Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”
by ER Priest (2014)
CHAPTER 12

PROBLEM 12.1. Acceleration of an Isolated Horizontal Flux Rope.

Consider the equation of motion of an isolated line-tied flux rope of radius
a with a purely poloidal field B, at its surface. Show that the flux rope is
accelerated either indefinitely or to a constant speed, depending on whether
the current, radius or twist is held constant.

SOLUTION.

Model a flux rope at height h above the photosphere y = 0 as a line current
of strength 271 /p, for which B, +iB, = I/(Z — ih), where Z = x + iy
is the complex variable (Fig.12.5a). Photospheric line tying is modelled by
adding an image flux rope with current —277/u at a distance h below the
photosphere to give a net resulting field

1 r 2k
Z—ih  Z+ih  Z2+ D%
We assume this holds to within a distance a of the singularities at z = +h,

namely the surface of the flux rope and its image. Inside the flux rope assume
a purely azimuthal field

B, +iB, =

B, = B,-,
a

where B, = I/a is the field at the surface of the flux rope.
The vertical equation of motion is then

d*h _ wI?
2 ph’
If the flux rope starts from rest at h = hg, say, this may be integrated to give
h 712
I
LMw? = / ™ an, (1)
ho HI

which determines h(t) as a function of I(¢) once an extra assumption about
the behaviour of I has been made.



On possibility is to assume I = constant, for which Eq.(?7?) gives

, 2mI? h
= log 7
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v

so that v increases indefinitely with h. This is at first a little surprising but
arises because the magnetic energy of the system is increasing in time as the
sources at infinity do work in an unrealistic way.

Another possibility is to assume that the flux tube radius (a) remains
constant. The magnetic flux (¢)g) crossing the y-axis below the flux rope is

h—a 2h
¢w:/ Bxuywyszg(;—&),
0

and so, if this and a are held fixed during the eruption, it determines I(h) as

I — o -7 log(2ho/a — 1)
" log(2h/a—1)  log(2hfa—1)"

For a < hy the rise speed therefore increases with height like

s TG < 1 1 )
v M \log(2ho/a—1) log(2hja—1) )"

In particular, at large heights it approaches a constant value of

2 ng 1 71']3 2h,0
- = D0 (220 1),
uM \log(2hg/a — 1) uM a

In a similar way, it can be shown that, if the twist in the flux rope is held
constant or if the prominence is modelled as a vertical current sheet rather
than a line current, then the velocity at large heights is also constant (Priest
and Forbes,1990).

PROBLEM 12.2. Instability of Horizontal Flux Rope.

Consider equilibria of a line-tied flux rope in a dipole background field. Prove
that solutions on the lower branch of equilibria in Fig.12.5b are stable while
those on the upper branch are unstable.

SOLUTION.
The equation of vertical motion for a line-tied horizontal flux rope treated as
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a line current I of mass M at height h in the background field of a dipole of
moment m at a depth h, below the photosphere is given by Eq.12.1, namely,

yEh 2l (1 m
a2~ p \2h  (h+m)2)’

which may be rewritten

&l (@  2m/(Ihy) ) |

A2 phy \ b (14 h/hy)?

This may be nondimensionalised by writing A in terms of h;, and ¢ in terms
of [(m1%)/(uhy)]*? to give

d*h 1 4c
=~ ) )
dt h  (1+h)

where ¢ = 2m/(Ihy).

The equilibria h = hg, say, are given by setting the right-hand side equal
to zero so that
(1 + h0)2 — 4Ch0 = 0, (3)

with solutions
ho=2c—1++/(2¢—1)2—-1.

Thus, we see that hg = 1 when ¢ = 1 and there are two solutions when ¢ > 1,
one of them larger than 1 and the other smaller. When ¢ < 1 there are no
real solutions, in agreement with Fig.12.5b.

Now, in order to determine the stability of these two solutions, consider
perturbations to the equilibria by writing

h = ho(l + hl),
where h; < 1. Then Eq.(??) becomes

h d2h1 N 1 _ 4c
dt2 T ho(l+ k1) (1+ ho+ hohy)?’

or, after using Taylor’s theorem to linearise the right-hand side,

d?h; 1 4c (1 2hohy )

= (1—hy) — _
O de ho( ) (1 + ho)? 1+ ho
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After using Eq.(?7) to substitute for 4c¢, this becomes
d*hy ho—1

A2 ho*(1+ hg)’

which has sinusoidal (i.e., stable) solutions when hy < 1 and exponentially
growing (i.e., unstable) solutions when hy > 1, as required.

PROBLEM 12.3. Emergence of Magnetic Flux.

