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chapter 1
1.1 Given the parameter values a =10, b=0.2, m =2, s =0.1
(a) the general solutions: p,, = 40 —20(0.7)" for pyp = 20; p,, = 40+ 60(0.7)™ for
(b) the orbits are

n Dn Dn
0 20 100
1 26 82
2 30.2 69.4
4 ~ 35.2 ~ 54.5

10 ~ 39.4 ~41.7
100 ~ 40.0 ~ 40.0
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1.2 Let b = s = 0.7 so that § = —0.4 and the dynamics are convergence with
improper oscillations towards the equilibrium at 12/1.4.
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1.5
(b) Let & = z1, then

21 = 22 % 0 1
22 = Z3 22 = 0 0
sy = 20 — 0.4i = 221 — 0.423 Z3 20

1.6 Let 21 =, 20 =2, 23 =y, 24 = y. Then
Z1 = 29
2'2256.'21—21
2'3224

Zg=9y+y—1l=24+23—-1

21 0 1 00 21 0
22 . -1 0 0 O Z9 + 1
230 | 0 0 0 1 23 0
24 0 0 1 1 24 -1
1.7
(a) 1
Zn+(1) = Tnt1 = 27(3)
Znit) = oy = az) — b2V +1
i Y (0 1) (&)Y, (0
Zn+(12) - —b a ZT(LQ) 1 .
(b)
Zngs) = 20
n+l — ~n
2,0 = 0.22() — 42?44
22 0 1 0\ /2
P =10 0 1) |22+
L ® 02 -4 0/ \ ¥
n+1
1.8
()
ar _ o
dt
dx
—1
— =t+c



from which we derive z(t) = —1/(t+c¢) and xo = x(0) = —1/¢, or ¢ = —1/x0,
giving the exact solution

At t = 1/xg, 2(t) is undefined.
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&= px(l —x) (1)
d
— = pa(l - 2) (2)
d
/ A / dt 3)
px(l — )
1 x
F(w):—ln(—>:t+c 4
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To check the correctness, perform
e

F/(.T) i T
[ g p(l — )

To write the solution we first exponentiate both sides of (4)

xT

— epltte) — gueout
u(l — )

The value of the integration constant can be fixed by using the initial condition
at time ¢t = 0. Letting z(0) = xo we have

Lo

— =t
(1 — o)



Then, for ¢ # 0 we have

t
x _ 20wt oand g (1 — x)zoet
p(l—a)  p(l— o) 1— o
Then . .
i %
|1+ 10¢ _ 2o .

1-— i) 1-— i)

and the exact solution is
xoett

a(t) =

1 — 29 + zoert’

For ¢ = 0, z(t) = 0 Vt, for zo = 1, z(t) = 1 V¢, and for z¢ € (0,1), z(¢) € (0,1)
for —oo <t < o0.
lim z(t) =1 lim z(t) =0

t—+oo t——o0

which implies that there are two equilibria 0 and 1, 0 is unstable, 1 is stable.

chapter 2
2.1 Let Fi(n,x) and Fy(n,z) be two functions such that G[Fy(n,z)] = Fi(n+1,z),
G[Fa(n,x)] = Fo(n+ 1,x). Then, for S = [aF}(n,x) + BFa(n, x)],
G[S(n,z)]=S(n+1,z) iff
G[OéFl(TL,JZ‘) + 5F2(n7 .73)] = OéFl(’fl + 1,33‘) + 5F2(n + 1733) or,
GlaFi(n,z) + BFy(n,z)] = aG[Fi(n,z)] + BG[Fa(n, x)]

and the last equation is true for any «, 3 € R and for any z € R™ if, and only
if, G is linear.

2.3 This is the case of a complex conjugate pair of eigenvalues (a; + i3}, a;; — i3;)
with corresponding pair of eigenvectors (a; + ib;,a; — ib;). Consider the real
solution x;(¢) which is half of the sum of the conjugate solutions

.Tj (t) = eo‘jt[aj COS(ﬁjt) — bj sin(ﬁjt)].
If z;(t) is a solution then it must be that
i;(t) = e [—a; B sin(B;t) — b;B; cos(B;t)]+

+ e [aja; cos(B;t) — ayb; sin(B;t)] (1)
= Aeo‘jt[aj COS(ﬁjt) — bj sin(ﬁjt)].



If a; 4 ib; is an eigenvector
A(a; +1ibj) = (a; +1i6)(a; +ib;) = (aja; — B;b;) +i(Ba; + a;b;)

and
Aaj = ajaj — b Abj = Bja; + a;b;. ®)

Substituting (2) into (1) we verify the result. A similar verification can be made
for = 41 (t)

2.4 For real eigenvalues and eigenvectors, given the definitions of e!4, X (t), X(0),
and given that Au; = \;u; and

\2¢2 itk
A’Lt p— . ’L . o o l . o o
e —(I+)\,t—|— o] + + A + ),
we have that
2
eAX(0) = (ur, ... ,un) +tA(ur, ... u,) + §A2(u1,... , Un )+
ik
++EA]€(U1, ,un)+"':
! p
= (U, ..y Up) FE( AU, ..., Apup) + E(A%ul,... ,)\iun)—l—
"
_|_..._|_y()\]ful7“. ,)\Zun)+...:
= (e)‘ltul, . ,e’\"tun) =

= X(b).

2.6 Because k; is a real, distinct eigenvalue of B and v; is the corresponding real
eigenvector, we have Bv; = k;v;. It is easy to verify that z;(n) = k}'v; is a
solution to z,+1 = Bz, as follows

zi(n+1) = kv = kw0, = KPBu; = Bai(n).

