

1.56509

-4.98058 ´ 10
-37

9.15972 ´ 10
-42

6.46348 ´ 10
-39

2.03301 ´ 10
-36

1.56509 ´ 10
-32

4.23413

5.35091 ´ 10
-40 -9.8408 ´ 10

-45 -6.94407 ´ 10
-42 -2.18418 ´ 10

-39 -1.68146 ´ 10
-35 -2.6917

1.16368 ´ 10
-43 -2.14011 ´ 10

-48 -1.51015 ´ 10
-45 -4.74999 ´ 10

-43 -3.65672 ´ 10
-39 -7.34243

maxcurve4 = Normal@maxcurve3D

43 992.2 - 35.0002 t + 0.0118019 t
2

- 2.18529 ´ 10
-6

t
3

+

2.39942 ´ 10
-10

t
4

- 1.56205 ´ 10
-14

t
5

+ 5.58285 ´ 10
-19

t
6

- 8.45191 ´ 10
-24

t
7

maxparams4 = maxcurve3@"BestFitParameters"D

9am1 ® 25.4266, bm1 ® -0.000057498, cm1 ® -3.24258 ´ 10
-6

, dm1 ® -4.48887 ´ 10
-10

,

em1 ® 5.69323 ´ 10
-13

, fm1 ® 1.1243 ´ 10
-16

, gm1 ® -3.75603 ´ 10
-20

, hm1 ® -8.45191 ´ 10
-24=

maxparams5 = 8maxparams4@@1, 2DD, maxparams4@@2, 2DD,

maxparams4@@3, 2DD, maxparams4@@4, 2DD, maxparams4@@5, 2DD,

maxparams4@@6, 2DD, maxparams4@@7, 2DD, maxparams4@@8, 2DD<

925.4266, -0.000057498, -3.24258 ´ 10
-6

, -4.48887 ´ 10
-10

,

5.69323 ´ 10
-13

, 1.1243 ´ 10
-16

, -3.75603 ´ 10
-20

, -8.45191 ´ 10
-24=

maxerrors5 = maxcurve3@"ParameterErrors"D

93.22456 ´ 10
-19

, 5.93025 ´ 10
-24

, 4.18463 ´ 10
-21

, 1.31623 ´ 10
-18

,

1.01328 ´ 10
-14

, 2.0577 ´ 10
-18

, 1.69114 ´ 10
-21

, 3.93211 ´ 10
-25=
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maxcurve3@"ParameterTable"D

Estimate Standard Error t-Statistic P-Value

am1 25.4266 3.22456 ´ 10
-19

7.88529 ´ 10
19

2.429087584214556 ´ 10
-784

bm1 -0.000057498 5.93025 ´ 10
-24

-9.69571 ´ 10
18

5.072310266715133 ´ 10
-747

cm1 -3.24258 ´ 10
-6

4.18463 ´ 10
-21

-7.74879 ´ 10
14

4.970314516241459 ´ 10
-579

dm1 -4.48887 ´ 10
-10

1.31623 ´ 10
-18

-3.41041 ´ 10
8

2.041183143498667 ´ 10
-318

em1 5.69323 ´ 10
-13

1.01328 ´ 10
-14

56.1862 2.03213 ´ 10
-40

fm1 1.1243 ´ 10
-16

2.0577 ´ 10
-18

54.6386 6.29318 ´ 10
-40

gm1 -3.75603 ´ 10
-20

1.69114 ´ 10
-21

-22.21 1.78698 ´ 10
-24

hm1 -8.45191 ´ 10
-24

3.93211 ´ 10
-25

-21.4946 6.16687 ´ 10
-24

Our  little  trick  worked.  As  can  be  seen  our  function  appears  exactly  the  same,  but  the

constant parameter is what would be expected for the maximum value of the function. We

indeed  have  arrived  at  the  global  minimum with  coefficients  that  will  have  minimum vari-

ance. Now we are ready to move on with the solutions. 

maxcurve5 = Table@8maximumf@@ii, 1DD, maxcurve4 �. t ® maximumf@@ii, 1DD<,

8ii, 1, Length@maximumfD<D;

ListPlot@8maximumf, maxcurve5<, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

7000 8000 9000 10 000 11 000 12 000

time days

18

20

22

24

26

radial velocity Hkm�sL

Deriving the Orbital Parameters for HD 108613

Now  we  are  ready  to  integrate  the  maximum  and  minimum  curves  as  needed  to

derive the orbital elements. First we need to verify the maximum and minimum times since

these are where the half integrals are to be taken from when it comes time to calculate the

orbital elements.  Of course there are multiple roots from Solve[]=0 from which the correct

root  can  only  be  selected  from  graphs  by  inspection  and  then  selected  using  the  proper

Mathematica  component  notation.  In  the case of  the  minimum, the tmin0 value (from the

least-squares  fit)  should  be  reasonably  close  although  not  likely  to  be  exactly  the  time

obtained by Solve[]=0.

First we turn to the determination of the time of minimum.
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min1 = Solve@¶t mincurve � 0, tD

88t ® 2085.69<, 8t ® 4186.23<, 8t ® 6071.83 - 538.378 ä<,

8t ® 6071.83 + 538.378 ä<, 8t ® 9195.28 - 1041.39 ä<, 8t ® 9195.28 + 1041.39 ä<<

There are two real  solutions.  The smaller  can be rejected by consulting the graph so the

next one is chosen. 

tmin0 = min1@@2, 1, 2DD

4186.23

The predicted radial velocity at this time is

lims1 = mincurve �. t ® tmin0

16.3353

Now we turn to the maximum determination 

max1 = Solve@¶t maxcurve4 � 0, tD

88t ® 6372.08<, 8t ® 7765.5 - 616.775 ä<, 8t ® 7765.5 + 616.775 ä<,

8t ® 10 062.3<, 8t ® 12 326.3 - 326.461 ä<, 8t ® 12 326.3 + 326.461 ä<<

The time of maximum given by the function and verified from the graph is 

tmax0 = max1@@4, 1, 2DD

10 062.3

The predicted radial velocity at this time is

lims2 = maxcurve4 �. t ® tmax0

25.4269

Next we need to find the two time intersection points for a given rv level and then

substitute as limits in the integral. This is to be done by trial and error by adjusting the rv0

value  computing  the  two  integrals  comparing  their  values  and  readjusting  the  rV0  value

until  there  is  near  equality.  In  the  present  case,  we  get  19.746  km/s  for  the  Γ  velocity.

Griffin gets 19.8 km/s. Once we were satified with the actual rv0 value then we calculated

the times at which this is achieved for the two curves using Solve[]=0 to give times

rv0 = 19.746;

We will need an error estimate of this. Although this value is quoted to three decimals, the

adjustment process suggests the following is reasonable. 

