
Solutions to the Tutorial Problems in
the book “Magnetohydrodynamics of the Sun”

by ER Priest (2014)
CHAPTER 12

PROBLEM 12.1. Acceleration of an Isolated Horizontal Flux Rope.

Consider the equation of motion of an isolated line-tied flux rope of radius
a with a purely poloidal field Bp at its surface. Show that the flux rope is
accelerated either indefinitely or to a constant speed, depending on whether
the current, radius or twist is held constant.

SOLUTION.
Model a flux rope at height h above the photosphere y = 0 as a line current
of strength 2πI/µ, for which By + iBx = I/(Z − ih), where Z = x + iy
is the complex variable (Fig.12.5a). Photospheric line tying is modelled by
adding an image flux rope with current −2πI/µ at a distance h below the
photosphere to give a net resulting field

By + iBx =
I

Z − ih
− I

Z + ih
=

2ih

Z2 + h2
.

We assume this holds to within a distance a of the singularities at z = ±h,
namely the surface of the flux rope and its image. Inside the flux rope assume
a purely azimuthal field

Bi = Bp
r

a
,

where Bp = I/a is the field at the surface of the flux rope.
The vertical equation of motion is then

M
d2h

dt2
=
πI2

µh
.

If the flux rope starts from rest at h = h0, say, this may be integrated to give

1

2
Mv2 =

∫ h

h0

πI2

µh
dh, (1)

which determines h(t) as a function of I(t) once an extra assumption about
the behaviour of I has been made.
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On possibility is to assume I = constant, for which Eq.(??) gives

v2 =
2πI2

µM
log

h

h0
,

so that v increases indefinitely with h. This is at first a little surprising but
arises because the magnetic energy of the system is increasing in time as the
sources at infinity do work in an unrealistic way.

Another possibility is to assume that the flux tube radius (a) remains
constant. The magnetic flux (ψ0) crossing the y-axis below the flux rope is

ψ0 =

∫ h−a

0

Bx(0, y)dy = I log

(

2h

a
− 1

)

,

and so, if this and a are held fixed during the eruption, it determines I(h) as

I =
ψ0

log(2h/a− 1)
= I0

log(2h0/a− 1)

log(2h/a− 1)
.

For a≪ h0 the rise speed therefore increases with height like

v2 =
πψ2

0

µM

(

1

log(2h0/a− 1)
− 1

log(2h/a− 1)

)

,

In particular, at large heights it approaches a constant value of

v2
∞

=
πψ2

0

µM

(

1

log(2h0/a− 1)

)

=
πI20
µM

log

(

2h0
a

− 1

)

.

In a similar way, it can be shown that, if the twist in the flux rope is held
constant or if the prominence is modelled as a vertical current sheet rather
than a line current, then the velocity at large heights is also constant (Priest
and Forbes,1990).

PROBLEM 12.2. Instability of Horizontal Flux Rope.
Consider equilibria of a line-tied flux rope in a dipole background field. Prove
that solutions on the lower branch of equilibria in Fig.12.5b are stable while
those on the upper branch are unstable.

SOLUTION.
The equation of vertical motion for a line-tied horizontal flux rope treated as
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a line current I of mass M at height h in the background field of a dipole of
moment m at a depth hb below the photosphere is given by Eq.12.1, namely,

M
d2h

dt2
=

2πI

µ

(

I

2h
− m

(h+ hb)2

)

,

which may be rewritten

M
d2h

dt2
=
πI2

µhb

(

hb
h

− 2m/(Ihb)

(1 + h/hb)2

)

.

This may be nondimensionalised by writing h in terms of hb and t in terms
of [(πI2)/(µhb)]

1/2 to give

d2h

dt2
=

(

1

h
− 4c

(1 + h)2

)

, (2)

where c = 1

2
m/(Ihb).

The equilibria h = h0, say, are given by setting the right-hand side equal
to zero so that

(1 + h0)
2 − 4ch0 = 0, (3)

with solutions
h0 = 2c− 1±

√

(2c− 1)2 − 1.

Thus, we see that h0 = 1 when c = 1 and there are two solutions when c > 1,
one of them larger than 1 and the other smaller. When c < 1 there are no
real solutions, in agreement with Fig.12.5b.

Now, in order to determine the stability of these two solutions, consider
perturbations to the equilibria by writing

h = h0(1 + h1),

where h1 ≪ 1. Then Eq.(??) becomes

h0
d2h1
dt2

=
1

h0(1 + h1)
− 4c

(1 + h0 + h0h1)2
,

or, after using Taylor’s theorem to linearise the right-hand side,

h0
d2h1
dt2

=
1

h0
(1− h1)−

4c

(1 + h0)2

(

1− 2h0h1
1 + h0

)

.

3



After using Eq.(??) to substitute for 4c, this becomes

d2h1
dt2

=
h0 − 1

h0
2(1 + h0)

,

which has sinusoidal (i.e., stable) solutions when h0 < 1 and exponentially
growing (i.e., unstable) solutions when h0 > 1, as required.

PROBLEM 12.3. Emergence of Magnetic Flux.
Consider a flux rope modelled as a line current (I) originally at location
(h, 0) in the magnetic field due to a line dipole at (−d, 0) below the photo-
sphere. Suppose new flux emerges in the form of a line dipole at (−xd, yd).
Solve Poisson’s equation to find the flux function for the resulting equilib-
rium, following Lin, Forbes and Isenberg (2001) JGR 106, 25053.

