Notice of Copyright and License to Use

These Mathematica® 9 notebooks and their multimedia content (collectively, “Notebook(s)”) have been
copyrighted by Dr. David D. Meisel. (“Author”) © All Rights Reserved, 2013. Mathematica and Wolfram
Mathematica® are registered trademarks of Wolfram Research, Inc. The Mathematica software design,
“look and feel”, display, and other graphic elements are copyright Wolfram Research, Inc. The Mathemat
ica Spikey® logo appearing in each file’s logo is a registered trademark of Wolfram Research, Inc. The
add-on Mathematica package Cartan v1.8 and the manual “Tensors in Physics” (ISBN
978-82-92261-25-5) are © 2011 by Harald H. Soleng and Ad Infinitum AS, Fetsund, Norway. Permis-
sion to use the Schwarzschild and Faraday examples and some other paraphrases from “Tensors in
Physics” has been granted by Harald H. Soleng. Excerpts from Mathematica ® online documentation
and the Mathematica ® built-in features contained in Equation Trekker, DifferentialEquations’NDSolveU-
tilities™ and DifferentialEquations’NDSolveProblems™ and their specific internal documentation are used
with permission of Wolfram Research, Inc.

Commercial Distribution and Sale

Sale and commercial distribution of these Notebooks is limited exclusively to authorized distributors.
Third party sales, redistribution or any other sales of the Notebooks are strictly prohibited, except where
otherwise allowed by law. All other rights pertaining to the sale and distribution of the Notebooks are
reserved by the Author. Permission is given to include fragments of each original notebook in the print
and electronic book “Astrophysics Through Computation” (the book) by Koberlein and Meisel. Permis-
sion is thereby given to Cambridge University Press to store and distribute the entire collection of
Mathematica notebooks in connection with the publication, distribution, and sales of said book.

End User License
Explicit license is further granted for users to modify the source code of this document for personal,
noncommercial use provided this copyright notice remains intact. These Notebooks are designed to
help you learn a very difficult subject with the same technology that the professionals use. You are
encouraged to tweak, update, edit, and break these files as you see fit, so long as you do so for your
own personal use and this copyright notice is left intact.

Publication

Use of these Notebooks in academic literature is further permitted so long as the Author is credited in
the work. Unaltered notebooks may be cited as “Meisel, David D., (2013), full notebook name, from
Astrophysics through Computation (with B. Koberlein)” Altered notebooks may be cited in same manner
as long as this copyright notice is left intact in the altered work. The contents of the auxiliary files (input
and output) are likewise copyrighted by the Author and in some cases by the respective sources men-
tioned in each notebook. Before using these derivative works in academic publications, proper attribu-
tion must be given to the Author and the sources. The provided data files do not have individual copy-
right notices within them because that would interfere with their proper computational operation, but
they are still covered by this notice.

Bugs, Updates, and Upgrades
These notebooks are constructed at a typical undergraduate student level and are not considered to be
commercial grade programs. All have been tested using Mathematica V. 9 and found to be operable,
but there is no guarantee that they will remain so given future operating system Mathematica version
changes. If you wish to report a bug in the original notebooks (not modified ones, please), email the
Author at ddmeisel@frontiernet.net with details.

2 | 1-2SpectBin.nb

Before running this notebook be sure that HD108613.csv from the “Put into User Folder”
are placed in the computer user folder so that Mathematica will be able to find the raw
data.

Mass - Another Fundamental Property of Stars
Clear["Global "]

tA = SessionTime[];

A Word about Notebook Organization

This notebook and this commentary appears in Ch. 1 because mass determination
is absolutely fundamental to modern astrophysics, not because the topic is easy or its
explanation simple. But being firmly rooted in classical not relativistic mechanics should
make it seem somewhat more familiar. Because we will be using actual observations
within the computations, the subject of error analysis comes up rather abruptly here and
computation of errors is always a complicating factor to any work, as undergraduate stu-
dents well know. To perform a correct error analysis on your own is even more harrowing
than doing it under an instructor’s direction and when that is mixed in with a long and
complicated solution to a physical problem, the result seems hopelessly difficult for the
novice.

The organization we have chosen here and throughout these notebooks for our
computational solutions is basically an algorithmic one, being more like a receipe than an
exposition. They are after all basically computer programs. In an algorithm, input informa-
tion needs to appear just before it is required in the progression of computation without
regard to whether it was easy or hard to obtain or whether it needed lots of preprocesing
and editing. Some programming languages require a sort of receipe ingredient list through
variable declarations, but not Mathematica. In fact, in using Mathematica we often unwit-
tingly contributes to the equation and comment clutter because in order to save intermedi-
ate results in a particular symbolic label that reminds the memory of what it represents,
one has to keep changing the variable’s name between steps of a calculation. This quirk
often occurs because Mathematica in common with lots of computer languages allows
iteration of the same variable across the regular equal sign. Like other computer lan-
guages, one can also hide long stretches of “code” within the Mathematica package con-
struct and thus clean up the mess that we show publicly for all to see. But this hiding fea-
ture does not just show what needs to be seen for instructional purposes in preference to
the “scratch pad” work that went on around it. You either hide stuff or you don’t. We do go
part way toward hiding programming content by using the built-in Mathematica constructs
so many mathematical details that in older texts often obscured the astrophysics and
physics themselves are at least now hidden from view.

So what can a novice student do ? Our suggestion is to read through the note-
books at first even if you intend to modify or run it and then outline the contents in a logical
fashion correlated with the textbook. Most solutions consist of several parts: a) the geome-

1-2SpectBin.nb 3

try, b) the physics, c) the astronomy, and d) the astrophysics. Actually because our note-
books are pseudo algorithms, the most appropriate means would be to construct the equiva
lent of “flow charts”. Thus reading our notebooks requires the same skills that one would
use in reading any computer program. But unlike a normal computer program, we link the
parts (sometimes extensive sections) together with verbal comments and section head-
ings. Some of our notebooks are fairly simple, others like this one that incorporates actual
data is very complicated, particularly if an error analysis is incorporated within it. You may
not like to do error analysis, but at least you have Mathematica to do all the grunt work for
you and ensure, that aside from typographical errors, the computation is done correctly.
There is at least one bridge builder in prison because an error analysis was done incor-
rectly and people died as a result. So for a professional scientist, error analysis must
ALWAYS be taken seriously.

Mass Estimates from the Orbit of a Spectroscopic
Binary: A Case History of a Preliminary Astrophysical
Study.

Introduction

Mass is a property of material objects said to be endowed by the Higgs boson of
elemenetary paticle theory. Mass is the source of gravitational fields throughout the cos-
mos and everything that has mass contributes to this field. In General Relativity, mass
curves space-time and this is where gravitational fields orignate. But even on a less sophis-
ticated scale, unless born on an orbiting space craft and living continuously in space,
humans intuitively, but perhaps qualitatively, know the effects of gravity and how moving
masses are influenced by it. Because gravity is such a long range force, its effects are felt
across immense distances. In this notebook, we explore a number of issues illustrating
how the concept of mass occurs in the study of spectroscopic binaries and its value deter-
mined within astronomy and astrophysics.

Context of Single Line Spectroscopic Binaries within the Mass Determination
Problem

If the radial velocity of one of two visual binary components can be determined from
spectroscopic observations, then the angular orbital ambiguities in the orbital inclination
and the ascending node () encountered in the analysis for orbital elements can be
resolved directly. And if radial velocity information is available for both stars, the mass ratio
can also be obtained as an alternative to using astrometric data on proper motions.

Can radial velocity information stand alone ? Unfortunately the radial velocities in a
system of two stars may not yield the masses directly because the inclination is not deriv-
able unless the system is also either a visual or eclipsing binary. But even in principle, the

4 | 1-2SpectBin.nb

analysis of a visual binary system is more complicated than for a spectroscopic binary so
we defer consideration of that case until Ch. 6 where various types of stellar motion are
considered.

The Fundamental Equation

But spectroscopic methods applied even to single line binaries can obtain the
orbital period, the eccentricity, the daily motion n, and the argument of periapsis w
uniquely. They can also determine which nodes are which and the sign of the inclination
when used in conjunction with visual or interferometric observations. The equation for
orbital radial velocity (where z is along the line of sight, n is the daily (not yearly motion) =
2 n/T(days), a is the semi-major axis, i is the inclination, v is the true anomaly, e the eccen-
tricity, and w the argument of periapsis) is

dz _ nasini (cog(y +)+ e CoS w)

it et

The observed radial velocities will have the motion of the center of mass in each
and this is determined so that the line v=constant divides the radial velocity curve into two
equal areas. This has to be done first so that dz/dt is isolated. Creating a smoothed radial
velocity curve from the observations is our first challenge. But first a digression about
errors.

Rudiments of Error Analysis

Although there may be a perception that theoretical study of a subject through
computation can be accomplished without comparing with observations, scientific computa-
tion requires constant checking of the predicted results against reality through statistical
analysis of available data. But there are often vast problems. First getting a realistic and
correct error analysis is often more difficult than just getting the actual solution desired.
Secondly the predicted quantities are often not the observational quantities, but rather
physical quantities derived from the observations through theoretically derived formulae.
The errors of such theoretical quantities are obtained through a process called the propa-
gation of errors, a subject whose elementary rules with which most students who have
taken an undergraduate physics or chemistry laboratory are familiar. Thirdly error analysis
is not well understood by most students (and faculty ?) without lots of study and work. That
is why we bring this up right in the beginning. We review these important concepts here
before showing how we calculate them for a faint spectroscopic binary system where
errors abound.

There are two main types of errors. Although real situations are usually a mixture of
the two, we will consider the extremes where only one type is dominant:

1-2SpectBin.nb 5

a) Independent Errors - These are errors that occur independently of each other
so that their linear correlations (as measured by the so-called covariance) are zero. Ran-
dom errors are usually of this type.

b) Correlated Errors - These are errors that occur in “synchronism” with each
other so that their interdependence is measured by their covariances (not zero). System-
atic and bias errors are usually of this type.

Functions through which these errors can propagate are either linear or non-
linear. Linear functions are things like polynomial sums. Non-linear functions are things
like ratios of polynomial sums or transcendental functions. Error analysis can either be
linear or nonlinear. Least squares analysis in Mathematica is also either linear or non-
linear as we will be showing. Usually error analysis assumes the errors are “small enough”
that 1st order linear theory can be applied and hence only first order partial derivatives are
involved. Linearized error propagation is a well known technique (See Ch. 10 of Meyer
(1975) for an excellent and full discussion.) and its relationship to least-squares is straight
forward. But as Meyer points out that there are nuances arising from special situations that
can lead one astray and the methods for handling such special cases are usually not found
in the elementary treatments. In that case one is fairly much at the mercy of the math. For
example:

a) For random or independent errors, the “standard” view point is that the errors
are strictly independent (the covariance Sy y(j)between them is zero). There are

instances where observational variables are partially correlated and if this is known more
sophisticated analyses must be applied. (See Meyer for details.) If the errors can be
treated as random, the general algorithm is to use the following whether the function
through which the propagation is desired is linear or not:

_ af (X (H) 2
Sf{x(i)}—\/Zi(ax (i Sx(i))

Specific to a function of two variables:

S, = \/ (0D 5) 4 (200 5 Y

a) Sums and differences

S, = (SX)2+(Sy)?

b) Products and quotients

6 | 1-2SpectBin.nb

S Ee

Extension to other functions is a straight forward application of the first rule, examples of
which will be shown below.

a) For correlated errors including systematic errors, Meyer discusses several
ways to deal with them.

1) The simplest way given by Meyer is to treat the errors as predicted by the
chain rule of the calculus keeping the negative signs if any. Then the error is the absolute
value of the final answer. This is similar to what is done for the mean deviation as opposed
to the rms deviation for the independent errors. This is very easy to implement via modifica-
tion of the uncorrelated formula but in a least squares situation it is rare for the coefficients
to be perfectly correlated rather they are related through the covariance function.

2) Another method (and one that we have chosen to implement below) assumes
that the errors are linearly and first order correlated between the variables two at a time.
Since the errors are correlated the covariances S,y between the variables are not zero.

The problem with this second situation is that one must know the covariance matrix for all
variables going into the propagation. While not a problem for least-squares fits particularly
when Mathematica can give the requires values for the function coefficients to you through
the options, “CorrelationMatrix” or “CovarianceMatrix”, it is a problem for all the other vari-
ables used in the propagation formulae. The general algorithm is to use the following
whether the function through which the propagation is desired is linear or not:

St ix) = \/an (afai:i}) (ﬁfat?}) Sy, Xj

where Sy .= Sxi2

Specifically to a function of two variables where pyy is the linear correlation coefficient
between x and y.