Drv0 = 0.05;

min2 = Solve@ mincurve � rv0, tD

88t ® 1630.62<, 8t ® 2846.57<, 8t ® 5490.94 - 1767.28 ä<, 8t ® 5490.94 + 1767.28 ä<,

8t ® 8030.71<, 8t ® 9725.36 - 1483.77 ä<, 8t ® 9725.36 + 1483.77 ä<<

max2 = Solve@ maxcurve4 � rv0, tD

88t ® 5917.56<, 8t ® 7682.97<, 8t ® 7773.07 - 1024.06 ä<, 8t ® 7773.07 + 1024.06 ä<,

8t ® 11 559.9<, 8t ® 12 673.8 - 644.873 ä<, 8t ® 12 673.8 + 644.873 ä<<

Now  we  take  the  definite  integrals  as  required.  Be  sure  to  manually  change  the

indices of the limits to correspond to the real roots of the equations if that changes during

your iteration !  Also note that the lower limit of the maximum curve should properly corre-

spond to the value of the upper limit of the minimum integral. and so we have made it that

way. Also note that we have made no special sophisticated attempt to make the two curve

fits blend smoothly in the vicinity of rv0. 
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Now  we  take  the  definite  integrals  as  required.  Be  sure  to  manually  change  the

indices of the limits to correspond to the real roots of the equations if that changes during

your iteration !  Also note that the lower limit of the maximum curve should properly corre-

spond to the value of the upper limit of the minimum integral. and so we have made it that

way. Also note that we have made no special sophisticated attempt to make the two curve

fits blend smoothly in the vicinity of rv0. 

Here is the integral of the (rv0-minimum curve)

tuL = min2@@5, 1, 2DD

8030.71

tlL = min2@@2, 1, 2DD

2846.57

integ1 = à
tlL

tuL

Hrv0 - mincurveL ât

11 872.2

Plotting  the  two  functions  mincurve  and  maxcurve  shows  that  the  two  functions

have a range of  “osculation” where they stay close together   from about  7000 to  at  least

10000.  Thus for the other integral we can use the upper limit of integ1 as the lower limit of

integ2 calculated below without dire consequence. 

plota = Plot@8mincurve �. t -> t2, maxcurve �. t ® t2<,

8t2, tlL, tuL + 2000<, AxesLabel ® 8"time days", "radial velocity Hkm�sL"<D

4000 5000 6000 7000 8000 9000 10 000

time days

20

30

40

50

60

70

radial velocity Hkm�sL

Here is the integral of the (maximum curve-rv0)

tuU = max2@@5, 1, 2DD;

tlU = min2@@5, 1, 2DD;

integ2 = à
tlU

tuU

Hmaxcurve4 - rv0L ât

11 875.8

Now that a rv0 value has been established we can proceed, but notice we have not

established any of the errors of  the process so far. We now take a detour to discuss the

propagation of errors. 
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Now that a rv0 value has been established we can proceed, but notice we have not

established any of the errors of  the process so far. We now take a detour to discuss the

propagation of errors. 

A Digression Concerning the Propagation of Errors

One of the virtues of using Mathematica  is not only that it  can calculate the errors

for  you,  but  that  it  can  compare  results  from  all  the  three  error  propagation  categories

mentioned  above.   Finding  the  propagated  random  errors  in  the  case  of  integrals  of  a

polynomial is not trivial and often turns out (to the embarrassment of the researcher) many

times larger than the integral value itself. This is not just limited to the case of the integral

of a polynomial. That is why the results of a “proper” (independent errors) error analysis is

rarely  quoted  when  the  observational  errors  are  large.   In  a  high  signal  to  noise  case

where  equal  weights  are  assumed,  error  independence  turns  out  to  be  a  reasonable

assumption.  In  this  spectroscopic  binary  case,  we  find  that  assumption  to  be  far  from

justified. The symptom of this is that the propagated errors are very large, sometimes 2-3

times larger  than the  numbers  themselves.  In  such cases,  the  true  errors  are  most  likely

correlated  with  unknown  linear  (or  even  non-linear)  correlation  coefficients.  When  that

happens,  assuming  the  coefficients  to  be  orthogonal  produces  erroneous  results  and

simply  means  that  the  true  errors  remain  largely  unknown.  In  spite  of  the  caveats,  we

provide the errors under the three situations mentioned near the first  of  this  notebook for

much  of  the  spectroscopic  binary  analysis  primarily  because  Mathematica  makes  the

arduous calculations relatively  easy.  But  to  do  the  proper  error  analysis  requires  that  the

least  squares  “predicted  radial  velocities”  be  calculated  explicitly  from  the  series  coeffi-

cients. Here we give the minimum curve and maximum curve expansions as needed. 

Here  are  the  power  series  expansions  of  each  curve.  These  produce  the  same

results as mincurv1/.t -> te and maxcurve4/.t -> te used above. In the case of the minimum

curve series expansion the “targument” and its  error  are both available in  the minparams

and  minerror  vectors  as  the  last  entry.  In  the  maximum  curve  case,  the  number  was

selected  by  “eye” and hence no  error  is  assigned.  We can assign  this  to  have the  same

error as does tmin0. Hence 

Dtph1 = minerrors@@9DD;

Another issue is what error to assign to individual observation times. A reasonable

estimate might be conservatively estimated at 0.1 day. So in that case we take 

Dte1 = 0.1;

minseries@te_D := ModuleB8<, n0 = Length@minparamsD;

â
n=0

n0-2

minparams@@n + 1DD Hte - tphLn �. tph ® minparams@@n0DDF

maxseries@te_D := ModuleB8<, n0 = Length@maxparams5D;

â
n=0

n0-1

maxparams5@@n + 1DD Hte - tphLn �. tph ® tmax0F

Here are the integrals of each curve from zero
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intminseries@te_D := ModuleB8<, n0 = Length@minparamsD;

rv0 Hte - tphL - â
n=0

n0-2 minparams@@n + 1DD

n + 1

Hte - tphLn+1 �. tph -> minparams@@n0DDF

intmaxseries@te_D := ModuleB8<, n0 = Length@maxparams5D;

â
n=0

n0-2 maxparams5@@n + 1DD

n + 1

Hte - tphLn+1
- rv0 Hte - tphL �. tph ® tmax1F

We  now  illustrate  the  three  main  error  analysis  methods  for  the  integrals  needed

for  spectroscopic  orbits  because  the  star  being  analyzed  (if  the  results  are  taken  at  face

value)  appears to  be very  unusual.  But  since it  turns out  that  the parameters in  question

appear  to  have  large  errors,  the  results  may  actually  be  suspect  and  we  need  to  decide

which is the case.

a) Random Errors

Here is a function that calculates the random error in the definite integral of a fitted

non-linear polynomial. Here n0 = the number of coefficents including the constant term, tph

= the epoch time from the fit (this is always the last coefficient in the fits), Dtph = the error

of the epoch time from the fit, t1 = the time for which the error is desired, Dt1 the error on

the  time,   c0  =  a  list  giving  all  power  law  coefficients  in  the  polynomial  starting  with  the

constant term first and going to progressively higher powers, Dc0 = the errors of the coeffi-

cients  in  the  same  order  as  the  previous  list,  and  Drv0  =  the  error  of  the  velocity

determination.

This function has been left  with undermined parameters and coefficients so that  it

will  generate errors for any integral of polynomial. To be useful we have to put this into a

Module[]  where  the  unspecified  parameters  can  be  specified  after  the  function  has  been

generated. 

Before doing the integral error analysis, we first do the “prediction” errors for the max and

min series according to standard propagation of random errors. 

erminseries@te_D := ModuleB8<, n0 = Length@minerrorsD; Clear@tph, Dte, DtphD;

/ â
n=0

n0-2

n minparams@@n + 1DD Hte - tphLn-1
Dte1

2
+ minerrors@@n0DD2 �.