SOLUTION.
Suppose the magnetic field is

(Bx, By) =

(

∂A

∂y
,−∂A

∂x

)

and that the magnetic field possesses current sources jz(x, y) such that

∇2A = −µjz(x, y). (4)

This is to be solved subject to the boundary condition

A(x, 0) =
md

x2 + d2
+

syd
(x− xd)2 + y2d

,

produced by one line dipole of strength m at (0,-d) below the photosphere
and another of strength s at (xd,−yd).

The line current at (xh, yh), say, corresponds to a current density

jz(x, y) = I(h)δ(x− xh)δ(y − yh).

Now normalise distances with respect to d and replace the parameters
m, s and I by normalised parameters M = mc/(4I0d), S = sc/(4I0d) and
J = I/I0, say. Then the expressions for A(x, 0) and jz(x, y) become

A(x, 0) =
4I0
c

[

M

x2 + 1
+

Syd
(x− xd)2 + y2d

]

,
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jz(x, y) =
JI0
d2

δ(x− xh)δ(y − yh).

The general solution for the Dirichlet problem given by Eq.(??) together
with the above two equations is

A(x, y) =
1

c

∫

+∞

−∞

∫

+∞

0

G(x, y; u, v)jz(u, v)dv du+
1

4π

∫

+∞

−∞

A(u, 0)

[

∂G

∂v

]

v=0

du,

where G(x, y; u, v) is the 2D Green’s function, namely,

G(x, y; u, v) = loge

[

(x− u)2 + (y + v)2

(x− u)2 + (y − v)2

]

,

which satisfies G(x, 0; u, v) = G(x, y; u, 0) = 0.
After substituting for A(x, 0), jz(x, y) and G(x, y; u, v), we find

A(x, y) =
2I0
c
Re
[

J loge
z − z∗h
z − zh

+
2iM

z + i
+

2iS

z − xd + iyd

]

,

where Re is the real part, Z = x + iy and Zh = xh + iyh, as required. Lin
et al (2001) proceed to calculate the equilibrium locations of the current and
the evolution of the system to a nonequilibrium point.

PROBLEM 12.4. Current Sheet below an Erupting Flux Rope.

(i) Find the magnetic field due to a flux rope modelled as a line current
(I) at height h sitting in the corona in the magnetic field of a line dipole at
depth d below the photosphere.

(ii) Suppose the flux rope erupts without reconnection and produces a
current sheet stretching up from the photosphere to height q. Find the
resulting magnetic field.

SOLUTION.
(i) In a similar way to PROBLEM 12.3, we follow Forbes and Isenberg (1991)
Ap. J. 373, 294, and suppose the magnetic field is

(Bx, By) =

(

∂A

∂y
,−∂A

∂x

)

with current sources jz(x, y) such that

∇2A = −µjz(x, y). (5)
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This is to be solved subject to the boundary condition

A(x, 0) =
md

x2 + d2
,

produced by a line dipole of strength m at (0,-d) below the photosphere. The
line current at (0, h), say, corresponds to a current density

jz(x, y) = Iδ(x)δ(y − h).

The method of images gives the following simple solution to (??):

A(x, y) =
µI

2π
Re
[

J loge

(

Z + ih

Z − ih

)

+
2i

Z + i

]

,

where Z = x + iy, I0 = m/(2d), J = I/I0 and distances are normalised
with respect to the length-scale d. The field is produced by a line current at
Z = ih, an image current at Z = −ih and a line dipole at Z = −i.

From this we find

Bx(0, y) =
µI0
2πd

[

J

y + h
− J

y − h
− 2

(y + 1)2

]

,

so that an X-line first appears at the origin when h = 1, J = 1.
(ii) Subsequently, suppose a current sheet stretches from the origin up to

(0, q). First of all, we use a conformal transformation

w =
√

Z2 + q2,

from the Z-plane to the w-plane, where w = u+ iv and the current sheet is
transformed to a line segment stretching from (−q, 0) to (q, 0) on the u-axis.

In the uv-plane, therefore, we have to solve

∇2A = −µj(u, v). (6)

with
j(u, v) = (I0/d

2)δ(u)δ(v −
√

h2 − q2),

subject to the boundary condition

A(u, 0) =
µI0
π

{

1, u2 ≤ q2,

(u2 − q2 + 1)−1, u2 > q2,
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The general solution to (??) can be found by the method of Green’s
functions in the same way to PROBLEM 12.3 as

A(u, v) =
1

c

∫

+∞

−∞

∫

+∞

0

G(u, v; u′, v′)j(u′, v′)du′ dv′+
1

4π

∫

+∞

−∞

A(u′, 0)

[

∂G

∂v′

]

v′=0

du′,

where G(u, v; u′, v′) is the 2D Green’s function, namely,

G(u, v, u′, v′) = loge

[

(u− u′)2 + (v + v′)2

(u− u′)2 + (v − v′)2

]

.