2 (oY) 2 (af<x,y))2 3 (xy) 3 (xy)
S;% = (T SX) +(T, Sy) 2 T Sx= e Sy

a) Sums and differences z=xzxy

SZ:\/S§+S§i2pxysxsy

b) Products

1-2SpectBin.nb 7

c¢) Quotients

Xy

N |,5‘f)
Il
%o bR
+
‘<N \<(/)
]
N
)
=
L
\<(/)

A main objection often raised in practice to these formulae is that the derived errors can be
smaller than the random errors formula involving the same variances and that is a result
that leads to the opinion that systematic errors can be more safely ignored than random
errors of the same equations. But that is how correlated errors work. Uncorrected corre-
lated errors treated as independent ones are larger than the equivalent independent errors
because the error of one variable is “aliased” into its associated variables. When there are
mixtures of the two type of errors, the true error falls somewhere in between the two
extremes. The dilemma is chosing how to combine the two results. Lacking a priori informa-
tion usually leads to a simple rms combination of random and systematic. Since the treat-
ment of systematic effects is so controversial, investigators often want to err on the side of
conservatism and deal only with the random errors but this makes the derived errors larger
than they should be.

c) For non-linear propagation of errors, the true situation can be much more
complicated than the first order expansion would indicate even in the independent error
case. Meyers derives an expression for propagation involving second order derivatives
and stresses that it MUST be used if the first order derivatives are zero, i.e. the case of
function minimization for example.

As computational analyses have become more sophisticated and wide spread, it now
possible to apply Monte Carlo methods to error analysis. For example, one can use a
random (really pseudorandom) number generator to calculate a set of both variable errors
and function errors and apply them to the mean or derived parameter values. These errors
are then applied to the evaluation of the function itself multiple times. The set of “new”
values are then calculated as sample means and the propagated errors then become the
standard deviation of those trial runs.

The most difficult decision in Monte Carlo analyses is what distribution function and what
range of variable is to be used. Fortunately, Mathematica provides a wide variety of non-
uniform pseudorandom generators so the proper choice is usually available. If observa-
tional or experimental errors are to be evaluated, the Gaussian pseudorandom number
generator may be appropriate, not the usual uniform one. And even if a suitable generator
is available, the parameters of the distribution is not always obvious. In theoretical and
computational studies that have no real data available, Monte Carlo error estimation is
used to indicate how sensitive given results are to errors both computational and observa-

8 | 1-2SpectBin.nb

tional but without a knowledge of what values will occur in practice such simulations may
be ad hoc. Thus Monte Carlo methods can be more of an art than science, but since
undergraduate students rarely encounter either correlated or Monte Carlo errors we give
an example of each below.

The Observations and Their Preparation for Analysis

In this notebook we are following closely the analysis procedure given in Smart
(1960) where it is shown that integrals of the single line radial velocity curve are related to
the orbit parameters in the dz/dt equation above. If the radial velocity curve for the star
being studied has high signal to noise and is relatively smooth with points fairly closely
spaced, getting the required integrals is a matter of numerical integration, a task for which
Mathematica is well suited. But the example we have chosen has a very noisy and
sparsely populated radial velocity curve as is typical of modern astrophysical exploratory
research and the challenges such data presents. It is this type of data that research scien-
tists give to their undergraduate summer students to test their resourcefulness and so is a
good example for us to consider. Our goal is to (a) take a limited, non-optimal data set, (b)
produce a relatively smooth radial veleocity curve by piecewise least-squares curve fitting
if necessary, (c) perform the necessary integrations analytically with the proper computa-
tions of the errors at each step, and (d) deduce the orbital properties (actually the short
and easy part) giving the errors with the final results. Does this sound like work ? Well it is
but fortunately the tricky math and arithmetic is handled quite easily by Mathematica to
produce results that compare favorably with the published results. In a broad outline, the
steps carried out here will be typical for our notebooks involving both theory and observa-
tion.

Importing spectroscopic binary data

There is a treasure trove of spectroscopic binary data both single line and double
line continuing to be published in journal “The Observatory” by R.F. Griffin as a long series
of papers describing continuations of work by Yoss and Griffin (1997, JA and A., 18,161).
The observations have been obtained with photoelectric spectrum scanners and many of
very long period have been published recently. These distant stars if located closer to the
sun would have been seen as visual binaries. Hence it is appropriate to consider one of
them as our spectroscopic binary example. We have chosen HD 108613 observed from
1973 to 2010 (Griffin, 2010, Obs. 130, p.358). The file consists of Julian Date and velocity
in km/s only and will be used with unit weights. No spectrum type is available and there is
evidence of photometric variability of unknown origin. Only the spectrum of one star can
be seen which would seem to make the analysis simpler but alas it does not as will be
seen.

It is worth pointing out for the novice that Griffin derived a set of orbital elements for
this star but like the weights no element errors were published. Here we have carried a

1-2SpectBin.nb 9

completely independent solution of the orbital elements using Mathematica. Unlike Griffin,
we have provided a complete error analysis for all quantities including the usual indepen-
dent errors, the linear correlation corrected errors and finally Monte Carlo derived non-
linear errors. The required Mathematica expressions are complex, ugly and except for the
Monte Carlo method resulted in totally outrageous estimates of the final errors. It is no
wonder that Griffin, if he calculated formal, independent errors in the usual manner, did not
publish any error estimates at all for his elements.

dataSS = Import["HD108613.csv'] ;

dblnum = Length[dataSS]
70

ListPlot[dataSS, PlotRange -» All,
AxesLabel -» {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)
2%t
245 ol
22}
20f

18
L b ®

%

.;.,‘.:'. *]

L L timedays

52000 54000

\.' L L
44000

46000 48000

50000

This time series is not orthogonal. We need to see if the original points are linearly
correlated or not. Hence

linfit = LinearModelFit[dataSsS, {1, t}, t]

Fi t t edModel [36.6351 - 0.00033362 t

The linear correlation coefficient is

rR = \/ linfit[""RSquared]
0. 31003

Certainly the observations are somewhat linearly correlated. This almost guaran-
tees that the power series coefficients will be strongly correlated also and that has serious
consequences for the subsequent error analysis that will lead us astray for a while in the
data analysis process.

Determination of the Period
The first task is to determine the period. We have selected 4 points where the

10 | 1-2SpectBin.nb

velocity was either 16.1 or 15.9. These were JD 44007.97, 44240.14, 53094.05, and
52768.97.

JD = {44007.97, 44240.14, 53094.05, 52768.97};
AT1 = jD[[4]] -3D[[2]]
8528. 83

AT2 = JD[[3]1-3D[[1]]
9086. 08
Here is the mean period in days (Griffin gets 8973 + 157 days)

(JDI[41]1 +§D[[3]]) B (JDI[[111 +3D[[2]])
2 2

8807. 46

Here is the mean period in years

AT3/365.25
24. 1135

Here is the mean deviation on the period (days)
AAT = AT2 - AT3
278. 625

Here is the mean deviation on the period (years)
AAT / 365.25
0. 762834

AAT / AT3
0. 0316351

The raw data needs to be resynchronized.
dataSl = dataSsS;

numss = Length[dataS1]
70

Do[lf[dataSl[[ii, 1]] < 48500,
dataS1[[ii, 1]] =dataS1[[ii, 1]] +AT3;], {ii, 1, numss}];

dataS2 = Sort[dataS1];

1-2SpectBin.nb 11

ListPlot[dataS2, PlotRange -» All,
AxesLabel -» {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)

6 .
.
o
24 -
»f . .
20} ’ ’
18 el . Lo LT
L .. o
e . e o
[O See e
e E S time days
50000 52000 54000 56000

start = dataS2[[1, 1]]
48 609. 2

Next we extend the data set past one period so that we can do the integration
needed to find the y velocity (the motion of the center of mass)

dataS3 = Table[{0, 0}, {ii, 1, numss +40}];

Do[dataS3[[ii]] =dataS2[[ii]], {ii, 1, numss}]
Do[dataS3[[iil +numss]] =dataS2[[ii]], {ii, 1, 40}]
Do[dataS3[[il +numss, 1]] =dataS2[[ii, 1]] +AT3, {ii, 1, 40}]

ListPlot[dataS3, AxesLabel » {""time days", "radial velocity (km/s)"}]

radial velocity (kmy/s)

26lo.o
... ...
afr 3 »oa
[© &
y e
27 . . .
r . .
20 B : B
r o .o .
i o - .
18- 3 ° .
L . -)
r P e, K
[& oee o
S T S S T S E S SNEP! ‘timedays

50000 52000 54000 56000 58000 60000

We redo the scale in days and replot.
Do[dataS3[[ii, 1]] = (dataS3[[ii, 1]] -start), {ii, 1, numss +40}]

12 | 1-2SpectBin.nb

ListPlot[dataS3, PlotRange » {{0, 14000}, {15, 25}},
AxesLabel -» {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)

[o o
° . D .
24r e S . -
; ¢
22+ . . .
r . ° .
20+ . .
[. o® .
4 . ° e
18l r. .t “r.
: . .
o . 00y o
[Q20
161 , e .
P P S S S S R P I S| timedays
2000 4000 6000 8000 10000 12000 14000

Piecewise Least Squares Smoothing of the Velocity Curve

This task is made difficult because there is no “standard” shape for a radial velocity curve.
The best one can do is obtain some sort of self-consistant polynomial approximation. The
velocity curve of HD 108613 is extremely noisy because the star itself is faint and perhaps
very distant. In order to smooth this curve and reduce the observational scatter we will first
fit segments of its light curve with cubic polynomials with no constant term. If the observa-
tions had been sampled at equal intervals, this smoothing could have be accomplished by
Fourier smoothing techniques.

1) Smoothing the velocity minimum curve
a) Here is the minimum “plus” portion fit to a cubic
curvervp = Table[{dataS3[[ii, 1]], dataS3[[ii, 2]]1}, {ii, 40, 80}1;

This is how we specify how the fit is to be done

xFitl = LinearModeIFit[curvervp, {1, X, X2, x3}, x, IncludeConstantBasis - False]

Fi tt edModel || 1.5942+0.00795247 x—1.43564x 107 x2 +9.04331x 10" x3

This is a summary of the results in standard statistical format

xFitl["ParameterTable']

Estimate Standard Error t-Statistic P-Value
1.5942 6.86487 0.232225 0.817643
0.00795247 0.0033125 2.40075 0.0215044

N

-1.43564x10°® 5.13168x1077 -2.79761 0.00812393
3 19.04331x10! 2.55677x107!' 3.53701 0.00110924

X X X B

This is the correlation coefficient of the fit

\/xfitl["RSquared"]
0.981898

1-2SpectBin.nb

These are the parameters (compare with the table).

cfitl = xfitl["BestFitParameters']

{1.5942, 0.00795247, -1.43564x10°, 9.04331x10 "}

These are the errors (compare with the table).

ofitl = xFitl["ParameterErrors"]

{6.86487, 0.0033125, 5.13168x 107, 2.55677 x 10!}

Here is the equation in standard Mathematica form for additional use.

eqnssl = Normal [xFitl]

1.5942 + 0. 00795247 x — 1. 43564 x 10°% x? + 9. 04331 x 1011 x3

Here are the points and the plot.

graphssl = Table][
{curvervp[[ii, 1]], eqnssl /. X -> curvervp[[ii, 111}, {ii, 1, Length[curvervp]l}];

ListPlot[{graphssl, curvervp}, AxesLabel -» {"time days", "radial velocity (km/s)"}]

radial velocity (km/s)

26+ .
L ..
24 > :
L o
s
L s
2F . #
K
L o
20 .
L o o
. . 0 :
181 . °
— - %
3 - *® - o F %
BRI - T R L timedays
5000 6000 7000 8000 9000

b) Here is the minimum “minus” portion fit to a cubic
curvervm = Table[{dataS3[[ii, 1]], dataS3[[ii, 2]]}, {ii, 20, 45}];

xfita = LinearModelFit[curvervm, {x, X2, x3}, x, IncludeConstantBasis - False]

Fi tt edModel || 0.0298642x-0.0000119634 x?+1.37756 x 107° x3]

xFita[""ParameterTable']

Estimate Standard Error t-Statistic P-Value
X | 0.0298642 0.00123737 24.1352 7.75491x1078
x? | —-0.0000119634 7.42711x10°' -16.1077 5.09545x107**
x3 11.37756x10™° 1.09384x1071° 12,5938 8.37963x107 12

\/xfita["RSquared"]
0. 999226

13

14 | 1-2SpectBin.nb

cfitla = xfita["'BestFitParameters"]

{O. 0298642, -0.0000119634, 1. 37756 x 10’9}

ofitla = xFita[""ParameterErrors™]

{0.00123737, 7.42711x107, 1.09384 x 10 *°}

egnssa = Normal [xfita]

0. 0298642 x - 0. 0000119634 x2 + 1. 37756 x 10°° x°

c) Here is combined minimum velocity

graphssa = Table][
{curvervm[[ii, 1]]1, eqnssa /. X -> curvervm[[ii, 111}, {ii, 1, Length[curvervm]}];

ListPlot[{graphssa, graphssl, curvervm, curvervp},
AxesLabel » {"time days", "radial velocity (km/s)"}]

radial velocity (km/s)

26+ e
[)
L K
24 .
3 &
r ¢
2+ . §
e
[o° .
L M ¢
20+ . .
[A ° °
I % . :
18-)
['-. o - :
o - ®
<’ n.o . %
L e o0
£ : : : L timedays

T T o T S T S [N S S A
3000 4000 5000 6000 7000 8000 90!

