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Clear["Global " "]

Thomas Precession in Special Relativity

In many elementary problems in special relativity it is assumed that the relative velocity of
two frames is along the x-axis with no velocity along either the y or z axes. We have previously
introduced the complete expression for a genera relative velocity in 3D. It is not pretty and one can
imagine that even asmall frame velocity orthogonal to the x-axis will introduce immediate complica
tion. In this notebook, we investigate such a situation in an attempt to derive what the essential
character of the complication is.

In many elementary problems in special relativity it is assumed that the relative velocity of
two frames is along the x-axis with no velocity along either the y or z axes. We have previously
introduced the complete expression for a genera relative velocity in 3D. It is not pretty and one can
imagine that even a small frame velocity orthogonal to the x-axis will introduce immediate complica
tion. In this notebook, we investigate such a situation in an attempt to derive what the essential
character of the complication is. Here we have adopted the derivation used in Goldstein, Poole, and
Safko (2002). It must be noted, however, that in following Goldstein, Poole, and Safko we have
adopted their definition of the Minkowski metric. That is

ds? =c?(d7)? = c?(dt)?- (dx? + d y? + d Z2). This means that ds>>0 for bodies moving slower than

the speed of light (time-like) and ds?<0 for objects that that participate in events that can be simulta-
neous in time dt =0, but separated in space (space-like). This convention is indicated if the metric

tensor has a plus sign in the upper left of the matrix representation. Some authors define ds® such
that the space part is positive and the time part has a negative sign. This then reverses the definitions
of time-like and space-like given above. Thisisindicated if the metric tensor has a minus sign in the
upper left of the matrix representation.

Preliminary Definitions
The x-axisLorentz Transformation in list form
IorentZX = {{Y’ _731 0, 0}1 {_Yﬁs Y O, 0}1 {01 01 15 0}1 {01 01 05 1}};

lorentzX // MatrixForm

Yy -By 00
-By vy 00
0 0 10
0 0 01

(Note here that the standard relativistic notation uses unprimed, primed, double primed etc. notation
for different frames. But we cannot do that in Mathematica because it uses primes to indicate deriva-
tivesin DSolve] ] and NDSolve| ]. So our notation uses arabic numerals.)

The Generalized Lorentz Transformation in full list form
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lorentzXYZ = {{71, -¥1B1x, -yl1lpBly, -ylpB1z},

B1x? B1x Bly Blx Blz

{-¥1B1x, 1+ (v1-1) , (¥1-1) , (¥1-1) }-
2 /312 /312
B1x Bly Bly? Bly Blz
{-v1ply, (v1-1) , 1+ (¥1-1) , (¥1-1) }-
B1? B1? B1?
Blx Blz Bly Blz B1z2
{-¥181z, (x1-1) . (rl-1) c1e(¥1-1) 1}
B12 B12 B12
lorentzXYZ // MatrixForm
vl -B1x y1 -Bly ¥1 -B1z y1
2 -1+ 1x Bly (-1+v1) Blx Blz (-1+y1)
Splx oyl 14 AECIAD 8 ; ;
51 p1 51
Blx Bly (-1+v1) Bly? (-1+y1)  Bly plz (-1+v1)
7/31)/ vl 2 1+ 2 2
Bl B1 Bl
1+ 1y flz (-1+y1 2 (14
—/312 Yl B1x /3121(2 1+vy1) Bly B 21(2 ¥1) 14 Blz B(l;I. ¥1)

The 1to 3 Transformation with no z-velocity of the frame
lorentzXY = lorentzXYZ /. 1z -0