Substitution into this expression gives, after evaluating the integrals,

A(x, y) =
µI0
2π

Re
[

J loge

(

√

Z2 + q2 + i
√

h2 − q2
√

Z2 + q2 − i
√

h2 − q2

)]

+

+

[

2iZ2

π(Z2 + 1)
loge

(

√

Z2 + q2 + q
√

Z2 + q2 − q

)

+
2

Z2 + 1

]

+

+

[

2i

π
√

q2 − 1

√

Z2 + q2

Z2 + 1
loge

(

q +
√

q2 − 1

q −
√

q2 − 1

)]

.

Forbes and Isenberg (1991) proceed to determine q and J as functions
of the reconnected flux and then determine the equilibrium locations of the
flux rope, as well as the energetics and stability.

PROBLEM 12.5. The Hoop Force of a Toroidal Flux Rope.
Fill in the details of the proof for calculating the hoop force of a toroidal flux
rope by:

(a) calculating Aφ for a toroidal current [Eq.(??) in the solution],
(b) approximating this close to the flux rope [Eq.(??)],
(c) showing that the poloidal flux function Ã = Ã0(r) + Ã1(r, θ) with

Ã1(r, θ) = −∆(r)Bθ0(r) cos θ ≪ Ã0 represents a set of circular flux surfaces
that are displaced by ∆,

(d) finding the field on the inner surface of the flux rope [Eq.(??)],
(e) finding the flux function outside the flux rope [Eq.(??)] and
(f) determining the free constants [Eq.(??)] by matching the field at the

surface of the rope.

SOLUTION.
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The discussion in Solar MHD is repeated here, with the proofs for parts
(a)–(f) inserted and indicated. We consider the magnetic field of a simple
isolated toroidal flux rope of major radius R0, minor radius a and net toroidal
current I. It is not in equilibrium but experiences a radially outwards hoop
force of magnitude

Fhoop =
µI2

4πR0

(

loge
8R0

a
− 3

2
+ βp +

li
2

)

(7)

when a≪ R0 (Shafranov, 1966). Here the constants βp and li depend on the
internal structure of the flux tube. They are the mean p and B2

θ over the
volume of the flux rope and are given by

βp =
4µ

a2B2
0

∫ a

0

p rdr, li =
〈Bθ〉2
B2

0

=
1

πa2B2
0

∫

B2

θ dV =
2

a2B2
0

∫ a

0

B2

θ rdr,

(8)
where B0 = Bθ(a) is the (zeroth-order) field at the flux rope surface (r = a)
and local polar coordinates (r, θ) have been taken with respect to a point T
on the major axis of the flux rope.

In order to prove Eq.(??), we consider two different coordinate systems,
with the location of any point in a vertical plane given in terms of either
(R, z) or (r, θ), where R = R0 + r cos θ, z = r sin θ. Suppose the magnetic
field is an axisymmetric magnetostatic equilibrium (independent of φ) with
components that are written in terms of a poloidal flux function (Ã = RAφ)
as

(BR, Bφ, Bz) =
1

R

(

−∂Ã
∂z

, bφ(Ã),
∂Ã

∂R

)

,

which satisfies ∇ ·B = 0 automatically, and for which Ã is determined by the
Grad-Shafranov equation (see Eqs. (3.61) and (3.62) in the book), namely,

∂2Ã

∂R2
− 1

R

∂Ã

∂R
+
∂2Ã

∂z2
= −µR2

dp

dÃ
− d

dÃ
(1
2
b2φ).

In terms of coordinates (r, θ) these become

(Br, Bφ, Bθ) =
1

R0 + r cos θ

(

− ∂Ã

r∂θ
, bφ(Ã),

∂Ã

∂r

)

,
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and
(

1

r

∂

∂r
r
∂Ã

∂r
+

1

r2
∂2Ã

∂θ2

)

− 1

R0 + r cos θ

(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)

Ã

= −µ(R0 + r cos θ)2
dp

dÃ
− d

dÃ

(

b2φ
2

)

. (9)

The proof of Eq.(??) involves two parts, as follows. Just as for a 2D line
current, we evaluate the force on the toroidal flux rope as the product of its
current (I) and the external vertical field (Bv) that exists at the location of
the flux rope. The first part is to find the flux function [Eq.(??) below] of the
field due to a toroidal current alone at small distance r from it. The second
part is to find Bv by calculating the flux function [Eq.(??)] of the field just
outside a toroidal flux rope in equilibrium and decomposing it into the fields
of the toroidal current itself and of the vertical field needed to balance the
hoop force.

Part 1 of Solution: FIELD of TOROIDAL CURRENT
If the torus is treated as a ring of current of radius R0, then the vector

potential [Aφ(R, φ)φ̂] at a point (R, φ) in polar coordinates in the plane of the
ring relative to the ring’s centre may be calculated as follows. In general, the
vector potential (A) is such that B = ∇×A and satisfies Poisson’s equation
∇2A = −µj, which has solution A = [µ/(4π)]

∫

j(r′)/|r−r′|dV ′. For our ring
j dV ′ = IR0 dφ

′, and at any point in its plane the only magnetic component
is Bz(R). Thus, the only component of A is Aφ(R) and it becomes

Aφ =
µI

4π

∫

ds′

S
=
µIR0

2π

∫ π

0

cos φ′ dφ′

(R2 +R2
0 − 2R0R cosφ′)1/2

, (10)

where S = [(R − R0 cosφ
′)2 + R2

0 sin
2 φ′]1/2 is the distance between a points

(R, 0) on the x-axis and (R0 cos φ
′, R0 sinφ

′) on the ring.
Aφ may be rewritten in terms of complete elliptic integrals of the 1st and