It certainly looks like the two curves overlap at some point. Let's examine the files
from each to see if they indeed have a common point of interersection.

graphssl

({3820. 74, 16. 0649}, {4057.95, 16.2672}, {4104.87, 16. 3025},

(4159. 78, 16.3421}, {4206.24, 16.3741}, {4412.02, 16.5013},

(4438.4, 16.5161), {4484.86, 16.5413), {4538.74, 16.5693}, {4757.05, 16. 6717},
(4889. 78, 16.7268), {4922.76, 16.7399}, ({4927.24, 16. 7416},

(5226. 82, 16.8525), {5243.13, 16.8583), {5287.77, 16.8741}, {5611.75, 16.9923},
(5652. 77, 17. 0081}, {5954.84, 17.1376}, {6016.21, 17.1674}, {6308.82, 17.3322},
(6372.74, 17.374), {6694.81, 17.624), {6729.18, 17. 6551}, {6760.74, 17. 6844},
(7431.31, 18.5218), {7811.42, 19.2178), {8135.26, 19. 9655}, {8489. 46, 20. 9692},
(8584. 18, 21.2734), {8616.18, 21.3799}, ({8807.46, 22.055}, {8835.36, 22. 1592},
(8933. 29, 22.537), {8997.14, 22.7934}, {9174.46, 23.5491}, {9231.35, 23. 8054},
(9267.32, 23.971), {9374.18, 24.4796), {9546.43, 25.353), ({9602. 35, 25.6511))

1-2SpectBin.nb 15

graphssa

{{1970. 28, 22.9355}, {2041.68, 22.8284}, {2325.78, 22.0755},
{2412. 67, 21.7607}, {2661.18, 20.7127}, {2763. 03, 20. 2416},
{2923. 05, 19. 4819}, {2942.97, 19.387}, {2975.98, 19.2302}, {3030.77, 18.9717}
{3080. 74, 18. 7389}, {3259.07, 17.9464}, {3307.02, 17.7477}, {3311.5, 17.7295},
{3360.96, 17.5336}, {3424.82, 17.2947}, {3433.29, 17.2643}, {3656.05, 16.5949},
{3702.9, 16.4908}, {3774.79, 16.3598}, {3820.74, 16.2956}, {4057.95, 16.2389},
{4104.87, 16.2882}, {4159.78, 16.374}, {4206.24, 16.4712}, {4412.02, 17.1942})
graphssa[[22]]

(4057. 95, 16.2389)

graphss1[[2]]
{4057. 95, 16. 2672}

Yes indeed they do. graphssa [[22]] is identical to graphss1 [[2]]. The x value where
this happens is x = 4057.9 . Thus the minimum part of the velocity curve can be synthe-
sized piecewise with two cubics.

2) Smoothing the velocity maximum curve.

Now we examine the maximum part of the velocity curve to see if this can be
smoothed in a similar manner. First we plot the whole range for reference without exces-
sive scrolling.

curverv2 = Table[{dataS3[[ii, 1]], dataS3[[ii, 2]]}, {ii, 60, 110}];

plotdata = ListPlot[curverv2, AxesLabel -» {"time days", "radial velocity (km/s)"}]
radial velocity (km/s)

261 . e
241 °. :

2l

L4
sl

‘“"‘““““““““““““[imedayS
7000 8000 9000 10000 11000 12000

a) Here is the minimum “minus” portion fit to cubic
Next we subdivide this at approximately the maximum by trial and error
curverv2a = Table[{dataS3[[ii, 1]], dataS3[[ii, 2]]}, {ii, 60, 87}];

16 | 1-2SpectBin.nb

plotdata = ListPlot[curverv2a, AxesLabel » {"time days", "radial velocity (km/s)"}]

radial velocity (km/s)

o o
26 o
.
[o’
24+ ® e
[.
.
[o*
2+ .’
[.
I .
20+
18+ °
bo L L e e L timedays
7000 8000 9000 10000

xfit2a = LinearModelFit[curverv2a, {x, x2, x3}, x, IncludeConstantBasis - False]

Fi tt edMbdel || 0.00388753x-3.21868x1077 x2 +1.90944 x 1011 x3]

xFit2a[""ParameterTable™]

Estimate Standard Error t-Statistic P-Value

X | 0.00388753 0.000821538 4.73202 0.0000746228
x? | -3.21868x1077 1.96386x10°’ -1.63895 0.113749

x3 11.90944x10™ 1.15822x107! 1.6486 0.111742

\/xfitZa["RSquared"]
0. 999579
cfit2a = xfit2a[''BestFitParameters']

{0.00388753, -3.21868x10 ', 1.90944 x 10 '*}

ofit2a = xFit2a["'ParameterErrors']

{0.000821538, 1.96386x 10, 1.15822x10 '*}
egnss2a = Normal [xfit2a]
0.00388753 x - 3. 21868 x 107 x? + 1. 90944 x 101! x3

graphss2a = Table[{curverv2a[[ii, 1]], eqnss2a /. X -> curverv2a[[ii, 1]1},
{ii, 1, Length[curverv2al}];

plot2a = ListPlot[{graphss2a, curverv2a},
AxesLabel -» {"time days", "radial velocity (km/s)"}]

radial velocity (km/s)

26

24

22

20

18

o

time days

curverv2b = Table[{dataS3[[ii,

7000 8000 9000 10000

b) Here is the maximum “plus” portion fit to cubic
111, dataS3[[ii,

211}, {ii, 86, 110}];

1-2SpectBin.nb

17

plotdatab = ListPlot[curverv2b, AxesLabel -» {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)

26

24

22

20

18

10500

L timedays

11000 11500 12000 12500

xfit2b = LinearModelFit[curverv2b, {x, X2, x3}, x, IncludeConstantBasis - False]

Fi tt edvbdel || 0.0267956 x-3.83809x107® x* +1.44294 x 10720 x°]

xFit2b["ParameterTable']

Estimate

0.0267956
x? | -3.83809%x107° 5.95292x1077 -6.4474
3 11.44294%x1071° 2.58104x107!! 559054

t-Statistic P-Value

7.82866 8.44029x107°
1.73721x10°°®
0.0000127732

Standard Error
0.00342275

\/xfith ["'RSquared]
0. 999543

cfit2b = xFit2b["'BestFitParameters']

{0.0267956, -3.83809 x107°, 1.44294x10 '}

18 | 1-2SpectBin.nb

ofit2b = xFit2b["ParameterkErrors']

{0.00342275, 5.95292x 107, 2.58104 x10 '}

eqnss2b = Normal [xFit2b]

0. 0267956 x - 3. 83809 x 10°% x? + 1. 44294 x 10710 %3

graphss2b = Table[{curverv2b[[ii, 1]], eqnss2b /. x -> curverv2b[[ii, 1]1},
{ii, 1, Length[curverv2b]}];

plot2b = ListPlot[{graphss2b, curverv2b},
AxesLabel -» {"time days', "radial velocity (km/s)"}]

radial velocity (km/s)

261

24

22

20

18

L timedays

10500 11000 11500 12000 12500

c)) Here is the maximum combined curve

plot2ab = ListPlot[{graphss2b, curverv2b, graphss2a, curverv2a},
AxesLabel -» {"time days', "radial velocity (km/s)'"}]

radial velocity (km/s)

26

24

22

20

18

ally.

L ;,, .
..
'
r ‘e .
®e]
|- ':
R S
,‘ .~'
3)
bbb timedays
7000 8000 9000 10000 11000 12000

It looks like the curves do intersect at a common point. We look for that point manu-

1-2SpectBin.nb 19

graphss2b

({10276.
{10 769.

26. 6363}, {10371.2, 26.0377}, {10734.3, 23.8598},

23. 6612}, {10777.7, 23.6129}, {10849.1, 23.2135},

(11133.2, 21.7144}, ({11220.1, 21.2866}, {11468.6, 20.15}, {11570.5, 19. 7236},
(11730.5, 19.1031}, {11750.4, 19.0302}, {11783.4, 18.9116},

(11838.2, 18.7209}, {11888.2, 18.5537}, {12066.5, 18.011}, {12114.5, 17.8799},
(12119., 17.868}, {12168.4, 17.7401), {12232.3, 17.5855}), {12240.8, 17.5658],
(12463.5, 17.1264}, (12510.4, 17. 0534}, {12582.2, 16.9548), {12628.2, 16.9004}}

SENENES

Length[graphss2a]
28

graphss2a

({6308. 82, 16.5096), {6372.74, 16.6444), {6694.81, 17.3296}, {6729.18, 17.4034},
(6760. 74, 17. 4713}, {7431.31, 18.9507}, {7811.42, 19.8285), {8135.26, 20. 6048},
(8489. 46, 21.4886), {8584.18, 21.7317}, {8616.18, 21.8145}, {8807.46, 22.317},
(8835. 36, 22.3914}, (8933.29, 22.6549), (8997.14, 22.8285), {9174.46, 23. 3193},
(9231. 35, 23.4795), {9267.32, 23.5814}, {9374.18, 23.8874}, {9546.43, 24.3912},
(9602. 35, 24.5575}, {9673.18, 24.7703}, {9764.11, 25.047}, {9896. 46, 25. 4566},
(9919. 53, 25.5288), {10071.2, 26.0105}, {10276.4, 26. 6812}, {10371.2, 26.9985}}

The intersection is at x=10276.4, graphss2b[[1]] and graphss2a[27]

Both maximum and minimum curve fits are “peaky” with the maximum more so. In
most cases such behavior would be unphysical, so we formulate a least squares transition
function for each curve. With curves generated at equispaced x values, Mathematica
provides interpolations which are automatic spline fits by means of the function Interpola-
tion[]. But because we already have unequally spaced points, we would rather formulate
transition functions that can be determined from unequal intervals. The main point of a
transition function is to match the slopes of two curves that have different slopes coming
into a cusp point and obtain a continuous curve that comes to a maximum or minimum.
Often cubic equations are used as splines but in our case we have had to go to 7th order
plus a constant. Ideally we should fit the new function with a centered variable (t - epoch)
were the epoch time is that that where the maximum (or minimum) occurs. But since the
we really don’'t know the epoch accurately ahead of time, we will use non-linear least
squares fitting to find it. The points we need fit are to be found in the four plotting arrays
(lists), graphssl1 (post-minimum), graphssa (pre-minimum) and graphss2a (pre-maximum),
graphss2b (post-maximum). Combining most of the points from each list should give
enough data to do the regressions properly.

Creating Smooth Velocity Curves That Transition Smoothly Through Maxi-
mum and Minimum

numminR = Length[graphssl]
41

20 | 1-2SpectBin.nb

numminL = Length[graphssa]
26

nummaxL = Length[graphss2a]
28

nummaxR = Length[graphss2b]
25

Here we select the number of samples from each file based on the numbers above.
numca = 25; numcl = 40; numc2a = 26; numc2b = 23;

minimumf = Table[0, {ii, 1, (humca+numcl)}];

maximumf = Table[0, {ii, 1, (humc2a+ numc2b)}];

nummin = Length[minimumf]

65

nummax = Length [maximumf]

49

The pre minimum values are inserted into the first part of the new array.
jJ = numminL - numca;
Do[jJ =]3j+1;

minimumf[[i§]] = {graphssa[[jJ, 1]], graphssa[[}Jj, 2]]1};, {ii, 1, numca}]
The post minimum values are inserted into the 2nd part of the new array.
Ji=0;

Do[jj =33 +1; minimumf[[ii]] = {graphss1[[jj, 1]], graphss1[[jj, 2]]1};,
{ii, numca+1, nummin}]

The pre maximum values are inserted into the first part of the new array. Unlike the mini-
mum case where the extreme points were trimmed off the beginnings and ends of the
original files. Here we want to trim off mainly the points around the peak since trial and
error fitting has shown that to be causing a lack of fit of the maximum curve.

i3 =0;

Do[jj = Jj+1;
maximumF[[ii]] = {graphss2a[[j], 111, graphss2a[[j}, 21]1};, {ii, 1, numc2a}]

The first half post maximum values are inserted into the 2nd part of the new array.
Ji=1;

Do[jJ =3 +1; maximumF[[ii]] = {graphss2b[[j], 1]], graphss2b[[j}J., 2]11}:;.,
{ii, numc2a+ 1, nummax}]

The minimum part of the velocity curve

1-2SpectBin.nb 21

mincurvel = Nonl inearModeIFit[minimumf,
an+bn (t-tmin) +cn (t-tmin)? +dn (t-tmin)3+en (t-tmin)*+ fn (t-tmin)®+
gn (t-tmin)®+ hn (t-tmin)’, {an, bn, cn, dn, en, fn, gn, hn, tmin}, t]
NonlinearModelFit::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.
There is a possibility that the method has stalled at a point that is not a local minimum. >

Fi ttedModel || _34237.+ «9> +1.63301x10 2% (5334.12 + t)7

mincurve = Normal [mincurvel]

-34237. +22.3399 (5334.12 +t) - 0. 00616267 (5334.12 +t)2+
9.33049 x 1077 (5334.12 +t)%-8.38068 x 10711 (5334. 12 +t)* +
4.46908 x 10°1° (5334.12 +t)°-1.31097 x10°1° (5334.12 +t)%+ 1. 63301 x 10?4 (5334.12 +t)"

The fact that the initial constant comes out to be the real minimum velocity while the epoch
tmin comes out to be the time value expected for the minimum indicates that this 7th order
polynomial is an excellent fit.