8tph -> minparams@@n0DD, Dte ® Dte1, Dtph ® minerrors@@n0DD<

2

+

â
n=0

n0-2

Hte - tphLn
minerrors@@n + 1DD �. 8tph -> minparams@@n0DD,

Dte ® Dte1, Dtph ® minerrors@@n0DD<

2

F
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ermaxseries@te_D := ModuleB8<, n0 = Length@maxerrors5D; Clear@tph, Dte, DtphD;

/ â
n=0

n0-1

n maxparams5@@n + 1DD Hte - tphLn-1
Dte

2
+ Dtph1

2 �.

8tph ® tmax1, Dte ® Dte1, Dtph ® Dtph1<

2

+

â
n=0

n0-1

Hte - tphLn
maxerrors5@@n + 1DD �. 8tph ® tmax1, Dte ® Dte1, Dtph ® Dtph1<

2

F

Using  the  analogous pattern,  we  do  the  “prediction” errors  for  the  max  and  min  integrals

according to standard propagation of random errors. 

erintminseries@te_D := ModuleB8<, n0 = Length@minerrorsD; Clear@tph, Dte, DtphD;

/ â
n=0

n0-2

minparams@@n + 1DD Hte - tphLn
Dte1

2
+ minerrors@@n0DD2 �.

8tph -> minparams@@n0DD, Dte ® Dte1, Dtph ® minerrors@@n0DD<

2

+

â
n=0

n0-2 Hte - tphLn+1

n + 1

minerrors@@n + 1DD �. 8tph -> minparams@@n0DD,

Dte ® Dte1, Dtph ® minerrors@@n0DD<

2

F

erintmaxseries@te_D := ModuleB8<, n0 = Length@maxerrors5D; Clear@tph, Dte, DtphD;

/ â
n=0

n0-1

maxparams5@@n + 1DD Hte - tphLn
Dte1

2
+ Dtph1

2 �. 8tph ® tmax1,

Dte ® Dte1, Dtph ® Dtph1<

2

+ â
n=0

n0-1 Hte - tphLn+1

n + 1

maxerrors5@@n + 1DD �.

8tph ® tmax1, Dte ® Dte1, Dtph ® Dtph1<

2

F

Here is the total error for the evaluation of the power series for the minimum

errmin@tU_, DtU_D := ModuleB8<, n1 = Length@minparamsD;

answ1 = erminseries@tUD2
+ DtU

2
+ minerrors@@n1DD2 F

Here is the total error for the evaluation of the power series for the maximum
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errmax@tU_, DtU_D :=

ModuleB8<, n2 = Length@maxparams5D; answ3 = ermaxseries@tUD2
+ DtU

2
+ Dtph1

2 F;

Here is the total error for the integral representing the minimum curve integral

errintmin@tU_, DtU_, tL_, DtL_D := ModuleB8<, n1 = Length@minparamsD;

answ1 = erintminseries@tUD2
+ DtU

2
+ minerrors@@n1DD2

;

answ2 = erintminseries@tLD2
+ DtL

2
+ minerrors@@n1DD2

; answ1
2

+ answ2
2 F

Here is the error for the integral representing the maximum curve integral

errintmax@tU_, DtU_, tL_, DtL_D :=

ModuleB8<, n2 = Length@maxparams5D; answ3 = erintmaxseries@tUD2
+ DtU

2
+ Dtph1

2
;

answ4 = erintmaxseries@tLD2
+ DtL

2
+ Dtph1

2
; answ3

2
+ answ4

2 F;

b) Correlated Errors

Because  we  have  mentioned  the  possibility  of  systematic  errors  and  the  coeffi-

cients for the power series coefficients are far from independent as shown by the displayed

covariance  matrices  from  each  fit,  we  develop  the  errors  propagated  through  the  covari-

ance matrix rather than through the sum of squares alone. First we have to put the minco-

variances  “matrix” into a proper form that can do a matrix multiplication. The first complica-

tion  is  that  the  mincurve1[“CovarianceMatrix”]//MatrixForm  used  above  disguises  the  fact

that  the assignment to mincovariance put  the matrix one Mathematica  expression deeper

than you might think from the displayed form above. In addition for the minimum curve, we

have to eliminate the fact that the last row-column is for the tph argument whose error form

is different from that of the coefficients themselves. Hence the restoration of the proper list

structure that is one row column shorter than mincovariance is needed for the calculation

of the coefficient covariances.  As long as matrices are of small dimension their handling in

Mathematica  is relatively straight forward but when the matrices are built  from those con-

structed in  the  nonlinear  least  squares  routine  it  is  a  bit  more  complicated.  The following

algorithms were found by trial and error to be of the correct list depth required by Mathemat-

ica operations. These are the correlated prediction errors for the power series produced by

the least squares process. 

Correlated Errors for Minimum Curve  Expansion

serminseries@te_D :=

ModuleA8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

aminmatrix = Table@Table@mincovariance@@1, i, jDD, 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableAIHte - minparams@@9DDLs@@iDDM, 8i, 1, Hns - 1L<E;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE
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serminarg@te_D :=

ModuleA8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

vector = TableAIminparams@@iDD s@@iDD Hte - minparams@@9DDLs@@iDD-1M

Abs@minerrors@@9DDD, 8i, 2, Hns - 1L<E; Flatten@Transpose@vectorD.vectorDE

serminte@te_D :=

ModuleA8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

vector = TableAIminparams@@iDD s@@iDD Hte - minparams@@9DDLs@@iDD-1M Abs@Dte1D,

8i, 2, Hns - 1L<E; Flatten@Transpose@vectorD.vectorDE

Correlated Errors for Maximum Curve  Expansion

sermaxseries@te_D := ModuleA8<, Clear@i, jD; nt = Length@maxerrors5D;

amaxmatrix = Table@Table@maxcovariance@@1, i, jDD, 8i, 1, nt<D, 8j, 1, nt<D;

ss = Table@8j - 1<, 8j, 1, ns<D; vector = TableAIHte - tmax1Lss@@iDDM, 8i, 1, nt<E;

bmatrix = Flatten@amaxmatrix.vectorD; Transpose@vectorD.bmatrixE

sermaxarg@te_D :=

ModuleA8<, Clear@i, jD; nt = Length@maxerrors5D; ss = Table@8j - 1<, 8j, 1, nt<D;

vector = TableAImaxparams5@@iDD ss@@iDD Hte - tmax1Lss@@iDD-1M Abs@minerrors@@9DDD,

8i, 2, nt<E; Flatten@Transpose@vectorD.vectorDE

sermaxte@te_D :=

ModuleA8<, Clear@i, jD; nt = Length@maxerrors5D; ss = Table@8j - 1<, 8j, 1, nt<D;

vector = TableAImaxparams5@@iDD ss@@iDD Hte - tmax1Lss@@iDD-1M Abs@Dte1D, 8i, 2, nt<E;

Flatten@Transpose@vectorD.vectorDE

Total error for the power series representing the minimum curve

serrmin@te_D :=

ModuleB8<, answ1 = serminseries@teD + serminarg@teD + serminte@teD; answ1 F

Total error for the power series representing the maximum curve 

serrmax@te_D :=

ModuleB8<, answ2 = sermaxseries@teD + sermaxarg@teD + sermaxte@teD; answ2 F

Using  the  analogous pattern,  we  do  the  “prediction” errors  for  the  max  and  min  integrals

according to the propagation of correlated errors. (Meyer,1975)

