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        Thomas Precession in Special Relativity

In many elementary problems in special relativity it is assumed that the relative velocity of

two  frames  is  along  the  x-axis  with  no  velocity  along  either  the  y  or  z  axes.  We  have  previously

introduced the complete expression for a general relative velocity in 3D. It is not pretty and one can

imagine that even a small frame velocity orthogonal to the x-axis will introduce immediate complica-

tion.  In  this  notebook,   we  investigate  such  a  situation  in  an  attempt  to  derive  what  the  essential

character of the complication is. 

In many elementary problems in special relativity it is assumed that the relative velocity of

two  frames  is  along  the  x-axis  with  no  velocity  along  either  the  y  or  z  axes.  We  have  previously

introduced the complete expression for a general relative velocity in 3D. It is not pretty and one can

imagine that even a small frame velocity orthogonal to the x-axis will introduce immediate complica-

tion.  In  this  notebook,   we  investigate  such  a  situation  in  an  attempt  to  derive  what  the  essential

character of the complication is.  Here we have adopted the derivation used in Goldstein, Poole, and

Safko  (2002).   It  must  be  noted,  however,  that  in  following  Goldstein,  Poole,  and  Safko  we  have

adopted  their  definition  of  the  Minkowski  metric.  That  is

d s
2

= c
2 Hd ΤL2

= c
2 Hd tL2 - Hd x

2
+ d y

2
+ d z

2L. This means that ds2>0 for bodies moving slower than

the speed of light (time-like) and ds2<0 for objects that that participate in events that can be simulta-

neous in time dt =0,  but separated in space (space-like). This convention is indicated if the metric

tensor has a  plus sign in the upper  left  of  the matrix representation.  Some authors define ds2  such

that the space part is positive and the time part has a negative sign. This then reverses the definitions

of time-like and space-like given above. This is indicated if the metric tensor has a minus sign in the

upper left of the matrix representation. 

Preliminary Definitions

The x-axis Lorentz Transformation in list form

lorentzX = 88Γ, -Γ Β, 0, 0<, 8-Γ Β, Γ, 0, 0<, 80, 0, 1, 0<, 80, 0, 0, 1<<;

lorentzX �� MatrixForm

Γ -Β Γ 0 0

-Β Γ Γ 0 0

0 0 1 0

0 0 0 1

(Note here that the standard relativistic notation uses unprimed, primed, double primed etc. notation

for different frames. But we cannot do that in Mathematica because it uses primes to indicate deriva-

tives in DSolve[ ] and NDSolve[ ]. So our notation uses arabic numerals.)

The Generalized Lorentz Transformation in full list form
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lorentzXYZ = :8Γ1, -Γ1 Β1x, -Γ1 Β1y, -Γ1 Β1z<,

:-Γ1 Β1x, 1 + HΓ1 - 1L
Β1x

2

Β1
2

, HΓ1 - 1L
Β1x Β1y

Β1
2

, HΓ1 - 1L
Β1x Β1z

Β1
2

>,

:-Γ1 Β1y, HΓ1 - 1L
Β1x Β1y

Β1
2

, 1 + HΓ1 - 1L
Β1y

2

Β1
2

, HΓ1 - 1L
Β1y Β1z

Β1
2

>,

:-Γ1 Β1z, HΓ1 - 1L
Β1x Β1z

Β1
2

, HΓ1 - 1L
Β1y Β1z

Β1
2

, 1 + HΓ1 - 1L
Β1z

2

Β1
2

>>;