\/ mincurvel["'RSquared]
0. 999967

minparamsl = mincurvel[''BestFitParameters']

{an > -34237., bn - 22.3399, cn - -0.00616267, dn - 9.33049 x10 7, en - -8.38068 x 10 **,
fn-4.46908x10'°, gn - -1.31097 x10 %, hn > 1. 63301 x10**, tnin > -5334. 12}

minparams = {minparamsl[[1l, 2]], minparamsl[[2, 2]], minparamsl[[3, 211,
minparamsl[[4, 2]], minparamsl[[5, 2]], minparamsl[[6, 2]1,
minparamsl[[7, 2]], minparamsl[[8, 2]], minparams1[[9, 2]1};

minerrors = mincurvel["ParameterErrors']

{9.47387x10%", 5.95141 x10°%%, 3.55873x10°?, 2.42883 x10 %,
1.40237 x10°%*, 5.47644 x10°?", 8.8403x10?°, 3.5173x10?°, 1.52336 x 10 **}

As expressed by Meyer (1975), power series expansions fit by least squares are notorious
for producing coefficients that horridly correlated so that using just the standard errors in a
error propagation based on a random model can mislead considerably. Examination of the
covariance matrix shows just that tendency here.

22 | 1-2SpectBin.nb

mincovariance = mincurvel["CovarianceMatrix™] // MatrixForm

mincurvel["ParameterTable"]

8.97542 x 10°°3
-5.
-3.
-2.
-1,
-5.
8. 34565 x 1051
-3.29485 x 10755
-1.44321 %1078

63829 x 1058
37149 x 1058
30104 x 10>
32858 x 1050
18831 x 1047

Estimate
an | -34237.
bn |22.3399
cn | -0.00616267
dn | 9.33049x107
en | -8.38068x107 !
fn 4.46908 x 1071°
gn | -1.31097x107*°
hn | 1.63301x107%*
tmin | -5334.12

-5.63829 x 10758
3.54193 x 10763
2.11795 % 10763
1. 4455 x 10-5°
8. 34606 x 1056
3.25926 x 1052

-5.24268 x 10756
2.0698 x 10760
9.06613 x 1074

Standard Error

9.47387x107%7
5.95141x 10732
3.55873x 10732
2.42883x 10728
1.40237x 10724
5.47644x 1072
8.8403x1072°

3.5173x107%°
1.52336x 10742

mincurve2 = Table[

{minimumf[[ii, 1]], mincurve /. t > minimumfF[[ii

-3.37149x 108
2.11795x 10763
1. 26645 x 1073
8. 64354 x 10790
4.99064 x 10756
1. 94892 x 10752
-3.13493x 107
1. 23767 x 10760
5.42122 x 10774

1. 4455 x 10°%°
8. 64354 x 10790
5.89921 x 1056
3.40611 x10°%2
1.33013 x 1048

8. 44706 x 107%7
3.69998 x 10770

P-Value

5.357546495727143x 1071664
6.387315903063993x 1071777
4.174534455555614 x 10”159

t-Statistic
-3.61383x10%°
3.75372x10%
-1.73171x10%°

-2.30104 x 10754

-2.13959 x 1052

3.84156x10%*
-5.9761x 10"

1.748916013089006 x 10”1162
3.131580966350929 x 10~ %4

816 055. 8.29629x 107284
-148295. 2.46698 x 107242
46428. 4.32024x1072%4

-3.50155x10*° 3.137475671353368x 1072598

-1.32858 x 10750
8. 34606 x 1056
4.99064 x 10756
3.40611x 10752
1. 96663 x 10748
7.67998 x 10°4°
-1.23536x1048
4.87719 x 10°°3
2.1363x10°%¢

, 111}, {11, 1, Length[minimumf]}];

ListPlot[{minimumf, mincurve2}, AxesLabel » {"time days', "radial velocity (km/s)"}]

radial velocity (km/s)

24

20

22

18

Ruet

3000 4000

5000 6000

time days
7000 8000 9000

The maximum part of the velocity curve

The maximum of the rv curve is a bit sharper than that of minimum and so it was a some-
hwhat harder to reproduce it satisfactorily. Comments on how to construct the data file
leaving peak points off are given above. First we redo the standard approach that worked
so well on the minimum part of the radial velocity curve. In that polynomial model, the
order was seven but for the maximum fit it did not yield the expected am and tmax values.
In addition, the signs of the coefficients alternate, not a good sign that this is the correct fit.
Finally Mathematica issues a warning about convergence to a local minimum of the sum of

1-2SpectBin.nb 23

the squares instead of the global minimum desired. That same failing of proper conver-
gence warning was issed by Meyer in his discussion of non-linear least-squares methodol-
ogy so it must be taken seriously here also.

maxcurvel = Nonl inearModeIFit[maximumf,
am + bm (t - tmax) +cm (t-tmax)2+ dm (t-tmax)>+em (t-tmax)*+ fm (t - tmax)® +
gm (t-tmax)®+hm (t-tmax)’, {am, bm, cm, dm, em, fm, gm, hm, tmax}, t]
NonlinearModelFit::sszero :
The step size in the search has become less than the tolerance prescribed by the PrecisionGoal

option, but the gradient is larger than the tolerance specified by the AccuracyGoal option.
There is a possibility that the method has stalled at a point that is not a local minimum. >

Fi t t edModel [<1> }

\/maxcurvel [""RSquared™]
0. 999947

maxcurve = Normal [maxcurvel]

-2.68747 x10% -59631.4 (-41183.2 +t) -

5.66458 (-41183.2 +t)?-0.000298625 (-41183.2+1)3 -
9.43581x107° (-41183.2+1t)%-1.78701x1071° (-41183.2+1)5 -
1.87825x10%8 (-41183.2 +t)%-8.45191x10%* (-41183.2 +t)”

maxparamsl = maxcurvel[''BestFitParameters']

{am- -2.68747 x 10%, bm- -59631.4, cm- -5. 66458,

dm- -0. 000298625, em— -9. 43581 x10°°, fm— -1. 78701 x 10713,
gm- -1.87825x10°'%, hm- -8.45191 x 10", tmax - 41183. 2}

maxparams = {maxparamsl1l[[1, 2]], maxparamsl[[2, 2]], maxparamsl[[3, 2]],
maxparamsl[[4, 2]], maxparamsl[[5, 2]], maxparamsl[[6, 2]],
maxparamsl[[7, 2]], maxparamsl[[8, 2]], maxparamsl[[9, 2]]1}

[-2.68747 x10% -59631.4, -5.66458, -0.000298625, -9.43581x10°,
-1.78701x 1073, -1.87825x107'%, -8.45191x 1074, 41183. 2}

maxerrors = maxcurvel['ParameterErrors™]

{9.84994 x 10728, 2.8698 x10°%3, 1.0309 x10°%*, 1. 95903 x 10,
3.10672 x10°%°, 3.28923x10 %%, 2. 05741 x107?%, 3.20918 x 103!, 5.82092 x 10 *°}

24 | 1-2SpectBin.nb

maxcurvel["ParameterTable']

am
bm
cm
dm
em
fm
gm
hm
tmax

The

Estimate

-59631.4
-5.66458

41183.2

Standard Error t-Statistic P-Value

—2.68747x10°% 9.84994x107%® -2.72841x10% 5.046549556495583x 101387
2.8698x107%% -2.0779x10%" 2.719066400059621 x 1071462
1.0309x1073* _-5.4948x10% 3.477840580841610x 107 13%°
—0.000298625 1.95903x107%° -1.52435x10%® 6.545737547048920x 10717
-9.43581x10™° 3.10672x1072° -3.03723x10Y 6.923152552084629 x 10755°
~1.78701x1071® 3.28923x10722 -5.43293x10° 5.470725699408782x 10319
-1.87825x107*® 2.05741x107%° -9.12921x10" 5.27307x1072%8

-8.45191x1072* 3.20918x107%' -2.63367x10° 2.07478x10725¢
5.82092x107%° 7.07503x10%® 1.413399005442366x 107192%

non-convergence most likely results because the procedure was unable to reach the
peak points properly at that order as can be seen below

maxcurve2 = Table[
{maximumF[[ii, 1]], maxcurve /. t » maximumF[[ii, 111}, {ii, 1, Length[maximumf]}];

ListPlot[{maximumf, maxcurve2}, AxeslLabel » {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)

24

22

20

18

26

4

7000

8000 9000 10000

11000

1 timedays
12000

Several attempts were made to increase the order of the fit but because the pre and post
maximum curves are so well reproduced these did not produce the desired results. Next
we try specifying the desired time of peak passage to force the non-linear method to pass
the local minimum. First we sort the original data using a Mathematica “pure” function
(similar to that given in the online Help under Sort[]) that produces a list with the maximum
velocity entry first. (For more information about “pure” functions in Mathematica put Pure
Functions in the help search field and a number of links to on-line references will appear.)
You can now see the maximum points and select either their times or velocities or some
combination of the two.

1-2SpectBin.nb 25

smax = Sort[maximumf, #1[[2]] > #2[[2]] &]

({10371.2, 26.0377}, {10071.2, 26.0105}, {9919.53, 25.5288},

(9896. 46, 25. 4566}, {9764.11, 25.047}), {9673.18, 24.7703}, {9602.35, 24.5575},
(9546. 43, 24.3912), {9374.18, 23.8874), {10734.3, 23.8598}, {10769.2, 23.6612},
(10777.7, 23.6129}, {9267.32, 23.5814)}, {9231.35, 23.4795), {9174.46, 23.3193},
(10849. 1, 23.2135}, (8997.14, 22.8285), (8933.29, 22.6549}, (8835.36, 22.39141,
(8807. 46, 22.317), {8616.18, 21.8145), (8584.18, 21.7317), {11133.2, 21.7144},
(8489. 46, 21.4886), {11220.1, 21.2866}, (8135.26, 20.6048)}, {11468.6, 20.15},
(7811.42, 19.8285), {11570.5, 19.7236}, {11730.5, 19.1031},

(11750. 4, 19.0302}, {7431.31, 18.9507}, {11783.4, 18.9116}, {11838.2, 18.7209},
(11888.2, 18.5537), {12066.5, 18.011}, (12114.5, 17.8799}, (12119., 17. 868},
(12168. 4, 17.7401}, {12232.3, 17.5855}, {12240.8, 17.5658},

(6760. 74, 17. 4713}, {6729.18, 17.4034}, ({6694.81, 17.3296}, {12463.5, 17.1264},
(12510. 4, 17.0534}, {12582.2, 16.9548), ({6372.74, 16. 6444}, {6308.82, 16.5096})

Now you have a choice about where to put the maximum. In the previous fit, the maximum
of the function comes out to be nearest the second point so we chose it. The problem with
that earlier maximum curve fit is that the derived coefficients and their errors were incorrect
because the sum of the squares was a local not global minimum. But now we can chose a
time closer to the actual maximum for the epoch. If we were purists we would run this with
this epoch and then run it again with the actual functional maximum. But doing this numeri-
cally achieves little in terms of smaller errors so we run only once. You can try using the
functional maximum if you wish to see that numerically it is not necessary to rerun. The
difference between the two is 1 in the fourth significant figure.

tmaxl = smax[[2, 1]]

10071. 2
Atmaxl = 0.5;

Since we now specify the epoch of the expansion we can return to the LinearModelFit[]
routine to analyze the maximum curve once again.

yfunction = Col Iect[Expand[aml +bml (t-tmaxl) +cml (t-tmax1)?+ dml (t-tmaxl)3+
eml (t-tmax1)*+fml (t-tmax1)®+gml (t-tmax1)®+hml (t-tmaxl)’], t]
aml - 10071. 2 bml + 1. 01429 x 108 cml - 1. 02151 x 10 dnm +

1.02878 x 10 eml - 1. 0361 x 10%° f il + 1. 04348 x 10%* gl - 1. 05091 x 1028 hrl +
(bmil - 20142. 4 cnl + 3. 04286 x 10° dmil - 4. 08603 x 10'% entl +

5.1439 x 10" fml - 6. 21662 x 10°° gntl + 7. 30435 x 10** hntl) t +
(cml -30213. 6 dnl + 6. 08573 x 10° el - 1. 02151 x 10*3 f L +

1.54317 x 10*" gntl - 2. 17582 x 10** hntl) t2 +
(dmi - 40284. 7 entl + 1. 01429 x 10° f il - 2. 04302 x 10" gntl + 3. 60073 x 10* hntl) t 3 +
(eml -50355. 9 fml + 1. 52143 x 10° gl - 3. 57528 x 10* hnt) t * +
(frml-60427. 1 gl +2.13x10° hnt) t°+ (gl - 70498. 3 hnt) t® + hnil t

We now have the coefficient expressions in the original expansion to get back into the
assumed form.