Correlated Errors for Minimum Curve  Integral

serintminseries@te_D :=

ModuleB8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

aminmatrix = Table@Table@mincovariance@@1, i, jDD, 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableB
Hte - minparams@@9DDLs@@iDD+1

s@@iDD + 1

, 8i, 1, Hns - 1L<F;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixF
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serintminarg@te_D :=

ModuleA8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

vector = TableAIminparams@@iDD Hte - minparams@@9DDLs@@iDDM Abs@minerrors@@9DDD,

8i, 2, Hns - 1L<E; Flatten@Transpose@vectorD.vectorDE

serintminte@te_D :=

ModuleA8<, Clear@i, jD; ns = Length@minerrorsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

vector = TableAIminparams@@iDD Hte - minparams@@9DDLs@@iDDM Abs@Dte1D,

8i, 2, Hns - 1L<E; Flatten@Transpose@vectorD.vectorDE

Correlated Errors for Maximum Curve Integral

serintmaxseries@te_D := ModuleB8<, Clear@i, jD; nt = Length@maxerrors5D;

amaxmatrix = Table@Table@maxcovariance@@1, i, jDD, 8i, 1, nt<D, 8j, 1, nt<D;

ss = Table@8j - 1<, 8j, 1, ns<D; vector = TableB
Hte - tmax1Lss@@iDD+1

ss@@iDD + 1

, 8i, 1, nt<F;

bmatrix = Flatten@amaxmatrix.vectorD; Transpose@vectorD.bmatrixF

serintmaxarg@te_D :=

ModuleA8<, Clear@i, jD; nt = Length@maxerrors5D; ss = Table@8j - 1<, 8j, 1, nt<D;

vector = TableAImaxparams5@@iDD Hte - tmax1Lss@@iDDM Abs@minerrors@@9DDD, 8i, 2, nt<E;

Flatten@Transpose@vectorD.vectorDE

serintmaxte@te_D :=

ModuleA8<, Clear@i, jD; nt = Length@maxerrors5D; ss = Table@8j - 1<, 8j, 1, nt<D;

vector = TableAImaxparams5@@iDD Hte - tmax1Lss@@iDDM Abs@Dte1D, 8i, 2, nt<E;

Flatten@Transpose@vectorD.vectorDE

Total  correlated error  for  the  integral  over  the  minimum curve (note  that  for  some

reason these functions need to be immediately evaluated.)

serrintmin@tuL0_, tlL0_D :=

ModuleB8<, answ1 = serintminseries@tuL0D + serintminarg@tuL0D + serintminte@tuL0D;

answ2 = serintminseries@tlL0D + serintminarg@tlL0D + serintminte@tlL0D;

answ1@@1DD + answ2@@1DD F

Total correlated error for the integral over the maximum curve

serrintmax@tuU0_, tlU0_D :=

ModuleB8<, answ3 = serintmaxseries@tuU0D + serintmaxarg@tuU0D + serintmaxte@tuU0D;

answ4 = serintmaxseries@tlU0D + serintmaxarg@tlU0D + serintmaxte@tlU0D;

answ3@@1DD + answ4@@1DD F

c) Non-linear Propagation -  A  Novel Monte Carlo Technique

Because we are concentrating on computational  aspects  of  astrophysics we have

chosen to skip consideration of the very involved process of exploring higher order Taylor

series  expansions.  Instead we explore  some Monte  Carlo  approaches to  non-linear  error

analysis. The philosophy for doing a Monte Carlo investigation of the errors is a bit differ-

ent from standard propagation. Instead of  getting the prediction errors from an expansion

of  the  first  order  random  or  systematic  errors,  we  determine  the  errors  directly  through

perturbations around the mean values.   These “random” sample deviations are then aver-

aged  by  the  standard  deviation  “rule” to  produce  an  estimate  of  the  average  prediction

error  for  the whole curve or  integral.   First  we do the minimum curve and then the maxi-

mum curve. Secondly we will  do the integrals of  those curves. Rather than trying to do a

random  perturbation  of  the  observations  themselves  and  doing  repeated  least  squares

solutions, we prefer to just perturb the covariance matrix values themselves and combine

them with  random fluctuations.  The mm is  the number of  MC values created,  tfluct  =  the

time  flucuation  in  days,  and  cfluct  =  the  allowed  coefficient  fluctuation  in  fractions  of  the

covariance value. 
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mum curve. Secondly we will  do the integrals of  those curves. Rather than trying to do a

random  perturbation  of  the  observations  themselves  and  doing  repeated  least  squares
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time  flucuation  in  days,  and  cfluct  =  the  allowed  coefficient  fluctuation  in  fractions  of  the

covariance value. 

Monte Carlo Errors for Minimum Curve Expansion

errMCUmin@mm_, tfluct_, cfluct_D :=

ModuleB8<, dev = Table@0, 8ii, 1, mm<D; dev1 = Table@0, 8ii, 1, mm<D; minU = 8000;

minL = 2800; DΤ = tfluct; Clear@i, jD; trial := RandomReal@8minL, minU<D;

Dtime := RandomReal@8-tfluct, tfluct<D; ns = Length@minparamsD; Do@time = trial;

dev@@iiDD = Hmincurve �. t ® Htime + DtimeLL - Hmincurve �. t ® timeL;, 8ii, 1, mm<D;

s = Table@8j - 1<, 8j, 1, ns - 1<D;

DoAdev1@@iiDD = ModuleA8<, aminmatrix = Table@Table@mincovariance@@1, i, jDD

H1 + RandomReal@8-cfluct, cfluct<DL , 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableAIHtrial - minparams@@9DDLs@@iDDM, 8i, 1, Hns - 1L<E;

bmatrix = Flatten@aminmatrix.vectorD;

Transpose@vectorD.bmatrixE - ModuleA8<, aminmatrix =

Table@Table@mincovariance@@1, i, jDD , 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableAIHtrial - minparams@@9DDLs@@iDDM, 8i, 1, Hns - 1L<E;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE,

8ii, 1, mm<E; sd = 0; sd1 = 0; DoAsd = sd + dev@@iiDD2
;

sd1 = sd1 + Abs@dev1@@iiDDD;,

8ii, 1, mm<E;
sd + sd1

2 Hmm - 1L
F

Monte Carlo Errors for Maximum Curve Expansion
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errMCUmax@mm_, tfluct_, cfluct_D :=

ModuleB8<, dev = Table@0, 8ii, 1, mm<D; dev1 = Table@0, 8ii, 1, mm<D; maxU = 11 500;

maxL = 7500; DΤ = tfluct; Clear@i, jD; trial := RandomReal@8maxL, maxU<D;

Dtime := RandomReal@8-tfluct, tfluct<D; ns1 = Length@maxerrors5D; Do@time = trial;

dev@@iiDD = Hmaxcurve4 �. t ® Htime + DtimeLL - Hmaxcurve4 �. t ® timeL;,

8ii, 1, mm<D; s = Table@8j - 1<, 8j, 1, ns1<D;