BIx? (-1+vy1l) pIxBly (-1+vy1) o}

{{yl, ~Blx y1, -Bly v1, 0}, {wlx vl, 1+ ,
312 312

Blx Bly (-1 ++vy1 Bly? (-1 +vy1
{—Blyyl, y ( +7f>’1+ ye (-1+vy1)

o’ o , o}, (0, 0, 0, 1}}

Setting up the Successive L orentz Transfor mations

We start the derivation by applying two successive Lorentz transformation matrix multiplica
tions. It is asumed that the axes are all paralel to each other. The first matrix is a standard boost
along the x-axis so the matrix is very simple. The second matrix is a matrix where there are two
orthogonal boosts, both relatively small one again along x and another along y. direct matrix
product is a mess and should be cleared of second order terms. Because the multiplication of two
aligned Lorentz matrices produces another Lorentz matrix one might expect the same to happen
here. But instead we find that the product is not symmetrical so that the order of the matrix multipli-
cation matters.

lorentz2 = lorentzXY. lorentzX

{{wl+6b’1me1, -By¥yl-pBlxyvyl, -Bly yl, 0},

BIx? (-1 +vy1) BIx? (-1 +vy1)
[-Bv |1+ —————— | -Blxvyl v |1+ —————— | +BBIX ¥ ¥,
B12 B12
BIX Bly (-1+vy1) BALIx Bly ¥ (-1+vy1)
, o}, {f - Bly v ¥1,
12 312
Blx 81 -1+vy1 Bly? (-1 +vy1
YY)ty yar, 1a ) 0}, 10, 0,0, 1}

p12 312
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lorentz2 // MatrixForm

Y¥l+BB1Xyyl -Byyl-BlXxyyl -Bly ¥1 0
By 1+ B1x? <721+y1> “Blxyyl v [1+ B1x? <721+y1> + B BIX y vl B1x ply <2—1+y1>
Bl B1 51
B BLX Bly ¥ (-1+y1) Blx Bly v (-1+y1) Bly? (-1+y1)
_ —B; L _Bly yyl —;2 L iBRly yyl 1+ = L
0 0 0 1

Reduction of theL,,; matrix tofirst order

It is assumed that the second Lorentz boost is small so that we can omit the second order terms. But
even without doing that it can be seen that the result is no longer symmetrical so that a systematic
effect in addition to the boost has been introduced. There is no really automatic way to do the
reduction so we do it by hand. Various substitutions/approximations will be applied (following
Goldstein, Poole, and Safko, 2000) and many will not be obvious as most represent working back-
wards from the final result. First we make a copy of the original matrix.

lorentz2

{{wmfl+/3/31prl, -Byyl-pBlxyvyl, -Blyyl, 0},

BIx? (-1 +vy1) BIx2 (-1 +vy1)
{—By 1y ————— | -Blxyvyl, v |1+ ——— | + BBRLx v vl,
B12 B12
BIx Bly (-1 +v1) BBRIX Bly v (-1 +v1)
, 0}. {— - Bly v ¥1,
p1? p12
Blx B1 “1+vy1 Bly? (-1+vy1
yY( wr ) +BﬁlyYY11 1+Mv 0}1 {01 01 0! 1}}
p12 p12

In a given term we invoke that 1> B1x and Sly~B1 and are small with respect to 8 and hence
reduce it to “first” order. This emphasizes the asymmetry, but even now it is not smple. It must
consist of aboost plus some other operation. We need to figure out what that operation is.

lorentzP2R =
{{r¥l, -By¥l, -Bly¥1,0}, {-B¥y.,v¥,0,0}, {-Blyy¥l, BBlyyvyl, ¥y1, 0}, {0, 0,0, 1}}

{{Yylv 757{}/11 *Bly}fl, O}, {7/37(1 Y! O, 0}! {7Bly\/¥la 5/31)/7()’1: Ylv 0}1 {01 O! 01 1}}