26 | 1-2SpectBin.nb

maxcurve3 =
NonlinearModelFit[maximumf, yfunction, {aml, bm1, cml, dml, em1l, fml, gml, hml}, t]

Fi ttedModel || 43992.2-35.0002t+0.0118019 t? — «23» <13 + <1 — <23 t°+5.58285x 107 1% * - 8.45191 x 10724 ¢’

\/maxcurve3 [""RSquared']
0. 999947

Once again we examine the covariance matrix for the least squares fit to see how badly
the various values are correlated with each other and as for the analysis of the minimum
curve the coefficients are highly correlated.

maxcovariance = maxcurve3[''CovarianceMatrix'] // MatrixForm

1.03978 %1037 -1.91224x10%% -1.34936x103° -4,24425x103%" -3.26738x10°3 -4, 9¢
-1.91224 %104 3.51678 x10%7 2.48159x10%* 7.80554 x 1042 6. 009 x 10738 9.15
-1.34936x10°3° 2.48159x10% 1.75111x10% 5.50792x103° 4.2402x103 6.46
-4.24425%x 1037 7.80554x104 5.50792x103%% 1,73245x103® 1.3337x10°% 2.03
-3.26738x10°3 6.009x10°38 4.2402 x 1073 1.3337x103%2 1.02673x10%8 1.56
-4.98058 x 1037 9.15972x10% 6.46348x103%° 2,03301x103 1.56509x103%2 4. 23
5.35091x10° _-9.8408x10* -6.94407x10%% -2.18418x103%° -1.68146x103 -2.6

1.16368x10*% -2.14011x10%% -1.51015x10% -4.74999x10* -3.65672x1073%° -7, 3¢

maxcurve4 = Normal [maxcurve3]
43992.2 -35.0002t +0.0118019t2-2.18529%x10°¢t3+

2.39942 x101%t%_-1,56205x101t°+5.58285x101°1%-8.45191 x10 %"
maxparams4 = maxcurve3[''BestFitParameters']

{aml - 25. 4266, bnl > -0. 000057498, cnil > -3.24258 x10°°, dnl > -4. 48887 x 10 7,
enl > 5.69323x10 '3, fnl > 1.1243x107'°%, gml - -3. 75603 x 10 *°, hnil - -8. 45191 x 10 %*}

maxparams5 = {maxparams4[[1, 2]], maxparams4[[2, 2]],
maxparams4[[3, 2]1], maxparams4[[4, 2]], maxparams4[[5, 2]1,
maxparams4[[6, 2]], maxparams4[[7, 2]], maxparams4[[8, 2]1}

{25. 4266, -0.000057498, -3.24258 x10°°, -4.48887 x10 ',
5.69323 x 103, 1.1243 x10*%, -3.75603 x107?%, -8.45191 x 10 %}

maxerrors5 = maxcurve3[''ParameterErrors']

{3.22456 x 10719, 5.93025x 10724, 4.18463x1021, 1.31623x10718,
1.01328 x 107, 2.0577 x10°'%, 1. 69114 x 107!, 3.93211 x 10 %}

1-2SpectBin.nb 27

maxcurve3["'ParameterTable']

Estimate Standard Error t-Statistic P-Value
aml | 25.4266 3.22456x1071° 7.88529x10%° 2.429087584214556x 10784
bml | -0.000057498 5.93025x1072* -9.69571x10'® 5.072310266715133x 10’47
cml | -3.24258x107° 4.18463x1072' -7.74879x10'* 4.970314516241459x107°7°
dml | -4.48887x107'° 1.31623x107® -3.41041x10°® 2.041183143498667 x10 318

eml 5.69323x10™* 1.01328x107!* 56.1862 2.03213x1074°
fml | 1.1243x107® 2.0577x10°*® 54.6386 6.29318x1074°
gml -3.75603x107%° 1.69114x107%' -22.21 1.78698x 10724
hml | -8.45191x1072* 3.93211x1072° -21.4946 6.16687 x 1072

Our little trick worked. As can be seen our function appears exactly the same, but the
constant parameter is what would be expected for the maximum value of the function. We
indeed have arrived at the global minimum with coefficients that will have minimum vari-
ance. Now we are ready to move on with the solutions.
maxcurve5 = Table[{maximumf[[ii, 1]], maxcurved /. t -» maximumF[[ii, 111},

{ii, 1, Length[maximumf]}];
ListPlot[{maximumf, maxcurve5}, AxesLabel » {""time days", "radial velocity (km/s)"}]

radial velocity (km/s)

26 o o
L . 'y
. .
i F
24 r “n (Y
L .o'
22
[.8 2
. .
L s .
20 i s o
L . \"
18 ~,
e %,
P ‘\““\““\““\““\“‘timedays
7000 8000 9000 10000 11000 12000

Deriving the Orbital Parameters for HD 108613

Now we are ready to integrate the maximum and minimum curves as needed to
derive the orbital elements. First we need to verify the maximum and minimum times since
these are where the half integrals are to be taken from when it comes time to calculate the
orbital elements. Of course there are multiple roots from Solve[]=0 from which the correct
root can only be selected from graphs by inspection and then selected using the proper
Mathematica component notation. In the case of the minimum, the tminO value (from the
least-squares fit) should be reasonably close although not likely to be exactly the time
obtained by Solve[]=0.

First we turn to the determination of the time of minimum.

28 | 1-2SpectBin.nb

minl = Solve[8¢ mincurve == 0, t]
{{t - 2085.69}, {t »4186.23}, {t - 6071.83 -538.3781},
{t ~6071.83 +538.3781}, {t »9195.28 -1041.391}, {t -»9195.28 +1041.391}}

There are two real solutions. The smaller can be rejected by consulting the graph so the
next one is chosen.

tmin0 =minl[[2, 1, 2]]

4186. 23

The predicted radial velocity at this time is
limsl = mincurve /. t - tmin0

16. 3353

Now we turn to the maximum determination
maxl = Solve[8¢ maxcurve4 == 0, t]
{{t »6372.08}, {t »7765.5-616.7751}, {t - 7765.5+616.775 1},

{t 510062.3}, {t »12326.3 -326.4611i}, {t -»12326.3 +326.4611})}
The time of maximum given by the function and verified from the graph is
tmax0 = max1[[4, 1, 2]]

10062. 3

The predicted radial velocity at this time is
1ims2 = maxcurve4 /. t » tmax0

25. 4269

Next we need to find the two time intersection points for a given rv level and then
substitute as limits in the integral. This is to be done by trial and error by adjusting the rv0
value computing the two integrals comparing their values and readjusting the rV0O value
until there is near equality. In the present case, we get 19.746 km/s for the y velocity.
Griffin gets 19.8 km/s. Once we were satified with the actual rvO value then we calculated
the times at which this is achieved for the two curves using Solve[]=0 to give times

rvo = 19.746;

We will need an error estimate of this. Although this value is quoted to three decimals, the
adjustment process suggests the following is reasonable.

Arv0O = 0.05;

min2 = Solve[mincurve = rvo, t]

({t >1630.62), {t »2846.57}, {t »5490.94 -1767.28 i}, {t - 5490.94 +1767.28 1},
(t >8030.71}), {t »9725.36 -1483.77 i}, {t > 9725.36 +1483.77 i)}

max2 = Solve[maxcurve4 == rv0, t]

({t >5917.56), {t »7682.97}, {t »7773.07 -1024.06 i}, {t - 7773.07 +1024.06 i},
(t >11559.9}, {t >12673.8 -644.873 1}, {t >12673.8 +644.873 1)}

1-2SpectBin.nb 29

Now we take the definite integrals as required. Be sure to manually change the
indices of the limits to correspond to the real roots of the equations if that changes during
your iteration ! Also note that the lower limit of the maximum curve should properly corre-
spond to the value of the upper limit of the minimum integral. and so we have made it that
way. Also note that we have made no special sophisticated attempt to make the two curve
fits blend smoothly in the vicinity of rvO.

Here is the integral of the (rvO-minimum curve)
tuL = min2[[5, 1, 2]]
8030. 71

tiL = min2[[2, 1, 2]]
2846. 57

tul
integl = j (rvO -mincurve) dt
tiL

11872.2

Plotting the two functions mincurve and maxcurve shows that the two functions
have a range of “osculation” where they stay close together from about 7000 to at least
10000. Thus for the other integral we can use the upper limit of integl as the lower limit of
integ2 calculated below without dire consequence.

plota = Plot[{mincurve /. t -> t2, maxcurve /. t » t2},
{t2, tlL, tuL + 2000}, AxesLabel -» {""time days", "radial velocity (km/s)'"}]

radial velocity (km/s)
70}
60}
50}
aor

30

20}

7000

8000

L L timedays

4000 5000 6000 9000 10000

Here is the integral of the (maximum curve-rv0)
tul = max2[[5, 1, 21];

tlu =min2[[5, 1, 2]];

tuu
integ2 = j (maxcurve4 - rv0) dt
tiu

11875.8

Now that a rvO value has been established we can proceed, but notice we have not
established any of the errors of the process so far. We now take a detour to discuss the

30 | 1-2SpectBin.nb

propagation of errors.
A Digression Concerning the Propagation of Errors

One of the virtues of using Mathematica is not only that it can calculate the errors
for you, but that it can compare results from all the three error propagation categories
mentioned above. Finding the propagated random errors in the case of integrals of a
polynomial is not trivial and often turns out (to the embarrassment of the researcher) many
times larger than the integral value itself. This is not just limited to the case of the integral
of a polynomial. That is why the results of a “proper” (independent errors) error analysis is
rarely quoted when the observational errors are large. In a high signal to noise case
where equal weights are assumed, error independence turns out to be a reasonable
assumption. In this spectroscopic binary case, we find that assumption to be far from
justified. The symptom of this is that the propagated errors are very large, sometimes 2-3
times larger than the numbers themselves. In such cases, the true errors are most likely
correlated with unknown linear (or even non-linear) correlation coefficients. When that
happens, assuming the coefficients to be orthogonal produces erroneous results and
simply means that the true errors remain largely unknown. In spite of the caveats, we
provide the errors under the three situations mentioned near the first of this notebook for
much of the spectroscopic binary analysis primarily because Mathematica makes the
arduous calculations relatively easy. But to do the proper error analysis requires that the
least squares “predicted radial velocities” be calculated explicitly from the series coeffi-
cients. Here we give the minimum curve and maximum curve expansions as needed.

Here are the power series expansions of each curve. These produce the same
results as mincurvl/.t -> te and maxcurve4/.t -> te used above. In the case of the minimum
curve series expansion the “targument” and its error are both available in the minparams
and minerror vectors as the last entry. In the maximum curve case, the number was
selected by “eye” and hence no error is assigned. We can assign this to have the same
error as does tmin0. Hence

Atphl = minerrors[[9]];

Another issue is what error to assign to individual observation times. A reasonable
estimate might be conservatively estimated at 0.1 day. So in that case we take

Atel =0.1;
minseries[te_] := Module[{}, nO = Length[minparams] ;
n0-2
[Z minparams[[n+1]] (te - tph)”] /- tph -» minparams[[nO]]]
n=0
maxseries[te_] := Module[{}, nO = Length [maxparams5] ;

n0-1
[Z maxparams5[[n+1]] (te - tph) ”] /. tph > tmaxO]
n=0

Here are the integrals of each curve from zero

1-2SpectBin.nb 31

intminseries[te_] := Module[{}, nO = Length[minparams] ;

n0-2 mgnparams[[n + 1
[rvO (te - tph) - Z P (-2

n=0

(te—tph)”*l] /. tph -> minparams[[nO]]]
n+1

intmaxseries[te_] := Module[{}, nO = Length [maxparams5] ;

n0-2 maxparams5[[n+1]]
(te - tph) ™! — rvO (te - tph) | /. tph - tmaxl]
rs n+1
We now illustrate the three main error analysis methods for the integrals needed
for spectroscopic orbits because the star being analyzed (if the results are taken at face
value) appears to be very unusual. But since it turns out that the parameters in question
appear to have large errors, the results may actually be suspect and we need to decide

which is the case.
a) Random Errors

Here is a function that calculates the random error in the definite integral of a fitted
non-linear polynomial. Here nO = the number of coefficents including the constant term, tph
= the epoch time from the fit (this is always the last coefficient in the fits), Atph = the error
of the epoch time from the fit, t1 = the time for which the error is desired, Atl the error on
the time, cO = a list giving all power law coefficients in the polynomial starting with the
constant term first and going to progressively higher powers, AcO = the errors of the coeffi-
cients in the same order as the previous list, and ArvO = the error of the velocity
determination.

This function has been left with undermined parameters and coefficients so that it
will generate errors for any integral of polynomial. To be useful we have to put this into a
Module[] where the unspecified parameters can be specified after the function has been
generated.