2.7 The system is homogeneous with fixed point at (z,7) = (0,0).
(a) From the characteristic equation

(2 47)- ()

we have A2 — X — 6 = (A — 3)(A +2) = 0, the eigenvalues are \; = 3,
A2 = —2 and the fixed point (0,0) is a saddle-point. To find the associated
eigenvectors, we substitute into (A — A\l )u =0

(3 5)0)-6) () C)-6)



and, choosing ugl) = ugl) = 1, the eigenvectors are

() =() (o) =)
u? 1 ul? ~3/2
(b) The stationaries are defined by & = 0, that is, y = —z/2 and y = 0, that is,

r =0.
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2.8 For the homogeneous system we have

-1 1 .
A:<_1 _3> A=dp =\ =2

and the origin is a stable node. Substituting the single eigenvalue we have

(3 C)-G) G- (5)

Using the procedure of Section 2.2 to get a second vector v such that (A—A\I)v =

1 1\ /oY /1 AN S|
s )e) =) L) =)
Then writing the solution and using the given initial conditions we have

z(t) = (c1 + co)e 2" + tege™

y(t) = —cre %" — tege ™



and z(0) = ¢1 + c2, y(0) = —c1 = 2 so that co = 3. The solution is then
x(t) = e 2 + 3te
y(t) = 272 — 3te™ 2.

2.9
(b) We have the fixed point at & = ¢ = 0 giving (Z,y) = (—4,4). The eigenvalues
A1, A2 = —1/2,1/2 are one greater, one smaller than 0, so that (—4,4) is a
saddle point.

2.10
(b) In equilibrium
-1 1

T=—7—2 — -2

giving the fixed point at (Z,y) = (—4/3, —4). The eigenvalues A1, A2 are again
—1/2,1/2 and both smaller than one in absolute value, so that (—4/3,4) is
a stable node. The fixed point differs from the continuous-time version in
being stable (as opposed to the unstable saddle point) and being in a slightly
different position in the plane. Also, due to the negative eigenvalues, there
are improper oscillations.

2.11 Because (k, k) = o +i6 is a complex eigenvalue pair with a corresponding pair
of eigenvectors (v,7) = p £ iq of the matrix B, we can write

B(p +iq) = (o +i0)(p + ig). (1)
For k"v = (0 +10)™(p + iq) to be a solution of (2.5) it must be
(o +i0)" " (p+iq) = B(o +1i0)"(p + iq) = (0 +i0)"B(p + iq). (2)

We write
(c+1i0)"*" (0 +1i0)" (o +if)
(o +i0)» (o +i6)"
and let (0 4+ i0)” = & + 0. In the next step we use the definition of the
quotient of two complex numbers 27, 2o as the complex number (z122)/(2222)
(z; the complex conjugate of z;). Let

(o +1i0)" (0 4 i0) = (60 — 00) +i(fo + 05) = =
and (o +i0)™ = G +i0 = z,. Then

o+t o |60 —00)+i(Bo+ 95)] (5 — if)

(0 +i0)" 2 52 + 62 (3)
~2 52 1] ~2 52
:a(a + )—I—z~(a + ):(a+i9).
G2 + 62




Then, substituting (1) into (2) and using (3) we have the result.

2.12 (Third matrix only.)

(a)

2.13

02 0 0
0 05 O
0 0 1.5

The eigenvalues of B are 0.2, 0.5 and 1.5 and the dynamics are described by
a saddle-node. Orbits initiating in the plane generated by the eigenvectors
associated with the eigenvalues 0.2 and 0.5 converge towards the equilib-
rium at the origin. All other initial conditions lead to exponential expansion
towards +oo.

1 0 0
=02 vi=10 pe =05 wvo=1|1 pu3 =15 wvs=1|0
0 0 1

The procedure used in section 2.1 to transform an affine system into a linear
system also transforms a nonhomogeneous into a homogeneous system. Let

Wn, o xn+k1 _ 4 4

()= (i) me o= (3 )
Wn xn+k1 Ln kl
()=o) =2 () -2 ()

Then, we have
Wn+1 Tn+1 +k1 Tn -8 kl)
= :B
<2n+1) <yn+1+k2) <yn>+<4)+<k2
. W, kl —8 kl
(%) -e ()« () (&)

and the system in the new variables (w,,, z,,) is homogeneous if

()05 (4)-(3)

The transformed system has the unique equilibrium at the origin, whereas
the original system has the equilibrium at (z,y) = (1,5/4).

p1,2 ~ 4.53,—3.53 The equilibrium is an unstable node as both eigenvalues
are greater than one in absolute value.
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()

(1 (1
191 013) 7\ 188

(e) We have (approximately)
wy, = ¢1(4.53)"(1) 4+ c2(—3.53)" (1)
Zn = ¢1(4.53)™"(0.13) + c2(—3.53)"(—1.88)
and using the initial conditions
wo=c1 +co =—1
20 = 0.13¢; — 1.88¢co =1
to calculate the arbitrary constants, we can write the solution as
wy, = —0.44(4.53)" — 0.56(—3.53)™
zn = —0.06(4.53)" + 1.05(—3.53)".

(f)
Wn, Zn
n=~0 -1 1
n=1 —0.02 —3.98
n=2 —16.01 11.85
n=3 —16.27 —51.76

n=10 —1.77x10% 9.71 x 10*
n=100 —1.8x 10% 2.4 x 10%¢

The orbit approaches asymptotically to the eigenvector v; = (1,0.13)/ asso-
ciated with the largest eigenvalue in absolute value puq ~ 4.53. (The reader
can verify that, after 100 iterations, we have z199/wi00 = 0.13).

chapter 3
3.2 .
X

(b) 2




3.3

3.4

3.5

(a)

(a)

11

X1

The fixed points are found by setting © = y = 0 giving for the second
equation z2 = y?. After substituting this relation into the first equation
we have the z coordinate of the fixed point as the solution to the quadratic

equation 22 — 3z + 2 = 0. The fixed points are (2,2);(2,—2);(1,1); (1, —1).