Consider a flux rope modelled as a line current (/) originally at location
(h,0) in the magnetic field due to a line dipole at (—d,0) below the photo-
sphere. Suppose new flux emerges in the form of a line dipole at (—zg4, yq).
Solve Poisson’s equation to find the flux function for the resulting equilib-
rium, following Lin, Forbes and Isenberg (2001) JGR 106, 25053.

SOLUTION.
Suppose the magnetic field is

0A 0A
(Bvay> - (a—yv_%)

and that the magnetic field possesses current sources j,(x,y) such that
This is to be solved subject to the boundary condition

md SYd

A(z.0) =
(z,0) x2+d2+(x—xd)2+y§’

produced by one line dipole of strength m at (0,-d) below the photosphere
and another of strength s at (x4, —ya).
The line current at (xp,yp), say, corresponds to a current density

jz(x> y) = I(h)d(l’ - xh)é(y - yh)'

Now normalise distances with respect to d and replace the parameters
m, s and I by normalised parameters M = mc/(41yd), S = sc/(41yd) and
J = 1/1y, say. Then the expressions for A(x,0) and j,(z,y) become

Aly [ M Sya

Az,0) = 220
(z,0) c :)32—|—1+(93—zd)2—|-y§ ’
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, J1
=) = "5 0w — 2n)oly — yn).

The general solution for the Dirichlet problem given by Eq.(??) together
with the above two equations is

1 “+oo +oo ‘ 1 +o0 0G
A =1 [ [ G odder - [ awo |5 d

where G(x,y;u,v) is the 2D Green’s function, namely,
(r —u)?+ (y +v)?
(—u)?+(y—v)?]’

which satisfies G(z,0;u,v) = G(z,y;u,0) = 0.
After substituting for A(z,0), j.(x,y) and G(z,y;u,v), we find

z—z N 2iM 215 ]

-+ ;
Z—Zn Z+1 Z—Xq+1Yqg

G, s, v) — log, {

21
Az,y) = 70726 {Jloge

where Re is the real part, Z = x + iy and Z;, = xj, + iy, as required. Lin
et al (2001) proceed to calculate the equilibrium locations of the current and
the evolution of the system to a nonequilibrium point.

PROBLEM 12.4. Current Sheet below an Erupting Flux Rope.

(i) Find the magnetic field due to a flux rope modelled as a line current
(I) at height h sitting in the corona in the magnetic field of a line dipole at
depth d below the photosphere.

(ii) Suppose the flux rope erupts without reconnection and produces a
current sheet stretching up from the photosphere to height ¢. Find the
resulting magnetic field.

SOLUTION.
(i) In a similar way to PROBLEM 12.3, we follow Forbes and Isenberg (1991)
Ap. J. 373, 294, and suppose the magnetic field is

0A 0A
(Bvay> - <a—yv_%>

with current sources j,(x,y) such that
VA = —pj.(x,y). (5)
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This is to be solved subject to the boundary condition

md

produced by a line dipole of strength m at (0,-d) below the photosphere. The
line current at (0, h), say, corresponds to a current density

J=(x,y) = 16(x)d(y — h).

The method of images gives the following simple solution to (?7):

I Z +1ih 21
A(x,w:g‘—ﬂne[ﬂoge( - )+ ' }

Z —1h Z+1

where Z = z + iy, In = m/(2d), J = I/I, and distances are normalised
with respect to the length-scale d. The field is produced by a line current at
Z = ih, an image current at Z = —ih and a line dipole at Z = —i.

From this we find

I J J 2
B.(0,y) — “0[ }

T 2rd ly+h y—h  (y+1)?

so that an X-line first appears at the origin when h =1, J = 1.
(ii) Subsequently, suppose a current sheet stretches from the origin up to
(0,q). First of all, we use a conformal transformation

w=/2%+ ¢,

from the Z-plane to the w-plane, where w = u + iv and the current sheet is
transformed to a line segment stretching from (—gq, 0) to (¢, 0) on the u-axis.
In the uv-plane, therefore, we have to solve

V2A = —pj(u,v). (6)
with
j(,v) = (Io/d®)3(u)d(v — /72— ),
subject to the boundary condition

IUIO {17 U2 S q27

Au,0) = —
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The general solution to (??7) can be found by the method of Green’s
functions in the same way to PROBLEM 12.3 as

Al v) = 1/ T Gt i o+ / T aw |2
) c) o 0 s Uy ) ) 471_ e ) 01}’ Vo 5
where G(u,v;u',v") is the 2D Green’s function, namely,

(u—u')?+ (v+ U,)2]
(u—u)?+ (v—1")2

G(u,v,u’,v") = log, {

Substitution into this expression gives, after evaluating the integrals,

Ale,y) = “ore [ 10 2@ i) +
21 72 N 2

2 og, R/ +
7T(22—|—1) Z2_|_q2_q Z2+1

_l_

21 \/Z2+q210 qg+/q¢?—1
@ —-1 Z2+1 Be qg— /@ —1

Forbes and Isenberg (1991) proceed to determine ¢ and J as functions
of the reconnected flux and then determine the equilibrium locations of the
flux rope, as well as the energetics and stability.

