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Dependability model

The main assumption in a dependability model is that the state space
can be partitioned into a subset of up states and a subset of down states.

Ωu and Ωd such that Ωu ∪ Ωd = Ω

The states in Ωu are the up states in which the structure function of the
system is equal to 1, and the states in Ωd are the down states in which
the structure function of the system is equal to 0.

From the above, the infinitesimal generator matrix of the CTMC can be
partitioned in the following way

Quu

Ωu

Qdd

Ωd

Qud

Qdu

QQQ =
[
QQQuu QQQud
QQQdu QQQdd

]
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Reliability model

In an availability model both QQQud and QQQdu must have non-zero entries.

In a reliability model, the states in Ωd are absorbing so that QQQdu and QQQdd
are zero matrices (matrices with all entries equal to 0).

The system reliability at time t is defined as the sum of the state
probabilities at time t over the up states, and the unreliability at time t
as the sum over the down state at time t.

R(t) =
∑
i∈Ωu

πi(t) ; F (t) = 1− R(t) =
∑
j∈Ωd

πj(t)

For the reliability models only the transient solution is meaningful being
trivial the steady state solution.
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MRM for Reliability

To compute the reliability as reward measures, we need to define a
reward structure for the model.

To do this, assign to each state i ∈ Ω a reward variable given by:{
ri = 1 if i ∈ Ωu
ri = 0 if i ∈ Ωd

In other words, ri equals the value of the structure function of the system
in state i .

Grouping the reward variables in vector rrr , the system reliability can be
rewritten in matrix form as the expected reward rate at time:

R(t) = πππ(t) rrrT

This chapter thus concentrates on evaluating metrics for non-irreducible
Markov chains.
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A single component system (A two state CTMC)

The CTMC of the reliability model of this system has only two states.

In state 1 component is up, in state 0 is down. The transition rate from
state 1 to state 0 is the failure rate λ.

1 0
λ

From the problem specification,
the transition rate matrix is:

QQQR =

1 0
1 0 λ
0 0 0

Adjusting the diagonal entries, the
infinitesimal generator is:

QQQ =

1 0
1 −λ λ
0 0 0

The Markov equation becomes:[
d π1(t)
d t ,

d π0(t)
d t

]
= (π1(t), π0(t))

[
−λ λ
0 0

]
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A single component system (A two state CTMC)

Expanding the above Equation:


d π1(t)
d t = −λπ1(t)

with initial probability πππ(0) = (1, 0)
d π0(t)
d t = λπ1(t)

Solving, we obtain:{
π1(t) = e−λ t

π0(t) = 1 − e−λ t

The system reliability is: R(t) = π1(t) F (t) = π0(t) = 1− R(t)

The MTTF is: MTTF =
∫ ∞
0

R(t)dt =
∫ ∞
0

e−λ tdt = 1/λ
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A single component system: Mass at origin

Suppose the system is initially in a failed state with some probability q.

We can then solve the above differential equations with the initial
probability vector πππ(0) = (1− q, q) , to get:

{
R(t) = π1(t) = (1− q)e−λ t

F (t) = π0(t) = 1 − (1− q)e−λ t

The reliability function starts at 1− q at t = 0 and then decays to zero
as t approaches infinity.

The unreliability (or the time to failure distribution) function has a mass
at origin equal to q.

The MTTF in this case is:

MTTF =
∫ ∞
0

R(t)dt =
∫ ∞
0

(1− q)e−λ tdt = (1− q)/λ
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Defective distribution: Two failure modes

The Figure depicts a 3-state
CTMC with 1 up state and two
failure modes

open

short

0

up state
λo

λc

fail-danger

fail-safe[d πu(t)
d t

,
d πo(t)
d t

,
d πc(t)
d t

]
= (πu(t), πo(t), πc(t))

[
−(λo + λc) λo λc

0 0 0
0 0 0

]

πu(t) = e−(λo+λc ) t

πo(t) = λo
λo + λc

− λo
λo + λc

e−(λo+λc ) t

πc(t) = λc
λo + λc

− λc
λo + λc

e−(λo+λc ) t
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Defective distribution: Two failure modes

The Figure depicts a 3-state
CTMC with 1 up state and two
failure modes

open

short

0

up state
λo

λc

fail-danger

fail-safe

The distribution of time to reach state o (starting with state u at time 0)
is defective with a defect equal to λc

λo+λc
.

Similarly, the time to reach state c (starting with state u at time 0) is
defective with a defect equal to λo

λo+λc
.
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A two component system: dependent components

11

s1

01

s2

10

s3

00

s4

λ1

λ2 λ̂1

λ̂2

λ1 is the failure rate of component 1 in
state s1 and λ̂1 (λ1 6= λ̂1) the failure
rate of component 1 in state s3.

λ2 is the failure rate of component 2 in
state s1 and λ̂2 (λ2 6= λ̂2) the failure
rate of component 2 in state s2.

QQQ =

(1,1) (1,0) (0,1) (0,0)

(1,1) −(λ1 + λ2) λ1 λ2 0
(1,0) 0 −λ̂2 0 λ̂2
(0,1) 0 0 −λ̂1 λ̂1
(0,0) 0 0 0 0
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A two component system: dependent components

[
d π1(t)
d t ,

d π2(t)
d t ,

d π3(t)
d t ,

d π4(t)
d t

]
=

[π1(t), π2(t), π3(t), π4(t)]


−(λ1 + λ2) λ1 λ2 0

0 −λ̂2 0 λ̂2
0 0 −λ̂1 λ̂1
0 0 0 0


the following set of coupled differential equations is obtained:

d π1(t)
d t = − (λ1 + λ2)π1(t)

d π2(t)
d t = λ1 π1(t)− λ̂2 π2(t)

d π3(t)
d t = λ2 π1(t)− λ̂1 π3(t)

d π4(t)
d t = λ̂2 π2(t) + λ̂1 π3(t)
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A two component system: Identical components

If the components are identical and independent, the CTMC state
diagram can be simplified.

2 1 0
2λ λ

The label inside each state indicates the number of working components.
Kolmogorov differential equations in this case become:

[
d π2(t)
d t ,

d π1(t)
d t ,

d π0(t)
d t

]
= [π2(t), π1(t), π0(t)]

 −2λ 2λ 0
0 −λ λ
0 0 0


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A two component system: Identical components

Assuming that State 2 is the initial state, we obtain, by direct integration:
π2(t) = e− 2λt

π1(t) = 2 ( e−λt − e− 2λt )
π0(t) = 1 − π1(t) − π2(t) = 1− 2e−λt + e− 2λt .

.

Check that the reliability is HYPO(2λ, λ)

R(t) = π2(t) + π1(t) = 2e−λt − e− 2λt .

The same expression that has been obtained in the previous chapters
since we have assumed independence across the two components.
The MTTF can be computed to yield:

MTTF =
∫ ∞
0

R(t)dt =
∫ ∞
0

[2e−λt − e− 2λt ]dt = 1.5
λ
.
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Telecommunication Switching System Model

n n-1 n-2 . . . 1 0

nγ

τ

(n− 1)γ

τ

(n− 2)γ

τ

2γ

τ

γ

τ

The transient probability of being in State i at time t, πi(t), can be
computed by solving the following differential equations:

dπ0(t)
dt = −τπ0(t) + γπ1(t)

dπk(t)
dt = −(τ + kγ)πk(t) + τπk−1(t) + (k + 1)γπk+1(t), k = 1, 2, .., n − 1

dπn(t)
dt = −nγπn(t) + τπn−1(t) .

Assuming that the system is up as long as at least l trunks are
functioning, the instantaneous availability A(l , t) and the expected
interval availability AI(l , t) are given as:

A(l , t) =
n∑

k=l
πk(t) AI(l , t) =

∑n
k=l

t∫
0
πk(x) dx

t .
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Convolution Integration Method

The Kolmogorov differential equations can be put in the form of coupled
system of integral equations:

pij(t) = δijeqii t +
∫ t

0

∑
k

pik(x)qkjeqjj (t−x)dx

where pij(t) are the entries of the transition probability matrix PPP(t), and
δij is the Kronecker delta function.