The Jacobian matrix is
-3 2
2z —2y

giving the following respective eigenvalues (correct to two decimal places):
0.53, —7.53; 0.5 £¢3.87; —0.44, —4.56;—2,1. The local stability properties
of the fixed points are, respectively: unstable (the linearised system is a
saddle point); unstable (the linearised system is an unstable focus); stable
(the linearised system is a stable node); unstable (the linearised system is a
saddle point).

There is a fixed point at (0,0), with eigenvalues «, —y which is unstable
(the linearised system is a saddle point). There is another fixed point at
(v/6,a/3). The Jacobian calculated at the equilibrium gives the imagi-
nary eigenvalue pair +i,/ya which means that it is not hyperbolic and the
Hartman-Grobman theorem does not apply. (The fixed point could behave
locally like a stable or unstable focus or even a centre, see exercise 3.7(a)
below.)

For the transformed system

T=y

y=x" -z
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3.6

3.7

3.10

()

(e)

there are three fixed points (0, 0), (1,0), (—1,0). The Jacobian matrix at the
origin has eigenvalues +i with dim W¢ = 2 (the Hartman-Grobman Theorem
is not applicable). The Jacobian matrix at fixed points (1,0), (—1,0) has
eigenvalues ++/2, giving dim W* = dim W* = 1 (W*, W* and W* denoting,
respectively, stable, unstable and centre manifolds).

The fixed points are (0,9,0) and (0,9, 1) (excluding complex values for vari-
ables). The Jacobian matrix of the first is triagular and the eigenvalues are
1/6,0,—9 with dim W* = 2, dim W* = 1 (the linearised system is a sad-
dle). The Jacobian matrix of the second is also triangular with eigenvalues
2,1/6,—9 with dim W* = 1, dim W* = 2 (the linearised system is a saddle).
Both equilibria are therefore unstable.

. d
y_a My _ ylotbe)
r 4 dr  z(a-—By)
and, after cross-multiplying, we can integrate both sides of the equation to

obtain
alny — pfy=—ylnzx+déx+c

where c is a constant of integration. This equation defines curves in the state
space (z,y) which are solutions of system (a).
Again, variables can be separated giving

whence
Alnz=y+ny—1)+c

where c is a constant of integration. This equation defines curves in the state
space (z,y) which are solutions of system (c).

We have V(z,y) = 2(—y — z°) + y(z — y*) = —2* — y* which is negative for
all real nonzero x and y, while V(0,0) = 0 and V(z,y) > 0 Vz,y # 0, and
the equilibrium is asymptotically stable in R2.

The transformed system is
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V(z,y) =y*(y?/4—1) < 0 for |y| < 2, and the equilibrium is asymptotically
stable for initial conditions such that 0 < V(z,y) < 2 (that is, inside a circle
around the origin with radius less than 2).

3.11
(a) Our apologies, the first equation is incorrectly given. The correct system is

3

T=—-x"—y
y = 32°
Try the function
1 3
V(z,y) = §¢2 + Zx4

and follow the answer to exercise 3.12.
(b) V(z,y) = £2? + 142, The origin is globally asymptotically stable for k > 0.
(c) V(z,y) = ja* + 3%
(d) V(z,y) = 3(z* +y?). The origin is globally asymptotically stable for k < 0.

3.12 The unique fixed point for the system is at the origin. To prove its stability
we apply the rule of thumb described in Section 3.3. Differentiating the first
equation with respect to time and using the second we have

i+ 32°% +2° = 0.
Multiplying by 2 gives
i3 + 32°2* 4 da2° =0
or
%(%xg + /Om 35ds) = —3z23%.
Considering that [ s°ds = (1/6)5, set

1, 14

Vizy) = (58 + 5°)

and _
V(z,y) = —32%i% <0.

V(z,y) is positive definite for R2\ {0}; V(0,0) = 0; V(z,y) <0 for (z,y) € R?.
From the fact that V(z,y) < 0 it follows that, for any neighbourhood N of
(0,0), the subsets of the state space (x,y)

Vi(z,y) = {(z,y) | V(z,y) < k}
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are invariant. On the other hand, the set

E = {(z,y) | V(z,y) = 0}

includes the two curves (x = 0) and (y = —z*), and the only invariant subset
of E is the fixed point (z = y = 0). Therefore, the La Salle Invariance Principle
can be applied and the fixed point is not only stable but asymptotically so.

3.13 For equation (3.18)

Moreover

For equation (3.19) we have

" [Df(2)|"(2)Bx = % (f(2)"Bz) = % (f(sz)" Bz).
Also
[f(sz)T Bz]} = f(z)T Bz — f(0)' Bz = f(x)" Bz.
chapter 4

4.1 The w-limit set of the points C, D, E are, respectively, the point A (a stable
focus), the origin (a saddle), the point B (another stable focus).

4.2
(a)
()

(xo > 0) = 400, w(zg < 0) = —00, w(zg =0) =0; a(z) = 0.
(g > 3) = 400, w(zg < 3) =1, w(xg = 3) = 3; a(zg > 1) = 3, a(zg =
1)=1, a(zo < 1) = —o0.

w
w

4.3 Figure 4.3 representing the phase portrait of system (4.1)-(4.2) is incorrect.
Please check the errata.

4.4 Denoting by ¢ the flow generated by each of the vector fields, we have:
(a) w(0,0) = (0,0); w(r,H) is the unit circle for (r,8) # (0,0). The positive limit
set of the flow, L*(¢), (here coinciding with the nonwandering set Q(¢)) is
the union of the origin and the unit circle.



4.5
(a)

4.6
(a)

15

w(0,0) = (0,0),w(1/2,0) = (0,0),w(1,0) = unit circle, w(3/2,0) = w(2,0) =
w(3,0) circle with radius 2.

From the second equation we have

1
t+c

y(t) =

with ¢ < 0 if y(0) > 0. Hence y(t) € (0,00) for t € (—o0, —c). Notice that
the solution is not defined for all ¢t € R, cf. exercise 1.8(c).