Before doing the integral error analysis, we first do the “prediction” errors for the max and
min series according to standard propagation of random errors.

erminserieste_] := Module[{} , 0 = Length[minerrors] ; Clear[tph, Ate, Atph];

n0-2
\/[([Z nminparams[[n+1]] (te-tph)"? \/Ate12+minerrors[[nO]]2J /-

n=0

2
{tph -> minparams[[n0]], Ate » Atel, Atph -» minerrors[[n0]] }] +

n0-2
[[Z (te - tph)"minerrors[[n+ 1]]] /. {tph -> minparams[[n0]],
n=0

2
Ate -» Atel, Atph -» minerrors[[n0]] }] J]

32 | 1-2SpectBin.nb

ermaxseries[te_] := Module[{} , 0 = Length[maxerrors5]; Clear[tph, Ate, Atph];

n0-1
[[[Z nmaxparams5[[n+1]] (te - tph)"!/ate? + atph1?] /-

n=0

2
{tph - tmaxl, Ate » Atel, Atph » Atphl}] +

2

]

Using the analogous pattern, we do the “prediction” errors for the max and min integrals
according to standard propagation of random errors.

n0-1
([Z (te - tph) " maxerrors5[[n+1]]] /. {tph -» tmaxl, Ate -» Atel, Atph -» Atphl}
n=0

erintminseries[te_] := Module[{} , 0 = Length[minerrors] ; Clear[tph, Ate, Atph];

n0-2
[[[Z minparams[[n+1]] (te - tph)" \/Atel2 +minerrors[[n0]]2 J /
n=0

2
{tph -> minparams[[n0]], Ate » Atel, Atph -» minerrors[[n0]] }] +

n0-2 (te tph)n+l))
Z n minerrors[[n+1]1(/- {tph -> minparams[[n0]],
n+

n=

2
Ate -» Atel, Atph -» minerrors[[n0]] }] J]

erintmaxseries[te_] := Module[{} , 0 = Length[maxerrors5] ; Clear[tph, Ate, Atph];

n0-1
[[[Z maxparams5[[n+1]] (te - tph)" \/Atel2 + Atph1?] /. {tph -» tmaxl,
n=0

O

2 n0-1 (te tph)n+1
Ate - Atel, Atph -» Atphl} | + —— maxerrors5[[n+ 1]]
n+1

1
o

n

]

Here is the total error for the evaluation of the power series for the minimum

2
{tph - tmaxl, Ate » Atel, Atph » Atphl}]

errmin[tU_, AtU_] := Module[{} , Nl =Length[minparams];

answl = \/erminseries[tU]2 + AtU? + minerrors[[n1]]?]

Here is the total error for the evaluation of the power series for the maximum

1-2SpectBin.nb 33

errmax[tU_, AtU_] :=

Module[{} , N2 = Length[maxparams5] ; answ3 = \/ermaxseries[tU]2 + AtU? + Atph1?] ;
Here is the total error for the integral representing the minimum curve integral

errintmin[tU_, atU_, tL_, AtL] := Module[{} , Nl =Length[minparams];

answl = \/erintminseries[tU]2 +AtU? + minerrors[[n1]]? ;

answ2 = \/erintminseries[tL]2 +AtL? + minerrors[[n1]]1? ; \/answl2 +answ2?]

Here is the error for the integral representing the maximum curve integral
errintmax[tU_, atU_, tL_, AtL] :=

Module[{} , N2 = Length[maxparams5] ; answ3 = \/erintmaxseries[tU]2 + AtU? + Atphl? ;

answ4 = \/erintmaxseries [tL]2 + AtL? + Atph1? ; \/answ32 + answ4?] ;

b) Correlated Errors

Because we have mentioned the possibility of systematic errors and the coeffi-
cients for the power series coefficients are far from independent as shown by the displayed
covariance matrices from each fit, we develop the errors propagated through the covari-
ance matrix rather than through the sum of squares alone. First we have to put the minco-
variances “matrix” into a proper form that can do a matrix multiplication. The first complica-
tion is that the mincurvel[*CovarianceMatrix”]//MatrixForm used above disguises the fact
that the assignment to mincovariance put the matrix one Mathematica expression deeper
than you might think from the displayed form above. In addition for the minimum curve, we
have to eliminate the fact that the last row-column is for the tph argument whose error form
is different from that of the coefficients themselves. Hence the restoration of the proper list
structure that is one row column shorter than mincovariance is needed for the calculation
of the coefficient covariances. As long as matrices are of small dimension their handling in
Mathematica is relatively straight forward but when the matrices are built from those con-
structed in the nonlinear least squares routine it is a bit more complicated. The following
algorithms were found by trial and error to be of the correct list depth required by Mathemat:
ica operations. These are the correlated prediction errors for the power series produced by
the least squares process.

Correlated Errors for Minimum Curve Expansion
serminseries[te_] :=

Module[{}, Clear[i, J]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
aminmatrix = Table[Table[mincovariance[[1, i, j]1], {i, 1, ns-1}1, {J, 1, ns-1}1;
vector = Table[((te - minparams| [9]])5[””) ,{i, 1, (ns-1)}];
bmatrix = Flatten[aminmatrix.vector]; Transpose[vector] -bmatrix]

34 | 1-2SpectBin.nb

serminarg[te_] :=
Module[{}, Clear[i, j]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
vector = Table[(minparams[[i]] S[[i]] (te-minparams][[9]])5[””'1)
Abs[minerrors[[9]]1], {i, 2, (ns-1) }]; Flatten[Transpose[vector] .vector]]
serminte[te_] :=
Module[{}, Clear[i, j]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
vector = Table[(minparams[[i]] S[[i]] (te-minparams][[9]])5[“”'1) Abs[atel],
{i, 2, (ns-1)}]; Flatten[Transpose[vector] .vector]]

Correlated Errors for Maximum Curve Expansion

sermaxseries[te_] := Module[{}, Clear[i, j]; nt = Length[maxerrors5];
amaxmatrix = Table[Table[maxcovariance[[1, i, j1]1, {i, 1, nt}1, {J, 1, nt}];
ss = Table[{j -1}, {j. 1, ns}]; vector = Table[((te - tmax1)sslI"1) | (i, 1, nt}];
bmatrix = Flatten[amaxmatrix.vector] ; Transpose[vector] -bmatrix]
sermaxarg[te_] :=
Module[{}, Clear[i, j]; nt = Length[maxerrors5]; ss = Table[{j -1}, {J, 1, nt}];

vector = Table[(maxparams5[[i]] sS[[i]] (te- tmaxl)ss“i”'l) Abs[minerrors[[9]]1]1,
{i, 2, nt}]; Flatten[Transpose[vector] .vector]]

sermaxte[te_] :=
Module[{}, Clear[i, j]; nt = Length[maxerrors5]; ss = Table[{j -1}, {J, 1, nt}];
vector = Table[(maxparams5[[i]] sS[[i]] (te- tmaxl)ss“i”'l) Abs[atel], {i, 2, nt}];
Flatten[Transpose[vector] .vector]]
Total error for the power series representing the minimum curve
serrmin[te_] :=

Module[{}, answl = serminseries[te] + serminarg[te] + serminte[te]; Vanswl]

Total error for the power series representing the maximum curve

serrmax[te] :=

Module|{}, answ2 = sermaxseries[te] + sermaxarg[te] + sermaxte[te]; V answ2
g

Using the analogous pattern, we do the “prediction” errors for the max and min integrals
according to the propagation of correlated errors. (Meyer,1975)

Correlated Errors for Minimum Curve Integral
serintminseries[te_] :=
Module[{}, Clear[i, j]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
aminmatrix = Table[Table[mincovariance[[1, i, j]], {i, 1, ns-1}1, {J, 1, ns-1}]1;

(te - minparams[[9]])Stli11+1

vector:Table[[, {i,1, (ns—l)}];

Ss[[i]]+1

bmatrix = Flatten[aminmatrix.vector] ; Transpose[vector] -bmatrix]

1-2SpectBin.nb 35

serintminarg[te_] :=
Module[{}, Clear[i, j]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
vector = Table[(minparams[[i]] (te-minparams[[9]])S“i”) Abs[minerrors[[9]]1],
{i, 2, (ns-1)}]; Flatten[Transpose[vector] .vector]]

serintminte[te_] :=
Module[{}, Clear[i, j]; ns = Length[minerrors]; s=Table[{J -1}, {J, 1, ns-1}];
vector = Table[(minparams[[i]] (te-minparams[[9]])S”i”) Abs[Atel],
{i, 2, (ns-1)}]; Flatten[Transpose[vector] .vector]]

Correlated Errors for Maximum Curve Integral

serintmaxseries[te_] := Module[{} , Clear[i, jJ]; nt = Length[maxerrors5] ;
amaxmatrix = Table[Table[maxcovariance[[1, i, jJ1], {i, 1, nt}], {J, 1, nt}];
(te - tmax1)ssllill+1

ss =Table[{j -1}, {J, 1, ns}]; vector =Table[[] {i, 1, nt}];

ss[[i]]+1

bmatrix = Flatten[amaxmatrix.vector] ; Transpose[vector] .bmatrix]

serintmaxarg[te_] :=
Module[{}, Clear[i, j]; nt = Length[maxerrors5]; ss = Table[{j -1}, {J, 1, nt}];

vector = Table[(maxparams5[[i]] (te - tmaxl)ss“i”) Abs[minerrors[[9]]], {i, 2, nt}];
Flatten[Transpose[vector] .vector]]

serintmaxte[te_] :=
Module[{}, Clear[i, j]; nt = Length[maxerrors5]; ss = Table[{j -1}, {J, 1, nt}];

vector = Table[(maxparams5[[i]] (te - tmaxl)ss“i”) Abs[atel], {i, 2, nt}];
Flatten[Transpose[vector] .vector]]

Total correlated error for the integral over the minimum curve (note that for some
reason these functions need to be immediately evaluated.)
serrintmin[tuLO_, tlILO_] :=
Module[{} , answl = serintminseries[tuL0] + serintminarg[tuL0] + serintminte[tulO];
answ2 = serintminseries[tlLO] + serintminarg[tlILO] + serintminte[tILO];
Vanswi[[1]] +answ2[[1]]]

Total correlated error for the integral over the maximum curve

serrintmax[tulO_, tlUO] :=
Module[{} , answ3 = serintmaxseries[tul0] + serintmaxarg[tuU0] + serintmaxte[tuU0] ;
answ4 = serintmaxseries[tlU0] + serintmaxarg[tlUO] + serintmaxte[tlUO] ;
Vansw3[[1]] +answ4[[1]]]

c) Non-linear Propagation - A Novel Monte Carlo Technique

Because we are concentrating on computational aspects of astrophysics we have
chosen to skip consideration of the very involved process of exploring higher order Taylor

36 | 1-2SpectBin.nb

series expansions. Instead we explore some Monte Carlo approaches to non-linear error
analysis. The philosophy for doing a Monte Carlo investigation of the errors is a bit differ-
ent from standard propagation. Instead of getting the prediction errors from an expansion
of the first order random or systematic errors, we determine the errors directly through
perturbations around the mean values. These “random” sample deviations are then aver-
aged by the standard deviation “rule” to produce an estimate of the average prediction
error for the whole curve or integral. First we do the minimum curve and then the maxi-
mum curve. Secondly we will do the integrals of those curves. Rather than trying to do a
random perturbation of the observations themselves and doing repeated least squares
solutions, we prefer to just perturb the covariance matrix values themselves and combine
them with random fluctuations. The mm is the number of MC values created, tfluct = the
time flucuation in days, and cfluct = the allowed coefficient fluctuation in fractions of the
covariance value.

Monte Carlo Errors for Minimum Curve Expansion

errMCUmin[mm_, tFfluct_, cfluct_] :=
Module[{}, dev = Table[0O, {ii, 1, mm}]; devl = Table[O, {ii, 1, mm}]; minU = 8000;

minL = 2800; At = tFluct; Clear[i, j]; trial = RandomReal [{minL, minU}];
Atime := RandomReal [{-tfluct, tfluct}]; ns = Length[minparams]; Do[time = trial;
dev[[ii]] = (mincurve /. t » (time +Atime)) - (mincurve /. t » time);, {ii, 1, mm}];
s =Table[{j -1}, {J, 1, ns-1}];
Do[devl[[ii]] = Module[{}, aminmatrix = Table[Table[mincovariance[[1, i, j]]
(1 + RandomReal [{-cFluct, cfluct}]) , {i, 1, ns-1}1, {J, 1, ns-1}1;
vector = Table[((trial - minparams| [9]])5[“”) , {i, 1, (ns-1)}];
bmatrix = Flatten[aminmatrix.vector];
Transpose[vector] .bmatrix] - Module[{} , aminmatrix =
Table[Table[mincovariance[[1, ¥, J1] , {i,1,ns-1}], {J,1,ns-1}1;
vector = Table[((trial - minparams| [9]])5[””) . {i,1, (ns-1)}];
bmatrix = Flatten[aminmatrix.vector] ; Transpose[vector] .bmatrix] ,
(ii, 1, mm}]; sd = 0; sd1 = 0; Do[sd =sd+dev[[ii]]?;
sdl = sdl + Abs[devl[[ii]]];,

. sd + sdl
{ll,l,mm}]; m]