The above equation can be specialized to obtain the unconditional
probabilities of states at time t:

πj(t) = πj(0)eqjj t +
∫ t

0

∑
k
πk(x)qkjeqjj (t−x)dx

These equations can be solved relatively easily for acyclic CTMCs and
the method is known as the convolution integration method.
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A two component system: Convolution integration

We apply the convolution integration method to the two component
system model:

π1(t) = π1(0)e−(λ1+λ2)t = e−(λ1+λ2)t

π2(t) = π2(0)e−λ̂2 t +
∫ t

0
π1(x)λ1e−λ̂2 (t−x)dx

= λ1

λ1 + λ2 − λ̂2
( e− λ̂2 t − e− (λ1 +λ2) t )

π3(t) = λ2

λ1 + λ2 − λ̂1
( e− λ̂1 t − e− (λ1 +λ2) t )

π4(t) = 1 − π1(t) − π2(t) − π3(t).

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 17 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

Solution with Laplace Transforms

Indicating by L[f (t)] = f ∗(s) the Laplace transform of a fuunction f (t),
the following relation holds:

L
[
f (t)
d t

]
= f ∗(s) − f (0)

By taking the Laplace transform of the Kolmogorov equation, we get:
s π∗1 (s) − π1(0) = π∗1 (s) q11 + π∗2 (s) q21 + . . .+ π∗n(s) qn1
s π∗2 (s) − π2(0) = π∗1 (s) q12 + π∗2 (s) q22 + . . .+ π∗n(s) qn2
. . . . . .

After rearranging:
π∗1 (s) (s − q11)− π∗2 (s) q21 − . . .− π∗n(s) qn1 = π1(0)
−π∗1 (s) q12 + π∗2 (s) (s − q22)− . . .− π∗n(s) qn2 = π2(0)
. . . . . .

in matrix form:
πππ∗(s) (s III − QQQ) = πππ(0) ; πππ∗(s) = πππ(0) (s III − QQQ)− 1
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A two component system: Laplace transform solution


s π∗1 (s) − 1 = − (λ1 + λ2)π∗1 (s)
s π∗2 (s) = λ1 π

∗
1 (s)− λ̂2 π

∗
2 (s)

s π∗3 (s) = λ2 π
∗
1 (s)− λ̂1 π

∗
3 (s)

s π∗4 (s) = λ̂2 π
∗
2 (s) + λ̂1 π

∗
3 (s)

The symbolic solution in the transform domain is:

π∗1 (s) = 1
s + λ1 + λ2

π∗2 (s) = λ1

(s + λ1 + λ2) (s + λ̂2)
π∗3 (s) = λ2

(s + λ1 + λ2) (s + λ̂1)

π∗4 (s) = λ1λ̂2(s + λ̂1) + λ̂1λ2(s + λ̂2)
s (s + λ1 + λ2) (s + λ̂1)(s + λ̂2)
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A two component system: time-domain solution

Using the partial fraction expansion:



π1(t) = e− (λ1 +λ2) t

π2(t) = λ1

λ1 + λ2 − λ̂2
( e− λ̂2 t − e− (λ1 +λ2) t )

π3(t) = λ2

λ1 + λ2 − λ̂1
( e− λ̂1 t − e− (λ1 +λ2) t )

π4(t) = 1 − π1(t) − π2(t) − π3(t)

If we assume that the two components are statistically independent

λ1 = λ̂1 and λ2 = λ̂2

the above state probabilities can be expressed as the product of the
individual probabilities of the single components.
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Series/parallel system of two components

X1 X2

a)

X1

X2

b)

If the two components are connected in series, then:

Rser (t) = π1(t) = e− (λ1 +λ2) t

If the components are connected in parallel, the only system down state
is State 4, so that:

Rpar (t) = π1(t) + π2(t) + π3(t) =

= e− (λ1 +λ2) t + λ1

λ1 + λ2 − λ̂2
( e− λ̂2 t − e− (λ1 +λ2) t )

+ λ2

λ1 + λ2 − λ̂1
( e− λ̂1 t − e− (λ1 +λ2) t ) .
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Series/parallel system of two components: MTTF

The above results can be obtained in terms of expected reward rate at
time t from by assigning the following reward rate vectors:

rrr series = [1, 0, 0, 0] rrrpar = [1, 1, 1, 0] .

The MTTFs are:

MTTFser =
∫ ∞
0

Rser (t)dt = 1
(λ1 + λ2) ,

MTTFpar =
∫ ∞
0

Rpar (t)dt

= 1
(λ1 + λ2) + λ1

λ̂2 (λ1 + λ2)
+ λ2

λ̂1 (λ1 + λ2)
.
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Standby configuration

A

B
S

11

s1

01

s2

10

s3

00

s4

λA

αλB λA

λB

Based on the value of the dormancy factor α we distinguish three cases:
α = 0→ cold standby : The failure rate of the standby component B is

equal to 0 when dormant.
(0 < α < 1)→ warm standby
α = 1→ hot standby : The failure rate of the standby component B is

the same when dormant and when in operation. This case
is the same as the parallel configuration.
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Cold Standby: α = 0

By substituting in Figure λ1 = λA, λ2 = 0 and λ̂2 = λB , the state
probabilities become:

π1(t) = e−λA t

π2(t) = λA
λA − λB

( e−λB t − e−λA t )
π3(t) = 0 non reachable
π4(t) = 1 − π1(t) − π2(t) − π3(t)

11

s1

01

s2

10

s3

00

s4

a)

λ1

λ2 = 0 λ̂1

λ̂2

11

s1

01

s2

00

s4

b)
λ1 = λA λ̂2 = λB
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Cold Standby - 2

Finally the cold standby system reliability is:

RCS(t) = π1(t) + π2(t) = λA
λA − λB

e−λB t − λB
λA − λB

e−λA t ,

and the system MTTF by integration:

MTTFCS =
∫ ∞
0

RCS(t)dt = λA
λA − λB

1
λB
− λB
λA − λB

1
λA

= 1
λA

+ 1
λB

.
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Cold Standby: Equal components

If the two components have equal failure rates (λA = λB = λ) the above
Equations are undefined. One method of resolution is to use L’Hospital’s
rule or to resort to Laplace transforms.
The system reliability is (Erlang-2 distribution):

RCS−2(t) = π1(t) + π2(t) = (1 + λ t) e−λ t

and the system mean time to failure is:

MTTFCS−2 =
∫ ∞
0

RCS−2(t)dt = 2
λ
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Warm Standby

By substituting the proper values of the failure rates, we obtain:

RWS(t) = π1(t) + π2(t) + π3(t) =

= e− (λA +αλB) t + λA
λA − (1− α)λB

( e−λB t − e− (λA +αλB) t )

+ e−λA t − e− (λA +αλB) t

= e−λA t + λA
λA − (1− α)λB

( e−λB t − e− (λA +αλB) t )

The above Equation reduces to the reliability of a parallel system of
independent components when α = 1.
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Warm Standby - 2

System MTTF is obtained by integration of the reliability expression:

MTTFWS =
∫ ∞
0

RWS(t)dt

= 1
(λA + αλB) + λA

λA − (1 − α )λB
( 1
λB
− 1

(λA + αλB) )

+ 1
λA
− 1

(λA + αλB)

= λA λB + λ2A + αλ2B
λA λB (λA + αλB)
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Two component reliability model with repair

2 1 0

2λ

λ

µ

Kolmogorov differential equations in matrix form for the example are:[
d π2(t)
d t ,

d π1(t)
d t ,

d π0(t)
d t

]
= [π2(t), π1(t), π0(t)]

 −2λ 2λ 0
µ −(λ+ µ) λ
0 0 0

 .
The scalar version of the system of equations are:

d π2(t)
d t = − 2 λπ2(t) + µπ1(t)

d π1(t)
d t = 2 λπ2(t)− (λ + µ )π1(t)

d π0(t)
d t = λπ1(t) .
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Two component reliability model with repair

Taking Laplace transforms on both sides, we get:
s π∗2 (s) − 1 = − 2λπ∗2 (s) + µπ∗1 (s)
s π∗1 (s) = 2λπ∗2 (s)− (λ + µ )π∗1 (s)
s π∗0 (s) = λπ∗1 (s) .

Solving this system of algebraic equations is s-domain, we get:

π∗0 (s) = 2λ2
s [ s2 + (3λ + µ) s + 2λ2 ] ,

and by an inversion via partial fraction expansion, we get an expression
for system reliability:

R(t) = 1 − π0(t) = α1
α1 − α2

e −α2 t − α2
α1 − α2

e −α1 t
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Two component reliability model with repair

α1 and α2 are the roots of the equation:

s2 + (3λ + µ) s + 2λ2 = ( s + α1 ) ( s + α2 ).

α1, α2 = (3λ+ µ)±
√
λ2 + 6λµ+ µ2

2 .