PROBLEM 12.5. The Hoop Force of a Toroidal Flux Rope.
Fill in the details of the proof for calculating the hoop force of a toroidal flux
rope by:

(a) calculating Ay for a toroidal current [Eq.(??) in the solution],

(b) approximating this close to the flux rope [Eq.(?7?)],

(¢) showing that the poloidal flux function A = Ay(r) + Ay (r,6) with
Ai(r,0) = —A(r)Byo(r) cos § < Ay represents a set of circular flux surfaces
that are displaced by A,

(d) finding the field on the inner surface of the flux rope [Eq.(?7?)],

(e) finding the flux function outside the flux rope [Eq.(?7?)] and

(f) determining the free constants [Eq.(?7)] by matching the field at the
surface of the rope.

SOLUTION.



The discussion in Solar MHD is repeated here, with the proofs for parts
(a)—(f) inserted and indicated. We consider the magnetic field of a simple
isolated toroidal flux rope of major radius Ry, minor radius a and net toroidal
current I. It is not in equilibrium but experiences a radially outwards hoop
force of magnitude

VO B
Fhoop = I, <loge - 5 + B, + 5 (7)

when a < Ry (Shafranov, 1966). Here the constants 3, and I; depend on the
internal structure of the flux tube. They are the mean p and B2 over the
volume of the flux rope and are given by

4 N By)? 1 2 @
5;0:@2—28/0]97‘6#, ZZ:<Bg> :ﬁa2B§/Bgdv:a2—Bg/0 Bg’f’d’ra
(8)
where By = By(a) is the (zeroth-order) field at the flux rope surface (r = a)
and local polar coordinates (r,6) have been taken with respect to a point T
on the major axis of the flux rope.

In order to prove Eq.(?7), we consider two different coordinate systems,
with the location of any point in a vertical plane given in terms of either
(R, z) or (r,0), where R = Ry + rcosf, z = rsinf. Suppose the magnetic
field is an axisymmetric magnetostatic equilibrium (independent of ¢) with
components that are written in terms of a poloidal flux function (A = RAy)

as
1 0A . 0A
(BR7 B(i)v Bz) - E <_E7 b¢(A)7 ﬁ) )

which satisfies V-B = 0 automatically, and for which A is determined by the
Grad-Shafranov equation (see Egs. (3.61) and (3.62) in the book), namely,

PA 104 P4 pdr

oga _1oa o4 04 ey
o~ Rom o=z - Mai gzl

In terms of coordinates (r,#) these become

(BrvB(i)vBG) = ! ( aA b 121 7%> )

Ro+rcosf \  rd0’ s(4) or



and
138_!1+la221 B 1 _sinf 9 i
cor ar T o | T Rotrcosd \ O 00

(R0+rcos9 — ( )

The proof of Eq.(??) involves two parts, as follows. Just as for a 2D line
current, we evaluate the force on the toroidal flux rope as the product of its
current (I) and the external vertical field (B,) that exists at the location of
the flux rope. The first part is to find the flux function [Eq.(??) below| of the
field due to a toroidal current alone at small distance r from it. The second
part is to find B, by calculating the flux function [Eq.(??)] of the field just
outside a toroidal flux rope in equilibrium and decomposing it into the fields
of the toroidal current itself and of the vertical field needed to balance the
hoop force.

Part 1 of Solution: FIELD of TOROIDAL CURRENT

If the torus is treated as a ring of current of radius Ry, then the vector
potential [A,(R, qﬁ)q?)] at a point (R, ¢) in polar coordinates in the plane of the
ring relative to the ring’s centre may be calculated as follows. In general, the
vector potential (A) is such that B = V x A and satisfies Poisson’s equation
V2A = —uj, which has solution A = [p/(47)] [ j(r')/|r—r'|dV’. For our ring
jdV' = 1Ry d¢’, and at any point in its plane the only magnetic component
is B,(R). Thus, the only component of A is A4(R) and it becomes

pl [ds'  plR /” cos &' def
o (

A — a5 _
L 2 R? + R? — 2RyR cos ¢/)1/?’

(10)

where S = [(R — Rycos ¢')? + R2sin? ¢']'/? is the distance between a points
(R,0) on the z-axis and (R cos ¢, Rysin¢’) on the ring.