The eigenvalues of the Jacobian matrix for the given system are 1 +¢. Then
recalling equation 2.16, the solution starting at point (z,y)= (1,0) is

x(t)

y(t) = e 'sint

e lcost

or in polar coordinates, putting 6 =t

Then the curve f() = e ? represents a solution from (x,y)= (1,0) to (z,y)=
(e7?7,0). Considering that along an orbit dr/df = —r, all orbits starting
from points on the segment (x € [e72™,1);y = 0) point inside the closed set.
Finally, no orbit can leave the closed set because orbits cannot intersect in
the state space.
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4.7

(a)

The invariant set is the annulus C{(z,y) : 3 < r?> < 1} where r is the polar
coordinate r? = 22 4 y2. We have

d r? ,_dm2+y2
dt 2 Cdt 2
=zy+y(—z) +y*(1 — 2° — 2°).

=z + Yy

Then ) ) )
1—x°—2
R Gk it B ST RSP
Va2 +y?
At r? = % we have y? :%—xg and 1 — z? — 2y? = 22 > 0. That is, from a

circle with radius r = % the radius increases. On the other hand we have
for 2 =192 =1—2% and 1 — 22 — 2y? = 22 — 1 < 0 because x? < 1. That
is, from the unit circle, the radius decreases or remains the same. Therefore,
the annulus is invariant. Moreover there is only one fixed point, at the origin,
and none in C. Then the conditions of theorem 4.2 are satisfied and there is
at least one periodic solution in C.

The exercise as it stands is not correct. The origin is an unstable fixed point
and therefore we can define a circle C'y around the origin, and sufficiently
near it, such that all orbits starting from points on C'y move outwards. Also,
choosing the Lyapunov function V'(z) = 1272 we can show that V(z) < 0 for
sufficiently large values of V' (that is, for points whose Euclidean difference
from the origin is sufficiently large). This measns that it is possible to define a
second circle around the origin, C5, such that all orbits starting on Cy move
inwards. However, without some additional restrictions on the matrix A,
we cannot exclude the existence of fixed points inside the annulus between

Cy and Cy. (The reader can verify this statement using the matrix A =
<(1) ;)) Thus, the conditions of the Poincaré-Bendixson theorem are not

necessarily satisfied. What we need to require is that the two eigenvalues of
A are complex conjugate with positive real part. In this case, the only fixed
point is the origin. To see this, consider that, putting z = 0, we have

(A=r*I)z=0

and this equation has a nonzero solution for z if, and only if, r? is an eigen-
value of A, which cannot be true under our assumptions.

4.8 Take any two periodic points x; and z;, 0 <@ < j < k. We want to show that
the matrices DG*(z;) and DG*(x;) have the same eigenvalues. Consider first
that, for any k-periodic point z, it must be G*(G'(z)) = G'(G*(z)), that is,
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the two composite maps G* o G! and G' o G* are the same for any integer I.
Then G*(G77%(x;)) = GI~4(G*(x;)). Taking derivatives with respect to = and
considering that G/ ~%(x;) = z; and G*(x;) = z;, we have

Thus the matrices DG*(x;) and DG*(z;) are similar and have the same eigen-
values.

4.9
(a) The fixed point of the map G(z,) = 1 — x2 are solutions to

2 +x—1=0 (4)

that is, 7, = %\/5, T

To = %\/5 The eigenvalue is simply dG/dx,, = —2x,,
giving Kk = 1 F /5 at &1, T, respectively, and both equilibria are unstable.
The values z{j, 7 of the period-2 cycle are found by determining the fixed

points of G?(z,) = 2x2 — x} as solutions to

zt =22 4+ =0 (44)

Since Z; and Z, are also fixed points of G? we can determine the remaining
2 fixed points by dividing (éi) by (i)

giving fixed points of G? at 0 and 1 and a (local) period-2 cycle for G with
xy = 0, 7 = 1. The stability of the periodic points of G is the same as that
of the fixed points of G?, for which we have dG?/dx, = 4z,, — 4x3 = 0 at
either fixed point and the periodic cycle is (locally) stable.

4.10 Take the first oscillator, in x1,x9, with the variable angular rotation 6, (¢) and
the variable radius r(¢). Let:

r1 = 71 COS 91

To = 71 8in 04
and, taking time derivatives, we have:

T1 = —rysinf160; + cos b1 = —wyrysind,

./,t'Q = T1 COS 9101 + sin 017"1 = W1T1 COS 91
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To solve for 6; and 71, apply Cramer’s method to the above. Form the determi-
nant of the coefficient matrix in which the first column is replaced by the RHS
and divide that by the determinant of the coefficient matrix.

—w1Tr1 sin 91 COS 01

. wiricosf; sin6q
01 - - —
—rysinfy; cos6q
rycosf;  sinfq

—w1Tr1 SiIl2 91 — w1 COS2 01 —w1T
= ) 5 = = Wl
—ry sin“ 67 — ry cos? 04 —T1

Repeating Cramer’s method to solve for ry:

—rysinf; —wirysind,

) 71 COS 01 w11 cos By

’r'l pu— pr—
—r

—wlr% cosfq sin @y + wlr% cos 01 sin 6,

-7

we find that the radius is constant, as was to be expected since the damping
coefficient is zero.

4.12
i. The trace of the Jacobian matrix
oz N oy n 0z
or Oy 0z

is equal to (w0 — 1 — b) < 0 and constant (it is not dependent on the
state of the system). Therefore, for any three-dimensional volume V in R3,
dV (t)/dt < 0. (Cf. appendix to chapter 4, pp. 128-129, especially equation
(4.17).)

ii. See chapter 6, p. 186.

chapter 5
5.1 Hint: the result depends on the continuity of the functions f and g and on the
fact that the eigenvalues of a matrix are continuous functions of its elements.