lorentzXYZ �� MatrixForm

Γ1 -Β1x Γ1 -Β1y Γ1 -Β1z Γ1

-Β1x Γ1 1 +
Β1x

2 H-1+Γ1L

Β1
2

Β1x Β1y H-1+Γ1L

Β1
2

Β1x Β1z H-1+Γ1L

Β1
2

-Β1y Γ1
Β1x Β1y H-1+Γ1L

Β1
2

1 +
Β1y

2 H-1+Γ1L

Β1
2

Β1y Β1z H-1+Γ1L

Β1
2

-Β1z Γ1
Β1x Β1z H-1+Γ1L

Β1
2

Β1y Β1z H-1+Γ1L

Β1
2

1 +
Β1z

2 H-1+Γ1L

Β1
2

The 1 to 3 Transformation with no z-velocity of the frame

lorentzXY = lorentzXYZ �. Β1z ® 0

:8Γ1, -Β1x Γ1, -Β1y Γ1, 0<, :-Β1x Γ1, 1 +

Β1x
2 H-1 + Γ1L

Β1
2

,

Β1x Β1y H-1 + Γ1L

Β1
2

, 0>,

:-Β1y Γ1,

Β1x Β1y H-1 + Γ1L

Β1
2

, 1 +

Β1y
2 H-1 + Γ1L

Β1
2

, 0>, 80, 0, 0, 1<>

Setting up the Successive Lorentz Transformations

We start the derivation by applying two successive Lorentz transformation matrix multiplica-

tions.  It  is  asumed that  the  axes  are  all  parallel  to  each  other.  The  first  matrix  is  a  standard  boost

along  the  x-axis  so  the  matrix  is  very  simple.  The  second  matrix  is  a  matrix  where  there  are  two

orthogonal  boosts,   both  relatively  small  one  again  along  x  and  another  along  y.   direct  matrix

product  is  a  mess  and should  be  cleared of  second order  terms.  Because  the  multiplication of  two

aligned  Lorentz  matrices  produces  another  Lorentz  matrix  one  might  expect  the  same  to  happen

here. But instead we find that the product is not symmetrical so that the order of the matrix multipli-

cation matters.  

lorentz2 = lorentzXY.lorentzX

:8Γ Γ1 + Β Β1x Γ Γ1, -Β Γ Γ1 - Β1x Γ Γ1, -Β1y Γ1, 0<,

:-Β Γ 1 +

Β1x
2 H-1 + Γ1L

Β1
2

- Β1x Γ Γ1, Γ 1 +

Β1x
2 H-1 + Γ1L

Β1
2

+ Β Β1x Γ Γ1,

Β1x Β1y H-1 + Γ1L

Β1
2

, 0>, :-

Β Β1x Β1y Γ H-1 + Γ1L

Β1
2

- Β1y Γ Γ1,

Β1x Β1y Γ H-1 + Γ1L

Β1
2

+ Β Β1y Γ Γ1, 1 +

Β1y
2 H-1 + Γ1L

Β1
2

, 0>, 80, 0, 0, 1<>
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lorentz2 �� MatrixForm

Γ Γ1 + Β Β1x Γ Γ1 -Β Γ Γ1 - Β1x Γ Γ1 -Β1y Γ1 0

-Β Γ J1 +
Β1x

2 H-1+Γ1L

Β1
2

N - Β1x Γ Γ1 Γ J1 +
Β1x

2 H-1+Γ1L

Β1
2

N + Β Β1x Γ Γ1
Β1x Β1y H-1+Γ1L

Β1
2

0

-
Β Β1x Β1y Γ H-1+Γ1L

Β1
2

- Β1y Γ Γ1
Β1x Β1y Γ H-1+Γ1L

Β1
2

+ Β Β1y Γ Γ1 1 +
Β1y

2 H-1+Γ1L

Β1
2

0

0 0 0 1

Reduction of the L1®3 matrix to first order

It is assumed that the second Lorentz boost is small so that we can omit the second order terms. But

even without doing that it  can be seen that the result is no longer symmetrical so that a systematic

effect  in  addition  to  the  boost  has  been  introduced.   There  is  no  really  automatic  way  to  do  the

reduction  so  we  do  it  by  hand.  Various  substitutions/approximations  will  be  applied  (following

Goldstein, Poole, and Safko, 2000) and many will not be obvious as most represent working back-

wards from the final result. First we make a copy of the original matrix. 