Ay may be rewritten in terms of complete elliptic integrals of the 1st and
2nd kind with k = 2(R/Ry)"/?/(1 + R/Ry) as

_ILLIRQ—I-R
" 4r R

(2 = k*) K (k) — 2E(k)], (11)

where K (k) = foﬂﬂ[l — k%sin? 2]7"2dz and E(k) = fow/z[l — k?sin® z]'/2dzx.



PROOF (a) that Eqgs.(??) and (??) are equivalent:
Let us work backwards. With the above definition of k, we have

2(R2 + R?)

2 -k = —; _
R§ + R? 4+ 2RyRsind

and
R2 4+ R? 4+ 2RyRsin 0(1 — 2k*sin® )

R+ R?+ 2RyRsinf
Then, with the above definitions of K (k) and E(k), we find

1—K?’sin’z =

—2(1 — K?sin2)Y? da

2—k)K(k) —2E(k) 1 /”/2 2 — k2
k2 k2 )y (1 — k2sin?x)l/?

/”/2 2sinz — 1
= — dx
o (1 —Fk2sin®x)1/2

Thus, Eq.(??) becomes

MR+ R

o= 2 R (2 k) K (k) -2E (k)

/2 2 .
_u_IR0+Rk2/ : 2sin“x —1 i
0

47 R 1 — k2sin? x)1/2

Now, change the variable of integration from x to o = 7/2 — x to give

da

_ul Ry + R 2/”/2 1 —2sin*«
" 4r R o [1—k2(1—sin®a)]/?

or, using the definition of k* = 4RyR/(Ry + R)?,

A B /”/2 1 —2sin’ o p
= «
*T 1 Jo [(Ro+ R)? — 4RoR(1 — sin® a)]1/2
or
plRy [T 2(1 — 2sin’ )
Ay = 5 o 7 dov.
4 Jo [R5+ R? —2RoR + 4R Rsin® o

Finally, change the variable from o to ¢’ = 2« such that 1 — 2sin®a =
cos ¢ to give Eq.(?7?), namely,

wl Ry /’T cos ¢’ ,
Ay = d
¢ 21 Jo (R3+ R*> — 2RyRcos ¢')1/? ¢
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as required.
END OF PROOF (a)

By expanding in powers of /Ry it can be shown that near the inside of
the flux rope this gives a flux function (A = RA,) of approximately

A:“—I{QRO (logeg—R(]—Q) —r(logeg—RO—l)}. (12)
4 r r

PROOF (b) that Eq.(??) implies Eq.(?7?):
Using the relation A = RA,, Eq.(??) may be written

A= p, (1 N Rﬁ) (2~ KK (k) — 2E(k)).

Write R = Ry + r, where r < Ry and expand in powers of /Ry to give

k_2(1+7’/R0)1/2 B _T_2_i+
C2[l+7/(2Ry)]  © 8RZ 8R3 TV
2 3
R L
g R am

2
1 =" (1424 ..
4R(2)(+R0+ )7

12— (14 1 4+ .
( V= am Mg )

4 _ 38Ry 1_L+
(1—k2)1/2_ r 2Ry, )’

B k2 T e T T aR, T

Now, according to the books on special functions by Spanier and Oldham
(1987) page 612 or Gradshteyn and Ryzik (1980) page 905, for r < Ry (i.e.,
when k = 1), the elliptic integrals behave like

4 4 1—k?
K(k)%logem—l— <10gem—1) ( 1 ) +,

11

and




and

4 1 1 — k2
E(k) ~ 1 -+ (logem — 5) ( 9 ) + ...

and so, using the above expansions for log [4/(1 — k?)*/2] and 1 — k2, we find

SR
K(k) = log = — QLRO T

and
Ek)~1+...,
where the next terms are of order 72 log, r.
But Eq.(?7) is
. u[ Ro + R

o= 2= KK (k) — 2B (),

which with A = RA,, R = Ry + r and the above expansions therefore
approximates to

-l r r? 8 Ry r
A=torp (1o + . Vl(1+2 4+ . V(log 220" 4+ )_o4 .
Ar RO( 9Ry )K TR )(Oge v oR, el

or
~ 1 8R I 8R
A:M—RO log, —2 — 2 + B —log, —2 4+ 1) ...,
2m r AT r

which is the same as Eq.(?77), as required.
END OF PROOF (b)