Compare the effect of redundancy combined with repair over redundancy
without repair (λ = 1/8760 f /h and µ = 1/2 r/h).

R
el
ia
b
ili
ty

R
(t
)

Time t

0.0

0.2 -

0.4 -

0.6 -

0.8 -

1.0

p
0

p
10 103

p
20 103

p
30 103

p
40 103

Two components
with repair

Two components
no repair

Single component
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CTMC with Absorbing States

1 CTMC - Reliability Models

2 CTMC with Absorbing States

3 CTMC with Self-Loops

4 Transient Solution Methods
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CTMC with Absorbing States

An absorbing state is a state with no outgoing arcs and the corresponding
row of the infinitesimal generator matrix has only zero entries.

In the partitioned infinitesimal generator matrix QQQ only the matrices QQQuu
and QQQud have non-zero entries.

Absorbing states appear in many problems:
The reliability of a system is the probability of continuous operation
in an interval (0, t]. The failure states for the system in the
corresponding CTMC model must be absorbing states.
Absorbing states have an independent interest as a first passage
time problems.
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CTMC with a Single Absorbing State

a

Qu

QQQ =
[
QQQu aaaT
000 0

]
aaaT = −QQQu eeeT

The Markov equation in partitioned form can be written as:

[
d πππu(t)
d t

d πa(t)
d t

]
= [πππu(t) πa(t) ]

 QQQu | aaaT
− | −
000 | 0

 ,
where πππu(t) refers to the partition of the state probability vector over the
state in Ωu, and πa(t) is the probability of the absorbing State a.

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 34 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

CTMC with Absorbing States

Solving the above equation in partitioned form, we get:
d πππu(t)
d t = πππu(t) QQQu

d πa(t)
d t = πππu(t) aaaT

 πππu(t) = πππu(0) eQQQu t

d πa(t)
d t = πππu(0) eQQQu t aaaT ,

where πππu(0) is the partition of the initial probability vector πππ(0) over the
transient states and πa(0) = 0.
Given that Ta is the time to absorption, we can compute its Cdf Fa(t) as:

Fa(t) = P{Ta ≤ t} = P{Z (t) = a} = πa(t)
= 1 − πππu(0) eQQQu t eeeT .

Ta is called a continuous Phase-Type (PH) random variable and Fa(t) is
a PH distribution.
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CTMC with Absorbing States

Taking Laplace transform:

[ s πππ∗u(s)− πππu(0) s π∗a (s) ] = [πππ∗u(s) π∗a (s) ]

 QQQu | aaaT
− | −
000 | 0


{

s πππ∗u(s)− πππu(0) = πππ∗u(s) QQQu
s π∗a (s) = πππ∗u(s) aaaT{
πππ∗u(s) = πππu(0)(s III − QQQu)−1

π∗a (s) = 1
s π
ππ∗u(s) aaaT = 1

s π
ππu(0)(s III − QQQu)−1 aaaT .

Hence, the transform of the Cdf and the density of Ta are:

F ∗a (s) = 1
s π
ππu(0)(s III − QQQu)−1 aaaT

f ∗a (s) = s F ∗a (s) = πππu(0)(s III − QQQu)−1 aaaT .
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Expected Time to Absorption

Since Ta is the r.v. representing the time to absorption, the expected
time to absorption can be computed as:

E [Ta] =
∫ ∞
0

(1 − Fa(t)) d t

=
∫ ∞
0

πππu(0) eQQQu t eeeT d t

= πππu(0)
[
QQQ−1u eQQQu t eeeT

]∞
0

= πππu(0) (−QQQu)−1 eeeT .

Computing E [Ta] from the above equation involves the inversion of
matrix QQQu.
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Expected Time to Absorption

A simpler algorithm for the computation of E [Ta] can be obtained
considering the expected state occupancy in the transient states before
absorption.[

d bbbu(t)
d t

d ba(t)
d t

]
= [bbbu(t) ba(t) ]

 QQQu | aaaT
− | −
000 | 0

+ [πππu(0)πa(0)] .

By considering only the partition over the transient states,

d bbbu(t)
d t = bbbu(t) QQQu + πππu(0) ,

and letting (t →∞), since states in QQQu are transient, we get:

lim
t→∞

bi(t) = τi and lim
t→∞

d bi(t)
d t = 0 , i ∈ QQQu ,

where τi = E [Ti ] is the expected total (possibly over many sojourns)
time spent in the transient State i before absorption.
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Expected Time to Absorption

Grouping the expected times τi into a vector τττ = [τi ], we have:

τττ QQQu = −πππu(0) .

The total expected time till absorption is the sum of the expected times
in the transient states:

E [Ta] = τττ eeeT .

E [Ta] can be calculated directly starting from the CTMC specification,
without computing and integrating the reliability R(t).
Also no matrix inversion needs to be carried out as the linear system of
Equations is easier to solve.
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Expected Time to Absorption: Two Components

The MTTF of a series/parrallel system of two components was computed
in Slide 22
The same results can be obtained by solving the linear Equation over the
transient states to get:

−τ1(λ1 + λ2) = −1 τ1 = 1
λ1 + λ2

λ1 τ1 − λ̂2 τ2 = 0 τ2 = λ1

λ̂2 (λ1 + λ2)
λ2 τ1 − λ̂1 τ3 = 0 τ3 = λ2

λ̂1 (λ1 + λ2)

MTTF = τ1 + τ2 + τ3 = 1
λ1 + λ2

+ λ1

λ̂2 (λ1 + λ2)
+ λ2

λ̂1 (λ1 + λ2)

The 3 summands in the MTTF expression above are the expected times
spent in States 1, 2 and 3, respectively, till absorption.
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Expected Time to Absorption: Warm Standby

The linear equations over the transient states become:

[τ1 τ2 τ3]

 −(λA + αλB) λA αλB
0 −λB 0
0 0 −λA

 = − [1 0 0 ]

whose solution yields:

τ1 = 1
λA + αλB

τ2 = λA
λB(λA + αλB)

τ3 = αλB
λA(λA + αλB) ,

finally (compare this with Slide 28),

MTTF = τ1 + τ2 + τ3 = λAλB + λ2A + αλ2B
λAλB (λA + αλB) .
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Expected Time to Absorption: Warm Standby

The above Equation provides known results in the limiting cases α = 1
and α = 0.

α = 1: hot standby or independent parallel case:

MTTF(α=1) = 1
λA

+ 1
λB
− 1
λA + λB

α = 0: cold standby or simply standby:

MTTF(α=0) = 1
λA

+ 1
λB

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 42 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

MTTF: Two components with repair

The infinitesimal generator can be partitioned as follows:

QQQ =

 QQQu | aaaT
−− | −−
000 | 0

 =


− 2λ 2λ | 0
µ −(λ+ µ) | λ

−−−− −−−− −|− −
0 0 | 0


Assuming as initial probability π2(0) = 1, the linear system becomes:

[τ2 τ1]
[
− 2λ 2λ
µ −(λ+ µ)

]
= − [1 0 ]

whose solution is:

τ2 = λ+ µ

2λ2 , τ1 = 1
λ

finally,

MTTF = τ2+τ1 = = 3λ+ µ

2λ2

2 1 0

2λ

λ

µ
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MTTF: Two components with repair

If µ = 0 (2 parallel components without repair) we get:

E [Ta ] = MTTF = 3
2λ

Note that by using redundancy by itself, the MTTF increases by 50%
from 1/λ to 1.5/λ.

By adding repair on top of redundancy the increase in the MTTF is by
several orders of magnitude: 1.5/λ+ µ/(2λ2) since µ will generally be
several orders of magnitude larger than λ in practice.

With the following data (λ = 1/8760 f /h and µ = 1/0.5 r/h), we get:

MTTFsingle = 8760 h
MTTFpar -no-rep = 13, 140 h
MTTFpar -with-rep = 1.92× 107 h .
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MTTF: Two components with repair and coverage

The detection and recovery process may complete successfully with a
coverage probability c, and with probability (1− c) the recovery process
does not complete successfully, and the system incurs a complete failure
and moves to the down State 0.

QQQ =

 QQQu | aaaT
−− | −−
000 | 0

 =


− 2λ 2λ c | 2λ (1− c)
µ −(λ+ µ) | λ

−−−− −−−− | − −−−−
0 0 | 0

 .