lorentz2

:8Γ Γ1 + Β Β1x Γ Γ1, -Β Γ Γ1 - Β1x Γ Γ1, -Β1y Γ1, 0<,

:-Β Γ 1 +

Β1x
2 H-1 + Γ1L

Β1
2

- Β1x Γ Γ1, Γ 1 +

Β1x
2 H-1 + Γ1L

Β1
2

+ Β Β1x Γ Γ1,

Β1x Β1y H-1 + Γ1L

Β1
2

, 0>, :-

Β Β1x Β1y Γ H-1 + Γ1L

Β1
2

- Β1y Γ Γ1,

Β1x Β1y Γ H-1 + Γ1L

Β1
2

+ Β Β1y Γ Γ1, 1 +

Β1y
2 H-1 + Γ1L

Β1
2

, 0>, 80, 0, 0, 1<>

In  a  given  term  we  invoke  that   Β1>  Β1x  and  Β1y~Β1  and  are  small  with  respect  to  Β  and  hence

reduce  it  to  “first” order.  This  emphasizes  the  asymmetry,  but  even  now it  is  not  simple.   It  must

consist of a boost plus some other operation. We need to figure out what that operation is. 

lorentzP2R =

88Γ Γ1, -Β Γ Γ1, -Β1y Γ1, 0<, 8-Β Γ , Γ , 0, 0<, 8-Β1y Γ Γ1, Β Β1y Γ Γ1, Γ1, 0<, 80, 0, 0, 1<<

88Γ Γ1, -Β Γ Γ1, -Β1y Γ1, 0<, 8-Β Γ, Γ, 0, 0<, 8-Β1y Γ Γ1, Β Β1y Γ Γ1, Γ1, 0<, 80, 0, 0, 1<<

lorentzP2R �� MatrixForm

Γ Γ1 -Β Γ Γ1 -Β1y Γ1 0

-Β Γ Γ 0 0

-Β1y Γ Γ1 Β Β1y Γ Γ1 Γ1 0

0 0 0 1

It appears that we will need to make some radical assumptions to produce something that approxi-

mates an infinitesimal operation on a Lorentz matrix. But here is where things get really tricky. It is

hard these days to find a simple derivation of this problem but  Goldstein, Poole, and Safko make a

try toward a solution.  First we use the global reassignments that work. At least they work except for

one term in the matrix that we have to mend by hand. 
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lorentzAP2 = Simplify@lorentzP2R �. 8Γ1 ® 1, Γ ® Γ2, Β ® Β2x, Β1y -> Β2y<D

88Γ2, -Β2x Γ2, -Β2y, 0<, 8-Β2x Γ2, Γ2, 0, 0<, 8-Β2y Γ2, Β2x Β2y Γ2, 1, 0<, 80, 0, 0, 1<<

lorentzAP2 �� MatrixForm

Γ2 -Β2x Γ2 -Β2y 0

-Β2x Γ2 Γ2 0 0

-Β2y Γ2 Β2x Β2y Γ2 1 0

0 0 0 1

There is only one term that does not agree with Goldstein et al. at this stage and that is (1, 3) where

a factor of Γ2 is missing to make the matrix more symmetric with the (3, 1) term. This is a bit of a

fudge  but  possible  because  of  the  “smallness” of  Β2y  and  Β2x.  This  is  what  is  meant  by  reverse

engineering !

lorentzAP2@@1, 3DD = -Β2y Γ2;

lorentzAP2 �� MatrixForm

Γ2 -Β2x Γ2 -Β2y Γ2 0

-Β2x Γ2 Γ2 0 0

-Β2y Γ2 Β2x Β2y Γ2 1 0

0 0 0 1

We now have reach the next stage of Goldstein et al. But even this approximation for the L’’= L’L

matrix is still not a pure boost. If we start in S3 and work backwards with a boost in the x’’ axis of

-Βx’’and  a  boost  along  the  y’’ axis  of  -Βy” then  the  original  XYZ matrix  with  no  approximations

becomes  the  inverse  transformation  to  lorentz13.  This  is  possible  because  the  inverse  of  a  lorentz

matrix  has  an  inverse  given  by  negating  the  transpose.   We  use  this  to  derive  what  the  original

matrix should be if not the L we supposed above. 