Solution Part 2: FIELD OUTSIDE a TOROIDAL FLUX ROPE

The field both inside and outside the flux rope satisifies Eq.(??), which
we expand in powers of the inverse aspect ratio (e = a/Ry < 1), assuming
By = ByoRo/R[1+0(€*)] and By ~ €Byg, where By is the potential toroidal
field at major radius Ry. If we write A = Ag(r) + A;(r,0), the zeroth and
first order contributions from Eq.(??) are

1d [ dA, , dp ~db,
SO ) = Ry (Ag) 2 1
rdr (T dr) iyl (13)
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12 0_[11 N i82f~11 B cos 6 dA,
r@rr or r2 062 Ry dr

d dp N db¢) dr - dp
= —— [ uR2—=- +b,(Ay)—= — Ay — 2uRgr cos0——. (14
dr <“ a4, o O)dAo da, dAg (14

The next step is to seek a separable solution of Eq.(??) in the form

A1 (r,0) = —A(r)RoBao () cos b, (15)

where Byo(r) = (1/Rg)dAg/dr. The resulting flux surfaces have cross-sections
that are circles whose axes are displaced by a distance A (the Shafranov shift).

PROOF (c) that Flux Surfaces of Eq.(??) have Cross-Sections
that are Displaced Circles:
A simple solution is to note that

A= Ay(r)— A(T)W cos 0
may be rewritten
_ 0Ay - 0Ay - .
A= Ay(r) — A(r)a—RO = Ay — 538—1_20 — Ay — 6 A,.

But Ay = constant represents flux surfaces with circular cross-sections (r =
constant) and so Ay — 6Ag = constant with 64, = §R 0A, /OR represents
circular flux surfaces displaced by a distance dR.

A more detailed solution is to note that the equation of a circle whose
axis is displaced a small distance A is

(rcos® — A)? +r*sin? 6 = ¢?
or, if A< r,
r? —2Arcosf = .

If we write r = ¢ 4+ r1 where r; < ¢, then after linearising this equation we
find
ry = Acosf,

so that r = ¢+ A cos @ is the linearised equation for a circle with axis displaced
by A.
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Now what surfaces does

Ag(r) — A(r)cil—AO cos = constant
r

represent? Linearise about r = ¢ and substitute

_ . dA
AQ(C + ’l"l) ~ Aoo(C) + 1 ( d:())

into the above equation to give

x dA dA .
Ago(c) + 11 ( d:0> — Acos ( dr00> = Ago(c)

or

as required.
END OF PROOF (c)

Inside the flux rope, Eq.(??) may be solved as follows to give the field at
the inner surface of the flux rope to zeroth plus first order as

Ba(a) = By 1+Rﬁ0(ﬁp+§zi— 1) cos ] | (16)

where By = Byp(a) is the zeroth-order By at r = a and 3, and [; are given by
Eq.?7.

PROOF (d) of Eq.(??):

For a solution of the form (??), namely, Ai(r,0) = —A(r)RyByo(r) cos b,
with By = Ry 'dAg/dr, Eq.(??) becomes

1d d A B
- (T—(ABQQ)> + ﬁBGO — ﬂ

rdr \ dr Ry
d dp ~ db¢) A dpo
= — [ uR?—= 4+ by(Ay)—2 )| = + 2ur cos—.
dr (“ oqay AT ) Ry TSR
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Next, subsititute on the right-hand side for R§(dp/ flflo) + by(Ap)(dby/dAy)
from Eq.(??) and replace dp/dAy by (dp/dr)(dr/dAy) = (dp/dr)1/(RoByo)
to give

1d d A By

v (W@BM) bRy

d (dB B 2urdpy 1
. <eo+ﬂ)A+/ﬂ"Po

_5 dr T "Ry dr By

Ro dr Bgo'

After multiplying through by rByy and rearranging terms, this becomes

d dA r dpg
Z(rB3 =) = = (2w — B 1
dr(r "Odr) RO(’”dr 90)’ (17)

as the required differential equation for A(r) when po(r) and Byy(r) are
known.
Integrating Eq.(?77?) gives

%: 2p /Z,z@_igo dr
dr  rRyBg, |J, dr 20

or, integrating the first term by parts,

dA 24 2 /T B,
— = - 2 — | rd
dr  rRyBz%, [T bo 0 ot 2u e

If we assume po(a) = 0, this may be evaluated at r = a to give

dA a 1
(W)a = —ﬁo(ﬁp + 3li), (18)
where (3, and [; are given by Eq.(?7).

Now

104 1 0A
 ROr Ro+rcosf or’

where, to zeroth plus first order,

By

A(’f’, ‘9) = 1210 + Al = /Zl(] — A(T’)ROBGO(T> COs (9,
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so, if A(a) =0, the value of By at 7 = a to zeroth plus first order is

Bo(a) = Bao(a) {1 - (Rio + @—f)a) cos 9} .