2 1 0

2λ c
λ

µ

2λ(1− c)
Initial probability π2(0) = 1,

τ2 = λ+ µ

2λ (λ+ µ(1− c))

τ1 = 2λ c
2λ (λ+ µ(1− c)) ,

MTTF = E [Ta] = τ2 + τ1 = = λ+ µ+ 2λ c
2λ (λ+ µ(1− c)) .
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Defects Per Million for an application server - 1

2 1 3

0

δ

cαp

(1− c)αp

αn The Figure shows the state transi-
tions after a failure has occurred.

The cumulative distribution function for the time to absorption to State
Td 0 is HYPO(δ, αp) with probability c, while with probability 1− c, is
HYPO(δ, αp, αn).

FTd (t) = π0(t) = c
(
1− αp

αp − δ
e−δt + δ

αp − δ
e−αpt

)
+ (1− c)

(
1− αp

αp − δ
αn

αn − δ
e−δt − δ

δ − αp

αn
αn − αp

e−αpt − δ

δ − αn

αp
αp − αn

e−αnt
)
, t ≥ 0 .
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Defects Per Million for an application server - 2

The mean number of new calls dropped due to a server failure is:

na =
∫ ∞
wi

λ(t − wi)dπ0(t)

=
[
MTTA− wi +

∫ wi

0
π0(t)dt

]
λ ,

where MTTA denotes the mean time to absorption to State 0, which is
given by:

MTTA =
∫ ∞
0

t dπ0(t)

= c
(1
δ

+ 1
αp

)
+ (1− c)

(1
δ

+ 1
αp

+ 1
αn

)
= 1

δ
+ 1
αp

+ 1− c
αn

.
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Defects Per Million for an application server - 3

The MTTA could also be obtained by solving the linear system:

[τ1 τ2 τ3]

 −δ δ 0
0 −αp (1− c)αp
0 0 −αn

 = − [1 0 0 ]

whose solution is: τ1 = 1
δ

τ2 = 1
αp

τ3 = 1− c
αn

.

The mean number of lost calls na is:

na =
1

δ − αp

[
δ

αp
e−αpwi −

αp

δ
e−δwi

]
λ

+
1− c
δ − αp

[
δ

αn − αp
e−αpwi +

αp

δ − αn
e−δwi −

δ − αp

αn

δ

δ − αn

αp

αn − αp
e−αnwi

]
λ

The DPM caused by application server failure is:

DPM = π0γna
106
λ

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 48 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

Renal disease model - 1

Reliability modeling techniques provide new frontiers in predicting health
care outcomes.

Healty CKD ESRD

Deceased Transplant

δ

ω0

δ

τγω1
ω2

ωA

1 Healthy: Normal renal function,
2 CKD: Chronic Kidney Disease without renal failure,
3 ESRD: End-Stage Renal Disease, an administrative term for patients

with renal failure,
4 Transplant: Renal failure patients who have successfully received a

transplant,
5 Deceased: An absorbing state.
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Renal disease model - 2

Assuming all patients begin healthy, the solution for healthy states is
straightforward. In the Laplace transform domain, we get (where H
indicates the healthy state and C the CKD state):

sπ∗H(s)− 1 =− (δ + ω0)π∗H(s) = 1
s + δ + ω0

sπ∗C (s) =− (δ + ω1)π∗C (s) + δπ∗H(s)

π∗C (s) = δ

s + δ + ω1
π∗H(s) = δ

(s + δ + ω0)(s + δ + ω1)

= δ

ω0 − ω1

[
1

s + δ + ω1
− 1

s + δ + ω0)

]
Inverting to the time domain, we get:

πH(t) =e−(δ+ω0)t

πC (t) = δ

ω0 − ω1

[
e−(δ+ω1)t − e−(δ+ω0)t

]
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Renal disease model - 3

The parameter values reported in the Table are derived and are based on
the latest available statistics from United States Renal Data System
(USRDS) annual report [*].

Description Symbol Value event/year
(event/year)

Decline δ 0.1887
Transplant τ 0.1786
Graft Rejection γ 0.0050
Prognosis-Healthy ω0 0.0645
Prognosis-CKD ω1 0.1013
Prognosis-ESRD ω2 0.2174
Prognosis-Transplant ωT 0.0775

[*] R. Fricks, A. Bobbio, and K. Trivedi, “Reliability models of chronic kidney disease,”
in Proceedings IEEE Annual Reliability and Maintainability Symposium, 2016.
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Reliability of a multivoltage high speed train - 1

The RBD of a multivoltage propulsion system designed for the Italian
High Speed Railway System is in the Figure.

The system consists of three equivalent modules in parallel redundant
configuration. Each module is modeled as a series of 4 blocks
(transformer T , filter F , inverter I and motor M) and two parallel
converters (C1 and C2) that feed the induction motors.

T

C1

C2

F I M

T

C1

C2

F I M

T

C1

C2

F I M
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Reliability of a multivoltage high speed train - 2

A single module can be represented by a 3-state MRM model, that
accounts for the power level delivered in each configuration:

2

r2

1

r1

02γ γ + λ

λ

- a fully operational state delivering maximum power (r2 = 2200 KW)
when all components are working;

- a degraded state delivering half of the power (r1 = 1100 KW) when
all the series components and one converter are working;

- a failed state delivering no power.

QQQ =

 −(2γ + λ) 2γ λ
0 −(γ + λ) γ + λ
0 0 0


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Reliability of a multivoltage high speed train - 3

Solving the transient equations, we obtain:
π2(t) = e− (2γ+λ) t

π1(t) = 2 e− (γ+λ) t − 2 e− (2γ+λ) t

π0(t) = 1− π2(t)− π1(t) = 1 + e− (2γ+λ) t − 2 e− (γ+λ) t .

The result is the same as the one obtained from the RBD solution.

The MRM can combine the system reliability with its performance in
terms of power delivered.

We can write down the expected power E [X (t)] available at time t:

E [X (t)] =
2∑

i=0
ri πi(t) = r2 π2(t) + r1 π1(t)

the expected accumulated energy E [Y (t)] delivered in the interval (0, t]:

E [Y (t)] =
2∑

i=0

∫ t

0
ri πi(x)dx = r2

∫ t

0
π2(x)dx + r1

∫ t

0
π1(x)dx .
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Reliability of a multivoltage high speed train - 4

The expected accumulated reward (energy delivered) until absorption
(failure) is then easily computed as:

E [Y (∞)] = r2
∫ ∞
0

π2(x)dx + r1
∫ ∞
0

π1(x)dx

= r2
2γ + λ

+ 2r1
γ + λ

− 2r1
2γ + λ

.

We can also obtain the Cdf of, Y (∞), the reward accumulated till
absorption abbreviated as here Y using a method proposed by Beaudry
[*].

Beaudry’s method consists in di-
viding the transition rates of the
CTMC by the corresponding re-
ward rates. 2 1 0

2γ/r2 (γ + λ)/r1

λ/r2
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Reliability of a multivoltage high speed train - 5

The state probabilities π(R)
2 (r) and π(R)

1 (r) in the scaled CTMC are:
π

(R)
2 (r) = e−

(2γ+λ)
r2

r

π
(R)
1 (r) = 2r1γ

γ(2r1 − r2) + λ(r1 − r2) · (e
− γ+λ

r1
r − e−

2γ+λ
r2

r )

π
(R)
0 (r) = 1− π(R)

2 (r)− π(R)
1 (r)

and, finally:

P(Y (∞) ≥ a) = π
(R)
1 (a) + π

(R)
2 (a)

[*] M. Beaudry, “Performance-related reliability measures for computing systems,”
IEEE Transactions on Computers, vol. C-27, pp. 540–547, 1978.
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CTMC with Multiple Absorbing States

Multiple absorbing states in dependability modeling arise from two
principal reasons:

the presence of multiple failure causes or failure modes,
the different effects that some faults can have on the system.

To simplify the analysis, we as-
sume, in the sequel, that the
CTMC has two absorbing states,
only, say a and b.

a

bQu

[
d πππu(t)
d t

d πa(t)
d t

d πb(t)
d t

]
= [πππu(t) πa(t) πb(t) ]


QQQu | aaaT bbbT
− | − −
000 | 0 0
000 | 0 0


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CTMC with Multiple Absorbing States

Solving the above equations in partitioned form, we get:
d πππu(t)
d t = πππu(t) QQQu

d πa(t)
d t = πππu(t) aaaT

d πb(t)
d t = πππu(t) bbbT


πππu(t) = πππu(0) eQQQu t

d πa(t)
d t = πππu(0) eQQQu t aaaT

d πb(t)
d t = πππu(0) eQQQu t bbbT

Define Ta and Tb as the times to absorption to states a and b,
respectively. Corresponding Cdfs Fa(t) and Fb(t) are now defective
distributions, and the mean time to absorption to either State a or State
b are undefined (infinity).
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CTMC with Multiple Absorbing States

Fa(t) = P{τa ≤ t} = P{Z (t) = a} = πa(t)

Fb(t) = P{τb ≤ t} = P{Z (t) = b} = πb(t) .