Finding and Reducing the L3®1 matrix to first order

lorentz31 =

FullSimplify@lorentzXYZ �. 8Γ1 ® Γ2, Β1z ® 0, Β1x ® -Β2x, Β1y ® -Β2y, Β1 -> Β2<D

:8Γ2, Β2x Γ2, Β2y Γ2, 0<, :Β2x Γ2, 1 +

Β2x
2 H-1 + Γ2L

Β2
2

,

Β2x Β2y H-1 + Γ2L

Β2
2

, 0>,

:Β2y Γ2,

Β2x Β2y H-1 + Γ2L

Β2
2

, 1 +

Β2y
2 H-1 + Γ2L

Β2
2

, 0>, 80, 0, 0, 1<>

lorentz31 �� MatrixForm

Γ2 Β2x Γ2 Β2y Γ2 0

Β2x Γ2 1 +
Β2x

2 H-1+Γ2L

Β2
2

Β2x Β2y H-1+Γ2L

Β2
2

0

Β2y Γ2
Β2x Β2y H-1+Γ2L

Β2
2

1 +
Β2y

2 H-1+Γ2L

Β2
2

0

0 0 0 1

But alas this is NOT what Goldstein et al. give for their approximation at this stage. So we have to

do  an  additional  manipulation.  This  time  we  alter  the  two  diagonal  terms  that  approximate  one.

Doing that leaves the two boost off diagonal term. 

lorentz31@@3, 3DD = 1;
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lorentz31@@2, 2DD = 1;

lorentz31A = FullSimplify@lorentz31 �. Β2 ® Β2xD

:8Γ2, Β2x Γ2, Β2y Γ2, 0<, :Β2x Γ2, 1,

Β2y H-1 + Γ2L

Β2x

, 0>,

:Β2y Γ2,

Β2y H-1 + Γ2L

Β2x

, 1, 0>, 80, 0, 0, 1<>

This result is finally in the Goldstein et al. form at this stage

lorentz31A �� MatrixForm

Γ2 Β2x Γ2 Β2y Γ2 0

Β2x Γ2 1
Β2y H-1+Γ2L

Β2x
0

Β2y Γ2
Β2y H-1+Γ2L

Β2x
1 0

0 0 0 1

Identifying the Source of the Asymmetry in Succesive Non-parallel Boosts

Although the matrices have been simplified somewhat the product of them is far from simple once

again. But in anticipation of what is to come we set the variable name of this product to rotation. 

rotation = FullSimplify@lorentzAP2.lorentz31AD

::-I-1 + Β2x
2

+ Β2y
2M Γ2

2
,

HΒ2x - Β2yL HΒ2x + Β2yL H-1 + Γ2L Γ2

Β2x

, 0, 0>,

:0, Γ2 - Β2x
2

Γ2
2
,

Β2y Γ2 I-1 + Γ2 - Β2x
2

Γ2M

Β2x

, 0>,

:Β2y Γ2 I1 + I-1 + Β2x
2M Γ2M, -

Β2y H-1 + Γ2L I-1 + Β2x
2

Γ2M

Β2x

, 1 - Β2y
2

Γ2, 0>, 80, 0, 0, 1<>

rotation �� MatrixForm

-I-1 + Β2x
2

+ Β2y
2M Γ2

2 HΒ2x-Β2yL HΒ2x+Β2yL H-1+Γ2L Γ2

Β2x
0 0

0 Γ2 - Β2x
2

Γ2
2

Β2y Γ2 I-1+Γ2-Β2x
2

Γ2M

Β2x
0

Β2y Γ2 I1 + I-1 + Β2x
2M Γ2M -

Β2y H-1+Γ2L I-1+Β2x
2

Γ2M

Β2x
1 - Β2y

2
Γ2 0

0 0 0 1

Some  books  describing  the  Lorentz  matrices  suggest  that  the  3  x  3  matrix  representing  the  space

coordiantes might take on the form of a rotation matrix and that may be the source of the asymme-

try. Examining the above matrix we see that one off diagonal term (2, 3) is more complicated than

the other (3, 2). So we expand the more complicated one. 