Then, noting that By = Ry 'dAy/dr and substituting (dA/dr), from Eq.(??)
into this yields Eq.(?7), as required.
END OF PROOF (d)

Outside the flux rope, the field is assumed potential and so the right-hand
sides of Eqgs.(?7?) and (?7) vanish. The resulting flux function for » < Ry for
the field external to the flux rope is then to zeroth plus first order

N I
A=1 2Ry logeg—RO—2 +7r log68—R0—1 cos 0 +r<ﬁ+02>c059 .
A r r 72

(19)
It may be proved as follows.

PROOF (e) of Eq.(?7):
We now solve Eqs.(?7) and (??) in the region outside the flux rope where
the field is potential, so that those two equations for Ay and A; reduce to

1d { dA,
rdr (7) =0 (20)

lgrﬁ_fll N iazfll B cos dA,
ror Or  r? 062 Ry dr
The general solution of Eq.(?7?) is

—0. (21)

Ay = clog,r + k,

but this needs to be the same as the lowest order field of a toroidal current
given by Eq.(??), namely,

i, = 1 f (loge 88 _ 2) . (22)
2w T

In order to solve Eq.(??), we suppose A; has the form
~ 1
A = g—ﬁF(r) cosf, (23)
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so that Eq.(??) reduces to

ld faF\ F_ 1
rdr Tdr r2 oy

This has general solution

C1 Cg’f’ 1 r
F=—4+—" — _log—.
T T8,

in which we write Cy = ¢y — 1, so that the solution (??) becomes

- I
A= s {r <10ge 8—RO — 1) + a + 027”} cos 6. (24)
4dr r r

Writing the solution in this form has the advantage that the first part is
simply the first-order part of the vacuum field outside a toroidal current in
Eq.(??). Finally, summing Eqs.(??) and (?7) gives us Eq.(??), as required,
namely,

N I

A=1 2Ry logES—RO—2 +7r logES—RO—l cos 0 +r<ﬁ+02>c059 .
Am r r r?
END OF PROOF (e)

Calculating B, and By from (?7) and setting B,(a) = 0 and By(a) on the
outer surface of the flux rope equal to the value (??) on the inner surface
then determines the constants as

ey =a*(l; —1)/2, ¢y = —log.(8Rp/a) +3/2 — 5, — 1;/2, (25)

as follows.

PROOF (f) of Eq.(?7):
To zeroth plus first order, we have

By

= i 2
Ro+rcos@ \ dr + or * cos 0, (26)

1 dzzlo 81211 ~ id—leo 1 8/11 T dzzio
" Ry dr ' Ry Or R2 dr

where at the edge of the flux rope we know that to zeroth plus first order

Bo(a) = By {1+ £

(Bp + %li — 1) cosf|, (27)
Ry
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First of all, consider B, = —1/(Rr)0A/86, whose zeroth-order part van-
ishes and whose first-order part is

1 0A,
B, =—— 1
Ror 00

Substituting for A; from Eq.(??) gives at first order

_ M 8y a :
B, = 1R, {{(loge . 1) + <7“2 —l—@)} sm@}.

Adopting the boundary condition B,(a) = 0 and so equating the above
expression to zero at r = a gives

8R
log, —2 — 1+ 2 46, =0 (28)
a a
as one relation between the unkown constants ¢; and cs. )
Next, consider By(a). At zeroth order, substituting the expression for Ay
from Eq.(??) into Eq.(??) and equating it to the zeroth-order part of By(a)
from Eq.(?7) gives
wl
By=——. 29
0 2ma (29)

At first-order, substituting for Ay and A; from Eq.(??) into Eq.(??) gives
Ry Or  R% dr

I 8R IR
a [(loge—o—l)—l—c—;—l—@} COSQ—I—L'u % cos
r r

~ AR, R2 2nr

8R,
cosf [loge—O — % +caof .
r r

ol

N 4 R()
Equating this at 7 = a to the first-order part of Eq.(??) and using expression
Eq.(??) for By gives

SRO C1
—2(613 + %lz — ].) = lOge 7 — p + Co (30)

as a second relation between c¢; and cs.
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Then the solution of Eq.(??) and Eq.(??) for ¢; and ¢, is
o =a*(l;—1)/2, ¢y = —log.(8Ro/a) +3/2 — B, — 1;/2,

namely, Eq.(??), as required.
END OF PROOF (f)

Finally, we note that the term in square brackets in Eq.(??) when evalu-
ated at @ = 7 is identical with the approximation in Eq.(??) to the field of a
toroidal current when r < Ry. At large r, by Eq.(?7) the field of this current
vanishes and so we are left from Eq.(??) with A ~ (uI)/(47)cor cos 0. This
corresponds to a vertical field at Ry of B, = (ulca)/(4mRy), which there-
fore produces an outwards hoop force of Fj,p = IB,, namely, Eq.(?7), as
required.