DoAdev1@@iiDD = ModuleA8<, aminmatrix = Table@Table@maxcovariance@@1, i, jDD

H1 + RandomReal@8-cfluct, cfluct<DL , 8i, 1, ns1<D, 8j, 1, ns1<D;

vector = TableAIHtrial - tmax1Ls@@iDDM, 8i, 1, ns1<E;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE - ModuleA8<,

aminmatrix = Table@Table@maxcovariance@@1, i, jDD , 8i, 1, ns1<D, 8j, 1, ns1<D;

vector = TableAIHtrial - tmax1Ls@@iDDM, 8i, 1, ns1<E;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE,

8ii, 1, mm<E; sd = 0; sd1 = 0; DoAsd = sd + dev@@iiDD2
;

sd1 = sd1 + Abs@dev1@@iiDDD;, 8ii, 1, mm<E;
sd + sd1

2 Hmm - 1L
F

Monte Carlo Errors for Minimum Curve Integrals

errMCUintmin@mm_, tfluct_, cfluct_, tU0_, tL0_D :=

ModuleB8<, dev1 = Table@0, 8ii, 1, mm<D; dev2 = Table@0, 8ii, 1, mm<D;

integmin = à
tL1

tU1

Hrv0 - mincurveL ât; Dtime1 := RandomReal@8-tfluct, tfluct<D;

Dtime2 := RandomReal@8-tfluct, tfluct<D;

ns = Length@minparamsD; s = Table@8j - 1<, 8j, 1, ns - 1<D;

minU = 8000; minL = 2800; trial := RandomReal@8minL, minU<D;

Do@dev1@@iiDD = Hintegmin �. 8tU1 ® HtU0 + Dtime1L, tL1 ® tL0 + Dtime2<L -

Hintegmin �. 8tU1 ® tU0, tL1 ® tL0<L;, 8ii, 1, mm<D;

s = Table@8j - 1<, 8j, 1, ns - 1<D; DoAdev2@@iiDD =

ModuleA8<, aminmatrix = Table@Table@mincovariance@@1, i, jDD

H1 + RandomReal@8-cfluct, cfluct<DL , 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableAIHtrial - minparams@@9DDLs@@iDDM, 8i, 1, Hns - 1L<E;

bmatrix = Flatten@aminmatrix.vectorD;

Transpose@vectorD.bmatrixE - ModuleA8<, aminmatrix =

Table@Table@mincovariance@@1, i, jDD , 8i, 1, ns - 1<D, 8j, 1, ns - 1<D;

vector = TableAIHtrial - minparams@@9DDLs@@iDDM, 8i, 1, Hns - 1L<E;

bmatrix = Flatten@aminmatrix.vectorD;

Transpose@vectorD.bmatrixE, 8ii, 1, mm<E; sd = 0;

sd1 = 0; DoAsd1 = sd1 + dev1@@iiDD2
; sd = sd + Abs@dev2@@iiDDD;, 8ii, 1, mm<E;

sd + sd1

2 Hmm - 1L
+ Drv0

2
+ 2 tfluct

2 F

Monte Carlo Errors for Maximum Curve Integrals
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errMCUintmax@mm_, tfluct_, cfluct_, tU0_, tL0_D :=

ModuleB8<, dev1 = Table@0, 8ii, 1, mm<D;

dev2 = Table@0, 8ii, 1, mm<D; integmax = à
tL2

tU2

Hmaxcurve4 - rv0L ât;

Dtime1 := RandomReal@8-tfluct, tfluct<D; Dtime2 := RandomReal@8-tfluct, tfluct<D;

ns1 = Length@maxerrors5D; s = Table@8j - 1<, 8j, 1, ns1<D;

maxU = 11 500; maxL = 7500; trial := RandomReal@8maxL, maxU<D;

Do@dev2@@iiDD = Hintegmax �. 8tU2 ® HtU0 + Dtime1L, tL2 ® HtL0 + Dtime2L<L -

Hintegmax �. 8tU2 ® tU0, tL2 ® tL0<L;, 8ii, 1, mm<D;

DoAdev1@@iiDD = ModuleA8<, aminmatrix = Table@Table@maxcovariance@@1, i, jDD

H1 + RandomReal@8-cfluct, cfluct<DL , 8i, 1, ns1<D, 8j, 1, ns1<D;

vector = TableAIHtrial - tmax1Ls@@iDDM, 8i, 1, ns1<E;

bmatrix = Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE - ModuleA8<,

aminmatrix = Table@Table@maxcovariance@@1, i, jDD , 8i, 1, ns1<D, 8j, 1, ns1<D;

vector = TableAIHtrial - tmax1Ls@@iDDM, 8i, 1, ns1<E; bmatrix =

Flatten@aminmatrix.vectorD; Transpose@vectorD.bmatrixE, 8ii, 1, mm<E;

sd = 0; sd2 = 0; DoAsd2 = sd2 + dev2@@iiDD2
; sd = sd + Abs@dev1@@iiDDD;,

8ii, 1, mm<E;
sd + sd2

2 Hmm - 1L
+ Drv0

2
+ 2 tfluct

2 F

We  now  conclude  the  digression  concerning  the  theory  of  errors.  We  hope  the

student realizes the importance of rigorous error analysis to modern astronomy and astro-

physics.  It  takes a long time to gain a good grasp of  the statistics and probability  and so

being  able  to  adapt  the  Mathematica  routines  presented  here  is  a  way  around  a  lack  of

statistical  experience.  For  example,  students  should  be  able  to  substitute  appropriate

Gaussian  (or  some  other  error  model)  pseudorandom  generators  for  the  uniform  ones

used  above  in  the  Monte  Carlo  calculations.  One  final  point  is  that  although  a  big  fuss

about  errors  is  made  during  the  data  analysis  stage,  students  are  disappointed  to  learn

that when it comes to reporting the results and the errors, all this effort is given only pass-

ing  notice  (often  one  line  at  most)  in  the  actual  research  paper.  That  is  because  unless

there were special problems encountered, the correctness of the error analysis is taken for

granted. 

Returning to the Determination of Orbital Elements

Here  are  the  errors  for  the  integral  of  the  (rv0-minimum curve)  with  assumed  time

errors

The timing of such observations is generally very good, so we chose 0.1 day = 2.4 hours

as a tenative choice. But notice that there is not much difference between 0.5 or 0.1 day in

the results.

DtuL = 0.1; DtlL = 0.1; tfluct = 0.1;

The traditional error calculations appear to give fairly large which often leads to any error

analysis being given at all.
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The traditional error calculations appear to give fairly large which often leads to any error

analysis being given at all.

integ1

11 872.2

Σmin = errintmin@tuL, DtuL, tlL, DtlLD

19 307.1

The trailing component notations [[  ]]  are needed to remove the braces that  Mathematica

leaves in the function results. They occur because of the Module[] use in the functions. In

this case the failure of convergenece leaves the answer on level deeper than expected so

we  use  Flatten[]  and  then  [[1]]   This  is  an  example  of  a  failure  of  first  order  theory  with

correlated errors (it diverges to a large number) while the Monte Carlo value is stable and

stays small.

Σmins = serrintmin@tuL, tlLD

427 201.