The Cdf Fa(t) can be obtained by integrating the differential equation:

d πa(t)
d t = πππu(0) eQQQu t aaaT ,

whose solution is:

πa(t) =
∫ t

0
πππu(0) eQQQu x aaaT dx =

[
πππu(0)

(
eQQQu x QQQ−1u

)
aaaT
]t
0

= πππu(0) (−QQQ−1u )aaaT + πππu(0) eQQQu t QQQ−1u aaaT .

As t →∞, the probability of final absorption in State a becomes:

πa(∞) = lim
t→∞

πa(t) = πππu(0) (−QQQ−1u )aaaT .
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Different failure causes

We consider a system whose failure was caused either by the exhaustion
of the redundancy or due to imperfect coverage in detecting/recovering
from a failure.

These two causes are separated out in the Figure where the State labeled
(0e) indicates a failure caused by the exhaustion of the redundancy while
State labeled (0c) indicates a failure caused by imperfect coverage.

2 1

0c

0e

2λ c

λ

µ

2λ(1− c)

π0e = λ c
λ+ (1− c)µ

π0c = (1− c)(λ+ µ)
λ+ (1− c)µ

π0e + π0c = 1
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Warm standby: Safety analysis - 1

In a safety analysis we wish to distinguish two cases: When the primary
unit A fails whether or not the standby unit B is up.

11

01

10 0u

unsafe

0s

safe

λA

αλB

λA

λB Safe State 0s is reached when
unit B can recover the failure of
the primary unit A. Unsafe State
0u is reached if the standby unit
had failed prior to the occurrence
of primary unit failure.

We partition the generator matrix of this CTMC:

QQQ =

 QQQu | aaaT bbbT
− | − −
000 | 0 0
000 | 0 0

 =


−(λA + αλB) λA αλB | 0 0

0 −λB 0 | λB 0
0 0 −λA | 0 λA

−−−−−−− −−− −−− | −− −−
0 0 0 | 0 0
0 0 0 | 0 0


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Warm standby: Safety analysis - 2

−QQQ−1u = 1
λA λB(λA + αλB)

[
λAλB λ2A αλ2B
0 λA(λA + αλB) 0
0 0 λB(λA + αλB)

]
.

We separate the Cdf of time to absorption in State 0s and in State 0u and we
compute the eventual absorption probability as t →∞.

F0s(∞) =
[
1 0 0

] [
−QQQ−1u

] [ 0
λB
0

]
= λ2AλB

λAλB (λA + αλB) = λA
λA + αλB

F0u(∞) =
[
1 0 0

] [
−QQQ−1u

] [ 0
0
λA

]
= αλ2BλA

λAλB (λA + αλB) = αλB
λA + αλB

.
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Warm standby: Safety analysis - 3

11

01

10 0u

unsafe

0s

safe

λA

αλB

λA

λB

µ

we assume now that the system
can recover from the safe failure
condition and return to the fully
operational State (11).

QQQ =


−(λA + αλB) λA αλB 0 | 0

0 −λB 0 λB | 0
0 0 −λA 0 | λA
µ 0 0 −µ | 0

−−−−−−− −−− −−− −−− | −−
0 0 0 0 | 0

 .
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Warm standby: Safety analysis - 4

The CTMC has a single absorbing state, and the expected time to the
first unsafe failure can be computed by solving the linear system:

−(λA + αλB) τ11 + µ τ0s = 1
λA τ11 − λB τ01 = 0
αλB τ11 − λA τ10 = 0
λB τ01 − µ τ0s = 0

E [Ta] = τ11 + τ01 + τ10 + τ0s .
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Expected first passage time

Evaluating the distribution and the moments of the first time that a
CTMC jumps from a subset of initial states in Ω to another subset of
final states in Ω is usually referred to as the first passage time problem

The first example considers a survivability problem, where the
metrics to study is the first passage time problem from a down state
to the up state.
The second example considers a safety problem where the metrics to
study is the first passage time problem from a set of up states to a
down state for a fire protection system in warm standby.
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Survivability study of a power smart grid - 1

Survivability refers to the time-varying system behavior after a failure
occurs.

In this example, we consider the survivability assessment of a smart grid
distribution network.

F 2 4 5 NF

3

1 6

qf2/ε

qf3/ε

qf1/ε

βdR

γ

α

γ

γ

βdA

γ

α

γ

γ The CTMC in Figure depicts
the stages that the system
goes through after a failure.

The initial state consists of a failure state. Then, based on manual and
automated interventions, the system goes through different steps until
reaching full recovery.
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Survivability study of a power smart grid - 2

F Failure at section S

1 active & reactive power for S+ OK

2 active power for S+ OK, reactive power for S+ not OK

3 active power for S+ not OK

4 active & reactive power for S+ OK due to DR and DG

5 S+ fixed due to DR and DG

6 S+ fixed

NF No Failure - recovery completed

q1f probability enough active and reactive power for S+

q2f probability enough active (but not reactive) power for S+

q3f probability not enough active backup power for S+

dR probability that demand response program for reactive power is effective

dA probability that demand response program for active power is effective

α automatic repair rate

β demand response rate

γ manual repair rate

ε circuit isolation time ε� 1
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Survivability study of a power smart grid - 3

The infinitesimal generator, where the rows are ordered from 1 to 6 being
the last row the absorbing State NF , is:

QQQ =



−(α+ γ) 0 0 0 0 α γ
0 −(βdR + γ) 0 βdR 0 0 γ
0 0 −(βdA + γ) βdA 0 0 γ
0 0 0 −(α+ γ) α 0 γ
0 0 0 0 −γ 0 γ
0 0 0 0 0 −γ γ
0 0 0 0 0 0 0


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Survivability study of a power smart grid - 4

The transient equation can be solved in closed form to give:

π1(t) = e−(α+γ) t π1(0)

π2(t) = e−(βdR+γ) t π2(0)

π3(t) = e−(βdA+γ) t π3(0)

π4(t) = βdR

α− βdR
(e−βdR t − e−α t) e−γ t π2(0) + βdA

α− βdA
(e−βdA t − e−α t) e−γ t π3(0)

π5(t) = α(1− e−βdR t)− βdR(1− e−α t)
α− βdR

e−γ t π2(0)

+ α(1− e−βdA t)− βdA(1− e−α t)
α− βdA

e−γ t π3(0)

π6(t) = (1− e−α t) e−γ t π1(0)

πNF (t)= 1− e−γ t
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Survivability study of a power smart grid - 5

Two reward rates are assigned in the Table to measure both the active
and reactive energy not supplied per hours from the occurrence of the
failure (State F ) to the complete recovery (State NF ).

State 1-3 4 5 6 NF

Active ENS/h 593.58 568.98 112.45 112.45 0

Reactive ENS/h 361.77 308.93 26.76 26.76 0

The expected accumulated reward up to time t is

E [Y (t)] =
∑
i

ri
∫ t

0
πi(u) du .
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Safety analysis of a fire-fighting pumping station - 1

Safety analysis and experience reveal fire to be one the most serious
cause of accidents in industrial plants that store or handle a large amount
of inflammable material.

The fire protecting system requires a high level of performance coupled
with high reliability.

A safety analysis of a pumping station in a fire fighting system requires
that the system provides a sufficient amount of flow (either water or
foam) for a sufficient time upon demand.

During emergency operation no repair action can take place

A large petrochemical plant is divided in zones that may have a different
request of flow rate and useful time to extinguish the fire

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 71 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

Safety analysis of a fire-fighting pumping station - 2

The following assumptions are made about the system operation:
1 To apply design diversity concepts the pumping system is formed by

ne pumps with electrical motor (EP) and nd pumps with a diesel
motor (DP).

2 The pumps are dormant in cold standby configuration until a
demand arrives prescribing a given flow rate.

3 The minimum number of pumps is started upon demand to satisfy
the requested flow rate, the other pumps being in (cold) standby.

4 Pumps are put into operation sequentially according to a prescribed
order, first the electrical pumps and then the diesel pumps.