PROBLEM 12.6. Change of Current during Expansion of a Flux
Rope.
Fill out the details of the proof of
1
I~ ,
Ry log,(Ro/a)

for the behaviour of the current (I) as a function of the major radius (Ry)
of a flux ring.

SOLUTION.
Consider a simple isolated toroidal flux rope of major radius Ry, minor ra-
dius a and net toroidal current I. If the torus is treated as a ring of current
of radius Ry, then the magnetic flux function [A4(R, ¢)] at a point (R, ¢) in
polar coordinates in the plane of the ring relative to the ring’s centre may be
calculated as follows.

In general, the vector potential (A) is such that B = V x A and satisfies
Poisson’s equation

VA = —pj,

which has solution

_ﬂ Y - /
A—47T/J(r)/\r r'|dV’.

For our ring j dV' = IRy d¢’, the magnetic field and vector potential are
axisymmetric (independent of ¢ in cylindrical polar coordinates (R, ¢, z) rel-
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ative to the centre of the torus) and at any point in its plane the only magnetic
component is B,(R). Thus, the only component of A there is A,(R).

At a more general point (R, ¢, z) out of the plane of the ring, we have,
according to Jackson’s Electrodynamics book,

P R, [(2 — k2K (k) — 2E(k)
* T 1 R+ R+ 22 +2RR, K ’

in terms of complete elliptic integrals of the 1st and 2nd kind,
w/2
K(k) = / [1 — k%sin? o] 2da
0
and
w/2
E(k) = / [1 — k%sin? a]Y2da,
0
where
R:+ R?+ 22+ 2RyR’
In particular, in the plane (6 = 7/2) of the ring

_,u_IRo—i-R
" Ar R

(2 = k) K (k) — 2E(k)],

where k = 2(R/Ro)'/?/(1+ R/Ry), in agreement with Eq.(12.7) in the book
and Eq.(??) above.

Now, the total magnetic flux inside the ring is given by the value of RA,
at the inner surface of the ring, but if we neglect the width of the flux rope
and set R = Ry then k = 1 and the elliptic integral K (k) in A, becomes
infinite. Instead, we take account of the flux rope width and evaluate RAy
at the inner surface R = Ry — a of the ring, where Ry is the major radius
and a < Ry is the minor radius.

From An Atlas of Functions by Spanier and Olham, 1987 edition, p612,
we find that for &% near 1, K (k) ~ log,(4/v1 — k?) and E(k) ~ 1. Thus,
when R = Ry(1 — a/Ry) and a < Ry, we have

24/1 — 2 2 2
k__va/Roz(l a_ +..) (1+%+a_+..)z1_a_.
0

2 —a/Ry " 2R, AR?

2R, 8R?
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Thus, K (k) ~ log.(8Ry/a) and E(k) ~ 1, so that

pd Ry
Ay~ — |log, — — 2
? 27?{0&& }

at a point on the inside of the flux rope. (This agrees with Ex. 5.32 of
Jackson (1998, Classical Electrodynamics, 3rd edition). Note that we have
been working from first principles rather than invoking the expression A ~ LI
in terms of self-inductance (L), which is only approximate (Jackson, 1998,
Sec 5.17A) and leads to a slightly different result.)

The flux through the ring is

/ B.2rRdR,

where B =V x A and A = A,¢ imply that

10

B = zar

RA,).

Thus, the flux through the ring becomes

Ro—a
/BZQWRCZR = 271'/ %(R/Lz,)dR = 27T(R0—&)A¢(R0—CL) ~ 27TROA¢(RQ—CL).
0

Therefore, the flux inside the ring is ~ Ryl log,(Ry/a). The condition
that this be conserved (frozen flux) as the major radius changes during an
eruption thus implies that the current behaves like

1

I~ ,
RO loge(RO/a)

as required.

PROBLEM 12.7. Condition for Torus Instability.