ExpandB
Β2y Γ2 I-1 + Γ2 - Β2x

2
Γ2M

Β2x

F

-

Β2y Γ2

Β2x

+

Β2y Γ2
2

Β2x

- Β2x Β2y Γ2
2

Using this  expression edited  to  first  order  we hand edit  this  matrix  to  produce  the  final  “rotation”

matrix 
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Using this  expression edited  to  first  order  we hand edit  this  matrix  to  produce  the  final  “rotation”

matrix 

rotationA =

:81, 0, 0, 0<, :0, 1, -

Β2y Γ2

Β2x

+

Β2y Γ2
2

Β2x

, 0>, :0,

Β2y H-1 + Γ2L

Β2x

, 1, 0>, 80, 0, 0, 1<>

:81, 0, 0, 0<, :0, 1, -

Β2y Γ2

Β2x

+

Β2y Γ2
2

Β2x

, 0>, :0,

Β2y H-1 + Γ2L

Β2x

, 1, 0>, 80, 0, 0, 1<>

rotationA �� MatrixForm

1 0 0 0

0 1 -
Β2y Γ2

Β2x
+

Β2y Γ2
2

Β2x
0

0
Β2y H-1+Γ2L

Β2x
1 0

0 0 0 1

The final approximation is to make Γ22=1 and since Β = - Β2x we finally arrive at the Goldstein et

al. result

rotationB = FullSimplifyArotationA �. 9Γ2
2

® 1, Β2x ® -Β, Γ2 ® Γ=E;

rotationB �� MatrixForm

1 0 0 0

0 1
Β2y H-1+ΓL

Β
0

0
Β2y-Β2y Γ

Β
1 0

0 0 0 1

The matrix indeed now looks like a  rotation matrix around the z-axis  where the cosines are  1  and

the sines are the off diagonal terms. 

Summary

This  effect  is  called  Thomas  precession  and  arises  when  combining  Lorentz  transformations  that

are not collinear. Many modern relativity books do not even have this in their indices. In its simplest

form, it is often defined (Goldstein et al. for example who make the Β substitution their final matrix

to have the signs of a right hand system) as

DW = HΓ2 - 1L
Β2y

Β

Β2y H-1 + Γ2L

Β

How does  this  arise  ?  We suppose  that  S1 is  a  laboratory system at  rest  while  S2 and S3 are  two

instantaneous rest systems a time Dt apart in a particle’s motion. The velocity of the particle defines

the x-axis v=Β2x c and the Dv has only the component Dv=Β2y c. Thus in velocity terms
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DW1 = H1 - ΓL
v�Dv

Ν
2

H1 - ΓL v�Dv

Ν
2

This  shows that  if  v  and  Dv  are  aligned  there  is  no  rotation.  If  we  have  a  particle  in  motion  on  a

close path (i.e circular for example) then the angular motion caused by dW/dt is Ω. Using the series

expansion of  Γ2~1+Β22 � 2 we find that  in  vector  notation that  if  a  is  the acceleration in  S1,  v  the

velocity  in  S1,  then  some  vector  propery  of  the  particle  such  as  spin  will  appear  to  precess  with

frequency Ω. 

Ω =

1

2 c
2

Ha�vL

a�v

2 c
2

Our suspicion that Thomas precession is counterintutive is shown by the fact that classical mechan-

ics would have Ω defined as (v x a) so that the right hand rule is obeyed. It appears everytime there

is an acceleration of a frame that is not collinear with the velocity. 
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