5 All the EP have the same failure rate λe and capacity re and all the
DP have the same failure rate λd and capacity rd ≥ re .

6 The availability on demand is ce for EP and cd for DP.
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Safety analysis of a fire-fighting pumping station - 3

The operation of the pumping station is considered successful if it
provides the required flow for a sufficiently long time when a fire accident
is detected and the protection system is demanded to operate.

We assume that upon demand the requested flow rate from the plant is
qreq. Given that the failure rates are constant, the system operation can
be modeled as a MRM.

In each state i the reward rate ri is defined as the capacity delivered by
the system in that state.

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 73 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

Safety analysis of a fire-fighting pumping station - 4

Given that πi(t) is the transient state probability of finding the system in
state i at time t, two measures can be defined to characterize the system
operation:

The success probability S(t) of correct operation in the interval
(0, t] conditioned on the arrival of a demand qreq at time t = 0:

S(t) =
∑

i :ri≥qreq

πi(t) .

The total expected capacity (total accumulated reward) Y (t)
delivered in the interval (0, t] conditioned on the arrival of a demand
at time t = 0.

Y (t) =
∫ t

0

n∑
i

ri πi(u) d u .
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Safety analysis of a fire-fighting pumping station - 5

According to a previous study, an optimal configuration, with respect to
installation costs and expected losses, for the plant under consideration is
to configure the system with ne = 2 EPs and nd = 1 DP.

The initial system configuration depends on the flow demand qreq. We
study three possible scenarios:

Case 1) - qreq ≤ re
Case 2) - re ≤ qreq ≤ 2 re
Case 3) - 2 re ≤ qreq ≤ 2 re + rd
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Fire-fighting pumping station: Case 1 - 6

State 1 - The first EP is in operation the other pumps are dormant (r1 = re)
State 2 - The first EP has failed the second EP is in operation DP is dormant (r2 = re)
State 3 - Both EPs have failed and DP is in operation (r3 = rd )
State 4 - Both the EPs and the DP have failed (r4 = 0)

Upon demand, the system starts with the following initial probability
vector:

1 2 3 4
ceλe cdλe λd

cd(1− ce)λe

(1− cd)(1− ce)λe

(1− cd)λe

π1(0) = ce
π2(0) = ce (1− ce)
π3(0) = cd (1− ce)2

π4(0) = (1− ce)2 (1− cd) .

The value π4(0) 6= 0 indicates that there is a non-zero probability that
the system does not start upon demand.
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Fire-fighting pumping station: Case 1 - 7

The infinitesimal generator is:

QQQ =


−λe ce λe (1− ce) cd λe (1− ce) (1− cd)λe
0 −λe cd λe (1− cd)λe
0 0 −λd λd
0 0 0 0

 .

The operational states in which the provided flow rate satisfies the
request are states 1, 2, and 3 so that the probability of safe operation
and the total expected capacity are:

SCase1(t) = π1(t) + π2(t) + π3(t)

YCase1(t) =
∫ t

0

3∑
i=1

ri πi(u) d u .
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Fire-fighting pumping station: Case 2 - 8

The requested instantaneous flow rate requires both EPs to be put into
operation upon demand qreq2 = 2× re .

State 1 - Both EPs are in operation DP is dormant (r1 = 2 re)
State 2 - One EP has failed the other EP and the DP are in operation (r2 = re + rd )
State 3 - Both EPs have failed DP is in operation (r3 = rd )
State 4 - One EP and DP have failed the other EP is in operation (r4 = re)
State 5 - Both the EPs and the DP have failed (r5 = 0)

Upon demand, the initial probability vector has the following expression:

1 2

3

4

5
2cdλe

λe

λd

λd

λe

2(1− cd)λe

π1(0) = c2e
π2(0) = 2 (1− ce) ce cd
π3(0) = cd (1− ce)2

π4(0) = 2 ce (1− ce) (1− cd)
π5(0) = (1− ce)2 (1− cd) .
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Fire-fighting pumping station: Case 2 - 9

The operational states in which the provided flow rate satisfies the
request are states 1, 2, and possibly 3 if rd ≥ qreq.

Hence, the probability of safe operation and the total expected capacity
are:

SCase2(t) = π1(t) + π2(t)(+π3(t))

YCase2(t) =
∫ t

0

4∑
i=1

ri πi(u) d u .
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Fire-fighting pumping station: Case 3 - 10

The requested instantaneous flow rate requires that all the three pumps
are put in operation upon demand qreq3 = 2× re + rd .

State 1 - Both the EPs and the DP are in operation (r1 = 2 re + rd )
State 2 - One EP has failed the other EP and the DP are in operation (r2 = re + rd )
State 3 - The DP has failed both the EPs are in operation (r3 = 2 re)
State 4 - Both the EPs have failed and the DP is in operation (r4 = rd )
State 5 - One EP and the DP have failed the other EP is in operation (r5 = re)
State 6 - Both the EPs and the DP have failed (r6 = 0)

Upon demand, the initial probability vector has the following expression:

1

2

3

4

5

6

2λe

λe

λd

2λe

λd

λd

λe

π1(0) = c2e cd
π2(0) = (1− ce) ce cd
π3(0) = c2e (1− cd)
π4(0) = cd (1− ce)2

π5(0) = ce (1− ce) (1− cd)
π6(0) = (1− ce)2 (1− cd) .
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Fire-fighting pumping station: Case 3 - 11

The probability of safe operation and the total expected capacity for Case
3 are:

SCase3(t) = π1(t)

YCase3(t) =
∫ t

0

5∑
i=1

ri πi(u) d u .
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Fire-fighting pumping station: Results - 12

For the three cases (i = 1, 2, 3), we have calculated the non-success
probability (1− SCase i(t)) and the relative flow rate difference Yreq i(t):

∆YCase i(t) = YCase i(t)− Yreq i(t)
Yreq i(t) with Yreq i(t) = qreq i × t .

In the computation, with the tool SHARPE, we have assumed the
following numerical values

ce = 0.99 ; λe = 0.6 10−5 f /h ; cd = 0.98 ; λd = 0.3 10−4 f /h

with two possible levels of the pump flow rates.

Level 1) re = 500 m3/h ; rd = 500 m3/h
Level 2) re = 500 m3/h ; rd = 1000 m3/h .
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Fire-fighting pumping station: Results - 13

Table: Non-success probability and flow rate difference for Level 1
t Case 1 Case 2 Case 3

(hr) 1− SC1(t) ∆YC1(t) 1− SC2(t) ∆YC2(t) 1− SC3(t) ∆YC3(t)

0 2.00E-06 4.96E-04 3.95E-02
12 2.05E-06 -2.03E-06 5.05E-04 -2.51E-04 3.99E-02 -1.34E-02
24 2.13E-06 -2.07E-06 5.19E-04 -2.55E-04 4.05E-02 -1.35E-02
72 2.39E-06 -2.19E-06 5.64E-04 -2.66E-04 4.24E-02 -1.38E-02

Table: Non-success probability and flow rate difference for Level 2
t Case 1 Case 2 Case 3

(hr) 1− SC1(t) ∆YC1(t) 1− SC2(t) ∆YC2(t) 1− SC3(t) ∆YC3(t)

0 2.00E-06 4.96E-04 3.95E-02
12 2.05E-06 9.65E-05 5.05E-04 9.53E-03 3.99E-02 -1.51E-02
24 2.13E-06 9.73E-05 5.19E-04 9.56E-03 4.05E-02 -1.52E-02
72 2.39E-06 9.99E-05 5.64E-04 9.68E-03 4.24E-02 -1.56E-02

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 83 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

CTMC with Self-Loops

1 CTMC - Reliability Models

2 CTMC with Absorbing States

3 CTMC with Self-Loops

4 Transient Solution Methods

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 84 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

CTMC with self-loops

Self-loops in a CTMC are possible and in some cases are very consistent
with the nature of the system to be modelled.

A self-loop is a transition that exits from a state and returns to the same
state.

Self-loops are not visible in the generator of a CTMC even if present. For
this reason they are usually neglected without affecting the solution
equations.

To make them visible we need to distinguish between the transition rate
matrix and the infinitesimal generator.

The transition rate matrix groups all the transition rates including the
self-loops on the diagonal; in the infinitesimal generator the diagonal is
the opposite of the sum of all the rates (including the self-loop) outgoing
from the state.
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CTMC with self-loops

The Figure shows a self-loop emerging from state i of rate γi .