Monte Carlo Errors for Maximum Curve Expansion

1-2SpectBin.nb

errMCUmax[mm_, tFluct_, cfluct_] :=
Module[{}, dev = Table[O, {ii, 1, mm}]; devl = Table[O, {ii, 1, mm}]; maxU = 11500;

maxL = 7500; At = tFluct; Clear[i, j]; trial := RandomReal [{maxL, maxU}];
Atime = RandomReal [{-tFfluct, tfluct}]; nsl = Length[maxerrors5]; Do[time = trial;
dev[[ii]] = (maxcurve4 /. t » (time + Atime)) - (maxcurved /. t » time) ;,
{(ii, 1, mm}]; s=Table[{j-1}, {j, 1, nsl}];
Do[devl[[ii]] = Module[{} , aminmatrix = Table[Table[maxcovariance[[1, i, j]]
(1 + RandomReal [{-cfluct, cfluct}]) , {i, 1, nsl}], {J, 1, nsl}];
vector = Table[((trial —tmaxl)s“i”) , {i, 1, nsl}] :
bmatrix = Flatten[aminmatrix.vector]; Transpose[vector] -bmatrix] - Module[{} ,
aminmatrix = Table[Table[maxcovariance[[1, i, j]] , {i, 1, ns1l}]1, {J, 1, nsl}];
vector = Table[((trial —tmaxl)s“i”) , {1, 1, nsl}] :
bmatrix = Flatten[aminmatrix.vector] ; Transpose[vector] -bmatrix] ,

(ii, 1, mm}]; sd = 0; sdl1 = 0; Do[sd =sd+dev[[ii]]%;

sd + sdl

sdl = sd1+Abs[devl[[ii]]];, {ii, 1, mm}]; ﬁ]
(mm-1)

Monte Carlo Errors for Minimum Curve Integrals

errMCUintmin[mm_, tFfluct_, cfluct_, tUO_, tLO] :=
Module[{}, devl = Table[O, {ii, 1, mm}]; dev2 = Table[O, {ii, 1, mm}];

tul
integmin = f (rvO - mincurve) dt; Atimel := RandomReal [{-tFluct, tFfluct}];
tLl

Atime2 := RandomReal [{-tfluct, tfluct}];
ns = Length[minparams]; s = Table[{j -1}, {J, 1, ns-1}1;
minU = 8000; minL = 2800; trial := RandomReal [{minL, minU}];
Do[devl[[ii]] = (integmin /. {tUl -» (tUO + Atimel), tL1l » tLO + Atime2}) -
(integmin /. {tUl -» tUO, tL1 -» tLO});, {ii, 1, mm}];
s =Table[{j -1}, {j, 1, ns-1}]; Do[dev2[[ii]] =
Module[{} , aminmatrix = Table[Table[mincovariance[[1, i, j]]

(1 + RandomReal [{-cfluct, cfluct}]) , {i, 1, ns-1}], {Jj, 1, ns-1}1;
vector = Table[((trial - minparams[[9]1])S!["11), (i, 1, (ns-1)}];
bmatrix = Flatten[aminmatrix.vector] ;

Transpose [vector] -bmatrix] - Module[{} , aminmatrix =
Table[Table[mincovariance[[1, i, j]1] , {i,1,ns-1}1, {J, 1, ns-1}1;

vector = Table[((trial - minparams|[[9]])5[”“) , {i, 1, (ns-1)}];

bmatrix = Flatten[aminmatrix.vector];

Transpose [vector] .bmatrix] , {ii, 1, mm}] ;:sd=0;

sdl = 0; Do[sdl = sd1+devi[[ii]]%; sd =sd+Abs[dev2[[ii]]];, {ii, 1, mm}];

sd + sdl

——————— + Arv0? + 2 tfluct?]
2 (mm-1)

Monte Carlo Errors for Maximum Curve Integrals

37

38 | 1-2SpectBin.nb

errMCUintmax[mm_, tFfluct_, cfluct_, tUO_, tLO] :=
Module[{}, devl = Table[O, (i1, 1, mm}];

tu2
dev2 = Table[O, {ii, 1, mm}]; integmax = j (maxcurve4 - rv0) dt;
tL2

Atimel := RandomReal [{-tfluct, tfluct}]; Atime2 := RandomReal [{-tFfluct, tfluct}];
nsl = Length[maxerrors5]; s = Table[{j -1}, {J, 1, nsl1}];
maxU = 11 500; maxL = 7500; trial := RandomReal [{maxL, maxU}];

Do[dev2[[ii]] = (Iintegmax /. {tU2 » (tUO + Atimel), tL2 » (tLO + Atime2)}) -
(integmax /. {tU2 » tUO, tL2 -» tLO0});, {ii, 1, mm}];
Do[devl[[ii]] = Module[{}, aminmatrix = Table[Table[maxcovariance[[1, i, J]]

(1 + RandomReal [{-cFluct, cfluct}]) , {i, 1, ns1}], {J, 1, nsl}];
vector = Table[((trial - tmax1)s(t111) , (i, 1, nsl1}];
bmatrix = Flatten[aminmatrix.vector]; Transpose[vector] .bmatrix] - Module[{} ,
aminmatrix = Table[Table[maxcovariance[[1l, i, jJ1] , {i, 1, ns1}], {J, 1, nsl}];
vector = Table[((trial —tmaxl)s“i”) , {1, 1, nsl}] : bmatrix =
Flatten[aminmatrix.vector]; Transpose[vector].bmatrix], {ii, 1, mm}];
sd =0; sd2 =0; Do[sdz =sd2+dev2[[ii]]%; sd = sd + Abs[devl[[ii]]];,

. sd + sd2
{ii, 1, mm}]; —+Arv02+2tfluct2]

We now conclude the digression concerning the theory of errors. We hope the
student realizes the importance of rigorous error analysis to modern astronomy and astro-
physics. It takes a long time to gain a good grasp of the statistics and probability and so
being able to adapt the Mathematica routines presented here is a way around a lack of
statistical experience. For example, students should be able to substitute appropriate
Gaussian (or some other error model) pseudorandom generators for the uniform ones
used above in the Monte Carlo calculations. One final point is that although a big fuss
about errors is made during the data analysis stage, students are disappointed to learn
that when it comes to reporting the results and the errors, all this effort is given only pass-
ing notice (often one line at most) in the actual research paper. That is because unless
there were special problems encountered, the correctness of the error analysis is taken for
granted.

Returning to the Determination of Orbital Elements

Here are the errors for the integral of the (rvO-minimum curve) with assumed time
errors

The timing of such observations is generally very good, so we chose 0.1 day = 2.4 hours
as a tenative choice. But notice that there is not much difference between 0.5 or 0.1 day in
the results.

AtuL =0.1; AtIL=0.1; tfluct=0.1;

The traditional error calculations appear to give fairly large which often leads to any error

1-2SpectBin.nb 39

analysis being given at all.
integl
11872.2

omin = errintmin[tulL, AtuL, tlL, AtlL]
19307.1

The trailing component notations [[]] are needed to remove the braces that Mathematica
leaves in the function results. They occur because of the Module[] use in the functions. In
this case the failure of convergenece leaves the answer on level deeper than expected so
we use Flatten[] and then [[1]] This is an example of a failure of first order theory with
correlated errors (it diverges to a large number) while the Monte Carlo value is stable and
stays small.

omins = serrintmin[tulL, tlL]

427 201.

ominMC = errMCUintmin[10000, 0.5, 0.5, tuL, tIL][[1]]
1. 55402

Here are the errors of the integral of the (maximum curve-rv0) with
assumed time errors

AtuU =0.1; atlU=0.1; tFluct =0.1;

The traditional error calculations appear somewhat smaller because the maximum is more
“peaked” while the minimum is very broad.

integ2

11875.8

omax = errintmax[tuU, atuU, tlU, AtlU]
71.8082

The trailing component notations [[]] are needed to remove the braces that Mathematica
leaves in the function results. They occur because of the Module[] use in the functions.
Notice that the correlated variable computation has led to the error being larger than the
integral. This occurs because of an instability in the least-squares solution.

omaxs = serrintmax[tuU, tlU]

37.0122

omaxMC = errMCUintmax[10000, 0.5, 0.5, tuU, tlU][[1]]
0. 731293

Now we reintegrate the fits to get the areas and amplitudes from max to the y
velocity and from the min to the y velocity as required by the orbit solution shown by Smart.

40 | 1-2SpectBin.nb

Here is where the propagated errors start to become of the same order as the answer as
was mentioned above. Thus we carry along the three error estimates nearly to the end as
the final element error estimates so that each type of error estimate may be seen in con-
text.

The maximum curve area Al
tulO =max2[[5, 1, 2]]1;
Here we use the actual functional maximum time for the maximum time

tmax0
10062. 3

tILO = tmaxO0;

Here are the earlier assumed time errors.
AtuL0 =0.1; AtlILO=0.1;

lims2
25. 4269

tul0
Al = j (maxcurve4 - rv0) dt
tlLOo

5250. 2
Here are the error estimates

AOla = errintmax[tulLO, AtuLO, tILO, AtlILO]
23. 8758

AO1b = serrintmax[tulLO, tlLO]
12. 8894

AOlc = errMCUintmax[10000, 0.5, 0.5, tulLO, tILO][[1]]
1.36536

The minimum curve area A2
tuU =min2[[5, 1, 2]1];
tlU = tmin0; AtminO = Atphl;
Atu = 0.1; Atl = AtminO;

tul

A2 = (rvO - mincurve) dt;
tiu

Here are the error estimates of the minimum curve integral
AO2a = errintmin[tulU, atuU, tlU, AtlU]
19 386.

1-2SpectBin.nb 41

AO2b = serrintmin[tul, tlU]
438 493.

AO2c = errMCUIntmin[10000, 0.5, 0.5, tuU, tlU]J[[1]]
1.71642

The « and g parameters are the amplitudes of the maximum and minimum portions
of the radial velocity curves. The errors in @ and g follow the error analysis function for the
polynomial expansion itself derived above. The minimum curve amplitude is given first

B = rv0 - (mincurve /. t - tmin0)

3. 41067

ABBRL = errmin[tmin0, Atmin0]
1. 33588

ABB2 = serrmin[tmin0] [[1]]
44,7062

ABBR3 = errMCUmin[10000, 0.5, 0.5]1[[1]]
1.39372

Here is the error for the amplitude of representing the maximum curve

a = (maxcurve4 /. t -» tmax0) - rvO0

5. 68085

Here is the error for the integral representing the minimum curve integral
Aaal = errmax[tmax0, Atmin0]
6.2969 x 10"

Aaa2 = serrmin[tmax0] [[1]]

200.914

Aaa3 = errMCUmin[10000, 0.5, 0.5][[1]]
1. 40473

The binary velocity amplitude is K=kay. Griffin gives 4.85 km/s
kay = (a+B) /2
4.54576

We combine the errors strictly according to rms average. Sometimes if the chain rule is
applied the factor of two will show up in the error calculation

akayl = v Aaal? + ABB12

1. 33588

42 | 1-2SpectBin.nb

akay?2 = A/ Aaa2? + ABB22

205. 828

Akay3 = \/ Aaa3? + ABB3?

1.97882

a-) 24ap A2-al
ecosw = ; esinw = ;
a+f3 a+fB A2+A1

w = ArcTan[ecosw, esinw]

0. 769602

Argument of periapsis is w. Griffin gives 28.1 degrees

w / Degree
44, 095
al - 81 _ 24 al Bl AO02-A01
ecoswl = ; esinwl = ;
al + g1 al+B81 AO02+A01
esinwl
W = ArcTan[[—] ;
ecoswl

Here are the three error types propagated now as random errors because we no longer
know the correlations.

Awa = \/ (8aaW Aal)? + (81 W ABL)Z + (8p01W AAOL)2 + (8p02W AA02)2 /.
{al » a, Bl » B, Aal -» Aaal, AB1l » ABBLl, AOLl » A1, AAOL1 -» AOla, AO02 » A2, AAO2 -» AO2a}
2.11466

Awa / Degree
121. 161

Awb = \/ (8aaW Aal)? + (81 W ABL)Z + (8p01W AAOL)? + (8p02W AAD2)2 /.
{al » a, Bl -» B, Aal » Aaa2, ABL » ABB2, A01 » Al, AAOL -» AO1b, AO2 -» A2, AAO2 - AO2b}
60. 2815

awb / Degree

3453. 87

AWC = \/ (8aaW Aal)? + (81 W ABL)Z + (8p01W AAOL)2 + (8p02W AAD2)2 /.
{al » a, Bl » B, Aal -» Aaa3, ABLl » ABBR3, AOLl » A1, AAOL1 -» AOlc, A02 » A2, AAO2 -» AO2cC}
0. 477958

1-2SpectBin.nb 43

Awc / Degree

27.385
The eccentricity ecc given by Griffin is 0.328
eCoSw
eccl = ——
Cos[w]
0. 347685
esinw
ecc2 = ——
Sinfw]
0. 347685
Here is a symbolic version that can be used to derive the errors.
ecoswl
ecc3 = ——;
Cos[w]

AECCA = +/ ((8a1 €CC3 Aal)? + (8p1€CC3 ABL)? + (8a01€CC3 AADL)? + (Bp02€CC3 AAD2)?) /.
{al » a, Bl » B, Aal -» Aaa3, ABL -» ABR3, AOLl » Al, AAOL1l » AOla, AO2 -» A2, AAO2 -» AO2a}
0.716078

AecCB = 4/ ((801 €CC3 Aal)? + (8p1€CC3 ABL)? + (8401€CC3 AADL)? + (Bp02€CC3 AAD2)?) /.
{al > a, Bl » B, Aal -» Aaa3, ABLl » ABB3, AOL » Al, AAOLl » AO1lb, AO2 » A2, AAO2 -» AO2b}
15. 8346

aeccC = +/ ((9a1 €cc3 Aal)? + (d51€CC3 ABL)? + (Br01€CC3 AADL) % + (8p02€CC3 AAD2) %) /.
{al » a, Bl » B, Aal -» Aaa3, ABL1l » ABB3, AO1 » Al, AAO1 -» AOlc, A02 » A2, AAO2 -» AO2cC}
0. 15078

Finding the periapsis time

The periapsis occurs when the radial velocity is above the y velocity by the
amplitude
zeel = kay (1 + eccl) Cos[w]
4.3998

We treat the errors here as uncorrelated as we have no way to determine the
covariance. We first construct the function in dummy variables

zee0 = kayO (1 +ecc0) Cos[w9];

AzeeA = \/ (Bkayo ze€0 akay1) 2 4 (Becco2€€0 AeCCA) 2 + (8,0ze€0 awa)? /.