5.2 If f(z;u) = zF(x; u) then

0%f (@ pe) _ OF (s )
oxou ou

£0.
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Given the last relation, the implicit function theorem guarantees the existence
of a function p(x) defined sufficiently near Z, such that F(z; pu(x)) = 0 implies
& = 0. In order to ensure that the curve of fixed points p(z) does not coincide
with = 0, we need to prove that

du(z
0< ‘ Hz) ‘ < 00.

dx
This is guaranteed if conditions (7i) and (#i¢) hold, since

du(z)  OF(T3pc)/0x P f(%; pe) /O

da OF (Z;pc) /O O2f (% puc) [0y’
5.3
(a)
% - 2 4
— 1.5 \L
\ -]
1‘\ x 0.5 _%—
'b!.=]_l|""-'| T o T
. : 0.2 05 - x/]\ oz
f= 1 "
u=-174 15 \L
1 4 2 |
(c)
v -
_> 9 %
05 |
T T n T b 1
1 s r\ﬂ_ﬁ\1 o
A " ~ H
15 | e -
% 2 4 % #_:— ~
25 |
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5.4
(a) The fixed points are Z1,5 = £2,/; which are real for p > 0, Z; stable, Z,
unstable. The eigenvalue becomes 0 at x = 0, that is for u = 0, the fixed
points coincide and are nonhyperbolic. For this equation we have

() 10 _
2 .
(i) IO _ 220
of(0;0)
(431) o 1#0.

and the conditions for a discontinuous fold bifurcation at (Z; u.) = (0;0) are
satisfied.

(c) The real fixed points are 19 = %u, for p > 0, with Z; stable, Zo unstable.
For p = 0, the only fixed point is £ = 0 but %(O; 0) is not defined.

5.6

5.7 There is a unique equilibrium at the origin. The Jacobian matrix calculated at
that fixed point has eigenvalues

pEyp?—4
Mg =B V2 0

2

which are complex for |p| < 2. Moreover, at u = 0 the real part is null and the
eigenvalues are imaginary, that is the fixed point becomes nonhyperbolic and
for p > p. the real part of the eigenvalues is positive. There are, of course,
no other eigenvalues. We have dRe()\)/du = 1/2 # 0 and there exists a Hopf
bifurcation at (Z,y; pu.) = (0,0;0). Near the bifurcation value of p there is a
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family of periodic solutions. For this system we can easily find a Lyapunov
function to demonstrate the stability of the emerging periodic solutions. Let

Vizy) = 56 + )

thus satisfying the first two conditions of such a function. There remains to
study the time derivative of the Lyapunov function,

V(x,y) = ad + yy = k2*(2® + %) + uy*.
At the bifurcation value p = 0 we have
V(z,y) = ka*(2* + y?) < 0if k < 0.

Then for k£ < 0 and p. = 0 the origin (a cycle of radius 0, as it were) is stable
and so are the limit cycles that emerge after the bifurcation, and the Hopf
bifurcation is supercritical. If £ > 0 the bifurcation is subcritical, the limit
cycles are unstable and are not observable, but serve as stability thresholds.

(c) The fixed points are Z1 5 = +,/f. At u = 0 they coincide and are nonhyper-
bolic with an eigenvalue of 1. For 0 < p < 1 the fixed points on the branch
Z1 are real and stable, for p > 1 they are unstable, at ; = 1 the eigenvalue
is -1 and Z; is nonhyperbolic. The fixed points on the branch zs are real
and unstable for © > 0. These considerations suggest a fold bifurcation at
(0;0) and a flip bifurcation at (1;1). The conditions for a fold bifurcation at

(Z; pe) = (05 0)

. 0G(0;0)
il Sk e/ |

(4) B,

g 92G(0;0)
(ZZ) a—x% = -2 7é 0
(i) %};50) — 140
are satisfied. The conditions for a flip bifurcation at (Z;u.) = (1;1) are
satisfiec:

: 0G(1;1)

/ U — _1
(i) “on.

g 9?G*(151) 9*G?(1;1)
(ZZ/) W =0 and W =—12 7é 0

2(q. 2012(1.

(474") M =0 and L(l’l) =2+#0.

ou oudxy,
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That is, the fixed point in nonhyperbolic with the eigenvalue of the linearised
system at -1 and the conditions for a pitchfork bifurcation of G? are satisfied.
For values of © > 1 the fixed points Z; are unstable, a period two cycle
appears (and is stable) so that the pitchfork of G? is supercritical.

1.9 -
1 -
0.3 4

nl
T T T T

-1 -0.5 05 ELL 0.5 it

e

A e

-1.5 4

(d) The fixed points are Z; = 0, To3 = +1/1 — p. The value of the first is
independent of yu, is stable for —1 < p < 1, becomes nonhyperbolic at =1
and at p = —1, is unstable for 4 > 1 and @ < —1. The other two equilibria
are real and unstable for ¢ < 1, nonhyperbolic for © = 1, complex for
i > 1. These considerations suggest that a pitchfork bifurcation occurs at
(Z; pe) = (0;1) and a flip bifurcation occurs at (Z; ) = (0; —1).

2 4
- 1.5 ]
—_ —4 a
0.5 | e
T 0 : j‘ |
1.5’*’{1 -0.5-0.5 4 0.5 -~ 1
L
A f
e =T 45
-2
As regards the pitchfork bifurcation, the conditions
. 9G(0;1)
)
(4) D,
g 0?G(0;1) 93G(0;1)
(id') Gz =0 ad 55— =670
0G(0;1) 092G (0;1)

o =" and . =1+#£0.
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are satisfied. The fixed points Zg 3 exist for values of p below the bifurcation
value and the bifurcation is subcritical. G? is too long to calculate but numerical
simulations confirm the flip bifurcation occurs at (0; —1)

5.9

—_

.
— a2z
2
1.5

5.11 Apart from the uninteresting trivial equilibrium E; = (0,0), which is an unsta-

ble saddle point, there is a second equilibrium (c,[) at

= (57 (5H™)

which is in the first quadrant under the assumptions. The Jacobian matrix
calculated at the non—trivial fixed point is

0 b—1
DG |E2:<_b Mbb )

and the stability of this equilibrium is studied through the stability inequalities:

(i) 1+b+(b—1)u>0
(i4) 1—b+(b—1u>0
(i4i) 1—(b—1)u> 0.