The transition rate matrix contains the value γi in the diagonal entry of
row i , but in diagonal entry we have to add to γi minus the sum of all
the rates outgoing from state i , including the self-loop.

i

qi1

qi2

qil

qi = γi − (γi +
∑

j:j 6=i qij)
=

∑
j:j 6=i qij

γi

The final result is that the diagonal entry of the infinitesimal generator
becomes minus the sum of the off-diagonal entries.

It turns out that the sojourn time in state i with self-loop is the same as
the sojourn time in state i without self-loop.
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Fault Error Handling Model (FEHM) - 1

Highly reliable systems that use extensive redundancy are highly
reconfigurable and have complex recovery management techniques that
are handled by a Fault Error Handling Model (FEHM).

A schematic representation of a
FEHM is given in Figure that
allows for the modeling of per-
manent, intermittent, and tran-
sient faults, and models the on-
line recovery procedure necessary
for each type.

FEHM
Fault - error
handling
model

Permanent
coverage exit

c

Near coincident
fault exit

n

Transient
restoration exit

r

Single point
failure exit

s

Fault
occurs

The FEHM has four possible exits for which a corresponding exit
probability must be evaluate; it should be noted that:

r + c + s + n = 1
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Fault Error Handling Model (FEHM) - 2

To evaluate the exit probabilities the internal structure of the FEHM
must be made explicit.

A very simple CTMC model for
a FEHM is represented in Figure
where state A is the entry state as
a fault occurs.

FEHM

A

E

C

c

R

r

FSPF s

Near coincident
fault exit

n

Fault
occurs

vδ

ρ

(1−v)δ

uϑ

(1−u)ϑ

The following results are obtained (with c + r + s = 1):

c = vδ + uρ
δ + ρ

; r = (1− v)δ
δ + ρ

; s = (1− u)ρ
δ + ρ
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Fault Error Handling Model (FEHM) - 3

Up to now the FEHM was considered in isolation. But if we now consider
the FEHM integrated into a real system.

To be more concrete, suppose
that the system is in a state
with m redundant components
in operation. As a failure oc-
curs with rate mλ, state A of
the FEHM is entered as shown
in Figure.

FEHM

A

E

C

c

R

r

FSPF sFNCFn

m
Fault
occurs

m−1

mλ

vδ

ρ

(1−v)δ

uϑ

(1−u)ϑ

(m−1)λ (m−1)λ

During the handling of the fault in states A and E , (m − 1) redundant
components are still working and they may fail at rate (m − 1)λ leading
to the permanent failure state denoted by FNCF .
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Fault Error Handling Model (FEHM) - 4

Computation of the exit probabilities provides the following results (with
c + r + s + n = 1):

c = ((m − 1)λ+ ϑ)vδ + uρϑ
((m − 1)λ+ δ + ρ)((m − 1)λ+ ϑ)

r = (1− v)δ
(m − 1)λ+ δ + ρ

s = (1− u)ρϑ
((m − 1)λ+ δ + ρ)((m − 1)λ+ ϑ)

n = (m − 1)λ((m − 1)λ+ ϑ) + (m − 1)λρ
((m − 1)λ+ δ + ρ)((m − 1)λ+ ϑ)

K. Trivedi & A. Bobbio Chapter 10 - Continuous Time Markov Chain: Reliability Models Jan 2017 90 / 113



CTMC Reliability Models CTMC Absorbing States CTMC Self Loops Transient Solution

Fault Error Handling Model (FEHM) - 5

Since the FEHM is composed of events that occur in rapid succession,
once a fault has occurred, each FEHM can be replaced by an
instantaneous branch point obtaining the imperfect coverage model of
the Figure.

The transient restoration probabil-
ity r gives rise to a self loop on
state m.

FEHM

m m−1

FSPFFNCF

mλc

mλsmλn

mλr

The instantaneous imperfect coverage model is known to be conservative.
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The uniformization of a CTMC - 1

Uniformization provides the most efficient numerical technique for solving
a CTMC.

A simple argument for explaining how the uniformization works can be
introduced resorting to the use of self-loops [*].

Consider a CTMC with in-
finitesimal generator QQQ and
let q be at least equal to the
maximum diagonal entry in
absolute value

q ≥ max
i
|qii |

QQQ =


−q1 q12 . . . q1,i . . . q1,n
q21 −q2 . . . q2,i . . . q2,n
. . . . . . . . . . . . . . . . . .
qi,1 qi,2 . . . −qi . . . qi,n
. . . . . . . . . . . . . . . . . .
qn,1 qn2 . . . qn,i . . . −qn



[*] R. Marie, Transient numerical solutions of stiff Markov chains, in Proceedings
20-th ISATA Symposium, 1989, pp. 255-270.
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The uniformization of a CTMC - 2

In each state of the CTMC the outgoing rate |qii | is less than q.

1

2

i

q12

q13
q1i

qil

q2x

γ1 = q −∑
j:j 6=1 q1j

γ2 = q −∑
j:j 6=2 q2j

q =
∑

j:j 6=i q1j

We add to each state j a self-loop with rate

γj = q −
∑

k=1,n;k 6=j
qjk = = q − |qjj | ≥ 0
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The uniformization of a CTMC - 3

The CTMC with self-loops is the uniformized CTMC.

In the uniformized CTMC, all the departures out of any state occur with
the same rate q and, hence, the sequence of departures forms a Poisson
Process of rate q

Given that one transition is occurred, the CTMC jumps to the next state
according to the conditional probability matrix QQQ?

QQQ∗ =



1− |q11|q
q12
q . . . q1i

q . . . q1n
q

q21
q 1− |q22|q . . . q2i

q . . . q2n
q

. . . . . . . . . . . . . . . . . .
qi1
q

qi2
q . . . 1− |qii |q . . . qin

q
. . . . . . . . . . . . . . . . . .
qn1
q

qn2
q . . . qni

q . . . 1− |qnn|q


= III + QQQ

q .
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The uniformization of a CTMC - 4

QQQ? is a stochastic matrix with all entries 0 ≤ q?ij ≤ 1 and row sum equal
to 1.

QQQ? represents the generator matrix of the Discrete Time Markov Chain
(DTMC) embedded into the uniformized CTMC generated by matrix QQQ.

The number N(t) of transitions at time t, in the uniformized CTMC, is
given by the number of events in a Poisson Process of rate q, hence:

P{N(t) = k} = (qt)k
k! e−qt
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The uniformization of a CTMC - 5

The state probability vector after exactly (j = 0, 1, 2, . . . , k) jumps is
then:

0 transitions πππ(t|(N(t) = 0) = πππ(0) P{N(t) = 0} = πππ(0) e−qt

1 transition πππ(t|(N(t) = 1) = πππ(0) QQQ∗ P{N(t) = 1} = πππ(0)q t
1! e−q t QQQ∗

2 transitions πππ(t|(N(t) = 2) = πππ(0) QQQ∗2P{N(t) = 2} = πππ(0) (q t)2

2! e−q t QQQ∗2

. . . . . .

k transitions πππ(t|(N(t) = k) = πππ(0)Q?Q?Q?k P{N(t) = k} = πππ(0)Q?Q?Q?k (qt)k

k! e−qt

Summing up over k:

πππ(t) = πππ(0) e−q t
∞∑
j=0

(q t)j
j! QQQ∗j
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Example: A redundant system with spare - 1

A system is composed by two active processors in parallel redundancy
and one spare in cold standby.

The system is part of a satellite control system for which remote recovery
is possible but not repair.

The system is working when at least one processor is working:
Exhaustion of the components leads to a permanent failure.

21 11

20

01

10 00

2λ

µ

λ

2λ

2µ

λ
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Example: A redundant system with spare - 2

Each state is labelled with tho indices (i , j) where the first index i
denotes the number of active processors and j the number of active
spares. The failure rate is λ and the recovery rate is µ.

The recovery rates are orders of magnitude larger than the failure rates
and the largest diagonal entry in absolute value is q = 2µ.

In the uniformized CTMC each state is added a self-loop so that the total
exit rate is equal to 2µ.