2nd kind with k = 2(R/R0)
1/2/(1 +R/R0) as

Aφ =
µI

4π

R0 +R

R
[(2− k2)K(k)− 2E(k)], (11)

where K(k) =
∫ π/2

0
[1 − k2 sin2 x]−1/2dx and E(k) =

∫ π/2

0
[1 − k2 sin2 x]1/2dx.
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PROOF (a) that Eqs.(??) and (??) are equivalent:
Let us work backwards. With the above definition of k, we have

2− k2 =
2(R2

0 +R2)

R2
0 +R2 + 2R0R sin θ

and

1− k2 sin2 x =
R2

0 +R2 + 2R0R sin θ(1− 2k2 sin2 x)

R2
0 +R2 + 2R0R sin θ

Then, with the above definitions of K(k) and E(k), we find

(2− k2)K(k)− 2E(k)

k2
=

1

k2

∫ π/2

0

2− k2

(1− k2 sin2 x)1/2
− 2(1− k2 sin2 x)1/2 dx

=

∫ π/2

0

2 sin2 x− 1

(1− k2 sin2 x)1/2
dx

Thus, Eq.(??) becomes

Aφ =
µI

4π

R0 + R

R
[(2−k2)K(k)−2E(k)] =

µI

4π

R0 +R

R
k2
∫ π/2

0

2 sin2 x− 1

(1− k2 sin2 x)1/2
dx

Now, change the variable of integration from x to α = π/2− x to give

Aφ =
µI

4π

R0 +R

R
k2
∫ π/2

0

1− 2 sin2 α

[1− k2(1− sin2 α)]1/2
dα

or, using the definition of k2 = 4R0R/(R0 +R)2,

Aφ =
µIR0

π

∫ π/2

0

1− 2 sin2 α

[(R0 +R)2 − 4R0R(1− sin2 α)]1/2
dα

or

Aφ =
µIR0

4π

∫ π

0

2(1− 2 sin2 α)

[R2
0 +R2 − 2R0R + 4R0R sin2 α]1/2

dα.

Finally, change the variable from α to φ′ = 2α such that 1 − 2 sin2 α =
cosφ′ to give Eq.(??), namely,

Aφ =
µIR0

2π

∫ π

0

cosφ′

(R2
0 +R2 − 2R0R cosφ′)1/2

dφ′,
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as required.
END OF PROOF (a)

By expanding in powers of r/R0 it can be shown that near the inside of
the flux rope this gives a flux function (Ã = RAφ) of approximately

Ã =
µI

4π

{

2R0

(

loge
8R0

r
− 2

)

− r

(

loge
8R0

r
− 1

)}

. (12)

PROOF (b) that Eq.(??) implies Eq.(??):
Using the relation Ã = RAφ, Eq.(??) may be written

Ã =
µI

4π
R0

(

1 +
R

R0

)

[(2− k2)K(k)− 2E(k)],

Write R = R0 + r, where r ≪ R0 and expand in powers of r/R0 to give

k =
2(1 + r/R0)

1/2

2[1 + r/(2R0)]
= 1− r2

8R2
0

− r3

8R3
0

+ ....,

k2 = 1− r2

4R2
0

− r3

4R3
0

+ ....,

1− k2 =
r2

4R2
0

(

1 +
r

R0

+ ....

)

,

(1− k2)1/2 =
r

2R0

(

1 +
r

2R0

+ ....

)

,

4

(1− k2)1/2
=

8R0

r

(

1− r

2R0

+ ....

)

,

and

loge
4

(1− k2)1/2
= loge

8R0

r
− r

2R0

+ .....

Now, according to the books on special functions by Spanier and Oldham
(1987) page 612 or Gradshteyn and Ryzik (1980) page 905, for r ≪ R0 (i.e.,
when k ≈ 1), the elliptic integrals behave like

K(k) ≈ loge
4

(1− k2)1/2
+

(

loge
4

(1− k2)1/2
− 1

)(

1− k2

4

)

+ ....,
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and

E(k) ≈ 1 +

(

loge
4

(1− k2)1/2
− 1

2

)(

1− k2

2

)

+ ....

and so, using the above expansions for loge[4/(1− k2)1/2] and 1− k2, we find

K(k) ≈ log
8R0

r
− r

2R0

+ ....

and
E(k) ≈ 1 + ....,

where the next terms are of order r2 loge r.
But Eq.(??) is

Aφ =
µI

4π

R0 +R

R
[(2− k2)K(k)− 2E(k)],

which with Ã = RAφ, R = R0 + r and the above expansions therefore
approximates to

Ã =
µI

4π
2R0

(

1− r

2R0

+ ...

)[(

1 +
r2

4R2
0

+ ...

)(

loge
8R0

r
− r

2R0

+ ...

)

− 2 + ...