Condition (i) is always satisfied eliminating the possibility of a flip bifurcation.
Condition (ii) is also satisfied, under the hypotheses, and there will not be a fold
bifurcation. Condition (iii) may or may not be satisfied, so that stability of fixed
point Fy depends on what specific values the parameters take on. The stability
threshold, 1 — (b — 1) = 0, is drawn in the parameter space (b, 1) represented
below. A Neimark bifurcation requires that the modulus of a pair of complex
eigenvalues increases through 1. The flutter condition is the frontier between
real and complex eigenvalues, which for E, is at —4u + /(b — 1) = 0, the
second curve in the parameter space.
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A :
stahility
8 threshold
g
4 |
flutter
2 boudary
I:I T T 1
0 1 2 3 b

If b and p are in the area bounded by b = 1, x = 1 and the flutter boundary,
eigenvalues are real and less than 1 in absolute value (transient motion is mono-
tonic towards the fixed point). In the parameter subspace between the flutter
boundary and the stability threshold eigenvalues are complex with modulus less
than 1 (transient motion is damped oscillations towards the fixed point). Nonhy-
perbolic fixed points are those on the curve representing the stability threshold.
Then increasing either parameter, while holding the other constant, leads to first
crossing the flutter condition and then the stability condition. There are no other
eigenvalues and the first condition for a Neimark bifurcation is satisfied. Invariant
circles, found for parameter values just to the right of the stability frontier, may be
attracting or not, and the dynamics may be periodic or quasi—periodic. Numerical
simulations suggest that, in this case the invariant circle is attracting and there
are both types of cyclic behavior, depending on parameter values.

chapter 6
6.2
DI o S
2 A S 2 T
1 “+ 00
1 1

Writing R as a geometric series, we find that R = 1, whence the result.

6.4
(a) The distance between s and 5 will be
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where the infinite sum

L S S Y 12+ 13+ !
2 22 23 20 \2 2 1

Then this disﬁance is the maximum distance between the two bi-infinte se-
quences and d = 3. B )
(c) The distances are d(s,$) = 1/2; d(s,8) = 3/2; d(8,5) = 1.

—1=1

1
2

(a) The last number in the second part of the exercise should be 128 so that the
second question should reac:

1

ATH(),8] < 5=

The sequences agree in the first five places (k = 5) after n = 10 iterations,
they agree in the first seven places (k = 7) after n = 34 iterations.
(b) The sequence T7 (s*)
00 01 10 11 000 001 010 011 100 101 110 111 0000 0001

and the sequence s differ in the first element after the following iterations of
the one-sided shift map n = 3, 4, 6, 7, 12, 14, 17, 18, 19, 22.

6.7 and 6.8. To show conjugacy of the maps

F:[-1,1] — [-1,1] F(z) - -1
Gy :[0,1] — [0,1] G(z) =4z(1 — z)
| B y, if0<y<]
Ga :[0,1] — [0,1] Ga(y) —{ —y), fi<y<l

Consider the following diagram
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where

hi(y) = sin® (gy) ho(z) =1 — 2.

We know already that G4 and G are topologically conjugate via the homeomor-
phism h; (see chapter 6, section 6.5, remark 6.7) and therefore we have

G40h1 =hy oGA- (1)

We can see that F' and G4 are topologically conjugate via the homeomorphism
he : [0,1] — [—1,1], and therefore

Fohy =hyoGy. (2)
The reader can verify that, for any x € [0, 1]
Flho(z)] = ho[Ga(z)] or 2(1 —22)* —1=1—2[4x(1 —z)].

Finally, consider the homeomorphism h = hg o hy : [0,1] — [-1,1]. From (1) and
(2) we have
Foh20h1 :h20G40h1:h20h10GA

or G o h = h o Gy, which establishes the conjugacy between F' and Gj.

6.9 (a) We need to demonstrate that h o Gy = G4 o h, using the homeomorphism
h(z) = sin® (Z£) (for h[0, 1] the inverse in continuous). For the LHS we have

For the RHS we have

4 sin® % (1 — sin? %) = 45in? % cos? % = sin? (7).

(c) The map h(z) = —£2 4 £-2 g =£ 0 is continuous and has a continous inverse

over [0,1]. We need to demonstrate that h o G, = F o h, that is,

- 1— —b - —b\? - —b
plple—2)]) | p o Zre n Ly e e
a 2a a 2a a 2a

After a few manipulations we have that the logistic map is h-conjugate to F' if
the constant
b +2(u —b) — p*
c= .
4a
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6.10
1. Exact solution of (7) as a function of ¢.

Write (i) as
dx dx
a = 4:33'(]_ — .T) whence /m = /dt

and

1 1 x

—In

4 4z -4
which is well-defined for x € (0,1) and where ¢ is a constant of integration. Solving
for ¢ in terms of the initial condition xy = x(0) we have

=t+c

Lo
n
4.730 —4

1

1
°T 1

and, after some elementary manipulations, we obtain x as a function of ¢t and x as

e

x(t) =

eflog —xo+1° (1)
Differentiating (1) with respect to ¢, the reader can verify that x(t) actually solves
(7) for all z € (0,1). The solutions for g = 0 and x9 = 1 are trivial, namely
z(t;x0) = x(t;0) = 0 Vt and z(t;x0) = x(t;1) = 1 Vt. Notice that, as t — +o0,
z(t) — 1, the only stable fixed point.