ΣminMC = errMCUintmin@10 000, 0.5, 0.5, tuL, tlLD@@1DD

1.55402

Here  are  the  errors  of  the  integral  of  the  (maximum  curve-rv0)  with

assumed time errors

DtuU = 0.1; DtlU = 0.1; tfluct = 0.1;

The traditional error calculations appear somewhat smaller because the maximum is more

“peaked” while the minimum is very broad. 

integ2

11 875.8

Σmax = errintmax@tuU, DtuU, tlU, DtlUD

71.8082

The trailing component notations [[  ]]  are needed to remove the braces that  Mathematica

leaves  in  the  function  results.  They  occur  because  of  the  Module[]  use  in  the  functions.

Notice  that  the  correlated variable  computation has  led  to  the  error  being larger  than the

integral. This occurs because of an instability in the least-squares solution. 

Σmaxs = serrintmax@tuU, tlUD

37.0122

ΣmaxMC = errMCUintmax@10 000, 0.5, 0.5, tuU, tlUD@@1DD

0.731293

Now  we  reintegrate  the  fits  to  get  the  areas  and  amplitudes  from  max  to  the  Γ

velocity and from the min to the Γ velocity as required by the orbit solution shown by Smart.

Here is where the propagated errors start to become of the same order as the answer as

was mentioned above.  Thus we carry along the three error estimates nearly to the end as

the final element error estimates so that each type of error estimate may be seen in con-

text.  
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The maximum curve area D1

tuL0 = max2@@5, 1, 2DD;

Here we use the actual functional maximum time for the maximum time 

tmax0

10 062.3

tlL0 = tmax0;

Here are the earlier assumed time errors. 

DtuL0 = 0.1; DtlL0 = 0.1;

lims2

25.4269

D1 = à
tlL0

tuL0

Hmaxcurve4 - rv0L ât

5250.2

Here are the error estimates

D01a = errintmax@tuL0, DtuL0, tlL0, DtlL0D

23.8758

D01b = serrintmax@tuL0, tlL0D

12.8894

D01c = errMCUintmax@10 000, 0.5, 0.5, tuL0, tlL0D@@1DD

1.36536

The minimum curve area D2

tuU = min2@@5, 1, 2DD;

tlU = tmin0; Dtmin0 = Dtph1;

Dtu = 0.1; Dtl = Dtmin0;

D2 = à
tlU

tuU

Hrv0 - mincurveL ât;

Here are the error estimates of the minimum curve integral 

D02a = errintmin@tuU, DtuU, tlU, DtlUD

19 386.
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D02b = serrintmin@tuU, tlUD

438 493.

D02c = errMCUintmin@10 000, 0.5, 0.5, tuU, tlUD@@1DD

1.71642

The Α and Β parameters are the amplitudes of the maximum and minimum portions

of the radial velocity curves. The errors in Α and Β follow the error analysis function for the

polynomial expansion itself derived above.  The minimum curve amplitude is given first

Β = rv0 - Hmincurve �. t ® tmin0L

3.41067

DΒΒ1 = errmin@tmin0, Dtmin0D

1.33588

DΒΒ2 = serrmin@tmin0D@@1DD

44.7062

DΒΒ3 = errMCUmin@10 000, 0.5, 0.5D@@1DD

1.39372

Here is the error for the amplitude of  representing the maximum curve

Α = Hmaxcurve4 �. t ® tmax0L - rv0

5.68085

Here is the error for the integral representing the minimum curve integral

DΑΑ1 = errmax@tmax0, Dtmin0D

6.2969 ´ 10
-11

DΑΑ2 = serrmin@tmax0D@@1DD

200.914

DΑΑ3 = errMCUmin@10 000, 0.5, 0.5D@@1DD

1.40473

The binary velocity amplitude is K=kay. Griffin gives 4.85 km/s 

kay = HΑ + ΒL � 2

4.54576

We  combine  the  errors  strictly  according  to  rms  average.  Sometimes  if  the  chain  rule  is

applied the factor of two will show up in the error calculation 

Dkay1 = DΑΑ1
2

+ DΒΒ1
2

1.33588
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Dkay2 = DΑΑ2
2

+ DΒΒ2
2

205.828

Dkay3 = DΑΑ3
2

+ DΒΒ3
2

1.97882

ecosΩ =
Α - Β

Α + Β
; esinΩ =

2 Α Β

Α + Β

D2 - D1

D2 + D1

;

Ω = ArcTan@ecosΩ, esinΩD

0.769602

Argument of periapsis is Ω.  Griffin gives 28.1 degrees

Ω � Degree

44.095

ecosΩ1 =
Α1 - Β1

Α1 + Β1

; esinΩ1 =
2 Α1 Β1

Α1 + Β1

D02 - D01

D02 + D01

;

w = ArcTanB
esinΩ1

ecosΩ1

F;

Here  are  the  three  error  types  propagated  now as  random errors  because  we  no  longer

know the correlations.

Dwa = H¶Α1 w DΑ1L2
+ H¶Β1 w DΒ1L2

+ H¶D01 w DD01L2
+ H¶D02 w DD02L2 �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ1, DΒ1 ® DΒΒ1, D01 ® D1, DD01 ® D01a, D02 ® D2, DD02 ® D02a<

2.11466

Dwa � Degree

121.161

Dwb = H¶Α1 w DΑ1L2
+ H¶Β1 w DΒ1L2

+ H¶D01 w DD01L2
+ H¶D02 w DD02L2 �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ2, DΒ1 ® DΒΒ2, D01 ® D1, DD01 ® D01b, D02 ® D2, DD02 ® D02b<

60.2815

Dwb � Degree

3453.87

Dwc = H¶Α1 w DΑ1L2
+ H¶Β1 w DΒ1L2

+ H¶D01 w DD01L2
+ H¶D02 w DD02L2 �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, D01 ® D1, DD01 ® D01c, D02 ® D2, DD02 ® D02c<

0.477958
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Dwc � Degree

27.385

The eccentricity ecc given by Griffin is 0.328

ecc1 =
ecosΩ

Cos@ΩD

0.347685

ecc2 =
esinΩ

Sin@ΩD

0.347685

Here is a symbolic version that can be used to derive the errors.

ecc3 =
ecosΩ1

Cos@wD
;

DeccA =
,IH¶Α1 ecc3 DΑ1L2

+ H¶Β1 ecc3 DΒ1L2
+ H¶D01 ecc3 DD01L2

+ H¶D02 ecc3 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, D01 ® D1, DD01 ® D01a, D02 ® D2, DD02 ® D02a<

0.716078

DeccB =
,IH¶Α1 ecc3 DΑ1L2

+ H¶Β1 ecc3 DΒ1L2
+ H¶D01 ecc3 DD01L2

+ H¶D02 ecc3 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, D01 ® D1, DD01 ® D01b, D02 ® D2, DD02 ® D02b<

15.8346

DeccC =
,IH¶Α1 ecc3 DΑ1L2

+ H¶Β1 ecc3 DΒ1L2
+ H¶D01 ecc3 DD01L2

+ H¶D02 ecc3 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, D01 ® D1, DD01 ® D01c, D02 ® D2, DD02 ® D02c<

0.15078

Finding the periapsis time

The  periapsis  occurs  when  the  radial  velocity  is  above  the  Γ  velocity  by  the

amplitude

zee1 = kay H1 + ecc1L Cos@ΩD

4.3998

We  treat  the  errors  here  as  uncorrelated  as  we  have  no  way  to  determine  the

covariance. We first construct the function in dummy variables 

zee0 = kay0 H1 + ecc0L Cos@Ω9D;

DzeeA = I¶kay0 zee0 Dkay1M
2

+ H¶ecc0 zee0 DeccAL2
+ H¶Ω9 zee0 DwaL2 �.