]

,

or

Ã =
µI

2π
R0

(

loge
8R0

r
− 2

)

+
µI

4π
r

(

− loge
8R0

r
+ 1

)

...,

which is the same as Eq.(??), as required.
END OF PROOF (b)

Solution Part 2: FIELD OUTSIDE a TOROIDAL FLUX ROPE
The field both inside and outside the flux rope satisifies Eq.(??), which

we expand in powers of the inverse aspect ratio (ǫ = a/R0 ≪ 1), assuming
Bφ = Bφ0R0/R[1+O(ǫ

2)] and Bθ ∼ ǫBφ0, where Bφ0 is the potential toroidal
field at major radius R0. If we write Ã = Ã0(r) + Ã1(r, θ), the zeroth and
first order contributions from Eq.(??) are

1

r

d

dr

(

r
dÃ0

dr

)

= −µR2

0

dp

dÃ0

− bφ(Ã0)
dbφ

dÃ0

, (13)

12



1

r

∂

∂r
r
∂Ã1

∂r
+

1

r2
∂2Ã1

∂θ2
− cos θ

R0

dÃ0

dr

= − d

dr

(

µR2

0

dp

dÃ0

+ bφ(Ã0)
dbφ

dÃ0

)

dr

dÃ0

Ã1 − 2µR0r cos θ
dp

dÃ0

. (14)

The next step is to seek a separable solution of Eq.(??) in the form

Ã1(r, θ) = −∆(r)R0Bθ0(r) cos θ, (15)

where Bθ0(r) = (1/R0)dÃ0/dr. The resulting flux surfaces have cross-sections
that are circles whose axes are displaced by a distance ∆ (the Shafranov shift).

PROOF (c) that Flux Surfaces of Eq.(??) have Cross-Sections
that are Displaced Circles:

A simple solution is to note that

Ã = Ã0(r)−∆(r)
dÃ0

dr
cos θ

may be rewritten

Ã = Ã0(r)−∆(r)
∂Ã0

∂R
= Ã0 − δR

∂Ã0

∂R
= Ã0 − δÃ0.

But Ã0 = constant represents flux surfaces with circular cross-sections (r =
constant) and so Ã0 − δA0 = constant with δÃ0 = δR ∂Ã0/∂R represents
circular flux surfaces displaced by a distance δR.

A more detailed solution is to note that the equation of a circle whose
axis is displaced a small distance ∆ is

(r cos θ −∆)2 + r2 sin2 θ = c2

or, if ∆ ≪ r,
r2 − 2∆r cos θ = c2.

If we write r = c + r1 where r1 ≪ c, then after linearising this equation we
find

r1 = ∆cos θ,

so that r = c+∆cos θ is the linearised equation for a circle with axis displaced
by ∆.

13



Now what surfaces does

Ã0(r)−∆(r)
dÃ0

dr
cos θ = constant

represent? Linearise about r = c and substitute

Ã0(c+ r1) ≈ Ã00(c) + r1

(

dÃ00

dr

)

r=c

into the above equation to give

Ã00(c) + r1

(

dÃ00

dr

)

r=c

−∆cos θ

(

dÃ00

dr

)

r=c

= Ã00(c)

or
r1 = ∆cos θ,

as required.
END OF PROOF (c)

Inside the flux rope, Eq.(??) may be solved as follows to give the field at
the inner surface of the flux rope to zeroth plus first order as

Bθ(a) = B0

[

1 +
a

R0

(βp +
1

2
li − 1) cos θ

]

, (16)

where B0 = Bθ0(a) is the zeroth-order Bθ at r = a and βp and li are given by
Eq.??.

PROOF (d) of Eq.(??):
For a solution of the form (??), namely, Ã1(r, θ) = −∆(r)R0Bθ0(r) cos θ,

with Bθ0 = R−1

0 dÃ0/dr, Eq.(??) becomes

1

r

d

dr

(

r
d

dr
(∆Bθ0)

)

+
∆

r2
Bθ0 −

Bθ0

R0

=
d

dr

(

µR2

0

dp

dÃ0

+ bφ(Ã0)
dbφ

dÃ0

)

∆

R0

+ 2µr cos θ
dp0

dÃ0

.

14



Next, subsititute on the right-hand side for µR2
0(dp/dÃ0) + bφ(Ã0)(dbφ/dÃ0)

from Eq.(??) and replace dp/dÃ0 by (dp/dr)(dr/dÃ0) = (dp/dr)1/(R0Bθ0)
to give

1

r

d

dr

(

r
d

dr
(∆Bθ0)

)

+
∆

r2
Bθ0 −

Bθ0

R0

= − d

dr

(

dBθ0

dr
+
Bθ0

r

)

∆+
2µr

R0

dp0
dr

1

Bθ0
.

After multiplying through by rBθ0 and rearranging terms, this becomes

d

dr

(

rB2

θ0

d∆

dr

)

=
r

R0

(

2µr
dp0
dr

− B2

θ0

)

, (17)

as the required differential equation for ∆(r) when p0(r) and Bθ0(r) are
known.

Integrating Eq.(??) gives

d∆

dr
=

2µ

rR0B2
θ0

[
∫ r

0

r2
dp0
dr

− rB2
θ0

2µ

]

dr

or, integrating the first term by parts,

d∆

dr
=

2µ

rR0B2
θ0

[

r2p0 −
∫ r

0

(

2p0 +
B2

θ0

2µ

)

rdr

]

If we assume p0(a) = 0, this may be evaluated at r = a to give

(

d∆

dr

)

a

= − a

R0

(βp +
1

2
li), (18)

where βp and li are given by Eq.(??).
Now

Bθ =
1

R

∂Ã

∂r
=

1

R0 + r cos θ

∂Ã

∂r
,

where, to zeroth plus first order,

Ã(r, θ) = Ã0 + Ã1 = Ã0 −∆(r)R0Bθ0(r) cos θ,
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so, if ∆(a) = 0, the value of Bθ at r = a to zeroth plus first order is

Bθ(a) = Bθ0(a)

[

1−
(

a

R0

+

(

d∆

dr

)

a

)

cos θ

]

.