2. From (i7), with a slight change in notation, we have

z(t+T) — x(t)
D=2l fafe).

Taking the limit for 7' — 0 and recalling the definition of derivative, we have

lim z(t+T)— x(t) — lim z(t + 6t) — x(t) _ dx(t)
T—0 T §t—0 ot dt

=& = f((t))

where T' = 6t.
3. Hint: consider the map

G(z) =z +T4z(1 — z)

with fixed points 1 = 0; o = 1. For any T' > 0 Z; is unstable, while Zs is stable
for values of T'< 1/2. At T =1/2, G’(1) = —1 and a flip bifurcation occurs. Find
the two fixed points of the second iterate of G, G2, different from 0 and 1, and
calculate the value of T' for which (G?)(x), evaluated at either of the two fixed
points, is equal to -1.
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6.11
(a) Tpg1 = sin?(2"H7w0) = 4sin?®(2"70) cos?(2"70) = 4z, (1 — x,)
(b) If m is the Lebesgue measure m{¢ € [0,1]|6 is irrational} = 1.
(c) The set R = {0 € [0,1]|0 is rational } is dense in [0, 1].

chapter 7
7.1 By definition

n—1

1
AMzo) = Jim_ - Zln|G'(:I:j)| G(z) =2 Gp(r) =2r mod 1
=0

and, since G’ = 2 and G, = 2 both maps have an LCE of A(z¢) = In2. The
difference is that the orbits of Gp are bounded and so, with positive LCE,
chaotic, while the orbits of G are simply unstable and diverge to foo.

7.2 Using equation 5.28 we get the two periodic points of G {z{,z}}, at p = 3.2,
as {3/4,9/16}. Then using the results following 5.28 we have

~ 0G*(z3; 1)

= —p? +2u+4=0.16.
o0z,

The periodic orbit is therefore locally attracting. We use the derivative of G
with respect to z, 3.2 — 6.4z, to calculate the LCE for the orbit as

n—1
1
A(zo) :nliE;OEE In|1.6] +1In| — 0.4 + In|1.6] + - - -
j=0

1 /n n 1
— 2 (Pmie+ .4):—1 64 ~ —0.223.
n<2n 6+ 5 n0 S In0.6 0.223

7.4 Notice that the first element in the vector on the RHS should be v/3+ z, rather
than 1+ x, and the map should reac:

e(5)=(VaLs i)

(a) The LCE of a typical orbit is 0. Hint: use the fact that the matrix

1 0
o= (39
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is independent of the state of the system.

(b) Topological transitivity follows from the fact that /2 and /3 are rationally

7.5

7.6

7.7

7.8

7.9

independent. If, in the first of two equations of the map G we had left
1 instead of v/3, the T2 torus would be split into invariant circles, each

corresponding to a constant value of x and orbits of G would be dense on
each circle (cf. Katok and Hasselblatt (1995), Section 1.4, pp. 28-31).

Consider that

2—a : 1
R VA
m, 1f§<$§1

and, for the chosen value of a, |G'(x)| > 1, wherever defined.

The capacity dimension for the Kock snowflake is

D — lim log[N (€)] _ In4

= ~ 1.262.
«—0 log(1/e) In3

The perimeter after ¢ iterations is P; = N; - L;. We have
Nog =3 Lo=1
Ny =4-3 L;=3"
No=42.3 Ly=232
N;=4".3 [;,=3"

so that

lim P, = lim 4 ..3 = lim <é) -3 = oo.

The capacity dimension for the Sierpinski triangle is

Because the number of pairs is equal to N(N — 1) — N? as N — oo.
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chapter 8
8.1 The Schwarzian derivative
G"z) 3 (G (z)\” 3G
g —_— = h = —F
S(G) G 2 (G'(m) <0 where G"(x) e

for G(z,,) = pxn(l — x,) is

and for G(z,) = u — 22

3/ -2\

8.2 For the logistic map with u = 0.8 all initial values in [0,1] are attracted to the
fixed point at 0. For p = 2 we have most of the interval attracted to the fixed
point at (u — 1)/u, that is, w{(0,1)} = 0.5, but w(0) = w(1) = 0. For p = 3.2
most of the interval is attracted to the period-2 cycle w{(0,1)} = {0.513,0.799}
but we have w(0) = w(1) = 0. For u = 4 most of the interval is attracted to the
chaotic attractor which spans the interval, but w(0) = w(1) = w(1/2) = 0.

8.3
(a) A period-32 cycle implies that there are also cycles of period 16, 8, 4 and 2.
(b) No, 2'0 is listed after 233 and existence of the period-24 cycle is not implied
by existence of a cycle of 20 periods.
(c) Existence of a period-22 - 11 cycle implies existence of the period-23 - 5 cycle
and the period-2° cycle, but not the 22 - 3 cycle.

chapter 9
9.1 Because of symmetry we have
In |G/ In|4—8
)\:/ l 4(“@)’1/261:1;:2/ o] $1|/2d:1c.
0,1 T[(z(1 — )] 0,1/2] T[x(l — )]

Employing the variable change = = sin® (%y) we have

e = e () s (35
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and

A=2 /[0’1/2] In (4 [1 — 2sin? (gy)]) dy =2 /[0’1/2] In[4 cos(my)]dy.