8ecc0 ® ecc1, kay0 ® kay, Ω9 ® Ω<

9.40221
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DzeeB = I¶kay0 zee0 Dkay2M
2

+ H¶ecc0 zee0 DeccBL2
+ H¶Ω9 zee0 DwbL2 �.

8ecc0 ® ecc1, kay0 ® kay, Ω9 ® Ω<

329.238

DzeeC = I¶kay0 zee0 Dkay3M
2

+ H¶ecc0 zee0 DeccCL2
+ H¶Ω9 zee0 DwcL2 �.

8ecc0 ® ecc1, kay0 ® kay, Ω9 ® Ω<

2.83938

Or when the observed velocity is

rv0 + zee1

24.1458

Possible times of periapsis passage are given by Solve[], but there is no way to do

an error analysis of this process. Instead we estimate the fractional error of the result from

the  fractional  error  of  rv0+zee  and  assume  the  same  fractional  error  for  all  the  times.

There  are  three  real  roots.   The  average  fractional  error  is  about  15%.   And  as  can  be

seen this is too large to aid in ruling out spurious roots. 

DzeeA + DzeeB + DzeeC

3 zee1

25.8709

The maximum velocity occurs at Ν ~ - 44 degrees (when (Ν+Ω)=0). Since we have

the  period,  eccentricity  and  the  true  anomaly,  we  can  estimate  the  time  by  finding  the

eccentric anomaly and then the time difference from the maximum until periapsis when Ν =

0.  

tperiapse1 = Solve@maxcurve == rv0 + zee1, tD

88t ® 5735.74<, 8t ® 7263.69 - 1320.1 ä<, 8t ® 7263.69 + 1320.1 ä<, 8t ® 9371.11<,

8t ® 10 687.1<, 8t ® 12 866.5 - 780.333 ä<, 8t ® 12 866.5 + 780.333 ä<<

 As is well-know from elementary orbit analysis, the eccentric anomaly E is found from the

eccentricty and the true anomaly by inverting this equation 

tan
v

2
= H 1+e

1-e
L1�2

tan
E

2

With  the  mean  motion  given  by  n  =  2  Π/T  (T  =  period  of  orbit),  the  time  difference  from

perihelion (t-Τ) for each observation is obtained from Kepler’s equation 

n Ht - ΤL = E - e sin E

Here is the time of rv maximum when Ν = -44 degrees
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tmax0

10 062.3

Here  we  compute  the  mean  anomaly  from  Ν  and  E.  The  mean  anomaly  divided  by  the

“annual” motion n then gives (t-Τ)  =Dtp1 where Τ  = the periapsis time. If  it  turns out to be

negative then the Dtp1 must be subtracted algebraically from the observed time. 

hmax = 2 ArcTanB
1 - ecc1

1 + ecc1

Tan@-Ω � 2DF; Dtp1 =
DT3

2 Π
Hhmax - ecc1 hmaxL

-502.252

The  equivalent  symbolic  expressions  needed  for  the  error  analysis  are  followed  by  the

three cases of errors

hmax1 = 2 ArcTanB
1 - ecc0

1 + ecc0

Tan@-Ω9 � 2DF;

DhmaxA = H¶ecc0 hmax1 DeccAL2
+ H¶Ω9 hamx1 DwaL2 �. 8ecc0 ® ecc1, Ω9 ® Ω<

0.425252

DhmaxB = H¶ecc0 hmax1 DeccBL2
+ H¶Ω9 hamx1 DwbL2 �. 8ecc0 ® ecc1, Ω9 ® Ω<

9.40357

DhmaxC = H¶ecc0 hmax1 DeccCL2
+ H¶Ω9 hamx1 DwcL2 �. 8ecc0 ® ecc1, Ω9 ® Ω<

0.0895425

Dtp2 =
DT4

2 Π
Hhmax3 - ecc0 hmax3L;

DtpA = H¶ecc0 Dtp2 DeccAL2
+ H¶hmax3 Dtp2 DhmaxAL2

+ H¶DT4 Dtp2 DDTL2 �.

8ecc0 ® ecc1, DT4 ® DT3, hmax3 ® hmax<

674.859

DtpB = H¶ecc0 Dtp2 DeccBL2
+ H¶hmax3 Dtp2 DhmaxBL2

+ H¶DT4 Dtp2 DDTL2 �.

8ecc0 ® ecc1, DT4 ® DT3, hmax3 ® hmax<

14 919.

DtpC = H¶ecc0 Dtp2 DeccCL2
+ H¶hmax3 Dtp2 DhmaxCL2

+ H¶DT4 Dtp2 DDTL2 �.

8ecc0 ® ecc1, DT4 ® DT3, hmax3 ® hmax<

142.947

Since the time of maximum is less than the time of periapsis,  we must subtract the differ-

ence from the time of maximum. 
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ttp = tmax0 - Dtp1

10 564.6

The error of tmax0 is tiny so the error of ttp is essentially that of Dtp1, 45 to 25 days. Thus

these differences can be trusted to tell that ttp is indeed the correct time difference. 

Htperiapse1@@5, 1, 2DD - ttpL

122.542

Htperiapse1@@4, 1, 2DD - ttpL

-1193.44

The closest root to this in the set for tperiapse1 is the 5th one in the list. To get the

JD of this passage, we add the root found to the “start” time of the time series for this star. 

perijD = start + tperiapse1@@5, 1, 2DD

59 296.3

Griffin  gets  jD  50257  for  periapsis  passage.  But  our  value  is  just  ~  one  period

ahead of his. Since our period has an error of ~280 days, the value below is within the our

period’s error of Griffin’s value. 

perijD - DT3

50 488.8

This  concludes  the  section  where  the  traditional  orbital  elements  (except  for  a  or  i)  have

been obtained. 

Mass-related Quantities for HD 108613 

At long last we return to the original objective, that of determining mass-related quantities.