Then, noting that Bθ0 = R−1

0 dÃ0/dr and substituting (d∆/dr)a from Eq.(??)
into this yields Eq.(??), as required.

END OF PROOF (d)

Outside the flux rope, the field is assumed potential and so the right-hand
sides of Eqs.(??) and (??) vanish. The resulting flux function for r ≪ R0 for
the field external to the flux rope is then to zeroth plus first order

Ã =
µI

4π

{[

2R0

(

loge
8R0

r
− 2

)

+ r

(

loge
8R0

r
− 1

)

cos θ

]

+ r
(c1
r2

+ c2

)

cos θ

}

.

(19)
It may be proved as follows.

PROOF (e) of Eq.(??):
We now solve Eqs.(??) and (??) in the region outside the flux rope where

the field is potential, so that those two equations for Ã0 and Ã1 reduce to

1

r

d

dr

(

r
dÃ0

dr

)

= 0, (20)

1

r

∂

∂r
r
∂Ã1

∂r
+

1

r2
∂2Ã1

∂θ2
− cos θ

R0

dÃ0

dr
= 0. (21)

The general solution of Eq.(??) is

Ã0 = c loge r + k,

but this needs to be the same as the lowest order field of a toroidal current
given by Eq.(??), namely,

Ã0 =
µIR0

2π

(

loge
8R0

r
− 2

)

. (22)

In order to solve Eq.(??), we suppose Ã1 has the form

Ã1 =
µI

2π
F (r) cos θ, (23)
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so that Eq.(??) reduces to

1

r

d

dr

(

r
dF

dr

)

− F

r2
= −1

r
,

This has general solution

F =
c1
r
+
C2r

2
− 1

2
log

r

R0

.

in which we write C2 = c2 − 1, so that the solution (??) becomes

Ã1 =
µI

4π

[

r

(

loge
8R0

r
− 1

)

+
c1
r
+ c2r

]

cos θ. (24)

Writing the solution in this form has the advantage that the first part is
simply the first-order part of the vacuum field outside a toroidal current in
Eq.(??). Finally, summing Eqs.(??) and (??) gives us Eq.(??), as required,
namely,

Ã =
µI

4π

{[

2R0

(

loge
8R0

r
− 2

)

+ r

(

loge
8R0

r
− 1

)

cos θ

]

+ r
(c1
r2

+ c2

)

cos θ

}

.

END OF PROOF (e)

Calculating Br and Bθ from (??) and setting Br(a) = 0 and Bθ(a) on the
outer surface of the flux rope equal to the value (??) on the inner surface
then determines the constants as

c1 = a2(li − 1)/2, c2 = − loge(8R0/a) + 3/2− βp − li/2, (25)

as follows.

PROOF (f) of Eq.(??):
To zeroth plus first order, we have

Bθ =
1

R0 + r cos θ

(

dÃ0

dr
+
∂Ã1

∂r

)

≈ 1

R0

dÃ0

dr
+

1

R0

∂Ã1

∂r
− r

R2
0

dÃ0

dr
cos θ, (26)

where at the edge of the flux rope we know that to zeroth plus first order

Bθ(a) = B0

[

1 +
a

R0

(βp +
1

2
li − 1) cos θ

]

, (27)
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First of all, consider Br = −1/(Rr)∂Ã/∂θ, whose zeroth-order part van-
ishes and whose first-order part is

Br = − 1

R0r

∂Ã1

∂θ
.

Substituting for Ã1 from Eq.(??) gives at first order

Br = − µI

4πR0

{[(

loge
8R0

r
− 1

)

+
(c1
r2

+ c2

)

]

sin θ

}

.

Adopting the boundary condition Br(a) = 0 and so equating the above
expression to zero at r = a gives

loge
8R0

a
− 1 +

c1
a2

+ c2 = 0 (28)

as one relation between the unkown constants c1 and c2.
Next, consider Bθ(a). At zeroth order, substituting the expression for Ã0

from Eq.(??) into Eq.(??) and equating it to the zeroth-order part of Bθ(a)
from Eq.(??) gives

B0 = − µI

2πa
. (29)

At first-order, substituting for Ã0 and Ã1 from Eq.(??) into Eq.(??) gives

1

R0

∂Ã1

∂r
− r

R2
0

dÃ0

dr
cos θ

=
µI

4πR0

[(

loge
8R0

r
− 1

)

− 1− c1
r2

+ c2

]

cos θ +
r

R2
0

µIR0

2πr
cos θ

=
µI

4πR0

cos θ

[

loge
8R0

r
− c1
r2

+ c2

]

.