Show that, if the total magnetic flux (F' = F; + F.;;) enclosed by a toroidal
flux rope is held constant while both F; and F.,; vary with Ry, then the
condition for torus instability with an external field B.,; = BRO_ " becomes
n>3/2—1/(2c), where ¢ =log,(8Ry/a) — 1.
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SOLUTION.
The global equation of motion of the flux rope (of mass M, say) is
d*Ry  pl*c
dt? N 47TRO

where ¢ = log,(8Ry/a) — 1 is regarded as constant during the eruption of the
flux rope. The flux enclosed consists of two parts

— IBRy™, (31)

Ry
F=F+F.=pRyl(c—1)— 27T/ B..R dR, (32)
0

If F is held constant, then in terms of initial equilibrium current (/*) and
flux-rope radius (Rf), the current [ is given as a function of the flux-rope
radius R by

1 * % *\2—n -n
Izﬁo{] Ry + K[(Ry)* ™" — Ry},
With this expression for I, the equation of motion (??) becomes

ARy 1

TR

in terms of dimensionless variables Ry = Ro/Rj and > = 4mt> Ry M /[uc(I*)?].
A linear perturbation from equilibrium (Ry = 1) in the form Ry = 1+ 1y,

say, then implies
d’r 1\ r
“ 9 _(op—3+2)=
dt? ( nTeT c) 2’

which gives torus instability if n > 3/2 — 1/(2¢), as required.

4—2n—(141/c)(1 = R{™)] 1-R;™)(3—2n—1/c),

PROBLEM 12.8. Current (/) of a Toroidal Flux Rope.

Show that la = constant for a linear force-free toroidal flux rope of current
I and radius a, whose axial flux is constant and whose axial field vanishes
on its surface.

SOLUTION.
Following Section 12.2.3, we assume the internal field of the flux rope is
a linear force-free (i.e., Lundquist) field of the form

B()Jl(OéT> B(]Jo(OéT>
B, =0, By= -0t _ Bodotar)
O A = " Ji(aq)

22



where Jy and J; are Bessel functions and the minor radius r = a (where
By = By) is located at the first zero of Jy, namely, aa =~ 2.405, so that the
axial field vanishes there (i.e., By(aa) = 0).

Then the axial magnetic flux in the flux rope remains constant as its
current and minor radius change, so that

2 a
/ / Byrdrdf = constant.
o Jo

But the force-free condition implies pj, = aB, and so

m 27 a
L / / Jerdrdd = constant,
@ Jo 0

1
g constant,
«Q

or, in other words,

where [ is the total axial current.
However, aa = constant since this determines the edge of the flux rope,
and so, eliminating a, the above equation implies

Ia = constant,

as required.

PROBLEM 12.9. Titov-Démoulin Model.
Show that, in the Titov-Démoulin model for the equilibrium of an active-
region flux rope of current 7, depth d, major radius Ry and minor radius a,

I reaches a maximum at about Ry ~ L/ V2 and torus instability sets in at
about Ry ~ v2L when d < Ry and a < Ry.

SOLUTION.
The proof follows the paper by Titov and Démoulin (1999). Equilibrium
in their model is of the form

Fr+F, =0, (33)
where e - .
o 0
Fr = log, [ 22 2
T~ UnR, % < a 4)
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is the hoop force and
2qLI
(R2 + L2)3/2
is the Lorentz force of the flux rope current I acting on the magnetic field at
the flux rope created by the two magnetic charges +q.
This force balance determines the current as

Fy=-—

I 8mqLRy (R + L?)3/2
= e ,

C’zloge(g—RO—g).
a

Now, if we neglect the slowly varying logarithmic dependence in Eq.(?7)
and regard C as constant, independent of Ry, then the derivative with respect
to Ry of Eq.?7? is

where

dl  8mqL L*—2Rj
dRy  puC (R3+ L2)5/2’

which implies that I reaches its maximum value at L = v/2R,.

In order to determine the stability, let us calculate the change in forces
produced by an increase d Ry in major radius, since if the net force is outward
the equilibrium will be unstable. Thus, from the above definitions

%4_@_6[ dRy (2R% — 2 N 1 0Ry  da
R% + L2 log,(8Ry/a—5/4) \ Ry a )’

F, ' F T Ro

where the variations in minor radius (a) are given by conservation of toroidal
flux [rBya? with By, = uly/(27Ry)| as

da _ ORy

a - 2‘R07
and from the condition that the number of turns in the coronal part of the
flux rope remain constant, namely, N, = (N;/7)arccos(d/Ry) = constant,

where N; = IR2/(Iya*) and toroidal flux conservation implies a?/R, =
constant. The condition N, = constant may be written

s oy (), ‘
I R (R2 — d?)'/2 arccos(d/Ry) )
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Combining these expressions gives

§F,+6F; 0Ry [R2—2L* d(R%—d?)~1/2 1/2

Fr Ry | R2+ 12 arccos(d/Ro)  log.(8Rop/a) —5/4|"

If d < Ry and a < Ry, the last two terms inside the square brackets are
much smaller than unity and so the condition for instability, namely, that
the force variation be positive, becomes Ry > /2L, as required.

25