Of  course  when dealing  with  spectroscopic  binaries  even  the  best  spectroscopic  data  by

itself  cannot  obtain  the  inclination  angle  under  any  circumstance  so  that  sin  i  always

appears in the mass dependent functions.  Because of Kepler’s law the first mass depen-

dent quantity is the semi-major axis a, which here is a sin i.  The second quantity is the so

called mass function which also involves the unknown sin i 

Semi-major axis information

For an extremely long period orbit such as this one is, the a sin i value is very small indicat-

ing most likely a small inclination angle, i.e. the orbit is nearly face on where the spectro-

scopic information is hard to obtain.  In  km, the a sin i result is 

asini =
21 600 DT3

Π
HΑ + ΒL I1 - ecc1

2M

5.16195 ´ 10
8

or in AU :
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asini

149 ´ 106

3.4644

Here  we  perform  the  error  analysis  for  a  sin  i.  We  start  with  a  function  that  can  be

differentiated

asini0 =
21 600 DTa

Π
HΑ1 + Β1L I1 - ecc3

2M;

DasiniA =
,IH¶Α1 asini0 DΑ1L2

+ H¶Β1 asini0 DΒ1L2
+

H¶DTa asini0 DDTaL2
+ H¶D01 asini0 DD01L2

+ H¶D02 asini0 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, DTa ® DT3, DDTa ® DDT,

D01 ® D1, DD01 ® D01a, D02 ® D2, DD02 ® D02a<

2.989 ´ 10
8

DasiniB =
,IH¶Α1 asini0 DΑ1L2

+ H¶Β1 asini0 DΒ1L2
+

H¶DTa asini0 DDTaL2
+ H¶D01 asini0 DD01L2

+ H¶D02 asini0 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, DTa ® DT3, DDTa ® DDT,

D01 ® D1, DD01 ® D01b, D02 ® D2, DD02 ® D02b<

6.06314 ´ 10
9

DasiniC =
,IH¶Α1 asini0 DΑ1L2

+ H¶Β1 asini0 DΒ1L2
+

H¶DTa asini0 DDTaL2
+ H¶D01 asini0 DD01L2

+ H¶D02 asini0 DD02L2M �.

8Α1 ® Α, Β1 ® Β, DΑ1 ® DΑΑ3, DΒ1 ® DΒΒ3, DTa ® DT3, DDTa ® DDT,

D01 ® D1, DD01 ® D01c, D02 ® D2, DD02 ® D02c<

1.32372 ´ 10
8

The mass function

The mass function is defined as 

                                
m 23 sin3

i

Hm 1+m 2L2
=

3.993 10-20 Ha 1 siniL3

P
2

                                

                                where m1 is the “visible” star mass in solar masses, m2 is the “unseen”

star mass in solar masses,  a1 is the semimajor axis of the visible star in kilometers  and P

is the period in days. 

massfunction =
3.993 ´ 10-20 asini

3

DT32

0.070801

The error analysis follows. 

massf =
3.993 ´ 10-20 asi

3

DT42

;
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DmassfA = H¶asi massf DasiL2
+ H¶DT4 massf DDT4L2 �.

8asi ® asini, DT4 ® DT3, DDT4 ® DDT, Dasi ® DasiniA<

0.123073

DmassfB = H¶asi massf DasiL2
+ H¶DT4 massf DDT4L2 �.

8asi ® asini, DT4 ® DT3, DDT4 ® DDT, Dasi ® DasiniB<

2.49486

DmassfC = H¶asi massf DasiL2
+ H¶DT4 massf DDT4L2 �.

8asi ® asini, DT4 ® DT3, DDT4 ® DDT, Dasi ® DasiniC<

0.0546522

Discussion

For this star (HD 108613), in addition to observed photometric variability there also

seems to be a radial velocity anomaly near maximum AND minimum and perhaps also all

around the radial velocity curve.  In the case of the minimum, our curve fitting was able to

fit the anomaly. In the case of the maximum, the curve fitting routines could not handle the

anomaly.  The companion cannot be detected, but  we do know that  we are observing the

side of the more luminous star that faces toward its companion at maximum and at periap-

sis. At minimum we are observing the “backside” of the luminous companion and at apoap-

sis. The usual assumption is that the more luminous star is the primary, but we don’t know

that for sure. The enhanced radial velocity anomalies at maximum velocity may indicate a

near edge-on orbit. But this is highly speculative. Other than the UBV magnitudes, there is

little further information for this star. According to Griffin (2010), the (U-B) is between 1.85

and 2.03 while (B-V) is from 1.53 to 1.58. The fact  that the (U-B) is larger than the (B-V)

indicates a reddened object (i.e. hence distant). The spectrum type inferred from the (B-V)

is  K5 for  a  supergiant  or  K8 for  a  giant  (Allen,  2000,  p.389).  The mass M1 would be 1.2

solar masses for a giant and 13 solar masses for a supergiant. The radial velocity anoma-

lies (and indeed the scatter of radial velocity throughout its orbit) may be due to pulsations

and  so  the  identification  with  a  red  giant  variable  is  more  likely.  First  let  us  explore  the

supergiant scenario

iii = 45 °;

SolveBmassfunction �
m23 Sin@iiiD3

H13 + m2L2

, m2F

Solve::ratnz : Solve was unable to solve the system with inexact coefficients. The

answer was obtained by solving a corresponding exact system and numericizing the result. �

88m2 ® -1.82209 - 2.34161 ä<, 8m2 ® -1.82209 + 2.34161 ä<, 8m2 ® 3.84443<<

At i= 90 degrees the resulting companion mass is 2.4 solar masses and with i even as low

as  45  degrees,  the  result  is  3.6  solar  masses.  Our  numerical  experiments  thus  cannot

eliminate the possiblity that at the orbital inclination of 45 degrees, an invisible companion

could be a 3  solar  mass neutron star.  That  possibility  makes this  system merit  additional

observations to see if that is indeed true. But that is a long shot. If the invisible companion

is a black hole then any mass is possible and so a large mass root from the Solve[] could

be considered valid. But those objects are even more unlikely.
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At i= 90 degrees the resulting companion mass is 2.4 solar masses and with i even as low

as  45  degrees,  the  result  is  3.6  solar  masses.  Our  numerical  experiments  thus  cannot

eliminate the possiblity that at the orbital inclination of 45 degrees, an invisible companion

could be a 3  solar  mass neutron star.  That  possibility  makes this  system merit  additional

observations to see if that is indeed true. But that is a long shot. If the invisible companion

is a black hole then any mass is possible and so a large mass root from the Solve[] could

be considered valid. But those objects are even more unlikely.

The radial velocity anomalies (and indeed the scatter of radial velocity throughout its orbit)

may be due to pulsations and so the identification with a red variable giant is more likely.

The  Solve[]  we  give  next  assumes  a  1.2  solar  mass  luminous  object  (giant  ?).  That  cer-

tainly is consistent with the optical data.  It is also likely that M2 < M1. We show the face-

on case (i  =  90 degrees).  You may change the inclination to  establish the other  possible

combinations. These calculations do eliminate certain inclination values and indicate that it

is possible that this object could be a very long period eclipsing variable like Ε Aurigae and

therefore  a  very  interesting  object  for  further  study,  but  one  that  we  can’t  pursue  except

computationally.   At  i  ->  90  degrees,  the  invisible  companion  could  be  a  main  sequence

star of  mass less than the sun. In such a case,  the primary would be over 6 or  7 magni-

tudes  brighter  than  the  secondary  so  an  exotic  explanation  is  not  required.   But  without

additional information no decision can be made about this object. It  is hoped that through

this somewhat extended discussion, the elements of an initial vetting of information about

newly  discovered  objects  is  illustrated  and  that  by  going  through  this  example  process

students will be better prepared when they are called upon to vet information on an object

that they themselves discover. 

iii = 85 °;

SolveBmassfunction �
m23 Sin@iiiD3

H1.2 + m2L2

, m2F

Solve::ratnz : Solve was unable to solve the system with inexact coefficients. The

answer was obtained by solving a corresponding exact system and numericizing the result. �

88m2 ® -0.273569 - 0.30303 ä<, 8m2 ® -0.273569 + 0.30303 ä<, 8m2 ® 0.618754<<

tB = SessionTime@D;

HtB - tAL � 60

0.5777033
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