Equating this at r = a to the first-order part of Eq.(??) and using expression
Eq.(??) for B0 gives

−2(βp +
1

2
li − 1) = loge

8R0

a
− c1
a2

+ c2 (30)

as a second relation between c1 and c2.
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Then the solution of Eq.(??) and Eq.(??) for c1 and c2 is

c1 = a2(li − 1)/2, c2 = − loge(8R0/a) + 3/2− βp − li/2,

namely, Eq.(??), as required.
END OF PROOF (f)

Finally, we note that the term in square brackets in Eq.(??) when evalu-
ated at θ = π is identical with the approximation in Eq.(??) to the field of a
toroidal current when r ≪ R0. At large r, by Eq.(??) the field of this current
vanishes and so we are left from Eq.(??) with Ã ≈ (µI)/(4π)c2r cos θ. This
corresponds to a vertical field at R0 of Bv = (µIc2)/(4πR0), which there-
fore produces an outwards hoop force of Fhoop = IBv, namely, Eq.(??), as
required.

PROBLEM 12.6. Change of Current during Expansion of a Flux
Rope.
Fill out the details of the proof of

I ∼ 1

R0 loge(R0/a)
,

for the behaviour of the current (I) as a function of the major radius (R0)
of a flux ring.

SOLUTION.
Consider a simple isolated toroidal flux rope of major radius R0, minor ra-
dius a and net toroidal current I. If the torus is treated as a ring of current
of radius R0, then the magnetic flux function [Aφ(R, φ)] at a point (R, φ) in
polar coordinates in the plane of the ring relative to the ring’s centre may be
calculated as follows.

In general, the vector potential (A) is such that B = ∇×A and satisfies
Poisson’s equation

∇2A = −µj,
which has solution

A =
µ

4π

∫

j(r′)/|r− r′|dV ′.

For our ring j dV ′ = IR0 dφ
′, the magnetic field and vector potential are

axisymmetric (independent of φ in cylindrical polar coordinates (R, φ, z) rel-
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ative to the centre of the torus) and at any point in its plane the only magnetic
component is Bz(R). Thus, the only component of A there is Aφ(R).

At a more general point (R, φ, z) out of the plane of the ring, we have,
according to Jackson’s Electrodynamics book,

Aφ =
µI

π

R0
√

R2
0 +R2 + z2 + 2RR0

[

(2− k2)K(k)− 2E(k)

k2

]

,

in terms of complete elliptic integrals of the 1st and 2nd kind,

K(k) =

∫ π/2

0

[1− k2 sin2 α]−1/2dα

and

E(k) =

∫ π/2

0

[1− k2 sin2 α]1/2dα,

where

k2 =
4R0R

R2
0 +R2 + z2 + 2R0R

.

In particular, in the plane (θ = π/2) of the ring

Aφ =
µI

4π

R0 +R

R
[(2− k2)K(k)− 2E(k)],

where k = 2(R/R0)
1/2/(1 +R/R0), in agreement with Eq.(12.7) in the book

and Eq.(??) above.
Now, the total magnetic flux inside the ring is given by the value of RAφ

at the inner surface of the ring, but if we neglect the width of the flux rope
and set R = R0 then k = 1 and the elliptic integral K(k) in Aφ becomes
infinite. Instead, we take account of the flux rope width and evaluate RAφ

at the inner surface R = R0 − a of the ring, where R0 is the major radius
and a≪ R0 is the minor radius.

From An Atlas of Functions by Spanier and Olham, 1987 edition, p612,
we find that for k2 near 1, K(k) ≈ loge(4/

√
1− k2) and E(k) ≈ 1. Thus,

when R = R0(1− a/R0) and a≪ R0, we have

k =
2
√

1− a/R0

2− a/R0

≈
(

1− a

2R0

− a2

8R2
0

+ ..

)(

1 +
a

2R0

+
a2

4R2
0

+ ..

)

≈ 1− a2

8R2
0

.
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Thus, K(k) ≈ loge(8R0/a) and E(k) ≈ 1, so that

Aφ ≈ µI

2π

[

loge
R0

a
− 2

]

at a point on the inside of the flux rope. (This agrees with Ex. 5.32 of
Jackson (1998, Classical Electrodynamics, 3rd edition). Note that we have
been working from first principles rather than invoking the expression A ≈ L̄I
in terms of self-inductance (L̄), which is only approximate (Jackson, 1998,
Sec 5.17A) and leads to a slightly different result.)

The flux through the ring is

∫

Bz2πRdR,

where B = ∇×A and A = Aφφ̂ imply that

Bz =
1

R

∂

∂R
(RAφ).

Thus, the flux through the ring becomes

∫

Bz2πRdR = 2π

∫ R0−a

0

∂

∂R
(RAφ)dR = 2π(R0−a)Aφ(R0−a) ≈ 2πR0Aφ(R0−a).

Therefore, the flux inside the ring is ∼ R0I loge(R0/a). The condition
that this be conserved (frozen flux) as the major radius changes during an
eruption thus implies that the current behaves like

I ∼ 1

R0 loge(R0/a)
,

as required.