{eccO -» eccl, kayO - kay, w9 - w}
9. 40221

44 | 1-2SpectBin.nb

AzeeB = \/ (Okayo zee0 Akay2)2 + (Beccozee0 AeccB)? + (8,9zee0 awb)? /.

{eccO - eccl, kayO - kay, w9 - w}
329. 238

AzeeC = \/ (Okayo z€€0 AkayS)2 + (Beccoze€0 AeccC)? + (8,9zee0 Awc)? /.

{eccO0 -» eccl, kayO - kay, w9 - w}
2.83938

Or when the observed velocity is
rvo + zeel
24. 1458

Possible times of periapsis passage are given by Solve[], but there is no way to do
an error analysis of this process. Instead we estimate the fractional error of the result from
the fractional error of rvO+zee and assume the same fractional error for all the times.
There are three real roots. The average fractional error is about 15%. And as can be
seen this is too large to aid in ruling out spurious roots.

(AzeeA + AzeeB + AzeeC)

3 zeel
25. 8709

The maximum velocity occurs at v ~ - 44 degrees (when (v+w)=0). Since we have
the period, eccentricity and the true anomaly, we can estimate the time by finding the
eccentric anomaly and then the time difference from the maximum until periapsis when v =
0.
tperiapsel = Solve[maxcurve == rvO + zeel, t]

{{t »5735.74}, {t -»7263.69-1320.11}, {t »7263.69+1320.11i}, {t »9371.11},
{t 510687.1}, {t »12866.5-780.3331}, {t >12866.5+780.3331i}}

As is well-know from elementary orbit analysis, the eccentric anomaly E is found from the
eccentricty and the true anomaly by inverting this equation

tan ¥ = (1&)12

E
2 l-e tan 2

With the mean motion given by n = 2 a/T (T = period of orbit), the time difference from
perihelion (t-7) for each observation is obtained from Kepler’'s equation

nt-r)=E-esinkE

Here is the time of rv maximum when v = -44 degrees

1-2SpectBin.nb 45

tmax0
10062. 3

Here we compute the mean anomaly from v and E. The mean anomaly divided by the
“annual” motion n then gives (t-7) =Atpl where 7 = the periapsis time. If it turns out to be
negative then the Atpl must be subtracted algebraically from the observed time.

AT3
Tan[-w/ 2]] ; Atpl = —— (hmax - eccl hmax)

(1—ecc1]
1+eccl 2

hmax = 2 ArcTan[

-502. 252

The equivalent symbolic expressions needed for the error analysis are followed by the
three cases of errors

1-eccO

hmax1l = 2 ArcTan[[—O
1+ecc

) Tan[—w9/2]];

AhmaxA = \/ (8ecco hmax1 AeccA)2 + (8,9 hamx1 Awa)2 /. {ecc0 - eccl, w9 -» w}
0. 425252

AhmaxB = \/ (Beccohmaxl1 AeccB)? + (8,0hamx1 awb)? /. {eccO - eccl, w9 - w}
9. 40357

AhmaxC = \/ (deccohmaxl1 AeccC)? + (8,9hamxl awc)? /. {eccO -» eccl, w9 -» w}
0. 0895425

AT4
Atp2 = 2_ (hmax3 - ecc0 hmax3) ;
Tt

AtpA = \/ (Becco AP2 AeCCA)? + (Bhmaxa ATP2 AhmaxA) ? + (8,74 ALP2 AAT)? /.
{ecc0 -» eccl, AT4 » AT3, hmax3 -» hmax}
674. 859

AtpB = \/ (BeccoAP2 AECCB) 2 + (Bpmaxa AtP2 AhmaxB)? + (8,14 Atp2 AAT)? /.
{ecc0 -» eccl, AT4 » AT3, hmax3 -» hmax}

14919.

AtpC = \/ (Becco AtP2 AeccC)? + (Bhmaxz ALP2 AhmaxC) 2 + (8,74 ALP2 AAT)? /.
{ecc0 - eccl, AT4 - AT3, hmax3 -» hmax}
142. 947

Since the time of maximum is less than the time of periapsis, we must subtract the differ-
ence from the time of maximum.

46 | 1-2SpectBin.nb

ttp = tmax0 - Atpl
10564. 6

The error of tmax0 is tiny so the error of ttp is essentially that of Atpl, 45 to 25 days. Thus
these differences can be trusted to tell that ttp is indeed the correct time difference.
(tperiapsel[[5, 1, 2]] - ttp)

122. 542

(tperiapsel[[4, 1, 2]] - ttp)
-1193. 44

The closest root to this in the set for tperiapsel is the 5th one in the list. To get the
JD of this passage, we add the root found to the “start” time of the time series for this star.

perijD = start + tperiapsel[[5, 1, 2]]
59296. 3

Griffin gets jD 50257 for periapsis passage. But our value is just ~ one period
ahead of his. Since our period has an error of ~280 days, the value below is within the our
period’s error of Griffin’s value.

perijD - AT3
50488. 8

This concludes the section where the traditional orbital elements (except for a or i) have
been obtained.

Mass-related Quantities for HD 108613

At long last we return to the original objective, that of determining mass-related quantities.
Of course when dealing with spectroscopic binaries even the best spectroscopic data by
itself cannot obtain the inclination angle under any circumstance so that sin i always
appears in the mass dependent functions. Because of Kepler's law the first mass depen-
dent quantity is the semi-major axis a, which here is a sin i. The second quantity is the so
called mass function which also involves the unknown sin i

Semi-major axis information
For an extremely long period orbit such as this one is, the a sin i value is very small indicat-

ing most likely a small inclination angle, i.e. the orbit is nearly face on where the spectro-

scopic information is hard to obtain. In km, the a sin i result is
21600 AT3

asini = ———— (a+B) 4/ (1-eccl?)
T

5.16195 x 108

orin AU :

1-2SpectBin.nb a7

asini
149 x 10°
3. 4644

Here we perform the error analysis for a sin i. We start with a function that can be

differentiated
21600 ATa

asini0 = —— (al + 1) (1—ecc32);
T

AasiniA = 4/ ((8a1 asini0aal)® + (8pasini0ABL)? +
(8a1a@SHNI0 AATA)? + (8,5018SKNT0 AAOL)? + (85028SKNT0 AA02)?) /.

{al » a, Bl » B, Aal -» Aaa3, 2Bl » ABB3, ATa » AT3, AATa » AAT,
AOl1 -» Al, AAOl1 -» AOla, AO02 » A2, AAO2 -» AO2a}

2.989 x 108

AasiniB = 4/ ((841 asini0 aal)® + (dp1asini0AB1)? +
(8s1a@sini0 AATA)? + (9a012SiNT0 AADL)? + (8s028SKNH0 AA02)?) /.

{al » a, Bl » B, Aal » Aaa3, ABL -» ABBR3, ATa » AT3, AATa -» AAT,
AOl1l -» Al, AAOl1 -» AO1b, AO2 » A2, AAO2 -» AO2b}

6. 06314 x 10°

AasiniC = 4/ ((81 asiniO aal)? + (g1 asini0ABl)? +
(8s1a@sini0 AATA) ? + (9a012SiNT0 AADL) % + (8s028SKNT0 AA02)?) /.

{al » a, Bl » B, Aal » Aaa3, ABL -» ABBR3, ATa » AT3, AATa -» AAT,
AO1 - Al, AAO1 -» AOlc, A02 » A2, AAO2 -» AO2c}

1.32372 x 108

The mass function
The mass function is defined as
m23sin®i _ 3.993:10?°(alsini)®
Mm1+m2)2 p2

where m1l is the “visible” star mass in solar masses, m2 is the “unseen”
star mass in solar masses, al is the semimajor axis of the visible star in kilometers and P
is the period in days.

3.993 x 10-2° asini®

massfunction =
AT3?

0. 070801

The error analysis follows.

3.993 x 10-20 asi?
massT = :
AT4?

48 | 1-2SpectBin.nb

aAmassTA = \/ (8asimassF aasi)? + (8 7amassT aaT4)? /.
{asi -» asini, AT4 » AT3, AAT4 » AAT, Aasi » AasiniA}

0. 123073

AmassTB = \/ (8asimassT aasi)? + (d,ramassF AAT4)? /.
{asi -» asini, AT4 » AT3, AAT4 » AAT, Aasi -» AasiniB}

2.49486

AmassfC = \/ (8asimassF aasi)? + (9,ramassF aaT4)? /.
{asi -» asini, AT4 » AT3, AAT4 » AAT, Aasi -» aasiniC}

0. 0546522

Discussion

For this star (HD 108613), in addition to observed photometric variability there also
seems to be a radial velocity anomaly near maximum AND minimum and perhaps also all
around the radial velocity curve. In the case of the minimum, our curve fitting was able to
fit the anomaly. In the case of the maximum, the curve fitting routines could not handle the
anomaly. The companion cannot be detected, but we do know that we are observing the
side of the more luminous star that faces toward its companion at maximum and at periap-
sis. At minimum we are observing the “backside” of the luminous companion and at apoap-
sis. The usual assumption is that the more luminous star is the primary, but we don’t know
that for sure. The enhanced radial velocity anomalies at maximum velocity may indicate a
near edge-on orbit. But this is highly speculative. Other than the UBV magnitudes, there is
little further information for this star. According to Griffin (2010), the (U-B) is between 1.85
and 2.03 while (B-V) is from 1.53 to 1.58. The fact that the (U-B) is larger than the (B-V)
indicates a reddened object (i.e. hence distant). The spectrum type inferred from the (B-V)
is K5 for a supergiant or K8 for a giant (Allen, 2000, p.389). The mass M1 would be 1.2
solar masses for a giant and 13 solar masses for a supergiant. The radial velocity anoma-
lies (and indeed the scatter of radial velocity throughout its orbit) may be due to pulsations
and so the identification with a red giant variable is more likely. First let us explore the
supergiant scenario

iii =45°7;

m23 Sin[iii]3

Solve [massfunction = , m2]

(13 +m2)?2

Solve::ratnz : Solve was unable to solve the system with inexact coefficients. The
answer was obtained by solving a corresponding exact system and numericizing the result. >

({M2 > -1.82209-2.341611i}, (M2 - -1.82209 +2.34161 i}, (N2 - 3. 84443}

At i= 90 degrees the resulting companion mass is 2.4 solar masses and with i even as low
as 45 degrees, the result is 3.6 solar masses. Our numerical experiments thus cannot
eliminate the possiblity that at the orbital inclination of 45 degrees, an invisible companion
could be a 3 solar mass neutron star. That possibility makes this system merit additional

1-2SpectBin.nb 49

observations to see if that is indeed true. But that is a long shot. If the invisible companion
is a black hole then any mass is possible and so a large mass root from the Solve[] could
be considered valid. But those objects are even more unlikely.

The radial velocity anomalies (and indeed the scatter of radial velocity throughout its orbit)
may be due to pulsations and so the identification with a red variable giant is more likely.
The Solve[] we give next assumes a 1.2 solar mass luminous object (giant ?). That cer-
tainly is consistent with the optical data. It is also likely that M2 < M1. We show the face-
on case (i = 90 degrees). You may change the inclination to establish the other possible
combinations. These calculations do eliminate certain inclination values and indicate that it
is possible that this object could be a very long period eclipsing variable like e Aurigae and
therefore a very interesting object for further study, but one that we can’t pursue except
computationally. At i -> 90 degrees, the invisible companion could be a main sequence
star of mass less than the sun. In such a case, the primary would be over 6 or 7 magni-
tudes brighter than the secondary so an exotic explanation is not required. But without
additional information no decision can be made about this object. It is hoped that through
this somewhat extended discussion, the elements of an initial vetting of information about
newly discovered objects is illustrated and that by going through this example process
students will be better prepared when they are called upon to vet information on an object
that they themselves discover.

ili =85°;

m23 Sin[iii]3

_— m]
(1.2 +m2)2

Solve::ratnz : Solve was unable to solve the system with inexact coefficients. The

Solve [massfunction =

answer was obtained by solving a corresponding exact system and numericizing the result. >
{{m - -0.273569 -0.30303 1}, {mM2 —» -0.273569 +0.30303 1}, {nR - 0.618754}}

tB = SessionTime[];

(tB - tA) /60
0.5777033