lorentzP2R // MatrixForm

¥yl -Byvyl -pBlyyl O
-BYy Y 0 0
-Bly ¥y ¥l BpRly vyl vl 0
0 0 0 1

It appears that we will need to make some radical assumptions to produce something that approxi-
mates an infinitesimal operation on a Lorentz matrix. But here is where things get really tricky. It is
hard these days to find a simple derivation of this problem but Goldstein, Poole, and Safko make a
try toward a solution. First we use the global reassignments that work. At least they work except for
one term in the matrix that we have to mend by hand.
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lorentzAP2 = Simplify[lorentzP2R /. {y1 -1, ¥y » ¥2, B - B2X, Bly -> B2y}]
{{7(21 _BZX }(2, —/32)’1 0}! {—BZX Y21 7(21 0: 0}1 {—BZVYZ, BZX 52)/ 72! 11 O}v {0! 0, O, 1}}

lorentzAP2 // MatrixForm

¥2 -B2xy2 -B2y O
- 32X y2 ¥2 0 0
- B2y ¥2 [32x B2y ¥2 1 0
0 0 0 1

There is only one term that does not agree with Goldstein et al. at this stage and that is (1, 3) where
afactor of y2 is missing to make the matrix more symmetric with the (3, 1) term. Thisis a bit of a
fudge but possible because of the “smallness’ of 2y and $2x. This is what is meant by reverse
engineering !

lorentzAP2[[1, 3]]1 = -B2y ¥2;

lorentzAP2 // MatrixForm

Y2 -B2xy2 -B2yy2 O
-B2X y2 Y2 0 0
-B2y y2 [32Xx 32y ¥2 1 0

0 0 0 1

We now have reach the next stage of Goldstein et al. But even this approximation for the L’’=L’L
matrix is still not a pure boost. If we start in S3 and work backwards with a boost in the X’ axis of
-Ax’’and a boost along the y'’ axis of -By” then the original XYZ matrix with no approximations
becomes the inverse transformation to lorentz13. This is possible because the inverse of a lorentz
matrix has an inverse given by negating the transpose. We use this to derive what the original
matrix should beif not the L we supposed above.

Finding and Reducing theL,,, matrix to first order

lorentz3l =
FullSimplify[lorentzXYZ /. {yl -» ¥2, Blz - 0, B1X » -B2X, Bly » -B2y, Bl -> B2}]

B2x2 (71”2), B2x B2y (—l+y2), o},
p2? p22
Bxp2y (-1+¥2) B2y? (-1+v2)
p22 p22

{{yZ, B2x ¥2, B2y v2, 0}, {Bzx v2, 1+

{B2y v2, , 0}, 0, 0, 0, 1}}

lorentz31 // MatrixForm

Y2 B2x ¥2 B2y ¥2 0
B2x2 (-1+y2)  B2x B2y (-1+¥2)
F2x 2 1+ 5 P
2% B2y (-1+v2) B2y? (-1+v2)
62)’ Y2 T 1+ T
0 0 0 1

But alas thisis NOT what Goldstein et a. give for their approximation at this stage. So we have to
do an additional manipulation. This time we alter the two diagona terms that approximate one.
Doing that leaves the two boost off diagonal term.

lorentz31[[3, 3]] =1;
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lorentz31[[2, 2]] = 1;

lorentz31A = FullSimplify[lorentz31l /. B2 » B2X]
B2y (-1++2)
{(v2, 2xv2, p2yv2, 03, {p2xv2, 1, —————, o},
R2X
B2y (-1+v2)

{p2y 2, — -

L1, o}, (0, 0, 0, 1}}

Thisresult isfinally in the Goldstein et a. form at this stage

lorentz31A // MatrixForm

¥2 B2X 2 B2y y2 0
B2y (-1+y2)
B2X y2 1 o
B2y (-1+y2)
B2y ¥2 —ax 1 0
0 0 0 1

I dentifying the Sour ce of the Asymmetry in Succesive Non-par allel Boosts

Although the matrices have been simplified somewhat the product of them is far from simple once
again. But in anticipation of what isto come we set the variable name of this product to rotation.

rotation = FullSimplify[lorentzAP2.lorentz31A]
(B2x - B2y) (B2x +B2y) (-1 +¥2) ¥2
B2X
B2y ¥2 (-1 +v2 - B2x? y2)
B2X ' }

{{—(—1+52x2+52y2)y22, , 0, 0},

{0, v2 - B2x2 y22,

B2y (-1+v2) (-1+pB2x%y2)
{Bzy ¥2 (1+ (-1+p2x2) y2), -

C1-B2y2y2, o}, (0, 0, 0, 1}}

B2X
rotation // MatrixForm
- (—1 +B2x2% + 52y2) 422 (B2x-B2y) (BZXB;/)S(Zy) ((11v2) v2 . .
0 ¥2 - f2x2 22 B2y v2 (-1+v2-52x2 v2) .