PROBLEM 12.7. Condition for Torus Instability.
Show that, if the total magnetic flux (F = FI + Fext) enclosed by a toroidal
flux rope is held constant while both FI and Fext vary with R0, then the
condition for torus instability with an external field Bext = B̂R−n

0 becomes
n > 3/2− 1/(2c), where c = loge(8R0/a)− 1.
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SOLUTION.
The global equation of motion of the flux rope (of mass M , say) is

M
d2R0

dt2
=

µI2c

4πR0

− IB̂R−n
0 , (31)

where c = loge(8R0/a)−1 is regarded as constant during the eruption of the
flux rope. The flux enclosed consists of two parts

F = FI + Fext = µR0I(c− 1)− 2π

∫ R0

0

BextR dR, (32)

If F is held constant, then in terms of initial equilibrium current (I∗) and
flux-rope radius (R∗

0), the current I is given as a function of the flux-rope
radius R by

I =
1

R0

{

I∗R∗

0 +K[(R∗

0)
2−n − R2−n

0 ]
}

,

With this expression for I, the equation of motion (??) becomes

d2R̄0

dt̄2
=

1

4(2− n)2R̄3
0

[

4− 2n− (1 + 1/c)(1− R̄2−n
0 )

]

(1−R̄2−n
0 )(3−2n−1/c),

in terms of dimensionless variables R̄0 = R0/R
∗

0 and t̄
2 = 4πt2R∗

0M/[µc(I∗)2].
A linear perturbation from equilibrium (R̄0 = 1) in the form R̄0 = 1+ r0,

say, then implies
d2r0
dt̄2

=

(

2n− 3 +
1

c

)

r

2
,

which gives torus instability if n > 3/2− 1/(2c), as required.

PROBLEM 12.8. Current (I) of a Toroidal Flux Rope.
Show that Ia = constant for a linear force-free toroidal flux rope of current
I and radius a, whose axial flux is constant and whose axial field vanishes
on its surface.

SOLUTION.
Following Section 12.2.3, we assume the internal field of the flux rope is
a linear force-free (i.e., Lundquist) field of the form

Br = 0, Bθ =
B0J1(αr)

J1(αa)
, Bφ =

B0J0(αr)

J1(αa)
,
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where J0 and J1 are Bessel functions and the minor radius r = a (where
Bθ = B0) is located at the first zero of J0, namely, αa ≈ 2.405, so that the
axial field vanishes there (i.e., Bφ(αa) = 0).

Then the axial magnetic flux in the flux rope remains constant as its
current and minor radius change, so that

∫

2π

0

∫ a

0

Bφrdrdθ = constant.

But the force-free condition implies µjφ = αBφ and so

µ

α

∫

2π

0

∫ a

0

jφrdrdθ = constant,

or, in other words,
µI

α
= constant,

where I is the total axial current.
However, αa = constant since this determines the edge of the flux rope,

and so, eliminating a, the above equation implies

Ia = constant,

as required.

PROBLEM 12.9. Titov-Démoulin Model.
Show that, in the Titov-Démoulin model for the equilibrium of an active-
region flux rope of current I, depth d, major radius R0 and minor radius a,
I reaches a maximum at about R0 ≈ L/

√
2 and torus instability sets in at

about R0 ≈
√
2L when d≪ R0 and a≪ R0.

SOLUTION.
The proof follows the paper by Titov and Démoulin (1999). Equilibrium
in their model is of the form

FI + Fq = 0, (33)

where

FI =
µI2

4πR0

loge

(

8R0

a
− 5

4

)
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is the hoop force and

Fq = − 2qLI

(R2
0 + L2)3/2

is the Lorentz force of the flux rope current I acting on the magnetic field at
the flux rope created by the two magnetic charges ±q.

This force balance determines the current as

I =
8πqLR0(R

2
0 + L2)−3/2

µC
, (34)

where

C = loge

(

8R0

a
− 5

4

)

.

Now, if we neglect the slowly varying logarithmic dependence in Eq.(??)
and regard C as constant, independent of R0, then the derivative with respect
to R0 of Eq.?? is

dI

dR0

=
8πqL

µC

L2 − 2R2
0

(R2
0 + L2)5/2

,

which implies that I reaches its maximum value at L =
√
2R0.

In order to determine the stability, let us calculate the change in forces
produced by an increase δR0 in major radius, since if the net force is outward
the equilibrium will be unstable. Thus, from the above definitions

δFq

FI
+
δFI

FI
=
δI

I
+
δR0

R0

(

2R2
0 − L2

R2
0 + L2

)

+
1

loge(8R0/a− 5/4)

(

δR0

R0

− δa

a

)

,

where the variations in minor radius (a) are given by conservation of toroidal
flux [πBφa

2 with Bφ = µI0/(2πR0)] as

δa

a
=
δR0

2R0

,

and from the condition that the number of turns in the coronal part of the
flux rope remain constant, namely, Ncor = (Nt/π) arccos(d/R0) = constant,
where Nt = IR2

0/(I0a
2) and toroidal flux conservation implies a2/R0 =

constant. The condition Ncor = constant may be written

δI

I
= −δR0

R0

(

1 +
d

(R2
0 − d2)1/2 arccos(d/R0)

)

.
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Combining these expressions gives

δFq + δFI

FI
=
δR0

R0

[

R2
0 − 2L2

R2
0 + L2

− d(R2
0 − d2)−1/2

arccos(d/R0)
+

1/2

loge(8R0/a)− 5/4

]

.

If d ≪ R0 and a ≪ R0, the last two terms inside the square brackets are
much smaller than unity and so the condition for instability, namely, that
the force variation be positive, becomes R0 >

√
2L, as required.
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