A=2 / In4dy + / In[cos(my)]dy
[0,1/2] [0,1/2]

=In4+ 2/ In[cos(my)]dy.
[0,1/2]

Then

We now want to prove that

1
I= / In[cos(my)]dy = —= In 2.
0.1/2] 2

Put 7y = 7(3 — @), a € [0,1/2] where dy = —dco. Substituting, we have

I= /[0’1/2] In [cos (g — Wa)] (—da) = /[071/2] In[sin(7ra)]da

therefore

2[2/ 1n[cos(7ry)]dy+/ In[sin(7y)]dy
[0,1/2] [0,1/2]

_ / In[cos(my) sin(my)dy
[0,1/2]

_ /[071/2] In {\/COSQ(@) sin2(7ry)} dy

:/ In {sm(%ry)}dy
[0,1/2] 2

1
= / In[sin(27y)]dy — = In2
0.1/2 2

and putting § = 2y dy = 2dy

1 1
= / In[sin(7y)]=dy — = In2
0.1] 27 2

1 1
= —/ In[sin(7g)]dy — = In2
2 Joy 2

1
=] ——-1n2
2
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and we have
I =—-1n2.

Finally,
1
A=1n4 —2 (§1n2> =2In2 —-In2=1n2.

9.3 Hint: show that the measure p can be written as

apr + (1 — a)us

where a € (0,1) and p; and pg are invariant measures.

9.4 Please notice the following correction: in the definition of the map 7" the T on
the RHS must be replaced with G so that the definition should reac: Let T
be the map

T: M — M

T({a'}) ={Ga(z")} >0

(a) First show that T is invertible. Suppose T' is not invertible, that is, there
exist sequences {y'}, {2} and {z'}, i > 0 such that

T({y'}) =T({z"}) = {="}.

Then, from the definition of T, we must have

whence _ _
{v't=1{#"}.
To prove that p is T-invariant, we must show that for any A, u(T71(4)) =

1(A). _
Consider that for a sequence {z'} = (2°,2',2%,...)

T'({z}) = (2, 22,23,...).
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Hence
T=1(A) = {{z"}° € M[a"*! € Gy (1) C [0,1]}.

But G preserves the Lebesgue measure m and therefore for any 1
u(T 1 (A)) = m(G3A (D) = m(I) = p(A)
(b) Notice that the condition 2° € Iy, ... ,2" € I, is the same as
2" el=(LNGy (Ir—1)N...N Gy (I) N GL o)
or
Ga(z") €I, 1,GA(z") €I, o,... G} ' (z") € I, G (2") € Io.
Hence, applying the definition of p we get the result.

9.7 Hint.

First of all, the reader can easily verify that G preserves the Lebesgue measure
m. Next, partition the state space into two disjoint subspaces {0 < x < 1/2} and
{1/2 < & < 1} and call them respectively, H(ead) and T/(ail).

Suppose now that a sequence of values of x generated by successive applications
of the map G are observed, and that at each step we record the state of the system
in one or the other of the two subspaces so that either x € H or x € T. If we
choose the initial value at random, the probability of H, given by

m({z €[0,1){0 <z <1/2})
and the probability of T’
m({z e [0, ){1/2 <z <1})
are both equal to 0.5.
On the other hand, G(z) € H or G(x) € T, according to whether z € G™1(H)

or € G™Y(T), where

Gl H)={0<z<1/4}u{1/2<x<3/4}
G T)={1/4<z<1/2}Uu{3/4<z <1}

Thus the probability of a given sequence of two elements, say {T, H} is

m{x € [071)|xi0 € T7x7:1 = G(xio) S H}



34

or

m{z €[0,1)|z;, ETNG "(H)}

which the reader can verify is equal to 0.25. (Analogously, the probability is the
same for any other sequence of 2 elements {H, H},{H,T},{T,T}.)

Generalising, if we consider one-sided infinite sequences of H and T, the prob-
ability that the k elements of a finite given subsequence have given values (H or
T) is equal to 27%. But this is the same probability we have for repeated (inde-
pendent) tosses of a fair coin with equal 0.5 probability of Head or Tail at each
toss.

99 z=1/2; o = 0; u = bo-
9.10 Properties (1) and (2) of remark 1.2 clearly hold.
Property (3) (the triangle inequality) is
|21 — 22| < |21 — 23] + |23 — 22
for any three points z; on S', as defined in remark 4.4 Recalling that
z; = e2™% = cos(276;) + isin(276;)
la+i8] =v/a2+ 32, cos’0+sin?0=1 Vo

we have

|zi — 25| = \/2(1 — [cos(276;) cos(270;) + sin(276;) sin(276;)])

for any pair 4,7, i # j. On the other hand, for any point 2z; on S (the radius is
one)
y; = sin(270;) x; = cos(27h;)

where z; and y; are the Cartesian coordinates. Using the Euclidean distance,
simple calculations show that the triangle inequality in S' coincides with the
triangle inequality in R?, namely

Vi —29)2 + (1 —42)? < V(w1 — 23)2 + (1 — 43)2+ /(@3 — 22)2 + (43 — y2)?

As a matter of fact, the Euclidean metric on R? and the metric d(z1, z2) = |21 — 22
on St are (Lipschitz) equivalent, cf. Sutherland (1999), pp. 38-42.

9.11 In exercises 6.7-6.8 it was shown that the map F(x) = 222 — 1 is topologically
conjugate to the tent map G and therefore F'o h = h o G, where h: [0,1] —
[—1,1], z = h(y) = 1 —2sin*[ry/2]. In view of this, for any I C [~1,1], the sets

{y € [0, |F[h(y)] € I}
{y € [0,1]|r[GA(y)] € I}
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are the same and therefore A~ [F~1(I)] = G;'[h~*(I)]. We can now show
that the probability measure u = mh ™' (where m is the Lebesgue measure) is
preserved by F'. This requires that for any measurable subset I C [—1,1]

p(d) = m[h~ (D] = m{h " [F(D)]} = m{G A (D]} (1)

But this is true for any measurable subset h=1(I) C [0, 1] because G preserves
the Lebesgue measure. The result in (1) also shows that F' and G are isomor-
phic.

The still unspecified probability measure i can be represented as

un = [ e J 167 @)

Considering that
1

h[y(x)]

(h™1) () =

and using the definition of h(y), we have

dx
un= [ el )2

that is, the same invariant measure as for the logistic map G4.