B2X

-1+ -1+ 2
B2y ¥2 (1+ (-1+p2x?) y2) 212 ’2;2(X1 pax” ¥2) 1-82y2v2 0

0 0 0 1

Some books describing the Lorentz matrices suggest that the 3 x 3 matrix representing the space
coordiantes might take on the form of a rotation matrix and that may be the source of the asymme-
try. Examining the above matrix we see that one off diagonal term (2, 3) is more complicated than
the other (3, 2). So we expand the more complicated one.

B2y ¥2 (— 1+y2 - B2x2 72)
B2X ]

Expand[

B2y y2 B2y y2?
- +
32X [R2X

- B2x B2y y2?
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Using this expression edited to first order we hand edit this matrix to produce the final “rotation”
matrix

rotationA =

2y ¥2 2y y22 2y (-1 +%2

B2y ¥ +/3 YY ’0}, {0,/3)/( +Y),
B2X B2X B2X

B2y ¥2 PRy y22 B2y (-1 +vy2
yY . Yvy , 0}’ {0’ Y ( +Y2)
B2X B2xX B2X

{t1,0,0,01, {o, 1, - 1,0}, {0, 0, 0, 13}

{{11 O! 0! 0}7 {01 l! - ) 15 0}1 {Ol 01 Oi 1}}
rotationA // MatrixForm

1 0 0 0
_ B2yy2 B2y y2?

0 1 B2x + B2x
B2y (-1+v2) 1 0
B2X
0 0 0

The final approximation is to make y22=1 and since 8 = - 82x we finaly arrive at the Goldstein et
al. result

rotationB = FullSimplify[rotationA /. {¥2° > 1, B2x > -8, ¥2 > ¥}];

rotationB // MatrixForm

1 0 0 0
0 1 B2y (/;1 +Y) 0
0 B2y *;32)' Y 1 0
0 0 0 1

The matrix indeed now looks like a rotation matrix around the z-axis where the cosines are 1 and
the sines are the off diagonal terms.

Summary

This effect is called Thomas precession and arises when combining Lorentz transformations that
are not collinear. Many modern relativity books do not even have thisin their indices. In its simplest
form, it is often defined (Goldstein et al. for example who make the 8 substitution their final matrix
to have the signs of aright hand system) as

2
AQ = (y2-1) B—y
B
B2y (-1+v2)
B

How does this arise ? We suppose that S1 is a laboratory system at rest while S2 and S3 are two
instantaneous rest systems a time At apart in a particle’s motion. The velocity of the particle defines
the x-axis v=82x ¢ and the Av has only the component Av=82y c. Thusin velocity terms
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V x AV

AQl = (1—)’)

v2

(1-vy) VxAV

v2

This shows that if v and Av are aligned there is no rotation. If we have a particle in motion on a
close path (i.e circular for example) then the angular motion caused by dQ)/dt is w. Using the series

expansion of y2~1+322 / 2 we find that in vector notation that if a is the acceleration in S1, v the

velocity in S1, then some vector propery of the particle such as spin will appear to precess with
frequency w.
. ( )
w=—— (@axV
2¢c?
axV

2¢?

Our suspicion that Thomas precession is counterintutive is shown by the fact that classical mechan-
ics would have w defined as (v x @) so that the right hand rule is obeyed. It appears everytime there
isan acceleration of aframe that is not collinear with the velocity.