21 11
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10 00

2λ

µ

λ

2λ

2µ

λ

2µ−2λ µ−λ

2µ−2λ 2µ−λ 2µ
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Example: A redundant system with spare - 3

We derive the embedded DTMC representing the conditional next state
transition probability matrix

QQQ? = III + QQQ
q

The labels are the probabilities of the DTMC

21 11

20

01

10 00

λ

µ

λ

2µ

1

2

λ

µ

1

λ

2µ

1− λ

µ

1

2
− λ

2µ

1− λ

µ
1− λ

2µ

1
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Transient Solution Methods

1 CTMC - Reliability Models

2 CTMC with Absorbing States

3 CTMC with Self-Loops

4 Transient Solution Methods
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Transient Solution Methods

Transient solution methods can be categorized as fully symbolic,
semi-symbolic or numerical.

Closed-form, fully symbolic solution is possible for either highly
structured CTMCs (e.g., birth-death process) or very small CTMCs (as
many examples in this Chapter).

In all the other cases, we must resort to numerical solution techniques.

In the following slides we illustrate the main solution techniques providing
the appropriate references for implementation details.
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Fully Symbolic and Semi-symbolic Methods

The convolution integration method and the Laplace transform method
offer the possibility of a fully symbolic solution that has been used in
many examples of this chapter.

Fully symbolic solution is applicable to CTMC with a very small number
of states.

In a semi-symbolic (or semi-numerical) solution the entries in the QQQ
matrix are numerical but the final solution πππ(t) is a symbolic function of
the time.

The semi-symbolic method is simpler than the fully symbolic method and
has been implemented in the SHARPE software package.
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Transient Solution via Series Expansion - 1

The Taylor series expansion around t = 0 of the transition probability
matrix PPP(t) is:

PPP(t) = III + d PPP(t)
d t

∣∣∣∣
t=0

t + 1
2!

d2 PPP(t)
d t2

∣∣∣∣
t=0

t2+ . . . =
∞∑
i=0

1
i !

d i PPP(t)
d t i

∣∣∣∣
t=0

t i .

Since
d PPP(t)

d t = PPP(t)QQQ =⇒ d PPP(t)
d t

∣∣∣∣
t=0

= QQQ

d2 PPP(t)
d t2 = d

d t (PPP(t)QQQ) = PPP(t)QQQ2 =⇒ d2 PPP(t)
d t2

∣∣∣∣
t=0

= QQQ2

. . . . . .

d i PPP(t)
d t i = d

d t (PPP(t)QQQ(i−1)) = PPP(t)QQQ i =⇒ d i PPP(t)
d t i

∣∣∣∣
t=0

= QQQ i

. . . . . .

PPP(t) = III + QQQ t + 1
2 (QQQ t)2 + . . . =

∞∑
i=0

1
i ! (QQQ t)i
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Transient Solution via Series Expansion - 2

By analogy with scalar expansion, the above series is written in the
compact form as a matrix exponential:

PPP(t) = eQQQ t .

The above series can be utilized for implementing the numerical solution
of a CTMC. There are, however, practical problems in the
implementation of this approach.

1 QQQ has both negative and positive entries and hence the computation
has both additions and subtractions (with poor numerical behavior);

2 raising the matrix QQQ to its powers is both costly and fills in the zeros
in the matrix (that, in general, is very large and very sparse);

3 the infinite series needs to be truncated, and the approximation error
is not known.
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Transient Solution via Series Expansion - 3

A practical implementation, can however follow the following pattern.

Given that tM is the final mission time of the transient analysis, we take
a small time interval h = tM/n and we exploit the property.

πππ(t + h) = πππ(t) ·PPP(h) = πππ(t) · eQQQ h .

Then, we adopt the following iterative procedure:

πππ(h) = πππ(0) · eQQQ h

πππ(2 h) = πππ(0) · eQQQ 2 h = πππ(h) · eQQQ h

· · · · · ·
πππ(n h) = πππ((n − 1) h) · eQQQ h

· · · · · ·

With this scheme we need to compute the matrix exponential via the
series expansion only once at the time point h.

Since h can be small the expansion uses few terms.
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Transient Solution via Uniformization - 1

We search for the maximum diagonal entry in absolute value of the
infinitesimal generator

q = max
j
|qjj |

and we multiply both sides of the Kolmogorov Equation to get

πππ(t) eq t = πππ(0) · eq t eQQQ t

= πππ(0) · e[QQQ/q+III]q t

=
∞∑
k=0

π(0) (qt)k
k! · (QQQ?)k .

Finally,

πππ(t) = πππ(0) e−qt
∞∑
k=0

(qt)k
k! (QQQ?)k .

Matrix QQQ? is a DTMC matrix, with non negative entries and ≤ 1.
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Transient Solution via Uniformization - 2

To avoid the problem of raising matrix QQQ to its powers, we rewrite the
above Equation as

πππ(t) =
∞∑
k=0

θθθ(k)e−qt (qt)k
k! ,

where θθθ(0) = πππ(0) and, recursively

θθθ(k) = θθθ(k − 1)QQQ?, k = 1, 2, . . . .

The term θθθ(k) can be interpreted as the kth step state probability vector
of a DTMC with transition probability matrix QQQ?.

The term e−qt(qt)k/k! is the Poisson pmf with parameter qt.
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Transient Solution via Uniformization - 3

In a numerical implementation the infinite series must be
left/right-truncated between a minimal value km and a maximum value
kM .

πππ(t) ≈ e−qt
kM∑

k=km

θθθ(k) (qt)k
k! . (1)

The values km and kM can be determined from the specified truncation
error tolerance ε by

km−1∑
k=0

e−qt (qt)k
k! ≤ ε

2 , 1−
kM∑
k=0

e−qt (qt)k
k! ≤ ε

2 .
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Transient Solution via Uniformization - 4

A simple way to estimate km and kM is based on the fact that, as the
parameter q t is large enough, a Poisson distribution tends to be normally
distributed with mean q t and standard deviation

√
q t.

In a normal distribution N ∼ (µ, σ), the area outside the interval µ± 6σ
is 1.2 · 10−8.

Hence, we can assume:

km = q t − 6
√
q t kM = q t + 6

√
q t
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ODE-based Solution Methods - 1

The Kolmogorov Equation can be solved by resorting to standard
techniques for ODEIVP.

ODE solution methods discretize the solution interval into a finite
number of time intervals {t1, t2, ..., ti , ..., tn}.

Given a solution at ti , the solution at ti + h (= ti+1) is computed.
Advancement in time is made with step size h, until the time at which
the solution is desired (the mission time) is reached.

A method that only uses (ti ,πππi) to compute πππi+1 is said to be an explicit
single step method. A multi-step method uses approximations at several
previous steps to compute the new approximation. An implicit method
requires a value for πππi+1 in computing πππi+1.
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ODE-based Solution Methods: TR-BDF2 - 2

A composite method that uses one step of TR (trapezoidal rule) and one
step of BDF2 (second order backward difference equation [*].
The trapezoid rule applied to interval (ti , ti + γhi ] is:

πππi+γ − πππi = γhi ·
πππi+γQQQ + πππi QQQ

2

Application of the TR step is computationally the same as solving the
first order linear algebraic system

πππi+γ (III − γ hi
2 QQQ) = πππi (III + γ hi

2 QQQ)

After getting πππi+γ , the TR-BDF2 method uses the 2nd order backward
difference equations (BDF2) to step from ti + γhi to ti+1:

πππi+1((2− γ) III − (1− γ) hi QQQ) = 1
γ
πππi+γ −

(1− γ)2
γ

πππi
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ODE-based Solution Methods: TR-BDF2 - 3

Most implementations of ODE methods adjust the step-size at each step,
based on the amount of error in the solution computed at the end of the
previous step.

The TR-BDF2 method provides reasonable accuracy for error tolerances
up to 10−8 and excellent stability for stiff Markov chains [*].

[*] A. Reibman and K. Trivedi, “Numerical transient analysis of Markov models,”
Computers and Operations Research, vol. 15, pp. 19–36, 1988.
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ODE-based Solution Methods: Implicit Runge-Kutta - 4

Implicit Runge-Kutta methods of different orders of accuracy are possible
as proposed in [**].

A third order method is given by:

πππi+1(III − 2
3 hQQQ + 1

6h
2QQQ2) = πππi(III + 1

3hQ
QQ) .

Various possibilities exist for solving the above Equation.
One possibility is to compute the matrix polynomial directly. It was
found in various experiments that the fill-in of the squared generator
matrix was reasonably low.
The other option is to factorize the matrix polynomial. We then
need to solve two successive linear algebraic systems.

[**] M. Malhotra, J. K. Muppala, and K. S. Trivedi, “Stiffness-tolerant methods for
transient analysis of stiff markov chains,” Microelectronics and Reliability, vol. 34, pp.
1825–1841, 1994.
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